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1. Introduction. Let E be a Banach space with norm | \E and let
J — [σ, σ + a), 0 < a ^ oo. If χ\ (— oo, a + a) —>JE7, then for any te
( - oo, σ + a) we define xt: (-oo, 0] -> E by #*(#) = α?(ί + θ), - °° < Θ <: 0.
In this paper we consider the initial value problem for functional dif-
ferential equations with infinite delay (IP);

(1.1) j£- = A t , xt) , t > σ

(1.2) xσ = φe^,

where / is an E-valued mapping defined on J x ^ and & is an abstract
phase space with semi-norm or quasi-norm | \& satisfying suitable axioms
introduced by Hale and Kato [2].

The purpose of this paper is to give sufficient conditions for the
global convergence of successive approximations for (IP): main results
are Theorems 4.1, 4.2, 4.3 and 4.4, which extend results obtained in [1],
[6]> [7], [11] Needless to say, our results ensure the global existence
of a unique solution to (IP).

Recently, the author [9] has proved the uniqueness and the global
convergence of successive approximations of solutions for functional
integral equations under some Perron-type conditions. For (1.1) these
conditions become

(1.3) \At, Ψ) - At, Ψ)\ ^ ω^t, \φ - ^U)

and

(1.4) \At, xt) - At, Vt)\ ̂  ω,(t, sup \x(s) - y(s)\) ,

where real-valued functions ωif i = 1, 2, are integrable and satisfy some
uniqueness conditions. On the other hand, the author [10] has proved
Kamke's uniqueness theorems of solutions for (IP). In this paper we
shall show the global convergence of successive approximations for (IP)
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under Kamke's uniqueness conditions with (1.3) or (1.4), provided ωt(t, s)
is nondecreasing in s. Theorems 4.1, 4.2 and 4.3 are related to the
inequality (1.3) and Theorem 4.4 is concerned with (1.4). In general,
Theorem 4.3 is a generalization of Theorems 4.1 and 4.2 under the ad-
ditional axioms on the phase space. Theorem 4.2 depends on a quantity
βy defined by

(for the definition of \\S(h)\\ see Section 2 below). Theorem 4.4 is essenti-
ally a corollary to Theorem 4.1 (cf. [9]). However, both Theorems 4.3
and 4.4 are useful in showing the convergence of the successive approxi-
mations of solutions for (IP). Such examples will be given in Section
6. When the delay is finite, that is, & = C([-r, 0], E), 0 ^ r < o o ,
Theorems 4.1, 4.2 and 4.3 are equivalent to one another and Theorem
4.3 is contained in Theorem 4.4. Finally, we note that our results
apply to linear systems, though the results obtained in [7], [11] do
not.

2. Phase space & and assumptions. Let R~~ = (— ©o, 0], R+ =
[0, oo), R — (— oo, oo) and let & — &(R~, X) be a linear space of func-
tions mapping R~ into Xwith semi-norm or quasi-norm | U, where X — E
or R. If we wish to emphasize the dependence on the space X, we
write &x. So far as there is no fear of confusion, we denote various
kinds of norms and semi-norms (or quasi-norms) by the same symbol | |.
For φ and ψ in &, φ = ψ means that φ(β) = ψ(θ) for all θeR~. For
φe&, let Xφ

σ[δ] (or Xψ

σ{δ)) be the set of all functions x mapping (—oo,
σ + δ] (or (— oo, a + <5)), δ > 0, to X such that xσ = φ and x(t) is con-
tinuous on [σy σ + δ] (or [σ, σ + δ)). Throughout this paper we assume
that the following axioms on the phase space & are always satisfied:

(BJ If x e X!(A), then xt also lies in & for all t e [σ, σ + A) and xt

is continuous in t on [σ, σ + A).
(B2) There exist functions K(t) > 0 and M(t) ^ 0 with the following

properties:
( i ) K(t) is continuous for t in R+.
(ii) M(t) is locally bounded on R+.
(iii) For every function xeXζ(A), it holds that

\xt\ ̂  K(t - α )sup{|«(8)|: σ ^ s ^ t] + M(t - α)|a?J for ί 6 [σ, α + A) .

(B3) There is a positive constant L such that \φ(0)\ ^ L|<^U for all
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Two examples of the phase space & below were given in [2].

EXAMPLE 2.1. Let ΎβR. The space ^f is the space of continuous
functions φ mapping R~ into E having the limit Iim8__oo ersφ(s) with the
norm \φ\«* = sup8€i2- er'\φ(s)\E.

EXAMPLE 2.2. Let

£fE = {φ: R~ -> E: measurable on (— °°, — r], continuous on

[-r, 0] and \φ\ ̂  < oo} ,

where 0 ^ r < «» and

S o
e°\φ(s)\Eds .

For the other examples of the phase space ^ , refer to [8], [9]. Here-
after, let Kδ = sup{#(s): 0 ^ s ^ δ} and X*[δ, 7] = {α e Xψ

σ[δ]: sup{|α(s) -
x(σ)\: σ ^ s ^ σ + δ) ^ 7}.

