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Abstract. Let H* be an abstract Hardy space associated with a uniform
algebra. Denoting by (f) the coset in (L=)"*/(H*)™! of an f in (L>)7!, define
1A =inf{llgllellg~lle; g€ ()} and To=sup{l(/)l; (f) € (L) (H)""}. I T,ois
finite, we show that the norms of Hankel operators are equivalent to the
dual norms of H! or the distances of the symbols of Hankel operators from
H=, If H= is the algebra of bounded analytic functions on a multiply
connected domain, then we show that 7, is finite and we determine the
essential norms of Hankel operators.

0. Introduction. Let X be a compact Hausdorff space, let C(X) be
the algebra of complex-valued continuous functions on X, and let A be
a uniform algebra on X. For re M,, the maximal ideal space of A, set
A, ={fe€d;z(f) =0}. Let m be a representing measure for z on X.

The abstract Hardy space H? = H?(m), 1 £ p £ o, determined by A
is defined to be the closure of A in L? = L?(m) when p is finite and to
be the weak*-closure of A in L = L*(m) when p is infinite. Put H} =

{feHﬂ; Lfdm = 0}, K® = {feL”; Sxfgdm — 0 for all ger} and K2 =

{fek Sxfdm =0}. Then HZC K} and H*CK>.

Let Q™ be the orthogonal projection from L* to (H?)* = K2 and Q%
the orthogonal projection from L* to H:. For a function ¢ in L* we
denote by M, the multiplication operator on L* determined by ¢. As in
the previous paper [14], two generalizations of the classical Hankel oper-
ators are defined as follows. For ¢ in L™ and f in H*

HPf =Q9M,f (1=1,2).
If A is a disc algebra and z(f) = f(0), where f denotes the holomorphic
extension of fin A, then 7z is in M,. The normalized Lebesgue measure
m on the unit circle T is a representing measure for z. Then H?®is the

classical Hardy space and H: = K: Hence HY = H? and it is the clas-
sical Hankel operator H,. It is well known that
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(@) [Hll = llg + H
and

() || Hyll. = llp + H* + C(T)|,
where the essential norm | H,||, of H, is the distance to the compact
operators. (a)is due to Nehari (cf. [16, Theorem 1.3], [15]), while (b) is
due to Adamyan, Arov and Krein (cf. [16, p. 6], [2]). (b) yields Hartman's
result (cf. [16, Theorem 1.4], [11]) to the effect that

(¢) H, is compact if and only if ¢ is in H* + C(T).

In the previous paper [14] we considered the generalizations of (1).
The main idea was to consider Hankel operators on vH? for every non-
negative invertible function v in L®, avoiding a factorization theorem of
H:. Namely, if & is in H! and S Ihldm < 1, then h = fg, fe H* and g H3
where S |fl’dm =1 + ¢ and S |gxlzdm <1+ ¢ for some ¢ > 0. Let vbea
nonnegative function in L* with v in L*. Let Q% be the orthogonal
projection from L* onto (vH?)* = v'K?2 and Q¥ the orthogonal projection
from L? onto v'H: If » is a constant function, then Q¥ = QY (j =
1,2). For ¢ L~ and fevH?, HY" is the operator defined by

HY'f = QPM,f , (=1,2).

If » is a nonzero constant, then HY{’ = HY (7 =1,2). Put (L)'=
fveL>:v'eL” and v = 0}. The following theorem was shown in the
previous paper [14] and gives (a).

GENERALIZED NEHARI'S THEOREM 1. Let ¢ be a function in L=, then
sup{|H{"; v e (L™)7} = [l + K~ .
If K= is dense in K', then
sup{||H"|l; v e (L*)7) = llg + H=| .

We now show two lemmas which will be used in later sections. Let
P, be the orthogonal projection from L? onto vH? If v is a constant
function, we shall write P, = P.

