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Introduction. Let I' be a Fuchsian group leaving the upper half plane U and
hence also the lower half plane L invariant. By means of the Bers embedding ([2]) the
Teichmiiller space T(I') of I is identified with a bounded domain in the space B(L, I')
of bounded quadratic differentials for I". The inner radius i(I") of T(I') is the supremum
of radii of balls in B(L, I') centered at the origin which are contained in T(I"). The
inequality i(I') = 2 obtained by Ahlfors and Weill ([1]) is well known. If, in addition, I'
is finitely generated and of the first kind, then the strict inequality i(I")>2 holds (see
§2). Our main objective of this paper is to prove the following theorem:

THEOREM. Let 6=(g; vy, " -, v,) be a signature different from (0; v,, v,, v3). Then
I(o)=inf{i(I'); Fuchsian groups I' with signature ¢} =2 .

For the definition of signature, see 1.2. The Teichmiiller space of a Fuchsian group
with signature (0; v,, v,, v3) or a triangle group is a single point and its inner radius is zero.

The author would like to thank Professors H. Shiga and H. Yamamoto for several
useful comments.

1. Preliminaries. Our basic references in the theory of Fuchsian groups and
Teichmiiller spaces are [7] and [8].

1.1. We denote by Méb the group of all MGbius transformations of the Riemann
sphere C=Cu {0} and Méb, the subgroup of Méb whose transformations leave U
and hence L invariant. Then Méby, is also the group of orientation-preserving isometries
of the hyperbolic plane U (and L) with the metric

_dx*+dy?

(1.1) ds*=————, z=x+iyeU (orL).
y

Geodesics with respect to this metric are circular arcs and straight lines orthogonal to
the real line.

Let I' be a Fuchsian group in Méb,. We consider the action of I' on U. The
quotient space R-=U/I" is a Reimann surface and the canonical projection n.: U- R
is a ramified universal covering. The metric (1.1) induces a metric on R which is referred
to as the hyperbolic metric on R, in this paper. For a set Dc C, the stabilizer of D in
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I is Stab(D, I')={yeT; y(D)=D}. As a subgroup of I', Stab(D, I) is also a Fuchsian
group.

Let y be a hyperbolic transformation of I'. Then geodesic 4, connecting the fixed
points of y is called the axis of y. Then y or more precisely the conjugacy class
[y]={6y6~'; deTI'} degermines a geodesic curve n(4,) on R.. Let /, be the positive
value determined by |tr y|=2 cosh(/,/2), where try is the trace of y represented as a
matrix in SL(2; R). We say that y is primitive if y=45" holds for some deI" and some
integer n if and only if n=+1. If y is primitive and Stab(4,, I') contains no elliptic
transformations, g=m,(4,) is a closed geodesic and /, is the length of g.

1.2. Let I be a finitely generated Fuchsian group. Suppose that R has genus g
and k boundary curves and m punctures. Suppose also that R has ramification points
P,, ---, P, with orders v,, - -+, v, respectively. By reordering we may assume that
v, S 2v.Setn=Il+mandv,,, ="+ =v,=00. We call the ordered sets (g, n+ k) and
(g; vy, ** °, vy k) the type and the signature of T, respectively. If, in particular, I' is of
the first kind, £=0. In this case we abbreviate (g; v;, - -+, v,; 0) to (g; vy, = -, V).

1.3. Let W be a connected subset of R and W be a lift of W, that is, a component
of n Y(W).If Stab(W, I')is of type (0, 3), then we also say that Wis aset of type (0, 3).

Now we assume that I' is of the first kind with signature o=(g; v,, - -, v,). If
o #(0; vy, v,,v3), then except in the cases in (%) below there exists a system
G ={[7.], -, [ys]} of conjugacy classes of S=3g—3+n primitive hyperbolic elements
in I" with the following properties:

(a) The classes [y,], - - -, [ys] determine pairwise disjoint simple closed geodesics
gy, ", gs, respectively;

(b) Each component W of R—|J3_, g; is of type (0, 3).