Next, we assume that / in (IP) is a mapping from Jx& into £7
satisfying the following conditions:

(Fi) /( , φ) is strongly measurable in t e J for each fixed φ 6 ^ .
(P2) /(ί, •) is continuous in < p e ^ f o r a.a. ί e J .
(F3) For every closed bounded set Bc& there exists a locally

integrable function βB(t), defined on J, such that |/(ί, ψ)| ^ βB(t) for a.a.
ί e J and all ψe&.

In order to give conditions for the convergence of successive ap-
proximations for (IP), we introduce a Kamke-type function ω as follows.
A function ω is said to be a Kamke-type function with domain
(ί0, £0 + d]x[0, 2r] if the following conditions hold:

(ωj o) = a)(t, s) is a real-valued function, defined on (ί0, tQ+d]x[0f 2r],
which is Lebesgue measurable in t for each fixed s e [0,2r] and is
continuous and nondecreasing in s for a.a. t e [ί0, t0 + d\.

(o)2) There exists a function α, defined on (ί0, t0 + d] and locally
integrable there, such that |α>(ί, s)| ^ α(ί) for a.a. te(tQ, t0 + d] and all
s 6 [0, 2r].
In case that the function a arising in (α>8) is integrable over (ί0, to + d],
we say that ω is a Perron-type function.

Now, we present some conditions on a Kamke (or Perron)-type func-
tion ω with domain (ί0, ί0 + d]x[0, 2r], which are essential in this paper.

(Ωi) z = 0 is the unique absolutely continuous function which satisfies
the initial condition z(tQ) = 0 and

(2.1) 4 r = «>(*, ̂  ~ «o)«(ί)) for a.a. t € (ί0, t0 + d]
at
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(Ω2) z ΞΞ 0 is the unique absolutely continuous function which satisfies
the initial condition z(t0) = 0 and

(2.2) 4 r = ω<t> *W) f o r a a * e «o, *Q + d] .
at

Define l i n e a r o p e r a t o r s S(t):&-+&, t^Q, by

+ θ) if t + 0 < 0

(2.3) [*>*]<« |Sθ> if

Then we define a quantity βv by the relation

(2.4) /9y i

where —°°^βu^°° and ||S(ί)|| = sup{|S(%?U: \φ\& ^ 1} Throughout this
paper we assume that βveR (cf. [10]).

(Ωz) z = 0 is the unique absolutely continuous function which satisfies
the initial condition z(t0) — 0 and

(2.5) 4 r = K(0)ω(t, z(t)) + βXt) for a.a. t e (ίOf ί0 + d] .
at

(Ω4) z = 0 is the unique absolutely continuous function mapping
(— oo, t0 + d] into R, which satisfies the initial condition zto =
and

(2.6) f o r a a

(i2δ) 25 = 0 is the unique absolutely continuous function mapping
(— ooftQ + d] into R, which satisfies the initial condition ztQ = Oe&R

and

(2.7) 4 ^ = <»(*• 1^1^) f o r a a * 6 (*o, *σ + d] .
at

Furthermore, we say that the function ω satisfies the condition (Ωt),
ί = 1, , 5, with (D+z)(t0) = 0 if the condition (D+z)(t0) = 0 is added to
the initial condition in (i2<), where CD+2)(£0) = lim^+o z(t)/(t — t0). Here
we note that the condition (Ωt) is slightly stronger than the condition
(Ωi) with (D+z)(t0) = 0. The relationship among the conditions (,£?<),
i = 1, , 5, are given in Section 3.

REMARK 2.1. If α> is a Perron-type function with domain (t0, t0 + cZ]x
[0, 2r], then (2.1) in the condition (ΩJ can be replaced by a Volterra
integral equation
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z(t) = K(t - ί0)

(cf. [9]).

REMARK 2.2. If the function K(t) in (B2) is continuously differenti-
able, then (2.1) in the condition (Ωj) is equivalent to the equation dz/dt =
K'(t)z(t)/K(t) + K(t)ω(t, z(t))f where the prime denotes the differentiation
with respect to t. Indeed, if we set w(t) = K(t)z(t), where z(t) is a
solution of (2.1), then w(t) is a solution of the above equation. In
particular, if K{t) = If in (B2), then (2.1) is reduced to the equation
dz/dt = JSΓα)(ί, s(ί)).

DEFINITION 2.1. Suppose that (FJ — (P8) are satisfied. Then a
function w: (— <*>, σ + b] —> 2? is said to be a solution of (IP) on [<j, σ + b]
if w is an absolutely continuous function on [σ, σ + b] with a strong
derivative cZw/cfa satisfying (1.1) and (1.2) for a.a. t e [σ, σ + 6].

DEFINITION 2.2. Let/ be a continuous mapping from Jx& into £7.
If a function u: (— ©o, cr + 6] -»2? satisfies (1.1) and (1.2) for all ί e
[σ, σ + 6], then it is said to be a (^-solution of (IP) on [σ, σ + &].

3. Comparison results. In this section we present several comparison
results related with the axioms on the phase space in order to show the
convergence of successive approximations for solutions of (1.1). Further
we state relationship among the conditions (Ωt) or (Ωt) with (D+z)(t0) — 0,
i — 1, -",5. Let D+ and D+ denote the right hand upper derivative
and the right hand derivative, respectively. Let C(I, E) be the space of
continuous functions mapping /, IcR, into E with the supremum norm.