LEMMA 1. Let ¢ be a function in L™. Then for any v and uw in
(L)t and for =1, 2

1HY" — HP"|| = llglla(lv7 e + [u7)lo — 4l .
Proor. Since ||M,f|, = |lv7|zY|f|l. for all fe H?, by [7, Lemma 1.1.]
1P, — Pl = (Iv7lw + [ |)llo — ull.s
Similarly, [|Q¥ — Q|| < (v« + [|u7!||)||v — ©|l.. Hence for 7 =1, 2
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|H" — H™| = [|@PM,P, — QP M,P, + QP M,P, — QP M,P,|
= 1Q7 — QPN IMP,| + [P, — Pl |Q% Myl
= llglle(lo™le + Nl l)llv — wlle -

LEMMA 2. Let ¢ be a function in L>. If HY (j =1, 2) is compact,
then HY" (5 = 1, 2) 18 compact for any v im (L)%

ProoF. For any fewvH® and gev'K: (HP'f, 9) = wHP@™f), 9).
Hence H;f = QV'(M,H{M,~f) for any fevH". The proof for Hg" is
similar. This implies the lemma.

Let N, denote the set of representing measures for = on X. In this
paper we sometimes will impose the following two conditions on z:

(1) N, is finite dimensional and # = dim N..

(2) m is a core measure of N..
Let N~ be the real annihilator of A in L3. Then dim N®* == and A +
A, + N* is weak*-dense in L*, where N* = N* + iN= (cf. [10, p. 109]).
L)'= H*@ H:P N>. Set & = exp N*; then & is a subgroup of (L=)7%.
Moreover, together with (1) we often will make the following stronger
conditions (8) on 7 instead of (2).

(8) m is a unique logmodular measure of N..
Then the linear span of N°Nlog|(H*)™!| is N* (ef. [10, p. 114]). Choose
hy <+, h,e(H*)™ so that {log|h}3-, is a basis for N*. Put u; = log|h;|
1=j=n)and & = {exp(X}-.8;%;); 0 < s; = 1}. Then &,C&. The fol-
lowing theorem was shown in the previous paper [14].

GENERALIZED NEHARI’S THEOREM II. Assume the assumptions (1) and
(8) on . Let ¢ be a function in L™, then

§ggpllH$””H = |l¢ + H + N7||

and
sup|HP"| = [lp + H"]| .

Moreover the supremums in both equalities are attained.

In Section 1, 7,, which is defined in Abstract, is studied. Under the
assumptions (1) and (2) we determine when 7, is finite. In Section 2, we
give examples of concrete uniform algebras to which results in this paper
can apply. Moreover 7, is calculated in some examples. In Section 3, if
v, is finite, we show that ||H{|| (resp. ||H?||) is equivalent to |l¢ + H>||
(resp. ||¢ + K=||). In Section 4 we give applications of results in Section
3 to weighted norm inequalities for conjugation operators and invertible
Toeplitz operators in uniform algebras. In Section 5 we determine the
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essential norms of Hankel operators in the case of (I) in Section 2. In
Section 6 we consider the relationship between <, and the factorization
theorem of Hj. In Section 7 we consider the relationship between gener-
alized Nehari’s Theorem and Arveson’s distance formula for nest algebras.

1. Quotient group and a constant. Denoting by (f) the coset in
(L*)"Y/(H*)™* of an f in (L*)*, define

IOI = int{llgll.llg™"]|«; g € ()}
and
Yo = sup{[|(NI; (f) e (L=)7Y/(H*)} .

Then ||[(FBI < IO IR)]| and, in general, v, can be finite or infinite.
Let L% be the space of real-valued functions in L=. Let log|[(H>)™!| be
the lattice in L3 consisting of the elements of the form log|f|, fe (H*)™.
There is a natural map of (L*)"'/(H*)™* onto L%/log|(H*)*| which sends (f)
to (log|f]). Define |[|(log|f]ll| = inf{||log|f| + log|g|ll.; g € (H~)™"} and 7, =
sup{|||(log |/ DIIl; (log|f1) € Lz log [(H*)™"[}.

ProprosITION 1. ||[(f)]] = exp 2|||log|fDIl| and v, = exp 27,.
ProoF. It suffices to show that ||(f)|| = exp 2|||(log|f])||| for all fe
(L=)"*. Pick such an f.
NOI = inf{||lfglle]lf797"]w; 9 € (H*)7}
= exp inf{ess. sup(log |f| + log|g|) — ess. inf(log|f| + loglg|)} .

