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Abstract. Let H°° be an abstract Hardy space associated with a uniform
algebra. Denoting by (/) the coset in (LTVί-ff00)-"1 of an / in (L00)"1, define
IIOOINinfίWooll^lU; ge(f)} and ro=sup{||(/)| |; (/jeίL-rVUΓ")-1}. If h is
finite, we show that the norms of Hankel operators are equivalent to the
dual norms of Hι or the distances of the symbols of Hankel operators from
H°°. If if00 is the algebra of bounded analytic functions on a multiply
connected domain, then we show that To is finite and we determine the
essential norms of Hankel operators.

0. Introduction. Let X be a compact Hausdorff space, let C(X) be
the algebra of complex-valued continuous functions on X, and let A be
a uniform algebra on X. For τeMAf the maximal ideal space of A, set
Ao = {/eA; τ{f) = 0}. Let m be a representing measure for τ on X.

The abstract Hardy space Hp = Hp(m), 1 ^ p ^ °°, determined by A
is defined to be the closure of A in Lp = Lp(m) when p is finite and to
be the weak*-closure of A in L°° = L°°(m) when p is infinite. Put Hp =

{ J/dm = oj, 2P> = [feLp; \fgdm = 0 for all ^eAol and XJ =

j /dm = oj. Then Hp

odKp and HpczKp.
Let Q{1) be the orthogonal projection from L2 to (ϋ 2 ) 1 = Kl and Q(2)

the orthogonal projection from L2 to 5 2 . For a function 0 in L°° we
denote by ikf̂  the multiplication operator on L2 determined by φ. As in
the previous paper [14], two generalizations of the classical Hankel oper-
ators are defined as follows. For φ in L°° and / in H2

If A is a disc algebra and τ{f) = /(0), where / denotes the holomorphic
extension of / in A, then τ is in MΛ. The normalized Lebesgue measure
m on the unit circle T is a representing measure for τ. Then H2 is the
classical Hardy space and H\ = JKo. Hence i ϊ ^ = if^ and it is the clas-
sical Hankel operator Hφ. It is well known that
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(a) ||fΓ,|| = \\φ + H~\\
and

(b) \\Hφ\\e=\\φ + H~ + C(T)\\,
where the essential norm \\Hφ\\e of Hφ is the distance to the compact
operators, (a) is due to Nehari (cf. [16, Theorem 1.3], [15]), while (b) is
due to Adamyan, Arov and Krein (cf. [16, p. 6], [2]). (b) yields Hartman's
result (cf. [16, Theorem 1.4], [11]) to the effect that

(c) Hφ is compact if and only if φ is in H°° + C(T).
In the previous paper [14] we considered the generalizations of (1).

The main idea was to consider Hankel operators on vH2 for every non-
negative invertible function v in L°°, avoiding a factorization theorem of
HI Namely, if h is in HI and ( \h\dm ̂  1, then h = fg, fe H2 and g e HI

\f\2dm ^ 1 + e and I \g\2dm ^ 1 + ε for some ε > 0. Let v be a
nonnegative function in L°° with v~ι in L°°. Let Q™ be the orthogonal
projection from L2 onto (vH2)1 = v^Kl and Q{2) the orthogonal projection
from U onto v^Hl. If v is a constant function, then Q{

υ

j) = Q{j) (j =
1, 2). For φeL°° and fevH2, Hfv is the operator defined by

If v is a nonzero constant, then Hfv = £Γ^ (j - 1, 2). Put (L00);1 =
{v e L°°: v'1 e L°° and v ^ 0}. The following theorem was shown in the
previous paper [14] and gives (a).

GENERALIZED NEHARI'S THEOREM I. Let φ be a function in L°°, then

suv{\\Hr\\;ve(L~)+1}=\\φ + K~\\.

If K°° is dense in K\ then

We now show two lemmas which will be used in later sections. Let
P, be the orthogonal projection from U onto vW. If v is a constant
function, we shall write Pv = P.

LEMMA 1. Let φ be a function in L~. Then for any v and u in
(L");1 and for j = 1, 2

\\H? - HfW ^ IMUfllir'IU + l|tt"ΊI-)lb - «ll-

PROOF. Since \\MJ\\2 ^ Hv^ltΊI/lk for all feH\ by [7, Lemma 1.1.]