LEMMA 3.1. Suppose & satisfies the axioms (BJ and (B2) and let x
belong to X2(A). Then it holds that for any fixed t e [σ, σ + A),

(3.1) D+ \xtU ^ K(0) \D+x(t)\ + βy \xt\* ,

whenever D+x(t) exists. In particular, in case & = C([ — r, 0], E), 0 ^
r < oo, (3.1) is reduced to

(3.2) D+\xtU^\D+x{t)\.

LEMMA 3.2. Let x{t) be an absolutely continuous function from [a, b]
into E. Then the following inequality holds:

(3.3) ί-
at

dx(t)
dt

for a.a. t e (α, b) .

For a proof of Lemmas 3.1 and 3.2 see [10, Lemmas 3.1 and 3.2].

LEMMA 3.3. Let a) be a Kamke-type function with domain (t0, t0 + d] x
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[0, 2r\. Assume that the condition (Ω2) with (D+z)(t0) = 0 is satisfied. If
w. [t0, t0 + d] —> [0, 2r] is an absolutely continuous function satisfying the
condition u(t0) = (D+u)(t0) = 0 and the differential inequality

^ ω{t, u(t)) for a.a. t e (t0, tQ + d] ,

For a proof of this lemma see [10, Lemma 4.1].

LEMMA 3.4. Let ω be a Kamke-type function with domain (ί0, t0 + d] x
[0, 2r]. Assume ίfeαί the condition (ΰ j wiί/t (D+z)(tQ) = 0 is satisfied. If
u: [t0, t0 + d] —• [—2r/Kd, 2r/Kd] is an absolutely continuous function
satisfying the condition u(t0) = (D+u)(tQ) = 0 ami £/&e differential inequality

du
—- ^ ft)(ί, ϋΓ(ί — ί0) sup |u(s)|) /or a.a. £ e (ί0, ί0 + α] ,

Ξ 0 on [ί0, t0 + d\.

PROOF. Set u{t) = sup^,^ |M(S)|. Then by Lemma 3.2, (3.4) is reduced
to

_£s (JtΛt/, XV̂ C/ ^O/^V^// i v l d . d . 1/ C V̂ Oί ^0 I ^ J

dt

Thus it follows from Lemma 3.3 that u(t) = 0, and hence u(t) = 0. q.e.d.
LEMMA 3.5. Suppose &R satisfies the axioms (BJ — (B3) and let ω

be a Kamke-type function with domain (t0, ί0 + d]x[0, 2r]. Assume ίλαί
either the condition {Ω^ with (D+z)(t0) = 0 or the condition (Ω9) with
(D+z)(t0) = 0 is satisfied. If w: ( - oo, t0 + d] -> [-2r/Kd, 2r/Kd] is an
absolutely continuous function satisfying the initial conditions wtQ —
0e&B and (D+w)(t0) = 0 and (2.6), then w(t) = 0 on [t0, t0 + d].

PROOF. Assume that the condition (Ω,) with (D+z)(t0) = 0 is satisfied.
Then, by the axiom (B2) and the property that ω(t, s) is nondecreasing
in s, we have

dw
^ α)(ί, K(t - ί0) sup

dt

By Lemma 3.4, we see that w{t) = 0.
Next, Assume that the condition (i23) with (D+z)(t0) = 0 is satisfied.

By Lemma 3.1, we have

D+\wt\&B ^ K(0)ω(t, \wt\^R) + β>\wt\j?R for a.a. t e(ί0, t0 + d] .

Thus, setting s(ί) = \wt\&R9 we reduce the above inequality to
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$ 2 & L £ K(0)ω(t, z{t)) + β M t ) f o r a . a . t e ( ί w to + d ] ,
at

because z(t) is absolutely continuous on [t0, t0 + d] (see [10, Lemma 3.3]).
It is easy to show that (D+z)(t0) = 0. Therefore we can obtain z(t) = 0
by Lemma 3.3, which implies that w(t) == 0 by (B3). q.e.d.

In order to state the following lemma, in addition to (BJ — (B3), we
must impose the following axiom (B4) on the phase space &R:

(B4) If φ and ψ are in &* and \φ(β)\ ^ \ψ(θ)\ for a.a. θeR~, then
the inequality \φ\^n ^ \Ψ\&R holds.

LEMMA 3.6. Suppose the phase space &R satisfies the axioms (BJ —
(B4) and let ω be a nonnegative and Perron-type function with domain
(tQ, t0 + d]x[0, 2r]. Assume further that the condition (Ω6) is satisfied.
If m: (— oo, tQ + d] —> R+ is an absolutely continuous function satisfying
the initial condition mtQ = 0 6 &B and the differential inequality

ω(t, \mt\*R) for a.a. t e (ί0> t0 + d] ,
at

then m(t) = 0 on [t0, ί0 + d],

PROOF. Let εn: R~ —> R+, n = 1, 2, , be continuous and non-
decreasing. Suppose that

( 1 ) supp ε n c [ — 1, 0] for all n;
( 2 ) kid,,)]->0 as n - * oo, where |6n |[_M ] = svφ_M*0\εn(θ)\;
( 3 ) εn+1(θ) ^ εn(θ) for each θ e ( - <χ>, 0) and for each n;
( 4 ) 0 < εn+1(0) < εn(0) for each w.