(*) The exceptions are the signatures (i) g=0, n=4, v;="---=v,_;=2 and v,=3 and
(ii) g=0, n=5 and v, =- - - =v,=2. In these cases set S=n—3. Then there is a system
4 ={[y.), - -, [ys]} of conjugacy classes of primitive hyperbolic elements in I' satisfying
the following property (a’) and also (b) above with g,, - - -, gs replaced by those in (a’):

(a’) Theclass [y,] (and [ys] for the case (ii)) determines a simple geodesic segment
g, (and gs) connecting two ramification points of order 2 and other classes [y,] determine
simple closed geodesics g,. Moreover g, - - -, g5 are pairwise disjoint.

What we have described above is the so-called pants decomposition of R, (see
Figure). A more detailed description can be found in [12, pp. 154-156], but in this paper
additional g closed geodesics are needed to cut the hundles.

Let y be an element of a conjugacy class [y,] in 4. We denote by C(w, y) the
w-neighborhood of 4, with respect to the hyperbolic distance. If 4, happens to coincide
with the positive imaginary axis I, then C(w, y) is the set
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(4; vy, Vo, V3) 0;2,2,2,2,v,,v,) 0;2,2,2,2,2)
FIGURE
(1.2 C(w)={zeU;f0<argz<n—0}, where w=Ilog cot /2.

C(w,y) is called the collar of width w about 4, if C(w,y)ndéC(w,y)= for
oeI —Stab(4,, I'). Let 2(I') be the set of parabolic fixed points of I'. If 2(I') # &, for
peP(I), let D, be the horodisc based at p with area(D,/Stab(p, I'))=1. For a positive
number /, let w(/) be the value determined by 2sinh w(/)=(sinh //2) " *.

LEMMA 1.1. (The collar lemma. cf. [4], [10, Theorem 4.2]). Foranyye U f= AR
C(w(l,), y) is a collar about A,. Moreover,

(i) Ifyelysandéely](1 <s,t<S)aredistinct, then C(w(l,), y)n C(w(ls), )= .

(i) Ifyelyd (1=s=S) and pe Z(I'), then C(w(l,),y)nD,=J.

For (w,, ", wg) e R with w,Sw(l,) (1£s<S) define Qp(w,)=Qp(wy, - -, Ws)
to be

(1.3) Q) =U—=U ,eoryrY Us-1U, e, C@5 1)

(here cl B means the closure of a set B). By definition of the collar, C(w(/,), y) contains
no elliptic fixed points of I' —Stab(4,, I'). Then we see without difficulty that, for each
component W of Qp(w,), Stab(W, I') is a Fuchsian group of type (0, 3).

1.4. The space B(L,I') of bounded quadratic differentials for I' consists of
holomorphic functions ¢ in L such that ¢(z)=¢(y(z))y'(z)? for yeI and ze L and that
@ =sup,.4(Im z)?| ¢(z)‘|<oo. If I is finitely generated and of the first kind, then
B(L, I') is a finite-dimensional space and if I' is of type (g, n), the dimcB(L, I')=3g—3 +n.
Let Q(I') be the set of conformal mappings f in L such that f admit quasiconformal
extensions f to € with fTf~'={fyf~';yel}<Méb. If feQ(), its Schwarzian
derivative {f, z} =((f"/f") —(1/2)(f"[f")*)(z) belongs to B(L, I'). The Teichmiiller space
T(I') of I is the set of all Schwarzian derivatives of functions in Q(I'). The inner radius
iI') of T(I') is defined to be

sup{r; e B(L, I') and | ¢| <r imply ¢ € T(I')}
and satisfies (") =2 (cf. [1]).
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1.5. Let I be the positive imaginary axis and Méb, = {y e Méb; y(I) =1} consisting
of the transformations of the form:

(1.9) W2)=4z (A>0) or yz)=iz"' (A<0).

An element of Méb, is either hyperbolic or elliptic of order 2 or the identity.