IIP, - P.ll ^ (Ib-ΊU + lltt-'IIJIIt; - «|L .

S i m i l a r l y , | | Q i Λ - Q«>| | ^ (Ht - ' I U + Jl t*- 1 |U) l | v - « I U H e n c e f o r j = 1 , 2
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\\H?° - ffί'> || - \\Qϊj)MφPv - Q^MΦPV + QPMφP, - Qlj)MφPu\\

^ \\Qίj) - Qn \\MφPυ\\ + \\PV - P.ll \\Q<PMΦ\\

^ IWUII^IU + ll«"ΊU)llv - u\U .
LEMMA 2. Lei ^ 6e α function in L°°. If Hf (j = 1, 2) is compact,

then H{

φ

j)υ (j = 1, 2) is compact for any v in (I/00)?1.

PROOF. For any /evjff1 and gev^Kl {H^ffg) = {vHf{v1f)fg).
Hence J ϊ ; / = Qωm{MmH?Mv-if) for any /e^if2. The proof for Hfv is
similar. This implies the lemma.

Let Nτ denote the set of representing measures for τ on X. In this
paper we sometimes will impose the following two conditions on r:

(1) Nτ is finite dimensional and n — dim ΛΓr.
(2) m is a core measure of Nτ.

Let N°° be the real annihilator of A in L£. Then dim N°° = w and A +
Λ + NT is weak*-dense in L°°, where N? = N°° + iN°° (cf. [10, p. 109]).
U = H2®βl(BN?. Set if = expiV00; then if is a subgroup of (I/0);1.
Moreover, together with (1) we often will make the following stronger
conditions (3) on τ instead of (2).

(3) m is a unique logmodular measure of Nτ.
Then the linear span of N°°niogKiϊ00)-1! is iV°° (cf. [10, p. 114]). Choose
hί9 •••, hnβiH00)-1 so that {logl/^l}!^ is a basis for N°°. Put u3- = log|^ |
(1 ^ i ^ n) and g"0 = {exp(Σ?=i SJUJ); 0 ̂  8y ̂  1}. Then ^ o c g7. The fol-
lowing theorem was shown in the previous paper [14]

GENERALIZED NEHARI'S THEOREM II. Assume the assumptions (1) and
(3) on τ. Let φ be a function in L°°, then

S U P W H = \\Φ + H- + jsrrli

and

Moreover the supremums in both equalities are attained.

In Section 1, 70, which is defined in Abstract, is studied. Under the
assumptions (1) and (2) we determine when τ0 is finite. In Section 2, we
give examples of concrete uniform algebras to which results in this paper
can apply. Moreover 70 is calculated in some examples. In Section 3, if
70 is finite, we show that \\H^\\ (resp. | | i ϊ f ||) is equivalent to \\φ + ίf^l
(resp. \\φ + K™\\). In Section 4 we give applications of results in Section
3 to weighted norm inequalities for conjugation operators and invertible
Toeplitz operators in uniform algebras. In Section 5 we determine the
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essential norms of Hankel operators in the case of (I) in Section 2. In
Section 6 we consider the relationship between 70 and the factorization
theorem of HI. In Section 7 we consider the relationship between gener-
alized Nehari's Theorem and Arveson's distance formula for nest algebras.

1. Quotient group and a constant. Denoting by (/) the coset in
(Z/TVCiϊ00)-1 of an / in (L00)"1, define

\\(f)\\ = mΐiWgUlg-'L) 9 e(f)}

and

To - sup{||(/)||; (/) e (iTΓ/CEPr1} .

Then ||(/)(Λ)|| ^ | |(/)| | ||(Λ)|| and, in general, τ0 can be finite or infinite.
Let LR be the space of real-valued functions in L°°. Let logKi/00)"1! be
the lattice in LR consisting of the elements of the form log|/|, feiH00)"1.
There is a natural map of (L00)"1/^00)-1 onto Ls/loglCff00)-1! which sends (/)
to (logI/I). Define |||(log|/|)||| = inf{||log|/| + log|flr||U; fireCEΓT1} and 7X =
sup{|||(log|/|)|||;(log|/|)eLS/log|(ίί-Π}.

PROPOSITION 1. | |(/)|| = exp2|||(log|/|)||| and ΎQ = exp27x.

