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1. Introduction. Let X(t, w), teR, be a continuous stochastic process
with independent increments and /be a continuous function in [α, &]. Then
the stochastic integral

\hMdX(t,w)
Ja

is defined in the sense of convergence in probability and is a random
variable (cf. Lukacs [4, p. 148]). Hence in particular

An{w) = [ e-2πnίtdX(t, w)
Jo

exists for an orthonormal set e2πnit and is the Fourier-Stieltjes coefficient
of X(t, w). The series

— oo

is a Fourier-Stieltjes expansion of X(y, w). The convergence and conti-
nuity of the series

n

was studied by Samal [7]. He has shown that the series (1) converges
in distribution and the sum is weakly continuous in probability (see Defini-
tion Dx in § 2). Mishra, Nayak and Pattanayak [6] have shown that under
the condition Σ-«> I an |

2 < oo the weighted Random Fourier-Stieltjes series
(RFS, for short)

(2) Σ α Λ W ^
— o o

converges in probability and is weakly continuous in probability. They
have also shown that under the stronger condition Σ-oo I nan |

2 < oo the
same series converges almost surely at every y and the sum function is
strongly continuous in probability (see Definition D3 in § 2).
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Attention had not been paid to finding the sum to which the RFS
series converges. Here our motivation is to find the sum to which the
RFS series (2) converges. We discuss in detail the mode of convergence
of the said series extending our work in a different direction. In Theorem
1, considering a symmetric stable process of index α, 1 ^ a ^ 2, we have
defined a new type of stochastic integral for a class of functions in
Lp[a, b], v ^ 1. In the remaining four theorems we have studied the
convergence of the series (2) to a stochastic integral

(3) [f(t - t)dX(t, w) ,
Jo

where / is the unique function in Lp[0, 1], p ^ 1, with the Fourier coeffici-
ents an. The mode of convergence depends on the value of α. In Theorem
2 we have considered the case 1 < a < 2, and have shown that the series
(2) converges in probability to the stochastic integral (3) and is weakly
continuous in probability. In Theorem 3, by imposing stronger condition
like Σϋoo I nan |

2 < co on the weights anf the sum function has been shown
to be differentiate in probability. In Theorem 4, the case a = 2 is dis-
cussed where it is proved that the RFS series converges almost surely to
the stochastic integral (3) and the sum function is continuous in quadratic
mean, which can be improved to be almost surely continuous function
under some stronger condition on weights an. In Theorem 5, the case
a = 1 is discussed and it is shown that the series (2) though not conver-
gent is convergent (C, 1) in probability (see Definition D5 in § 2) to the
stochastic integral (3). Of course, when |/ | log + | / | is integrable, the series
(2) is convergent as discussed in Corollary to Theorem 5. When 0 < a < 1,
imposition of a different set of restrictions on weights an confirms the
convergence in probability of the series (2) to the stochastic integral (3)
as discussed in Theorem 6.

2. Definitions.

DEFINITION DX. A random function /(ί, w) is said to be weakly con-
tinuous in probability at t = t0 if for all d > 0,

limP(|/(t0 + h, w) - f(t0, w)\ > δ) = 0 .
h-*0

A function f(t, w) is weakly continuous in probability in a closed interval
[α, 6] if it is weakly continuous at every t0 e [α, 6].

S b

\f(t)\pdt < oo
a

is denoted by Lp[a, 6].
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DEFINITION D3. A random function f(t, w) is said to be strongly con-
tinuous in probability if for all δ > 0,

l i m P ( s u p fίa + kib-a)^ \ _ J + (k - 1)(6 - α)> w ) | > ή = 0 .

DEFINITION D4. A random function /(£, w) is said to be differentiable
in probability at t = ί0 if there exists a random function git, w) such that
for all δ > 0,

= o .
Λ-0

DEFINITION D5. A sequence of random variables Xn converges in (C, 1)
probability to a random variable X if

lim P(| Yn - X\ ^ ε) = 0 , for all ε > 0 ,
n—»oo

where

y 3LQ H~ ^Xi + * * * + Xn-\
n —

n

3. Results.

THEOREM 1. // X(t, w) is a symmetric stable process of index a,
[1 ^ a ^ 2, ίfee^ /or / 6 Z/[α, 6], p ^

(4) \h f(fi)dX(t, w)

can be defined in the sense of convergence in probability.