Denote by un(t) any solution of the scalar differential equation

~ ~ = α>(ί, i ^ U ) , ^ 0 = ε w e ^ Λ .
at

Then, it is not difficult to show that 0 <; un+1(t) ^ ^n(ί) on [tQ, tQ + d] for
a sufficiently large w and that \un\ίtQfto+d-\ —>0 as w—>oo. To complete
the proof, it is enough to prove that m(t) <Ξ un(t) for 16 [ί0, t0 + d].
Suppose, for a contradiction, that %* = {ί 6 [£0, ί0 + d]: m(£) > ^n(ί)} is
nonempty, and let ^ — vsxtsZ. Since m(ί0) < εn(0) = ^n(ί0)> we have
ίx > *o, m(ίi) = ^n(ίχ) and m(ί) ^ ttn(O for ί e [ί0, ί j . Thus we have 0 <;

+ θ) ^ i^n(i + 0) for £ 6 [ί0, ί j and ^ e JB", which implies that \mt\&R ^
&* for ί 6 [ί0, tJi by the axiom (B4). Since m(ί) is absolutely continu-

ous on [ί0, ί0 + cί], dm(t)/dt exists for a.a. t e [t0, t0 + d] and is an integra-
ble function. Thus, by the property that ω(t, s) is nondecreasing in s,
we have
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0 = un{Q - m{t,) = εn(0) + [h[ω(s, K U * ) - ω(s, \m8\^R)]ds ^ εn(0) > 0 ,

which is a contradiction. Thus the set %* is empty. q.e.d.

Finally, for special spaces we summarize relationship among the con-
ditions (Ωt) with (D+z)(t0) = 0, i = 1, « , 5 . Let ω be a Kamke-type
function.

( 1 ) In general, the condition (Ωt) with (D+z)(t0) = 0 or the condition
(ί28) with (D+z)(t0) = 0 is stronger than the condition (424) with (D+2)(£o) = 0,
because of Lemma 3.5. Though the condition (Ωδ) with (D+z)(t0) = 0 is
weaker than the condition (42J with (D+z)(t0) = 0, the converse remains
open. However if ω is a Perron-type function, the conditions (i24) and
(£?5) are equivalent to each other by Lemma 3.6.

( 2 ) Consider the case & = C([—r, 0], i?), 0 <; r < <*>. It is clear
that JΓ(ί) = 1 in (B2) and βv = 0 in (2.4) (see [10]). In this case, the
conditions (β,) with (D+z)(t0) = 0, i = 1, , 5, are equivalent to one
another.

( 3 ) Consider the c a s e ^ = ^ ? . It is clear that K(t) = sup_ t^^0 erθ

in (B2) and βu = - 7 if 7 < 0 while & = 0 if 7 ^ 0 in (2.4) (see [2],
[10]). Thus if 7 ^ 0, then the condition (Z?4) with (D+z)(t0) = 0, ΐ = 1, , 5,
are equivalent to one another, because IzJ^ = 2;(ί), provided z(t):
(—oo9t0 + d]-+R+ is nondecreasing in t and 2ίo = 0 e &B.

4. Convergence of successive approximations. We define the suc-
cessive approximations for (IP) as follows:

ίφ(t — σ) for ί e (—00,(7]

(4.1) t/n(t) = \ f*
V ; | ^ ( 0 ) + J / ( s , 2 / Γ 1 ) ^ f o r t e [ σ , σ + a ) ,

ίor n^l, where y°eX*(ά).
Now, we get the main results in this paper.

THEOREM 4.1. Suppose the phase space &E satisfies the axioms
(BJ-ίBj}) and suppose the conditions (F1)-(F3) are satisfied. Then the
successive approximations {yn(t)} defined above converge uniformly on
every compact interval of J to a unique solution of (IP) if the following
conditions are satisfied:

(i) The successive approximations {yn(t)} defined on J are uniformly
bounded on [σ, 7] for every 7 e (σ, σ + a).

(ii) For each toeJ and ξeX?[tQ — σ], there exist positive constants
d, r and a Kamke-type function ω with domain (tOf t0 + d] x [0, 2r] for
which the condition (Ω±) and the following condition holds:
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(P4) If x,ye X*[t0 + d - σ], xt,yteS(ξtΌ, r) and \x - y\ίσ>ύ ^ 2r for
te [t0, tQ + d], then

\Άt, xt) ~ M, yt)\ ^ ω(jb, \xt - yt\mn) for a.a. t e (t0, t0 + d] ,

where S(ψ, r) denotes a closed ball with center at ψ€&x and radius r,
and \x\ίϋttl = 8upσzazt\x(8)\.

THEOREM 4.2. The conclusion of Theorem 4.1 remains true if the
condition (Ωx) is replaced by the condition (i23).

Before stating the following theorem, we observe that from the
axiom (BJ the phase space 3?Έ contains all the continuous functions on
R~ into E with compact support.