We review Kalme’s paper [6]. We consider a holomorphic function ¢,(z)=az™* in
L with a complex parameter a. Let a=(1—052)/2. Then the equation {g, z} = ¢,(z) has
a solution expressed by

2

) { if 0#0,

a zZ)= .

g log z if 6=0

(we consider single-valued branches of the functions defined in the simply connected
region L). If ae A={a=(1—re*?)/2;0<r<4cos’0,0<|0|<n/2}, then the solution
5=0(a) of a=(1—56%)/2 with. Re5>0 satisfies |6—1|<1. In this case, by settinAg
g(z)=22°""1 for ze C—L, we can extend g, to a quasiconformal automorphism of C.
The Beltrami coefficient of g, is

b-1z/z for zeC—-L,

0 for zelL.

Let C(w) be the subregion of U defined in (1.2). If a€ 4, let g, ,, @>0, be the function

defined by B, ,(z)=P.2) for zeC(w) and fB,,(z2)=0 for ze C—C(w). Then
IBs,oll o =10—1|<1. By a direct computation using (1.4) we see that

(1.5) Bod=Ba 0@ @)y'(z)  for yeMab, .

Let ¢ be real. We define f,(z) to be the limit of B,(3.(2))yAz)/7'(2) as é—0, where
y{2)=(z—¢)/(z+¢). Then,
. 6-1)z%z*  for zeC-L,
Baz)= {
0 for zelL.
Set h,(z2)=0|z|*(6—1)z+2)"! for zeC—L and h z)=z for zeL. Then h, is a

quasiconformal automorphism of € with the Beltrami coefficient f,. Obviously
IBllo=16—1] and {h,, z} =0 for ze L.

pio-]

2. Theinequality i(I") > 2 for finitely genrated Fuchsian groups I’ of the firstkind. If
I is a finitely generated Fuchsian group of the first kind, then i(I')>2. To see this,
assume that i(I')=2. Then | ¢|| =2 for a boundary point ¢ of T(I') in B(L, I'). Let W,
be a meromorphic function in L satisfying { W, z} = ¢(z). Then it is known that W, is
univalent and I'’ = W,I'W ; ! is a Kleinian group with precisely one invariant component
Wo(L) (12, p. 593]). The limit set of I'y, which coincides with dW,(L), cannot be a
Jordan closed curve. Then, since ||¢|| =2, a result by Gehring and Pommerenke ([3,
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Theorem 1]) implies that Wy(L) is the parallel slit {z; —n/2 <Imz<mn/2}, if we replace

W, by 6W, for some 6eMob. However this is impossible, because any loxodromic

element of I'* cannot leave the parallel slit invariant. Hence we can conclude that i(I") > 2.
The author learned the above result from Professors H. Shiga and H. Sekigawa.

3. Proof of the theorem (1). Our proof of the theorem is somewhat lengthy. So
we divide it into three parts. We shall complete the proof in §5.

3.1. Let o=(g; v, " *, v, be a signature different from (0; v,, v,, v;). We fix a
Fuchsian group I'y with signature o and a system %, ={[y,,1], - * *, [0,5]} of conjugacy
classes of hyperbolic elements in I'y as in 1.3. We shall retain the notations used in § 1.
For a subset D of U, we denote by D the image of D under the reflection z—Z with
respect to the real line. Choose a number w for which 0<w<w(/,, ) for all 5, 1<s<S.
There exists a sequence of quasiconformal automorphisms {f,}, ne N={1,2, -- -}, of
C satisfying the following properties: (1) f,(2)=f.(z) and f, leaves U invariant; (2) f,
takes Iy into a Fuchsian group I',=f,[of, '; (3) I, , converges to 0 as n— o0, where
Tns=fvosfn s and (@) supp(f): = U= 1 U,yepyo o(C(@, 1)U C(@, 1)Y). Actually we can
construct f, by pinching simple closed curves freely homotopic to nr(4,,,) (see the
proof of Theorem 11 in [2]). We set R,=R;, and n,=mr,, the canonical projection.
Moreover we set 4,={[y,1], ‘- -, [ns]} and 2,=2(T,).