PROOF. It suffices to show that | |(/)| | = exp2|||(log|/|)||| for all fe
(L00)"1. Pick such an /.

= expinffess. sup(log|/| + log|ff|) - ess. inf(log|/|

Since the constants are in Off00)"1, this last quantity can be rewritten as

= exp2inf{ess. sup|log|/| + log|flr||} = exp2|||(log|/|)||| .

The proof of Proposition 1 is parallel to that of Proposition 2.2 in
[17]. Rochberg [17] considered (ίΓTVexp H°° instead of (L-ΓVCff*)-1. If
A is a disc algebra, then ||(/)|| = 1 for any (/) e (L00)-1/(iϊ00)-1 and so τ0 = 1
because of Proposition 1 and LR = logKίf00)"1!. Let crlslogKίί00)"1! denote
the closed real linear span of logKH00)"1!.

LEMMA 3. (1) // v = Σΐ^iίilogl^l with 0 ^ tά^ 1 and /^eCff00)-1

(1 ^ 3 ^ n), then sup{|||(ίι;)|||; -oo < t < <*>} < oo. (2) // veL% is not in
crlslogKH00)"1!, then sup{|||ti;|||; -oo < t < oo} = oo.

PROOF. (1) | | | (^) | | | - | | | (Σ?=i^ logN)| | | = |||(Σ5-i(tti-[«i])log|Λil)|||,
where [•] is the greatest integer function. Hence sup|||(tv)||| < oo.

(2) There exists a positive constant ε such that IJfrv+crlslogKff00)"1!!!^
ε||ίv||oo for any t. Hence sup|| |(^)| | | = oo.

THEOREM 2. Suppose τ satisfies the conditions (1) and (2). Then
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m is a unique logmodular measure if and only if 70 is finite.

PROOF. By Proposition 1 it is sufficient to show that m is a unique
logmodular measure if and only if yι is finite, m is a unique logmodular
measure if and only if crlslogKϋ00)"1! = L% (see [10, p. 114]). By this
and (2) in Lemma 3, if m is not a unique logmodular measure, then y1 = «>.
Suppose m is a unique logmodular measure. If v eL%, then v = uQ + log\g\
with uQeN°° and geiH00)'1 (cf. [10, p. 109]). Moreover, we can choose

(see Introduction). By (1) in Lemma 3 Ύ1 is finite and in fact
i ^ ^ |U;0 ^ 8y ^ 1}.

2. Concrete uniform algebras. (I) Let 7 be a compact subset of
the plane, and let R(Y) be the uniform closure of the set of rational
functions in C(Y). We regard R(Y) as a uniform algebra on its Shilov
boundary, the topological boundary X of Y. Suppose the complement Yc

of Y has a finite number n of components and the interior Y° of Y is a
nonempty connected set. Let A = R(Y)\X; then MA=Y. If τeMA is
in y° and m is a harmonic measure, then m is a unique logmodular
measure of Nτ and dim JVΓ = n < °° [10, p. 116]. Then N°°c:C(X) By
Theorem 2, 70 is finite. Let X = XoUXiU U l n , where Xo is the "out-
side" component of X and Xlt , Xn are the "inside" components of X.
Define vά e L% to be 1 on Xs and 0 on X\Xd 1 ^ j ^ n. Then 72 =
sup{|||(Σi=i^i)lll; -oo < t, < oo and 1 ^ i :g n).

(II) In (I) let Y be the annulus {r ^ |^| ^ 1}. Then 70 = r"1/2. Since
(LS/ the uniform closure of Reiϊ°°) has dimension one, we get

71=rsup inf{||ί \og\z\ — (Ref+n log|«|)||oo;/e H°° and n ranges over all integers}.

For any integer n

inf{||(ί - Λ)lθfir|«| - RefUfeHη

= \t-n\ log r-1 inf {\\XB - Re fUfe H~) - ht - n\ log r"1 ,

where XE — 0 on |^| = 1 and XE = 1 on |z| = r. Thus

i = sup inf —|ί — n\ log r" 1 = — log r" 1 .
O ί̂̂  n 2 4

We shall show that

inf{|i^ - Re/IU /eiϊ 0 0} - 1/2 .