THEOREM 4.3. Suppose the phase space &E satisfies the axioms
(B1)-(B8) while the phase space έ@R satisfies the axioms (B1)-(B4). Suppose
further that &E and &R are related to each other as follows:

(A) // φ: R~ —> E is a continuous function with compact support,
then the inequality \φ\&E ^ \(Φ)\^R holds, where the function ζφ): R~ —> R+

is defined by (φ)(θ) = \φ(β)\E for θ e R~.
If all the hypotheses of Theorem 4.1 are satisfied except that the

condition (Ω^) is replaced by the condition (424), then the conclusion of
Theorem 4.1 remains valid.

The following result is a modification of Theorems 4.1 and 4.2, which
is very useful in studying delay differential equations (see Section 6).

THEOREM 4.4. Suppose that all the hypotheses of Theorem 4.1 are
satisfied except that the conditions (Ωλ) and (F4) are replaced by the
condition (Ω2) and the following condition:

(Fδ) If x,ye Xo

φ[t0 + d - σ], xt,yte S(ξtQ, r) and \x - y\ίθtt} ^ 2r for
ί 6(ί0, to + d], then

\f(t, xt) - f(t, yt)\ tί ω(t, \x-y\ί9,tl)

for a.a. 16 (t0, t0 + d].
Then the conclusion of Theorem 4.1 remains valid.

REMARK 4.1. If ω is a Perron-type function, then the condition (i24)
in Theorem 4.3 can be replaced by the condition (j2δ). Theorem 4.3 is a
generalization of Theorems 4.1 and 4.2 under the additional axiom (B4)
and the condition (A). However, we showed in [9] that there exists an
example for the phase space which does not satisfy the axiom (B4).
Theorem 4.4 is essentially a corollary to Theorem 4.1 (see [9]). So, the
proof of Theorem 4.4 is omitted. We emphasize that both Theorems 4.3
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and 4.4 are useful in showing the convergence of successive approxima-
tions for (IP). For more detailed discussion see examples in Section 6 of
the present paper.

REMARK 4.2. In general, Theorem 4.4 is different from Theorem 4.1.
In fact, it follows from (F4) and (B2) that

co(t, \xt - ytUκ) ^ ω(t, K(t - σ)\x - y\ίσtfl)

for x, yeX?[t0 + d — σ\. The condition (ΩJ, however, is an assumption
on the equation (2.1); it says nothing about the equation

-ff = ω(jb, K{t - σ)z{t)) .
at

Thus we cannot apply Theorem 4.4 to prove Theorem 4.1.

When / in (1.1) is continuous, the following theorem holds.

THEOREM 4.5. Let f be a continuous mapping from Jx&E into E
and satisfy the condition (F3). // the condition (,£?*), i = 1, 3, 4, 2, in
Theorems 4.1-4.4 are replaced by the condition (42*) with (D+z)(t0) — 0,
i = 1, 3, 4, 2, respectively, then the successive approximations yn(t) are
well defined on J and the sequence {yn(t)} converges uniformly on every
compact interval of J to a unique ^-solution of (IP).

Finally, we shall give some sufficient conditions for the condition (i)
in Theorem 4.1.

(1) There exists a locally integrable function β(t) such that

\f(t, ψ)\ ^ β(t) for a.a. t e [σ, oo) and all ψe^E .

For a proof see [9, Lemma 5.1] (see also [7], [11]).

(2) There exist locally integrable functions p(t) and l(t) such that

\Λt9 f )l ^ P(t)\f\^E + l{t) for a.a. t e [σ, oo) and all ψe^E

(3) There exists a function ω(t, s) such that

\f(t, ψ)\ ^ ω(t, \ΨUE) for a.a. te[σ, oo) and all f G ^ ,

where ω{t, s) satisfies the following condition:

\ω(t, s) — ω(t, τ)\ ^ l(t) \s — t\ for a.a. t e [σ, oo) and s, τ 6 R+ ,

where Z(ί) is locally integrable.
It is not difficult to prove (2) and (3).
REMARK 4.3. Our results apply to linear systems, though the results

in [7], [11] do not.
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5. Proofs of theorems. Before proving the main theorems we present
some lemmas.

LEMMA 5.1. fn: [a, δ] -»E, n = 1, 2, , be continuous, where E is
a Banach space. If the sequence {fn(t)} is equicontinuous on [α, b] and
convergent on a dense subset of [a, δ], then the sequence {fn(t)} converges
uniformly on [a, b].

For a proof of this lemma refer to Theorem 2.2 in [3].

LEMMA 5.2. Suppose that the conditions (FiHFβ) are satisfied. Then
the following results on the successive approximations yn(t) are true.

(i) For each y°eX?(a) the sequence {yn(t)} is well defined on
[σ, σ + α).

(ii) If the sequence {yn(t)}, |/°GlJ(α), is uniformly bounded on [σ, 7],
7 6((τ, σ + a), then {yΐ} is uniformly bounded on [σ, 7], and {yn(t)} and

equicontinuous on [σ, 7].

For a proof of this lemma see [9, Lemma 5.1].