Let Q=0 (o, ---,w) be the set defined in (1.3). Let Py, -, Vor be the
components of 7 (), all of which are of type (0, 3). We remove a small neighborhood
of 8V, from V,, to obtain a subregion ¥V, of type (0, 3) such that cl V,,=V, . The
mapping f, induces a homeomorphism F, : R,— R, between the surfaces. Since (f,);=0
in Q, f, is conformal in Q and hence F, is conformal in each 170,,. Let V,,=F,(V,,).
For each ¢ (1£¢<T), choose a lift 17'0,, of V. Let d(,) be the distance defined by the
hyperbolic metric on ¥,, of constant curvature —1. Since f, | 7., 18 conformal, the
Ahlfors-Schwarz lemma yields

3.1 d(f2) fw)<dfz,w)  for z,weV,,,

where d(, ) is the hyperbolic distance of U. Let d,(,) denote the distance of V,, induced
by dJ,). Since cl Vo< 170’,, sup p,qeyo,ﬂ,( p, q) are finite for all . Let M, be the largest
among them. Let d,(,) be the hyperbolic distance of R,. Then, by (3.1) we obtain

(32) diam Vn,! =Ssup p,qu,.,gdn(p’ 4) < Ml s 1 é té T.

Note that M, is independent of n.

Let 8,=Q (w(,, ) and W, ,, - -+, W, 1 be the components of m,(%2,). Here W,,
is given the subscript ¢ so that W, is deformable to V,, by an isotopy on R, which
fixes each ramification point. For a given ¢>0, [, <& (1=s<S) except for finitely
many n. By applying a result by Matelski (the boundedness of the reduced diameter
[11, sec. 8.8]) we can find a constant M", independent of # such that:
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(3.3) diam W, =Sup ,.qc i, A, <M, 1St T.

Since F,: Ry~ R, is a homeomorphism preserving ramification points and since V,, , is
of type (0, 3)in R,, V,,, meets W, ,. Hence by (3.2) V,, ,is included in the M, -neighborhood
W, , of W, , with respect to the distance d,(,). We set M, =2M, + M}, w, ;=w(l, )—M,
and Q,=Qy, (»,). Then we obtain:

Lemma 3.1. (1) Each component W,, of m,(R,) contains V,, which is the image
of V. under the conformal mapping F, |,,0 . (2) The diameter of W, , is less than a constant
M, independent of n; and (3) w, ;— o as n— .

4. Proof of the theorem (2).

4.1. Let I'y, 9,={[ys1], -, [yasl} and o, be as above. For each s (1<s<S)
choose a =0, seMob,, which sends the axis 4, _ to the positive imaginary axis I. Let
Ba.w, .» @ €A, be the function as in 1.5 defined for 0= W, . Weset B, =(Bs0,,° 0)9’/0’
Note that SUpp B, p,s =l C(@, 4, Vus)- Let I', =Stab(4,, ,T,). Since {840~ *;nel, }c
Méb,, by (1.5) it holds that

@1 BandD)=BunsM'@/n'(2)  for nel,,.

Let I',\I', ; denote a system of representatives of the right cosets. We define

ﬂa,n(z) = Zf: IZyeI“,,\F,‘,,Bﬂ»H,S(Y(Z))‘Y '@y'(2) .

By (4.1) we see that y, , is independent of the choice of representatives of I',\I’, ;. Since
SUPP Pons°? < C(Wy s ¥~ 7ss¥), by Lemma 1.1 the terms of the above sum have disjoint
supports. When y runs over all cosets of I',\I', ,, so does yn for each nerI,. Hence y,,
is a Beltrami differential for I', with ||y, ,ll,=|0(a)—1]|<1. We remark that, if 4,=1
for some ye[y, ], then pu,,=p, in C(w,)uL, where C(w,,) is given in (1.2). Let
dan be a homeomorphic solution of the equation g;=p,,g, and @, (z)={g,,, z} for
zeL. Then g,, is a quasiconforrhal automorphism of C with delatation K(a)=
(1+|6(a)—1])/(1—|d(a)—1]) and ¢, , belongs to T(I',).