Choosing / = 1/2, the infimum is not greater than 1/2. If the infimum
is less than 1/2 then by a theorem of Runge we can show that XE e H°°
as in the proof of Theorem in [13, p. 182]. This contradiction implies
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that the infimum is just 1/2.
(III) Let s/ be the disc algebra and let A be a subalgebra of

which contains the constants and which has finite codimension in s/. If
τ{f) = /(0) for feA and m is the normalized Lebesgue measure on the
circle T, then it is easy to check that m is a core point of Nτ and N°°dC(T).
If A Φ j^J then H00 is contained properly in the classical Hardy space.
Hence H°° is not τ-maximal. On the other hand if r has a unique logmodular
measure m, then H°° is τ-maximal ([9, Theorem 5.5]). This implies that
m is not a unique logmodular measure and hence Theorem 2 implies that
70 is infinite.

(IV) The unit polydisc Un and the torus Tn are cartesian products
of n copies of the unit disc U and of the unit circle T, respectively. A{ Un)
is the class of all continuous complex functions on the closure Un of Un

with holomorphic restrictions to Un. Let A = A(Un)\Xand X = T\ This
is the so-called polydisc algebra. For simplicity we assume n = 2. Let
m be the normalized Lebesgue measure; then m is a representing measure
for r on X where τ(f) = /(0) and 0 € C/2. Suppose 1 ^ p ^ oo and Z2

+ =
{(w, m) 6 Z2; n^O and m ^ 0}. Then Hp = {fe Lp; f(n, m) = 0 if (ti, m) g Z2

+}
and Kp = {feLp;f(n,m) = 0 if (-n, -m)eZ2

+}. K°° is dense in iTp.
Unfortunately we do not know whether 70 is finite or not.

3. Norms of Hankel operators. Assuming 70 is finite, we show that
Hff̂ ll (resp. ||H^||) is equivalent to \\φ + H°°\\ (resp. \\φ + K°°\\).

THEOREM 3. Let φ be a function in L°°. Then

\\H?\\^\\φ + K~\\<ϊ70\\H?\\-

If K°° is dense in K1, then

PROOF. Let ^ ( L 0 0 ) ; 1 . If ( |/|Vdm ^ 1 and ( \g\2v~2dm^l, then

S r }χ JX

\f\2dm ^ lb"2||oo and I \g\2dm ^ ||t;2||oo. Hence
X JX

\\H£)V\\ = sup{I[fgφdm ;feH2,geK2

0, j | / | V d m ^ 1 and ( \g\2v'2dm ^ l j

If he(H°°)-\ then v|Λ|H2 = &(viP) and t;-1^!"1^? = ftitr1!??) with 6 = |λ|/Λ.
Then Qifti = AΓ»Q?}Af» and so i ϊ ^ | Λ | = Λf^ΛfiΛf^t lλlfP. Hence \\H$)υ\\ =
HH^1*1!!. Thus for any heiH00)'1
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It is easy to see that

juvjmΐ{\\v\h\ lUltΓΊΛML; h e (ίPT1}} - τ 0 .

Now generalized Nehari's Theorem I shows that HJBΓ̂H ̂  \\φ + H°°\\ ^
Toll-EΓ̂ H. Similarly the inequality for H? follows.

4. Applications. In the previous paper [14] we gave applications of
generalized Nehari's Theorems I and II to weighted norm inequalities and
invertible Toeplitz operators. In this section we shall give applications
of Theorem 3.

Recall P is the orthogonal projection from U to H\ Let &*ω denote
P restricted to JEP° + K? and ^ ( 2 ) denote P restricted to H°° + St. We
are interested in knowing when ^ ( i ) (j = 1, 2) is bounded in L\w) =
L\wdm), where w is a nonnegative weight function in IΛ Put

(d) supj If fgwdm ;feH°°, geK? and [ \f\2wdm = f \g\2wdm = l i

= A
and

(e) supj ( /flfwrfm ;feH°°, geHt and f \f\2wdm = f Isfmίm = l l

Then it is easy to see that | | ^ ( i ) | | 2 ^ (1 — pf}'\ The following lemma is
known [19]. We shall give the proof for completeness.

L E M M A 3. \\&*{ί)\\2 = (1 - fή)~ι (j = 1, 2).