REMARK. AS far as we know in all literature hitherto the stochastic

S b

f(t)dX(t, w) is defined either for / e U[a, b] or /, continuous in
a

[α, b]. In case / is an U function the integral exists in the sense of
convergence in quadratic mean and when / is a continuous function and
X(t, w) is a continuous homogeneous process with independent increment,
the stochastic integral exists in the sense of convergence in probability.
But the above theorem proves the existence of a stochastic integral for
a larger class of functions in Lp, p ;> 1.

For the proof of the above theorem we require the following lemma
due to Samal and Mishra [8].

LEMMA 1. Let f{t) be any continuous function with continuous
derivative in [a, b] and X(t, w) be a symmetric stable process with index
α, 0 < a ^ 2. Then for all δ > 0,
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where C is a positive constant.

PROOF OF THEOREM 1. It is well known (cf. Zygmund [9, p. 265])
that for / G Lp[a, b], p ^ 1, we can get a sequence fn of continuous func-
tions with continuous derivatives in [α, b] such that

(5) \im\b\fm(t)-f(t)\*dt = O.

Thus we get

lim
m,n—*oo

So by application of Lemma 1, we get

P ( | Γ fn(t)dX(t, w) - \hfm(t)dX(t, w ) > δ ) ^ C ' 2 " Z « Γ I f-W - / . ( ί ) ! " ^

Since 1 ̂  a ^ 2 by (5), the above right hand side integral approaches 0,

as m, tι —> oo and thus the stochastic integral

Γ fm(t)dX(t, w)
Ja

converges in probability. Hence (cf. Kawata [3, p. 479]) there exists a
random variable Y such that

limPί fm(t)dX(f, w) - Y > δ) = 0 .

It is easy to see that this is independent of the choice of sequence /m.
Suppose there is a sequence gm such that

lim[\gm(ί)-Λt)\*dt = 0, p ^ l .
m-κχ> Ja

Then we easily get

(6) \im\b\fm(t)-gm(t)\pdt = 0.
m->oo Ja

By Lemma 1 and statement (6), we get

lim P(\\bfm(t)dX(t, w) - Γ gm(t)dX(t, w) > δ) = 0 .
w—oo \ | J α Jα /

We define the random variable Y to be the stochastic integral of Lp,
p^l function.
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In the next theorem we have described how to approximate the
stochastic integral of an Lp function to a trigonometric polynomial with
random coefficients. For this we require the extension of Lemma 1 for
an Lp function.

LEMMA 2. Let f{t) be any function in Lp[a, 6], p ^ 1, and X(t, w)
be a symmetric stable process of index a, 1 ^ a ^ 2. Then for all δ > 0,

Λt)dX(t, w) )
^

where δ' < d and C is a positive constant.

PROOF OF LEMMA 2. For f eLp[a, b], p ^ 1, we have a sequence of
continuous functions fm with continuous derivatives, satisfying (5). Now
for each e > 0,

P f(t)dX(t,w)
f w) >o

> s

But by Theorem 1,

(7 ) lim P( I \ (f(t) - fm(t))dX(t, w)

and by Lemma 1

limP fm(t)dX(t,w) > δ -

Λ,θα+1 fδ

< ^ lim \
" (a + 1)(<5 - e)α »-« J*(α + l)(δ - ε)a

(by Minkowski's inequality) .

The above result with (7) proves the lemma.

THEOREM 2. Let X(t, w) be a symmetric stable process of index a,
1 < a < 2, with period one,

( 8 )

Then

An(w) =

(a) the RFS series

( 9 )
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converges in probability to the stochastic integral

(10) [ f(y - t)dX(t, w) ,
J

for some f eLp (p J> 1), such that an is the Fourier coefficient of f and
(b) the sum function is weakly continuous in probability.

REMARK. Theorem 2 is a generalization of Samal and Mishra [8] for
an = 1/n which is the Fourier coefficient of the function π/2 — πt. By
restricting the process to a stable one of index 1 < a < 2, the convergence
in distribution is improved to convergence in probability. Since

/eL2 — Σ|αJ2< -

it follows that our result also includes the result of Mishra, Nayak and
Pattanayak [6].

PROOF OF THEOREM 2. Let

and

Lit) = Σ ake
ίMt.