4.2. 1In the sequel, when we say that we replace I', by a conjugation n~*I",5n for
an n e Méby, we also mean that we also replace y,, ,, g,, and @, , by (i, ,° mn'n’, GanoN
and (¢,,°n)(n')?, respectively. We employ freely these replacement because of the
equation:

4.2) 4(Im 2)?| ¢,,,,(n@)n'(2)* | =4(0m 7(2))?| b, xM(2) | -

We shall estimate 4(Im z)?| ¢, ,(z)| for z near the axes A,, y€[7,s]. The same argument
as in [11] applies in this case. We replace I', by a conjugation of I', in Méb, so that
A, .=I1. We can impose the condition g, ,(—ci)=(—ci)*@ for c¢=1,2,3, because

In,s?
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otherwise we need only to replace g,, by #ng,, for some neMob. Then the
K(a)-quasiconformal automorphisms g, , of C form a normal family and a limit function
g* is also a K(a)-quasiconformal automorphism of € ([9, Sec. II 5]). Replace {g,,} by
a convergent subsequence to g*. By Lemma 3.1 (3), the area of C— (C(w,5)UL) as a
subset of the Euclidean sphere S=C decreases to 0. Since B.=Han in C(w, JUL, a
subsequence of {y, ,}, which is denoted again by {4, ,}, converges to f, almost everywhere
in S. Then we have g¥* =g, the function given in 1.5, because both functions have the
Beltrami coefficient 8, ([9, Theorem IV 5.2]) and take the same values at —i, —2i and
—3i. It follows that ¢, ,(z) converges to @,(z)=az 2 uniformly in every compact subset
of L. For positive numbers t, /, let K=clC(r)*n{re??eL; 1<r<e'}. Then ¢,,—¢,
uniformly in K. For large n, I, <! and every ze C(1)" is equivalent to a point in K
under {y, ; ve Z}. Hence for any ¢ >0, if n, (7, €) is chosen to be sufficiently large, then
4(Im 2)?| ¢, ,(z) | <4|a|+e for ze C(2)" if n>ny (7, ). We determine n, (, ¢) for each
s and set n,(t, ) =max ; <,<5 1y 4(7, &). Then by using (4.2) we obtain the inequality

4.3) 4(Imz)*| ¢, 2) | <4lal+e,

which holds for ze J5_, U C(t, )t and n>n,(1, ).

y€lvn,s]

4.3. In the next section we shall show that the inequality (4.3) holds for all ze L
and n> n, with n, sufficiently large. At present we assume this and prove first the desired
estimate /(o) =2. Since ¢ is arbitrary, the inequality (4.3) (established for all ze L) implies
that lim, ., [|¢,.ll £4|a|. Suppose on the contrary that I(¢)=2+2p>2. Again we
assume that 4, =1 Substitute 1/4eA for a and write ¢, instead of ¢, ,. Then
lim,, ,||#,| <1 and by assumption (2+ p)¢, belongs to T(I',) for all large n. Thus
the equation {w, z} =(2+ p)¢, has univalent solutions. Let w, be one of the solutions
which sends —i, —2i, —3ito 0, 1, oo in this order. Then {w,} is a normal family and
a limit function w is also univalent in L. As we have seen in 4.2, (2+ p)¢,(z) con-
verges to ((2+ p)/4)z 2 uniformy in every compact subset of L. Consequently {w, z} =
(24 p)/4)z~2 and nw(z)=2z""*" for some neMdob. However, since J—p/2 is purely
imaginary, w cannot be univalent. This contradiction yields I(¢)=2.

5. Proof of the theorem (conclusion). Now we show the inequality (4.3)
|@anll <4la|+e for sufficiently large n.

5.1. In3.1 we have chosen a lift ¥, , of 170,,. We replace it by a lift of ¥, , contained
in 7,, Then by Lemma 3.1 (1) we can find a lift of W,, of W,, such that
V.= fiVo)=W,, Note that the I',-orbits of W, ,, - - -, Wy, cover ©,.