PROOF OF THEOREM 4.1. Let b = sup{r ^ σ: {yn(t)} converges uni-
formly on [σ, τ]}. Then the inequality b ^ σ holds, since yn{σ) = φ(0).
Assume 6 < σ + α; we show that this yields a contradiction. By Lemma 5.2
the sequence {yn(t)} is equicontinuous on [σ, b] and by the definition of b
the sequence {yn(t)} converges to a continuous function uniformly on
every compact interval of [σ, 6), provided σ<b. Thus the sequence
{yn{t)} converges uniformly on [σ, b] to a continuous function y*(t) by
Lemma 5.1. If we set

[φ(t - σ) for 16 ( - oo, σ](5.1) y(t) =
l»*(ί) for t e [<7, 6] ,

then {yl} converges to yh£&E, because of (BJ and (B2). By the assump-
tion of this theorem, in correspondence with (6, y) e JxX/[δ — <T], there
exist positive constants c, r and a Kamke-type function ω(t, s): (6, & + c]x
[0, 2r] -»JB+ satisfying the condition (Ω,) on (6, & + c] x [0, 2r] and the
condition (F4). Since yn

h-^yh as w—>oo, and since {ί/?} and {yn(t)} are
equicontinuous on [6, b + c] by Lemma 5.2, there are d, 0 < d ^ cf and
iVo such that {yϊ e ^ ^ : ί 6 [δ, 6 + d], n ^ iV0} is contained in S(yb, r) and
that \ym — yn|[,fί] ^ 2r for ί e [6, b + d] and m, n ^ iV0. Relabeling the
numbers if necessary, we can assume JV0 = 1.

Next, we shall show that the sequence {yn(t)} converges uniformly on
[δ, δ + d]. Put wm>n(t) = \ym(t) - yn(t)\, w\t) = sup{wm>n(t): m, n ^ k),
zm'n(t) = \yf - y?|, and β*(ί) = suφm>n(t): m, n ^ k} for ί 6 [δ, δ + d]. Since
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{yn(t)} and {2/?} are uniformly bounded and equicontinuous on [6, 6 + d] by
Lemma 5.2, {wk(t)} and {zk(t)} are also uniformly bounded and equicontinu-
ous on [b, δ + d]. Moreover, it is obvious that 0 <; w\t) ^ wk~\t) and
0 ^ zk{t) ^ z*"1^) for each t e [b, b + d], k = 1, 2, , and hence, the
sequences {wk(t)} and {zk(t)} converge pointwise on [δ, b + d]. Therefore,
by using Lemma 5.1, we see that the sequences {wk(t)} and {zk(t)} converge
uniformly to functions w{t) and z(£) defined on [δ, δ + d], respectively.

The limit function w(t) is an absolutely continuous function defined
on [6, & + d]. Indeed, from (F3) there exists a locally integrable function

βs(t) defined on J , where S = S(yb, r). Then H(t) = \* βs(τ)dτ is an

absolutely continuous function on [δ, 6 + d]. From the definition of wk(t),
we have

\wk(t) — tί;fc(s)| ^ sup |wm'π(£) — wm>n(s)| <̂  2|iϊ(ί) — iί(s)| ,

which implies \w(t) — w(s)\ ^ 2\H(t) — H(s)\. Hence w(t) is absolutely
continuous on [&, b + d].

From the condition (F4) and the nondecreasing property of α), we have
l/(s, 2/Γ"1) — /(s, 2/Γ1)! ^ α>(s, 12/Γ"1 — 2/Γ1!) ^ ft>(s, z*"1^)) for a.a. s e (6, 6 + d].
The condition (ω2) says that, if [t, t + Δt]a(bt b + d), then α>(s, z*"1^)) ^
α(s) for a.a. s e [t, t + Jί] and α(s) is integrable over [£, ί + Δt]. Thus
for ί 6 (&, & + d) and for sufficiently small Δt > 0 we have

\o.Δj \uy \U) ny yu)\ ^ l \J\&t y$ ) — J\βi Ua JiMo
Jt

5̂  I ω{s, zk~\s))ds for m, n ^ k ,

where Δy\t) = y*(t + Δt) — y\t), i — m, n. Therefore

(5.3) \wk(t + Δt) - wk{t)\ S [ + t ω(s, zk-\s))ds .

Letting k—>oo, we obtain, by the Lebesgue dominated convergence
theorem,

\w(t + Δt) - w{t)\ ^ Γ + * ω(s, z(s))ds .

Dividing both sides by Δt > 0 and letting Δt —> 0, we have

(5.4) ^- ^ ω{t, z(t)) for a.a. t e (6, 6 + d) .
dί

On the other hand, we have by (B2),

zm>n(t) ^ #(£ - b)suv{wm>n(s): b £ s ^ t} + Λf(ί - δ)zm'n(6) ,
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so that

z\t) ^ Kit - b)suv{w\s): b^s^t} + M(t - b)z\b) .

Letting k —> °o in the above inequality, we obtain

(5.5) z(t) ^ K ( t - 6 ) s u p { w ( s ) : b^s^t} .

Thus, it follows from (5.4), (5.5) and (ωx) that

dw
(5.6)

dt
<; ω(t, K(t — b) sup w(s)) .

b

Since w(b) = 0, we see that w(f) = 0 on [6, 6 + cί] by Lemma 3.4. This
implies that the sequence {yn(t)} converges uniformly on [b, b + d], which
contradicts the definition of b. Thus we have b = a + α.