—n

Thus

Sn(y, w) = Σ [ a^*-" dX(t, w) = [fn(y - t)dX(t, w) .
—n Jo JO

Now

- t)dX(t, w) - Sn(y, w) >δ)

= p(\[ (f(y -1) - fn(v - t))dx(t, >*)
" S ] f ( y ~t]~ fn{V ~ t} m (by Lemma 2) '

where δ' < δ. But we know (cf. Zygmund [9, p. 266]) for feL", p ^ 1,

α>l

(11) lim Γ IΆv ~ t) - fn(y - t)\°dt = 0 .
n—*oo J o

Hence

limPί \ f(y - t)dX(t, w) - Sπ(y, w) > δ) = 0 , for all δ > 0 .
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Thus the series (9) converges in probability to the stochastic integral (10).
For the second part of the theorem it is enough to look at the

inequality

P(| jV(x - t)dX(t, w) - jV(2/ - t)dX(t, w)

^ , C ! 2 ! ! L [ \Λx - ί) - /(2/ - ί)lαdί, < δ , (by Lemma 2) .

But for / e Z Λ p^l, we know (cf. Zygmund [9, p. 37])

(12) lim ( ? \f(x - t) - f{y - t) \»dt) = 0 ,
χ-+v \Jo /

which confirms the weak continuity of the sum function of the RFS
series (9) and Theorem 2 is proved.

Imposition of stronger condition on weights an improves the result
in the sense that the sum function is differentiate in probability (see
Definition D4 in § 2) which we prove in our next theorem.

THEOREM 3. Let X(t, w), An(w) and an have the same meaning as
in Theorem 2. Then the sum function of the RFS series (9) is differenti-
able in probability if an satisfies the condition

Σ \nan\
2 < - .

— oo

REMARK. Theorem 3 is an improvement over the results of [6].
Under the condition Σ-oo I nan |

2 < oo they have shown the sum function
to be strongly continuous in probability whereas we have shown it to be
differentiate in probability.

PROOF OF THEOREM 3. Since

by the Riesz-Fischer theorem there exists a function geU such that

(13) naπ = [ e-**niig{t)dt .
JO

Let

S(y, w) = Σ an
— oo

Then
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S(y + h,w)~ S(y, w)
h

Σ
2πnih

e

h

2πnιh

zπnih

π, we get

S(y + h,w)- S(y, w) =

Denoting

where 6n =

which is a RFS series with weights dn. Again

( P2πnih 1 \ I f 0 fl 1 fθ

2πnιh / fe J-» Jo fe J-*
(by (13)) .

Thus dπ is the Fourier coefficient of an integral which is absolutely con-
tinuous and hence belongs to Lp, p > 0. So by Theorem 2

converges in probability to

Thus

' -r ( 9(y-t- u)dudX(t, w) .
o ft J - *

, w)

= pί\ S(y + h,w)- S(y, w) _ r 1_ f g(y _ t _
V| ft JO ft J-h

+ Γ T - Γ β(V-t- u)dudX(t, w) - [ g(y - ί)dX(t, w)
Jo ft J-h Jo

ί j° ^(y - ί - u)dudX{t, w) - ^ g(y - t)dX(t, w)

J[ (-i- J° h g{y - t - u)du - g(y - t))dX{t,



RANDOM FOURIER-STIELTJES SERIES

τ\ 8(V-t-u)du-g(y-t)
h J-*

(by Lemma 2)
Q , 9 α + 1 f1

= (α + l)δ'a Jo

S i i ro a / i

— I 0(2/ — ί + hv)(—hdv) — g(y — t) dt (taking v = — —
0 fl J i \ ft

and iΓα a constant depending on a and δ'j

= ^ α \ I — g{x) (—dx) (taking y — t = x)

( C-l I f l α \

— \ \ ff(« + few)dw — flf(ί») die) (by periodicity)
Jo I Jo /

= Ka \ I g(x + hu)du —

= Ka
dxf (taking xf = a? + 1)

+ hu)du - g{x') #' (by periodicity)

g(x' + hu)du - f g(x')du
J

!' + hu) - g{x'))du dx'

l/α

J
- K*

S l Γ / f l

oLUo'
(by Holder's inequality)

= iία ̂  ( j J g(xf + M - g(x') \aduY1/adx'

= Ka\ \ I g(x + Λw) — flf(») |αd^cίίc .
Jo Jo

Since g e U implies g eLp, p ̂  2, by (12) we conclude that

lim \ \g(x + feu) — 0(#)|αdcc = 0
Λ,-»0 J θ

and get

- S(y, to) _ f' ̂  _
Jo ^ ή = 0 ,

which confirms that the RFS series (9) is differentiate in probability.
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In the next theorem we consider the case a — 2 where the situation
is considerably improved in the sense that the convergence of the RFS
series (9) is an almost sure convergence as well as the sum function can
be made almost surely continuous under some condition on the weights αn.