Since the constants are in (H>)™, this last quantity can be rewritten as

= exp 2 inf{ess. sup|log|f| + log|g|l} = exp 2|||(log|f]I| .

The proof of Proposition 1 is parallel to that of Proposition 2.2 in
[17]. Rochberg [17] considered (H~)™'/exp H* instead of (L~)"'/(H>)™*. If
A is a disc algebra, then ||(f)|| = 1 for any (f) e (L*)"Y/(H*)™ and so v, =1
because of Proposition 1 and L§ = log|[(H*)™"|. Let crlslog|(H>)"!| denote
the closed real linear span of log|(H*)™|.

LemMMA 3. (1) If v=33.t;loglh;] with 0=¢t; =1 and h;e(H")™
(1 < 7 £ n), then sup{[[[¢v)lll; —o0 <t < 0} < eo. (2) If ve Ly is not in
crls log|(H)", then supf[[[tv]ll; —co < t < oo} = oo.

ProOF. (1) |||l = [[[(X3-1 tt; log [h;DII| = [[[(X5-: (¢85 — [¢8;]) log [R,DIII,
where [:] is the greatest integer function. Hence sup|||(tv)|]] < eo.

(2) Thereexistsa positive constant e such that ||tv +crlslog|(H*)™|||.=
glltv]]. for any t. Hence sup|||(tv)]]| = .

THEOREM 2. Suppose 7 satisfies the conditions (1) and (2). Then
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m 18 a unique logmodular measure if and only if v, is finite.

ProoF. By Proposition 1 it is sufficient to show that m is a unique
logmodular measure if and only if v, is finite. m is a unique logmodular
measure if and only if crlslog|(H*)™!| = L% (see [10, p. 114]). By this
and (2) in Lemma 3, if m is not a unique logmodular measure, then v, = .
Suppose m is a unique logmodular measure. If v e Lg, then v = u, + log|g|
with u,€ N° and ge(H>)™" (cf. [10, p. 109]). Moreover, we can choose
U, € log &, (see Introduction). By (1) in Lemma 8 v, is finite and in fact
7, = sup{[|Xj-r suill-; 0 < 55 < 1.

2. Concrete uniform algebras. (I) Let Y be a compact subset of
the plane, and let R(Y) be the uniform closure of the set of rational
functions in C(Y). We regard R(Y) as a uniform algebra on its Shilov
boundary, the topological boundary X of Y. Suppose the complement Y*
of Y has a finite number n of components and the interior Y° of Y is a
nonempty connected set. Let A = R(Y)|X; then M, =Y. If reM, is
in Y° and m is a harmonic measure, then m is a unique logmodular
measure of N, and dim N, = n < « [10, p. 116]. Then N°cC(X) By
Theorem 2, 7, is finite. Let X = X,UX,U-.--UX,, where X, is the “out-
side” component of X and X, ---, X, are the “inside” components of X.
Define v;€ L3 to be 1 on X; and 0 on X\ X; 1=<j<#%n. Then 7, =
sup{|||(Xj= tjwdlll; —o0 <t;< e and 1 <5 < n}.

I) In (I) let Y be the annulus {r < |2| < 1}. Then v, = " *:. Since
(Lg/ the uniform closure of Re H*) has dimension one, we get

v,=sup inf{||¢t log|z| — (Re f+n log|z|)||.; f € H* and n ranges over all integers}.
osts1

For any integer »
inf{||(t — n)log|z| — Re f||.; fe H*}
— |t — n|log r— inf{|X; — Re f|l.; fe H"} = —-zl—lt — n|logr,

where X; =0 on |2/ =1 and X; =1 on |2l =r. Thus

v, = sup inf —1—lt — nllogr™ = 1 log r*.
osts1 n 2 4

We shall show that
inf{||[Xz — Re fllo; fe H*} = 1/2..

Choosing f = 1/2, the infimum is not greater than 1/2. If the infimum
is less than 1/2 then by a theorem of Runge we can show that X;e H*
as in the proof of Theorem in [13, p. 182]. This contradiction implies
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that the infimum is just 1/2.