We fix a 1. Let Hy=Stab(V,,, I'o) and H,= f,H,f ' =Stab(V,,, I',). These are
Fuchsian groups of type (0, 3). Let y,: Ho,— H, be the isomorphism between the groups
defined by yn=finf ! for ne H,. We fix a point we ¥, ,. We may replace I', by a
conjugation of I', in Méby so that f(w)=ie I7,,,,. Then from (3.1) d(i, x,n(i)) < d(w, n(w))
for ne H,. Hence there exists a subsequence of {x,}, which is denoted again by {x,},
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such that y,n converges to a transformation y#n of Moby for each ne H,. Actually we
need only to choose a subsequence so that y, converges on the set of two generators
of H,. By the convergence theorem ([5, Theorem 1]) H,={x.n; n€ H,} is a Fuchsian
group and g, : Hy—H_ is an isomorphism. A hyperbolic element y of H, determined
by a boundary curve of V,, belongs to [y,,] for some s. Then y,ye[y,.] and
|tr X,y |>2=]|trx,,7| as n—oo0, for [, —0 as n—co. Since x,, is an isomorphism, x, is
parabolic. It follows from this that H is a triangle group.

The Kraus-Nehari inequality ([8, Theorem II 1.3]) yields | ¢, .(2)|<(3/2)(Imz) 2.
Hence ¢,, are locally uniformly bounded. By replacing {¢,,} by an appropriate
subsequence, we may assume that ¢, , converges to a holomorphic function y, uniformly
in every compact subset of L. Then for each ze L and each ne H,,,

VD) =1y, §, o(2) =1im, - o G st DN) (2 = Y2 (X NN o) (2)* -

Thus ¥, is a quadratic differential for the triangle group H, and hence identically zero.
Let B(M) denote the disc in U of hyperbolic center i and radius M. Then, for any
¢>0, if n, (M, ) is taken to be sufficiently large, then 4(Im z2)?| ¢, ,(z) | <e¢ for ze B(M)*
and n>n, (M, ¢). By Lemma 3.1 (2) n,(B(M,)) covers W,, Hence the I',-orbits of
B(M,+1)* cover the hyperbolic t-neighborhood of the I',-orbits of Wk, We set
ny(t, &) =max, ., <, (M, +1, ¢) and denote by A" (2,) the hyperbolic t-neighborhood
of Q,. Then by using (4.2) we can conclude that 4(Im z)?| ¢, (z)) | <& for ze ¥ (R,)*
and n>n,(t, €).

5.2. Choose an arbitrary parabolic fixed point pe 2, =2([,). Then p,= f,(p) €2,
We replace I', by a conjugation of I', in Méby, so that (I',), =Stab(p,, I',) is generated
by z—z+1. In this case, D,=D% ={z;Im z< —1}. We can identify L/(I',),, with the
punctured disc 4={z; 0<|z|<1}. Let n,(z)=e™ 2" be the canonical projection L—4.
The density of the hyperbolic metric on 4 is p(z)=(—|z|log|z[)~'. Since @, (z)=
Gun(z+1), ¢,, defines a function @,, in 4 such that (@, ,°n)(n,)* =@, Let 4,=
n4(D,)={z; 0<|z|<e™?*}. By the Kraus-Nehari inequality we have

(.1 | $anDISci=0/D(™>)?  for (edd;.

Since ¢, ,({)—0 as {—0 ([7, p. 111]), (5.1) holds for all { € 4, by the maximum principle.
Thus, 4(Im 2)| $,,4(2) | =4p(0) * Pun(D)| <4y (—|{ | log |])? for ze D, with {=mn,(z).
For a given ¢>0, choose r (>1) to be so large that 4c,(2nre 2™)?<e. Then
4(Im z)?| P, .(z)| <& for z with Im z< —r. Since 8D, lies in the boundary of Q, the part

{z; —r<Imz< —1} is contained in 4" (2,)* with t>log r. Hence 4(Im z)? §, ,(z)| =0
for ze D, and n> n,(t, &) with t>log r.