PROOF. If 7 = | | ^ ( 1 ) | | < oo, then for any real t and for any feH°°
and geK™ we have

72 — 1 f f f
t2 -—1 \f\2wdm + I \g\2wdm + 2ίRel fgwdm ^ 0 .

j J X J X J X

Hence

I f
and so 72 ^ (1 — pi) L. We can prove it for j = 2 in the same method.

If A is a disc algebra, then ^ = ^ ( 1 ) = ^ ( 2 ) is bounded in L2(w) if
and only if w = |fe|2 for some outer function & in H2 and ||0 + H°°\\ < 1
with ^ = \h\2/h2. This result is called Helson-Szegoτs theorem [12]. This
was generalized to general uniform algebras by the author [14]. The
following generalization seems to be better than the previous one.

COROLLARY 1. Suppose K°° is dense in K1. Let w = \h\2 for some
function h in H2 such that hH°° is dense in H2 and hK°° is dense in K2.
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Let φ = \h\2/h\
( 1 ) If\\φ + H°°\\ = p < 1 then ^ ω is bounded in L\w) and \\^ω\

(1 - pT1/2

(2) If ^ ω is bounded in L\w) and \\^ω\\ = 7

if 7 < 70(7ξ - 1)1/2 ίfcew ||0 + if00]! < 1.

PROOF. (1) p^ p, since

p=\\φ + H°°\\ = supjl\/φdm FeKl and HFIL ^ l j

^ supj j /̂flfdm ;feH\geKl and t |/|2dm = J |̂fir|2dm = l j = ρx .

In the last equality we used the facts that w = \h\2 and that Λiϊ00 (resp.
hKo) is dense in H2 (resp. if2,).

(2) Since ft = 7-χ(72 - 1)1/2 by Lemma 3 and ρ1=\\H$}\\ by the
proof of (1), Theorem 3 implies (2).

K°° is dense in K2 if we impose the assumptions (1) and (2) or if A
is a poly disc algebra. We have a similar result for ^ ( 2 ) (or \\φ + K°°\\)
as in Corollary 1.

For φ in L°° let Tφ be the operator on H2 defined by Tφf = P(Mφf).
The operator 2^ will be called a Toeplitz operator. We are interested in
knowing when Tφ is left invertible. In case A is a disc algebra, Widom
[18] showed that Tφ is left invertible if and only ii\\φ + H">\\.<l. Abrahamse
[1] generalized Widom's theorem to the case of (I) in concrete uniform
algebras such that dY consists of n + 1 non-intersecting analytic Jordan
curves. The author [14] generalized it to general uniform algebras. How-
ever these generalizations are not sufficient because except in the case
of a disc algebra we cannot determine φ when Tφ is left invertible.

COROLLARY 2. Suppose K°° is dense in K1. Let φ be a unimodular
function in L°°.

(1) If \\φ + #11 = p < 1, then ||2V/Ί|t ^ (1 - pψ* \\f\\t for any f
in H\

(2) // || 2V/ΊI, ^ e||/|| t for any f in H\ then

\\φ + fΓ-|| <ί 70(l - εT 2

Hence ifε> 70"
1(75 - 1)1/2, then \\φ + H°°\\ < 1.

PROOF. Since φ is a unimodular function, \\H?f\\l+ \\TΦf\\l = \\f\\l
for any fe H2. Theorem 3 and this imply the corollary.

In the case of (I) for concrete uniform algebras, \\Φ + if°°|| < 1 may
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not hold even if Tφ is left invertible (cf. [1]).

5. Essential norms of Hankel operators. In this section we shall
concentrate on concrete uniform algebras, that is, (I) in Section 2 such
that dY consists of n + 1 non-intersecting analytic Jordan curves. Hence
τ satisfies the conditions (1) and (3). Using generalized Nehari's Theorem
II we shall generalize (b) in Introduction to this context.

Let s = (slf s2, sn) e In — [0, 1] x x [0, 1]. Then the mapping s \-*
iβy%) is continuous, one-to-one and onto from In to £f0. Put

where v — exp(Σ?=i s/iij) .

LEMMA 4. Let φ be a function in L°°. Then for j = 1, 2 and for
any v and u in Sf0

W - H? \\ ^ \\φ\U2 sup ||t;-ι|U)||t> - u\U
t»eSf0

The proof is clear by Lemma 1.