(III) Let .o be the disc algebra and let 4 be a subalgebra of .o~
which contains the constants and which has finite codimension in . If
7(f) = f(0) for fe A and m is the normalized Lebesgue measure on the
circle T, then it is easy to check that m is a core point of N, and N*cC(T).
If A # v, then H* is contained properly in the classical Hardy space.
Hence H* is not z-maximal. On the other hand if = has a unique logmodular
measure m, then H* is r-maximal ([9, Theorem 5.5]). This implies that
m is not a unique logmodular measure and hence Theorem 2 implies that
7, is infinite.

(IV) The unit polydisc U™ and the torus 7" are cartesian products
of n copies of the unit disc U and of the unit circle T, respectively. A(U™)
is the class of all continuous complex functions on the closure U" of U"
with holomorphic restrictions to U*. Let A = A(U")|X and X = T~. This
is the so-called polydisc algebra. For simplicity we assume n = 2. Let
m be the normalized Lebesgue measure; then m is a representing measure
for 7 on X where z(f) = f(0) and 0 U% Suppose 1 < p < c and Z% =
{(n, m) e Z*; n=0 and m = 0}. Then H? = {f € L?; f(n, m) =0 if (n, m) ¢ Z2}
and K? = {(feL*; f(n,m) =0 if (—n, —m)e2Z2}. K= is dense in K.
Unfortunately we do not know whether v, is finite or not.

3. Norms of Hankel operators. Assuming 7, is finite, we show that
|HP|| (resp. ||HP|)) is equivalent to ||¢ + H*| (resp. |l + K=||).
THEOREM 3. Let ¢ be a function in L*. Then
IHP] = llg + K=|| = 7l H|
If K= is dense in K*, then
IHP | = llg + H=ll = 7llHP|

PROOF. Let ve(L®):. If \ |fiw'dm <1 and S lgl*v~*dm < 1, then
X X
S |fIPdm < ||v7?|. and S lgl’dm =< ||v*|l.. Hence
X X

| H*| = sup{ ] Sxfgqsdm | . fe H?, ge K2, §X|f|2v2dm <1 and legm-zdm < 1}

= (o llollv*ll) I HE |

If he(H®)", then vk|H? = b(vH?) and v~'|h|" K2 = b(v—'K?2) with b = |h|/h.
Then Q. = M,Q"M; and so HP""™ = M,Q" M;M,|v|h|H?. Hence |H"|| =
|[H®*||, Thus for any he (H>)™

1" < [lolhl |0~ HS -
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It is easy to see that
sup_ {inf{{[o}h] [l [[o™{hl<; b & (H)) =7,
vE +

Now generalized Nehari’s Theorem I shows that [[HY| < |l¢ + H*|| £
Y| HP|l. Similarly the inequality for H® follows.

4. Applications. In the previous paper [14] we gave applications of
generalized Nehari’s Theorems I and II to weighted norm inequalities and
invertible Toeplitz operators. In this section we shall give applications
of Theorem 3.

Recall P is the orthogonal projection from L? to H® Let &2 denote
P restricted to H* + K and Z® denote P restricted to H* + Hr. We
are interested in knowing when Y (j =1, 2) is bounded in L*(w) =
L*wdm), where w is a nonnegative weight function in L'. Put

(d) sup{ ‘ Sxfgwdm[;fe H>, ge Ky and lefl%udm = leglﬁwdm = 1}

= 0
and

(e) sup| [ Sxfgwdml;fe H" ge Hs and §X| Flwdm = legl%vdm - 1}

= 0.
Then it is easy to see that || F#7|* < (1 — 0%)'. The following lemma is
known [19]. We shall give the proof for completeness.

LEMMA 3. [ZPF =1 - )™ (G =1,2).