5.3. Choose a point z, for which 4(Im z)| @, ,(,) | =@, Since R, is a compact
surface with a finite number of punctures and since 4(Im z)?| ¢, ,(z)|—>0 as =,(z)
approaches to a puncture, such a point z, certainly exists. We assume that there are
infinitely many » for which | @, ,l|>4|a|+¢ and consider only those » in the sequel.
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Let n(t, &) =max{n,(z, ¢), n,(t, €)} and fix a 15 (>log r). From the argument in 5.1-5.3
it follows that z, belongs to (C(®, s, Yn.s) — C(Tos Yus)* for some s=s, if n>n(zy, €), if
we replace z, by #(z,) for some nerl,. For the sake of simplicity we assume that
2,€ C(Wp,1, ¥a,1)" for all n without loss of generality. We write y,, , instead of Va1
w, ;. Again we assume that 4, =1. Moreover, without losing the property that y, ,=f,
in C(w,) v L we may assume that |z,|=1 and Re z, >0, because otherwise we need only
to take a conjugation of I', with respect to an element of Méb,. For t (>1,), if n>n,(1, €),
the hyperbolic distance from z, to 0C(w,)*<dQrL is larger than t. Hence the disc
B(z,, t) = U of hyperbolic center z, and radius 7 is contained in C(w,). The transformation
&(2)=1,,(2)=(z—¢,)/(z+¢,) with g,= —tan arg(z,/2) sends the disc B(t) of hyperbolic
center i and radius t onto B(z, 7). Hence two functions f,,=(u,,°¢&)E,/E, and
(Bac E)E,/E, coincide with each other in B(r)u L. Since the hyperbolic distance from z,
to A, =1is larger than t for n>n,(t, ) and since n eventually exceeds n(z, ¢) for any
T as n— 00, we see that ¢,—0 as n—oo0. Hence a subsequence of {4, ,}, which is denoted
again by {/i, .}, converges to f3, given in 1.5 almost everywhere in S. Let h, ,=17,° g, ,° &,
where 7,eMéb is so chosen that A, ,(—ci)= —ci for ¢=1,2,3. Then h,, satisfies
(hgw):=fiz (B, ). By proceeding as in 4.2 we see that h,, converges uniformly to A,.
Consequently @, (&,(2)¢n(2)>={h, ., z} converges to {h,, z}=0 uniformly in every
compact subset of L. In particular, (Im 2)?| ¢, (z,)|=|{h,., —i}|=0 as n—oo. This
contradicts the assumption |¢, || >4|a|+e.

Now the inequality (4.3) is established for all ze L and for all large n. Then, as we
have seen in 4.3, the desired estimate of the inner radii I(¢)=2 is obtained.

REFERENCES

[1] L.V. AHLFORS AND G. WEILL, A uniqueness theorem for Beltrami equations, Proc. Amer. Math. Soc.
13 (1962), 975-978.

[2] L.BErs,Onboundaries of Teichmiiller spaces and Kleinian groups, I, Ann. of Math. 91 (1970), 570-600.

[3] F.W. GEHRING AND Ch. POMMERENKE, On the Nehari univalence criterion and quasicircles, Comment.
Math. Helv. 59 (1984), 226-242.

[4]1 N. HALPERN, A proof of the collar lemma, Bull. London Math. Soc. 13 (1981), 141-144.

[5] T. JorGENSEN, On discrete groups of Mobius transformations, Amer. J. Math. 98 (1976), 739-749.

[6] C.I. KaLME, Remark on a paper by Lipman Bers, Ann. of Math. 91 (1970), 601-606.

[7] I KraA, Automorphic forms and Kleinian groups, Benjamin Reading, Mass. 1972.

[8] O. LeHrO, Univalent functions and Teichmiiller spaces, Springer-Verlag, 1986.

[9]1 O. Lento anD K. I. VIRTANEN, Quasiconformal mappings in the plane, Springer-Verlag, 1973.

[10] P. J. MATELSKI, A compactness theorem for Fuchsian groups of the second kind, Duke Math. J. 43
(1976), 829-840.

[11] T.NAKANisHI, A theorem on the outradii of Teichmiiller spaces, J. Math. Soc. Japan. 40 (1 ?88), 1-8.

[12] H. ZIESCHANG, Finite groups of mapping classes of surfaces, Lecture Note in Math. 875, Springer-Verlag,
1981.



688

DEPARTMENT OF MATHEMATICS
SHIZUOKA UNIVERSITY
SHIZUOKA, 422

JAPAN

T. NAKANISHI