LEMMA 5. If φ in H°° + C(X), then Hfv (j = 1, 2) is compact for
any v in |f0.

PROOF. By Lemma 2 it is sufficient to show that H{

φ

j) is compact
for any φ 6 C(X). Let φ = (2 — α)"1 for some α 6 Γ°. Then

L^; — a z — a Λ Lz — α J

for any feH2 because {/ 6 H2: /(α) = 0} = (z - α)ίP. Hence ffj^ has rank
one. Similarly if φ = (z — α)~n for a positive integer w, we can show
that Hp has rank n. For any φeC(X) we can approximate 0 by the
following functions: Σ?=o bs(z — αy)"3" where αy € Y° and &y is constant
(0 ^ i ^ 7i). Since Hff̂ H ^ ||^ + H~\\ and ||^2)ll ^ II* + ^°° + WIL w e

can show that JSΓ̂  is compact if φ e C(X).

THEOREM 4. Let φ be a function in L°°. Then

II. = \\Φ + H~ + C{X)\\ .

Moreover, the suprema in both equalities are attained.

PROOF. By Lemma 5 it is clear that sup{||iϊf *||β; ve^0} ^ \\φ + ίΓ°° +
C(X)\\ for j = 1, 2. We shall show the opposite inequality. Let F be
the Ahlfors function for Y° and τ e Y°. Then FeC(X) (see [8, p. 114]).
For any v e g"0 with v = exp(Σj= 1 tόu5) and ί = fe, ί2, , tn) e I n , put

t, I) = \\H%1\\ (I = 0, 1, 2, j = 1, 2) .
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Then f(*\t, I) ̂  /<*(«, I + 1) and by Lemma 4

s, D\ ^ ||̂ IU(2 sup|b-Ί

Hence {f{j)(t, l)}t=i is an equicontinuous collection on I71 and uniformly
bounded on J\ By Ascoli's theorem, there exists a subsequence {f{j)(t, i<)}JLi
of {/(i)(ί, ϊ)}Γ=i and a continuous function f{j'\t) on 771 such that

sup |/("(ί) - /«>(«, l<)\ -> 0 (as i -> oo) .

Since {/(i)(ί, l)}T=i is a decreasing sequence, this actually converges to
f{j)(t) uniformly on 7\ Thus

By generalized Nehari's Theorem II, sup{/U)(ί, I); teln} = HF^ + fΓ°|| and
sup{/(2)(ί, I); t e /"} = | | ^ + ίΓ~ + /C| | and so for i = 1, 2

because the closure of {Jn=iFnH°° coincides with the closure of {Jn=iFn(H°° +
N?), which is H°° + C(X) (cf. [1, Theorem 1.22]). For any teln, let St

denote the multiplication by F on vH2 where v = exp(Σ?=it/Wy). Let S{1}*
be the adjoint of St from vH2 to v"1^? and Sί2)* the adjoint of St from
viϊ2 to v"1.!??. If KP is any compact operator from vH2 to t;'1^? and
Kί2) is any compact operator from vH2 to 'v"1^, and I is positive integer,
then for j = 1, 2

Since (St

(iH)*->0 strongly, we have \\KpS\\\-+0. Also

Hence we can prove that the suprema are attained as in the proof of
generalized Nehari's Theorem II.

Thus | | i ί f e||β ^ /^}(ί) and

IL ^ sup
teln

The following theorem is another generalization of (b) in Introduction.

THEOREM 5. Let φ be a function in L°°. Then for j = 1, 2

- \\Hp\\. ^ WΦ + H- + C(X)\\ ^ yo\\Hn.
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The proof follows as in the case of a disc algebra (see [16, Theorem
1.4]) if we use Theorem 3 and the Ahlfors function.

6. Factorization theorems. We say HI has the weak approximate
7-factorization if HI satisfies the following property: For any F in H\
and any ε > 0, there exist {/,}]=! in H2 and {g3)%ι in HI such that

and

Σ

<e

PROPOSITION 6. There exists a constant 7 with 7 ^ 1 such that
\\φ + K°°\\ <; Ί\\Hf || for all φ in L°° if and only if H\ has the weak ap-
proximate 7-factorization.