Proor. If v = ||[&P¥| < oo, then for any real ¢ and for any fe H”
and g € K we have

t272 ls l 2 2
———\ |flwdm + \ |glwdm + 2t ReS fowdm =0 .
4 x x X

Hence

[ fowdm|" = 222 \frwdm|] Jolrwdm

and so * = (1 — o). We can prove it for 5 = 2 in the same method.
If A is a disc algebra, then &# = 2" = &#? is bounded in L*w) if
and only if w = |h|* for some outer function 2 in H? and ||¢ + H*|| <1
with ¢ = |k|*/k*. This result is called Helson-Szego’s theorem [12]. This
was generalized to general uniform algebras by the author [14]. The
following generalization seems to be better than the previous one.

COROLLARY 1. Suppose K> is dense in K'. Let w = |h]* for some
function b in H? such that hH> s dense in H® and hK> 1s dense in K.
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Let ¢ = |h|*/h%
(1) If |l¢ + H*|| = p < 1 then ™ is bounded in L (w) and || 7P| <
1 — e

(2) If &Y is bounded in L w) and || F®| = then
llg + H*|| < vy (v — )"
Hence if ¥ < Yy(v2 — 1)V* then ||¢ + H”|| < 1.
Proor. (1) o, = o, since

0=l¢+ H| = sup“SXFqsdm!;Fe K% and ||F, < 1}

2 sup| | L¢fgdml; fe H', ge Kt and Sx| Fldm = leglzdm - 1} = p,.

In the last equality we used the facts that w = |h|* and that hH" (resp.
hKY) is dense in H*® (resp. K?).

(2) Since p, = 77> — 1) by Lemma 8 and p, = |H{|| by the
proof of (1), Theorem 3 implies (2).

K= is dense in K* if we impose the assumptions (1) and (2) or if A
is a polydisc algebra. We have a similar result for &® (or ||¢p + K=||)
as in Corollary 1.

For ¢ in L~ let T, be the operator on H* defined by T,f = P(M,f).
The operator T, will be called a Toeplitz operator. We are interested in
knowing when T, is left invertible. In case A is a disc algebra, Widom
[18] showed that Ty is left invertible if and only if ||¢ + H*||<1. Abrahamse
[1] generalized Widom’s theorem to the case of (I) in concrete uniform
algebras such that 0Y consists of #» + 1 non-intersecting analytic Jordan
curves. The author [14] generalized it to general uniform algebras. How-
ever these generalizations are not sufficient because except in the case
of a disc algebra we cannot determine ¢ when T} is left invertible.

COROLLARY 2. Suppose K= is dense in K'. Let ¢ be a unimodular
function in L.

(1) If llg + H*[ = 0 <1, then [[T,fll.= @ — 0" [|fll. for any f
wn H°.

(2) If TSl = el fll. for any f in H?, then

lg + H=|| < 71 — )2,

Hence if € > 75'(v: — 1), then ||¢ + H*|| < 1.

PROOF. Since ¢ is a unimodular function, [[H{f|2+ ||TsfIz = |lf3
for any fe H:. Theorem 3 and this imply the corollary.

In the case of (I) for concrete uniform algebras, ||¢ + H*|| <1 may
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not hold even if T, is left invertible (cf. [1]).

5. Essential norms of Hankel operators. In this section we shall
concentrate on concrete uniform algebras, that is, (I) in Section 2 such
that 0Y consists of n + 1 non-intersecting analytic Jordan curves. Hence
7 satisfies the conditions (1) and (3). Using generalized Nehari’s Theorem
IT we shall generalize (b) in Introduction to this context.

Let s=1(s, 8y, +++8,)€l*"=[0,1]x -+ x[0,1]. Then the mapping s—
exp(Cir., s;u;) is continuous, one-to-one and onto from I* to &,. Put

Hy" = Hy" (j=1,2),
where v = exp(3 7, s;u;) .

LEMMA 4. Let ¢ be a function in L®. Then for 7 =1,2 and for

any v and 4 in £,
1HP" — HP™|| = liglle2 sup o™ l)llo — vl -
ve 0

The proof is clear by Lemma 1.