THEOREM 4. Let X(t, w) be a Wiener process with period one,
X(0, w) = 0 and f e L2[0, 1], An(w) and an having the same meaning as
in Theorem 2. Then we have:

(a) the RFS series (9) converges to the stochastic integral (10) almost
surely and the sum function is continuous in quadratic mean.

(b) If further an satisfies

Σ
— oo

an

then the sum function is almost surely continuous.

REMARK. Theorem 4 is an improvement over [6] in two ways. The
condition of continuity in quadratic mean is stronger than the continuity
in probability. Besides, they have shown the almost sure convergence of
the RFS series under a stronger condition Σϋco | nan |

2 < oo but we have
shown it under a weaker condition.

PROOF OF THEOREM 4. As in Theorem 2, denoting Sn(y, w) and fn(t) by

Sn(y, w) = ± akAk(wy«ki* and fn(t) = ± ake*«kit

—n —n

we get

Sn{y,w) = \fn{y-t)dX{t,w).

We know (cf. Lukacs [4, p. 147]) for g e L2[0, 1] and a Wiener process
X(t9 w)

(14)

where σ is a constant associated with the normal law of the increment
of the process X(t, w). Hence we get

E Sn(y, w) - [f(y - t)dX(t, w) * = σ2[\fn(y - t) - f{y - t) \2dt .
Jo Jo

But by (11)

lim Γ\fn(y - ί) - f{V - t)W = 0 .
n-*oo Jo

So
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limE Sn(y, w) - [ (y - f)dX(jb, w)
Jo

dt = 0

which proves the convergence of the RFS series to the stochastic integral

\ fty — t)dX(t, w) in quadratic mean. Now we will improve it to an
Jo

almost sure convegence.

S b

g(t)dX(t, w)
a

for continuous g(t) in [α, b] and a Wiener process X(t, w) is a random
variable with normal distribution having mean zero and finite variance\g(t)\*dt. So

An(w) = , w)

is a random variable with mean zero and finite variance. Also we know
(cf. Doob [2, p. 427]) for a process F(ί, w) with orthogonal increments
and for g, f e L2[α, b]

, w)E

where g(f) denotes the complex conjugate of g(t).
Now X(t, w) being a Wiener process has orthogonal increments and

thus we get

EAn(w)Am(w) =
tdX(t, w) f w)

= [ e~2πmn-m)dt = 0 , (mΦn) .
Jo

Thus An(w) is a sequence of independent random variable because of its
normality. Further, we notice

ΣE\anAn(wWπniv\* = Έ>E
_ o o — o o

Since

Jo
Λπniiy-t) dX(t, w)

oo f 1

= Σ K
—oo Jo

'dt (by (14)) .

' 6 L2[0, 1] implies Σ W
we get

Thus Sn(y, w) constitutes a sum of normally distributed, independent
random variables where the sum of variance is finite. Hence by the
Kolmogorov theorem on sums of independent random variable, Sn(y, w)
converges almost surely to the stochastic integral
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f(y - t)dX(t, w).
o

To show the continuity property of the sum function we see that by (14)

E \ [f(x - t)dX(t, w) - [f(y - t)dX(t, w)
I Jo Jo

= Γ I f(x - t) - fty - t)\2dt.
J

Now by (12) one easily see that the integral on the right tends to zero
as x->y. Thus the sum function is continuous in quadratic mean.

For the second part of the theorem we notice that by Weistrass
Λf-test the series (9) converges uniformly for almost all y to a continuous
function almost surely if

Σ 10nAn(w) I < °° almost surely .
— oo

For this it is sufficient to show that

(15)

Now the condition Σ-oo | an \ < oo in Theorem 4 ensures the statement (15)
since | An(w) | is a bounded sequence and thus the second part of Theorem
4 is completed.

Our next theorem deals with the case a = 1 where we show that
the series (9) is convergent in (C, 1) probability to the stochastic integral
(10).

THEOREM 5. Let X(t, w) be a stable process of index α, a = 1, with
period one, while f e Z/[0, 1], An(w) and an have the same meaning as in
Theorem 2. Then the series (9) is convergent in (C, 1) probability to the
stochastic integral (10).

REMARK. Combining Theorems 2, 4 and 5 we see that the RFS
series (9)

(a) converges almost surely for a = 2
(b) converges in probability for 1 < a < 2
(c) converges in (C, 1) probability for a — 1.

Since (a)=>(b), it may appear that whenever the index of the process
decreases, the result obtained becomes weaker. Now it follows from (cf.
Maddox [5]) that

Sn —> s in probability

n denotes S° + Sl + ' " + S*-

provided \Sn\ <L g for some geL1.