PROOF. Let Vr be the closure in L1 of the following set:

H\ gά 6 H2 and ± M\U ^

Put V1 = {FeHl; \\F\\, ^ 1}. Then Vr is the closed convex subset in ΎV1.
If HI has the weak approximate 7-factorization, then VιaVr and so
\\φ + K°°\\ ^Ύ\\H?\\, since

Conversely, suppose ||^ + JSΓ00!! ^ 7| |iϊf ||. If HI does not have the weak
approximate 7-factorization, then there exists FeV1 with Fί Vr. Then
by the Hahn-Banach theorem there exists φeL00 such that

( φFdm > supjlί φfdm fe Vr\

and so \\φ + iΓ°||
For K\ we can define the weak approximate 7-factorization and prove

Proposition 6 with H$\ H°° and K\ instead of Hf\ K°° and H\9 respec-
tively. In (I) for concrete uniform algebras we have factorization theorems
of HI and K\. M. Hayashi pointed out a factorization theorem of H\.
We now give a proof and clarify its relationship with 70.

THEOREM 7. Suppose A is a concrete uniform algebra (I).
(1) If f is in H\, then there is a g in H2 and an h in HI such

that f=gh and \\g\\2 \h\\2 ̂  7*11 flU, where 72 = supίHtΓ^lβolMU; v e ί?0}. In
this case 72 ^ 70.

( 2 ) If f is in Kl, then there is a gλ in H2 and an hλ in Kl such
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that Λ = gA and ||£r1|U||^i||s ^ T8||/i||i, where 73 = 72|H|oo and K\ = v*H

PROOF. (1) A function feHl is of the form / = FG2 where Fe
with \F\ e gf and G e H2 [3, p. 138]. If \F\ = exp(ΣM;%)> let & = ΠS
and Zy = [tj/2]. Then A; e (ίJT00)"1. Put ss = 2(^/2 - [ty/2]). Then g = .FAr1 €

]Hϊ and |g| = exp(Σ;=i sόu3) e gf 2

0 = fy2; v e if0}. Let g = kG and Λ = gG.
Then f=gh and

= J^I^Ί \f\dm\jq\ \f\dm

S Bup{||rΊUIIίlU; Iβl 6 ^

If ne(I/00)^1 then ^ = v\g\ with vegΌ and sfe(H°°)~\ Hence

72 = supflMUItΓ1!!.; v e ^0} ^ sup{||(^)||; u e (L00);1} = τ

(2) A function fx e î J is of the form fx = v0/ for some / e iϊj. Apply
(1) to this /, and let gγ — g and ht — voh, then gx e iϊ 2 and hx e K\. Now
(2) follows.

(1) of Theorem 7 gives | | JΪ; 2 ) | | ^ ||^ + iΓ°|| ^ 72||ίίi
2)|| in the case of

(I) for concrete uniform algebras.
(2) of Theorem 7 gives that ||£rj1}|| ^ \\φ + H~\\ ^ 7.11-ff̂ ll. For any

uniform algebra with finite 70, Theorem 3 and Proposition 6 show that
both H\ and J8ΓJ have the weak approximate 70-factorizations.

7. Arveson's distance formula. Let j ^ be a (possibly non-self-
adjoint) algebra of operators on a Hubert space Sff, and let T be an ar-
bitrary bounded operator. Then d(T, sf) ^ supP | |(l - P)TP\\, where
d(T, sf) is the distance from T to s/ and where the supremum is taken
over the lattice lat s/ of all j^-invariant projections. Arveson [5, Theo-
rem 1.1.] showed that if s/ is a nest algebra (i.e., lat sf is totally or-
dered) then the equality holds above. Let £$f=L2 and Piυ = 1 - Qi1}.
Generalized Nehari's Theorem I implies that if K°° is dense in K1 and
lat s/ a P™ for any v in (L00)^1, then for any φ in L°°

d(Mφ, JS) = sup ||(/ - P)MΦP\\
P

Let ^(βέf) be the space of all compact operators on έ%f and & the
the norm closure of s^ + '&(<&?). Then d(T, &) ^ sup P | | ( /- P)ΓP||β.
Theorem 4 implies that if lat s/ 9 Pi1} for any v in ^ 0 then

d(Mi9 &) = sup | | ( 7 - P)M#P||# for any φ in L°°.
P
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