LEMMA 5. If ¢ in H™ + C(X), then HY" (j =1, 2) is compact for
any v in £,

ProOF. By Lemma 2 it is sufficient to show that HY is compact
for any ¢ C(X). Let ¢ = (z — a)™* for some a€ Y’. Then

HYf = Qu‘)[ f@ | f= f(a)] _ Q(i)[_f@l_:]

z2—a z2—Q Z2—Q

for any fe H? because {f € H* f(a) = 0} = (z — a)H?. Hence H{ has rank
one. Similarly if ¢ = (z —a)™ for a positive integer », we can show
that HY has rank n. For any ¢€C(X) we can approximate ¢ by the
following functions: >)7-,b;(z — a;)"? where a;€ Y® and b; is constant
O0=j=mn). Since |HP|= ¢+ H"| and [|HP|| = |lp + H* + N7||, we
can show that H{ is compact if ¢ € C(X).

THEOREM 4. Let ¢ be a function in L. Then
sup|| H"|l, = sup || H"l|, = [lp + H* + CX)|| .
vE 0 ve 0

Moreover, the suprema in both equalities are attained.

PROOF. By Lemma 5 it is clear that sup{||H{"||l; ve &} < |l¢ + H* +
C(X)|| for 7 =1,2. We shall show the opposite inequality. Let F' be
the Ahlfors function for Y° and 7€ Y°. Then FeC(X) (see [8, p. 114]).
For any ve &, with v = exp(3 -, t;u;) and t = (¢, &y, + -+, t,) € I*, put

f(j)(t! l) = “ng);” (l = 0’ 19 2, . ';j = 1: 2) .
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Then fY9(, 1) = f9(, 1 + 1) and by Lemma 4
f9, 1) — f96, D] = ||g]l.(2 §g§llv‘lllm)llexp(j2"‘.=l tn;) — exp(g 8U;)|eo

Hence {f'(¢, )}, is an equicontinuous collection on I* and uniformly
bounded on I*. By Ascoli’s theorem, there exists a subsequence {f‘¥(¢, I,)},
of {f9(t, 1)}, and a continuous function f'“(¢) on I* such that

sup|f9(t) — f91, 1)) —0 (as i— o).
teIm
Since {f“(¢, D)}, is a decreasing sequence, this actually converges to
F9(t) uniformly on I*. Thus
lim sup fY9(, 1) = sup f9(¢) .
l n

tel™ tel

By generalized Nehari’s Theorem II, sup{f“(t, l); t € I"} = | F'¢ + H>|| and
sup{f?(¢, 1);teI"} = |F'¢ + H* + N7|| and so for j =1, 2
sup f9(8) = [lg + H” + GO,

because the closure of Uz, F*H* coincides with the closure of U, F*(H" +
N®), which is H* + C(X) (cf. [1, Theorem 1.22]). For any telI", let S,
denote the multiplication by F on vH* where v = exp(337-, t;u;). Let S*
be the adjoint of S, from vH*? to v'K? and S®* the adjoint of S, from
vH? to v 'H: If K is any compact operator from vH® to v 'K: and
K® is any compact operator from vH? to v—'H?, and [ is positive integer,
then for 5 =1, 2

[H$ — K@ = [[(H" — KOS =z (|HSH| — |[K&SH| .
Since (S¥Y)* — 0 strongly, we have ||K{#S}|—0. Also
H@'S! = HE? .

Hence we can prove that the suprema are attained as in the proof of
generalized Nehari’s Theorem II.

IHE" — K@|| 2 Tm||HZ| = lim f9@, 1) = £90) .
Thus [|[H§"|l, = f9(t) and
sup|| H{|, z sup f9@) 2 [l + H* + CX]| .
The following theorem is another generalization of (b) in Introduction.

THEOREM 5. Let ¢ be a function in L*. Then for j=1,2
- HP . = llp + H* + CX)|| = v HS |, .
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The proof follows as in the case of a disc algebra (see [16, Theorem
1.4]) if we use Theorem 3 and the Ahlfors function.

6. Factorization theorems. We say H. has the weak approximate
v-factorization if H} satisfies the following property: For any F in H}
and any ¢ > 0, there exist {f;};-, in H* and {g,;}7-, in H% such that

S 1kl < 717,
and
“F— jZ:ifjgj

PROPOSITION 6. There exists a constant ¥ with ¥ =1 such that
llg + K=|| < 7||H?|| for all ¢ in L if and only if H: has the weak ap-
proximate Y-factorization.