=> σn -> 8 in probability (σn denotes
\ n
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Hence in our case if we can show that

Sn I ̂  g for some g e U

then (b)=>(c). In particular, if the Fourier coefficient an is such that

A = Σ-oo | α j < oo then \Sn\ ^ A [ dX(t, w) and (a) => (b) => (c) follows.
Jo

PROOF OF THEOREM 5. Let

σ'n(y, w) = S» + S l + '
n

and

σn(t) = ^ + ^ +

n
where Sn(y, w) and fn(t) have the same meaning as in Theorem 2. We
see as before

Sn(y,w) = [ fn(y - t)dX(t, w).
Jo

Also we get
σ'n(v, w) = 1 (7n(i/ - t)dX(t, w) .

Jo
Hence

σ'n{y, w) - σi(y, w) = \ (σn(y - ί) - tfTO(2/ - ί))d-3Γ(ί, w) .
Jo

Considering a = 1 in Lemma 2 we get

P(\σ'n(y, w) - σUv, w)\>d)^^[ \σn(y - ί) - σjy - t)\dt .
δ J

But we know (cf. Zygmund [9, p. 144]):
(a) The necessary and sufficient condition for Σ Sn(x) to belong to

L1 is that

lim \ I σm - σ J = 0 .
m,n—*oo J o

(b)

where Sn and σn denote the nth. partial sum and nth C§saro sum of the
Fourier series of /, respectively.

Thus / G Z/[0, 1] implies

lim Γ \σn(y - t) - σm(y - t)\dt = 0 ,
m,n-κ3o Jo

which confirms the convergence of σr

n in probability. Again we see
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S i

f(y — t)dX(t, %

= p(\[ (σn(y - t) - f(y - t))dX{t, w) > δ

9Π f1

^ ^f- (σΛ(y - t ) - f(y - t))dt (by Lemma 2) .
0 Jo

OJKV — t) being the C§saro wth partial sum of the Fourier series of /
which is in L1, we get

lim [\σn(y - t) - Ay - t)\dt = 0
tt-»oo Jo

which concludes the convergence of the series (9) in (C, 1) probability to
the stochastic integral (10).

If we consider the weights an to be the Fourier coefficients of a
weaker class of functions / which are not integrable but |/ | log + | / | is
integrable, then the RFS series (9) will converge to the stochastic integral
(10) in probability as we show in the corollary below.

COROLLARY 1. If X{t,w) is a symmetric stable process of index α,
a = 1, and an are the Fourier coefficients of f such that | / | log + | / | is
integrable, then the series (9) converges in probability to the stochastic
integral (10).

For the proof of the corollary we require the following lemma.

LEMMA 3 (cf. Zygmund [9, p. 107]). If | / | log + | / | is integrable, then

-A-Γ:\f-Sn\dt = 0,

where Sn denotes the n-th partial sum of the Fourier series of f.

PROOF OF COROLLARY 1. First we notice that the existence of the
f(t)dX(t, w), when |/ | log + | / | is integrable, can be

a

shown exactly as in Theorem 1 by Lemma 3. Then proceeding exactly
as in Theorem 2 and using Lemma 3 instead of statement (11) we get
the required result.

In the next theorem we discuss the case 0 < a < 1. When an is the
Fourier coefficient of an Lp function for 0 < p < 1, the RFS series (9)
converges in probability to the stochastic integral (10) only under a dif-
ferent set of conditions on weights an.

THEOREM 6. If X(t, w) is a symmetric stable process of index a,
0 < a < 1, and an is the Fourier coefficient of an Lp function, 0 < p < 1,
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then the series (9) converges in probability to the stochastic integral (10)
provided

oo

l ima n = 0 and Σ |a n + 1 — an\ < oo .

For the proof of the theorem we require the following lemma.

LEMMA 4 (cf. Bary [1, p. 215]). If an is the Fourier coefficient of
f e Lp, 0 < p < 1, with liπv^o an = 0 and Σ-°o |αn+1 — α j < «»

where Sn is the n-th partial sum of the Fourier series of f.

PROOF OF THEOREM 6. Proceeding as in Theorem 1 and using Lemma
4 instead of statement (11) the existence of the stochastic integral

f(t)dX(t, w) for f eLp, 0 < p < 1, and X(t, w) a stable process of index
a

a, 0 < a < 1, can be shown in the sense of convergence in probability.
Then the proof follows the pattern of the proof of Theorem 2.
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