Since the sequence {yn{t)} converges uniformly to a function y*(t) on
every compact interval of J, a function 2/(0 is defined on (— oo , a + 6)
in the same way as in (5.1). Then, from the dominated convergence
theorem for vector-valued functions, it follows that

lim I f(s, j/i)de = 1 f(s, ys)ds for each t 6 [σ, σ + a) .

This implies that

[φ(t — &) for t 6 (—00,(7]

»(«) = ft
1̂ (0) + \ /(s, ys)ds for t e [σ, σ + a) .

Thus the function y(t) is a solution of (IP).
Finally, we shall show that y(t) is the unique solution of (IP) on J.

Let x(t) be another solution of (IP) on [σ, σ + Jt), 0 < /& ^ α. Suppose
o ^ ζ ^ σ + Λ, where ζ = sup{ί ^ σ: a?(s) = y(s) for s 6 (— oo, ί]}. From
the assumption of the theorem, in correspondence with (ζ, yζ) e Jx^E

there exist positive constants h19 0 < hx < h, r and a Kamke-type function
ω: (ζ, ζ + ΛJ x [0, 2r] -> i2+ satisfying the condition (ΩJ and the condition
(F4). If we set u(t) = |a;(t) - y(ί)| for t e ( - oo, ζ + fcj then we have

"dΓ
(5.7)

and hence \du/dt\ ^ ω(ί, K(t — ζ)sup{^(s): ζ ^ s ^ t}) as long as |#, — yc| < r,
ll/ ~" 2/cl < r a n ( i ^( s) ^ 2r/ίΓΛl for s 6 [ζ, t], where ζ < t ^ ζ + h2 for some
&2 <; felβ Thus it follows from Lemma 3.4 that u(t) = 0 on [ζ, ζ + λ2],
and hence, w(ί) = 0 on J. q.e.d

Since the argument for the proof of the theorems below is similar
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to that in Theorem 4.1, we shall only sketch the parts that need modi-
fications by using the same notation as in the proof of Theorem 4.1.

PROOF OF THEOREM 4.2. We shall consider the estimate for
zm'n(t + At) instead of the difference \ym(t) - yn(t)\ in (5.2). For t e
(δ, b + d) and for sufficient small At > 0 we have

*- (ί + At) ^ ItfU - S(At)yt + S{At)yn

t - yn

t+Δt\ + \\S(At)\\z™>n(t)

^ K(At) sup |ίΓ(8) - ym(t) + yn(t) - y\s)\
ί g ί + ' ί

S t+Δt

t

and hence, we have

S t+Δt
ω(s, zk-\s))ds + \\S(At)\\zk(t) ,

that is,

S t+Δt
ω(s, zk-\s))ds + {\\S{At)\\ - l}z\t) .

Since zk(t) —> z(t) as k —> °o, we have

β(ί + Jί) - «(ί) ^ K(At) \t+Ut ω(s, z(s))ds + {\\S(At)\\ -

Dividing both sides by At and letting At —> 0 +, we obtain

because of (2.4) and (B2). Moreover, z(t) is absolutely continuous on
[&, b + d] since w(t) = 0 on (—°°, 6] and wit) is absolutely continuous on
[6, b + d] (see [10, Lemma 3.3]). Thus we have

— ^ K(0)ω(t, z(t)) + βXt) for a.a. t e (6, 6 + d] .

By using Lemma 3.5, we can see that z(t) = 0 on [b,b + d]. This con-
tradicts the definition of 6.

Next, setting v(t) = x(t) — y{t), we have, by (5.7) and Lemma 3.1,

dv
dt

βv\vt\ £K(0)ω(t, \vt\) + βv\vt\ .

Thus it follows from Lemma 3.5 that 1̂ 1 = 0 on [ξ, ξ + h2], and so
v(t) = 0 on [ξ, ξ + h2] by (B3). This implies that (IP) has a unique solu-
tion, which completes the proof of Theorem 4.2. q.e.d.

PROOF OF THEOREM 4.3. Put zm'n(t) = \w?>n\ and z\t) =
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mfn^k) for all t e [6, b + d], where wm>n(t) = \ym(t) - yn(t)\ for all t e
(-00, b + d]. By (Bx), (B4) and (A), it is not difficult to show that the
relation

(5.8) z\t) ^ z\t) ^ \wk\ on [6, 6 + d]

holds. Further, since {wk(t)} converges to a function w(t) uniformly on
(-00,5 + d], it follows that {\wk\} converges to a function \wt\ for every
t e [6, b + d]. Thus by (5.2) and (5.8) we have

S
t+Jt rt+At

ω(s, ^"1(s))ds ^ \ α)(s, Iwϊ̂ Ddβ

as long as \wk

8~
λ\ ^ 2r for all s € [6, 6 + d]. Consequently, it follows that

dw

(5.9) ^ ω(t, \wt\) for a.a. ί e (6, 6 + c) .

Hence w(t) = 0 on [6, 6 + d] by (i24).
Next, by (5.7), we have \du/dt\ ̂  α>(ί, | ^ - yt\) ^ α)(ί, |<a? - y)t\) ^
^tU«) Thus, by (fl4), (IP) has a unique solution. q.e.d.