<e.
1

Proor. Let V; be the closure in L' of the following set:
{2005 fs B, g;€ H and 33 11Alllosl < v} -

Put V' = {Fe H};||F|l, =1}. Then V; is the closed convex subset in ¥ V.
If H) has the weak approximate <-factorization, then V'V, and so
lo + K=|| = 7||HP|, since

|1, (B si0s)edm| < 18213 15do

Conversely, suppose ||¢ + K=|| < 7||HP||. If H) does not have the weak
approximate v-factorization, then there exists F'e V' with F¢ V,. Then
by the Hahn-Banach theorem there exists ¢ € L= such that

[ oran] > o g )

and so ||l¢ + K=|| > 7| H®||.

For K} we can define the weak approximate v-factorization and prove
Proposition 6 with H{", H> and K; instead of HY, K~ and H}, respec-
tively. In (I) for concrete uniform algebras we have factorization theorems
of H: and K. M. Hayashi pointed out a factorization theorem of H3}.
We now give a proof and clarify its relationship with 7,.

THEOREM 7. Suppose A is a concrete uniform algebra (I).

(1) If f is in Hj, then there is a g in H*® and an h in H; such
that f = gh and ||glllhll: = 7./ f]l,, where 7, = sup{[lv"||||v|l.; vE &} In
this case V, = .

(2) If f, is in K}, then there is a g, in H* and an h, in K§ such
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that f, = g,h, and ||gll:l|h.]ls = Yl fill,, where 75 = 7,||v]l. and K = v H;.

ProoF. (1) A function fe H} is of the form f= FG* where Fe Hy
with |F|e& and Ge H?[3, p. 1388]. If |F| = exp(3 . t;u;), let k = T3, (h;)"
and I; = [¢;/2]. Then ke (H*)™. Put s; = 2(t;/2 — [t;/2]). Thenq = Fk™'¢
Hy and |q| = exp(3 7, s;u;) € £: = {v;ve &}. Let g =kG and &k = ¢G.
Then f = gh and

[ tgram| wram = 1g1171m{ jal|f1am < laalal ] | 1#iam ]

< suplllg™.lall lal e 3 171am ] .

If we(L™);' then u = v|g| with ve &, and ge(H")™. Hence
Ve = Sup{[|v]l]|v7w; v € &} = sup{|l(w)]|; u € (L7)7} = 7, .

(2) A function f, € K} is of the form f, = »v,f for some f€ H;. Apply
(1) to this f, and let g, = g and kh, = v,h, then g,€ H? and h, € Ki. Now
(2) follows.

(1) of Theorem 7 gives ||[HP|| < ||¢ + K=|| < 7,/|H?| in the case of
(I) for concrete uniform algebras.

(2) of Theorem 7 gives that |[H®| < |l¢ + H*|| < 7||H®||. For any
uniform algebra with finite 7v,, Theorem 3 and Proposition 6 show that
both H; and K; have the weak approximate 7v,-factorizations.

7. Arveson’s distance formula. Let & be a (possibly non-self-
adjoint) algebra of operators on a Hilbert space 5%, and let T be an ar-
bitrary bounded operator. Then d(T, &) = sup,||(1 — P)TP||, where
d(T, &) is the distance from T to . and where the supremum is taken
over the lattice lat & of all .w~invariant projections. Arveson [5, Theo-
rem 1.1.] showed that if & is a nest algebra (i.e., lat % is totally or-
dered) then the equality holds above. Let S#= L® and P =1 — QW.
Generalized Nehari’s Theorem I implies that if K= is dense in K' and
lat & 5 P for any » in (L*);', then for any ¢ in L~

d(M,, ) = sup (I — PYM,P] .
Let & (57) be the space of all compact operators on 52 and <Z the

the norm closure of & + &(5#). Then d(T, &) = supp||(I — P)TP|,.
Theorem 4 implies that if lat &7 3 P for any v in &, then

d(My;, ) = s1}1’p]|(I— P)M,P|, for any ¢ in L~.
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