PROOF OF THEOREM 4.5. We shall only show that (D+w)(b) = 0 and
(D+z)(b) = 0. By the continuity of /, for any ε > 0, there exist positive
numbers δ and η such that |/(£, ψ) — /(&, #6)l < ε/2 for all (t,ψ)e
[6, 6 + 3]x%6,77), where 0 < 3 ^ d and 0 < 77 ̂  r. Since the sequence
{2/?} is equicontinuous on [6, 6 + δ] and yl~*yh as n —> °°, there exist a
positive number I, 0 < Z ^ δ, and an integer JVΊ ^ iV0 such that {2/? e &E\
n ^ ΛΓJcSd/ft, 17) for all ί e [&, & + Z]. Thus, we have,

w\t) ^ sup \[ |/(s, 2/r1) - /(&, yb)\ds + Γ

which implies wk(t) ^ ε(ί — 6) + wk(b), and hence, letting k—> ^, we get
w(ί) ^ e(t - b). This implies (D+w)(b) = 0.

Moreover, in view of (5.5) and the above result, we have z(t) <;
e(ί - b)K(t - 6), which implies that (D+z)(b) = 0. q.e.d.

6. Examples. In this section, the results on the uniqueness of
solutions and the global convergence of successive approximations obtained
in Section 4 are illustrated in examples. In particular, we note that
Examples 6.1 and 6.2 stated below imply that, in general, both Theorems
4.3 and 4.4 are useful in showing the uniqueness and the convergence
of successive approximations of solutions for (IP), provided the conditions
(ΩJ, i = 2, 4, are replaced by the conditions (Ωt) with (D+z)(t0) = 0. It is
easy to see that the following result holds (cf. [4]).
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PROPOSITION 6.1. Let ε(t) be a positive and continuous function
defined on (t0, t0 + d] such that

S tQ+

<0 t — t0

Then the initial value problem

dz = 1 + e(t)
( }

dt t - t 0

lim z(t) = (D+z)(t0) = 0
t-to+o

o%iί/ xero solution.

EXAMPLE 6.1. We consider the scalar functional differential equation

*2L = ±(t-σ- 2)sin
* 2(6.1) dt 2 (t-σ-2)2

where the phase space &?, 7 = log(2/3) < 0, is as in Example 2.1 with
R as E. Let f{t, ψ): [σ, °o)χ<g^ —> R be defined as follows:

f(t, ψ) = —(ί — σ — 2)sin

Clearly, f(t, ψ) is continuous in (ί, α/r) e [σ, oo)χ^ r

β and |/(ί, α/r)| ^
3|ί — a — 2|/2. It is sufficient to examine the conditions in the theorems
when t0 = σ + 2. Corresponding to (F4) and (P8), we have

Δ
o

\%t Vt\<&'^l\y & ")

^ I** - ίfflirf/Cί - σ - 2)

and

respectively. Then (2.1), (2.5), (2.6) and (2.2) become

(6.2) i f = er^-»z(t)Kt -σ-2), (K(t) = e~r* in (B,))
at
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(6.3) %L = z{t) - 7z(t) , (ft = - 7 )
at t — σ — 2

dz_
dt

- σ~2)

and

(6.4) - ^ - —z(t)/(t - σ - 2) ,
d£ 2

respectively. Therefore it follows from (6.3) (or (6.2)) that the condition
(Ωs) with (D+z)(σ + 2) = 0 is satisfied, and hence the conclusion of
Theorem 4.2 for IP(6.1) holds. However, from (6.4) the condition (Ω2)
with (D+z)(σ + 2) = 0 is not satisfied.

EXAMPLE 6.2. We consider the scalar integro-differential equation

- - ' ) Γ β-«-> sin£ <* <φn + (1 + β ) Γ β sin
(6.5) dt ( (ί - σ) J - " (t - of

». = CP e ^ s

 F

where JzfB is as in Example 2.2 with r = 0. Let /(ί, ψ): [σ,
£fR-+R be denned as

Evidently, f(t, ψ) is continuous in (t, ψ) e[σ, o°)x£fB and |/(ί, ψ)| ^
3|ί — σ\. Corresponding to (F4) and (F5) with ί0 = σ, we have

0) - y(ί + Θ)\dθ\kt - σ)
)l

+ e \xt -
t — σ

and

\Rt, xt) - f(t, yt)\ £ ϊ—ϊ- \x - y\[σ>ύ ,
t — a

respectively. Then (2.1), (2.5), (2.6) and (2.2) become

(6.6) $L = 2 + 6 " < ^ ) - " g " t ( * Λ ( t ) , (ΛΓ(ί) = 2 - <r* in (B2)) ,
dt t — σ

(6.7) ^ = λ±£^l
dt t — σ
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and

(6.8)

dz
dt

J.

^ 1 + β- ( ί"σ )

dz _ 2

s.

—

SHIN

e-2(*-σ)

— σ
*(ί)

respectively. Therefore it follows from (6.8) that the condition (β2) with
(D+2)(o ) = 0 is satisfied, and hence the conclusion of Theorem 4.4 for IP
(6.5) holds. However, from (6.7) the condition (β3) with (D+z)(σ) = 0 is
not satisfied.
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