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The sum and product of two commuting bounded spectral operators in a Hilbert
space are spectral operators. This property, however, cannot be extended unconditionally
to spectral operators in Banach spaces, as shown by an example of Kakutani [9]. In
general, the stability problem under the sum and product of two commuting operators
having in common a given spectral property, is subject to restrictive conditions. In
extending the stability under sum and product to the class of decomposable operators
[7], Apostol in [1] found that if T and S are commuting bounded operators one of
which is decomposable as a multiplication operator, then T+ S and TS are decomposable
operators. Sun [10] substituted the extra condition of T or S being a multiplication
operator, by requiring that 7 be strongly decomposable relative to S, in terms of the
following definition. If 7, S are commuting bounded operators such that, for every
spectral maximal space Y of S, both the restriction T | Y and the coinduced 7/Y on the
quotient space X/Y are decomposable, then T is said to be strongly decomposable
relative to S.

In this paper, we shall determine sufficient conditions for two commuting operators
T and S to preserve under sum and product the more general spectral decomposition
property, by allowing one of the operators to be unbounded. The bounded operator
techniques used by Apostol and Sun are not applicable to our case.

The terminology and notation are consistent with the ones used in [4]. For a Banach
space X over the complex field C, we denote by C(X) the set of all closed operators S
with domain D(S) and range R(S) in X. C4X) denotes the subset of C(X) consisting of
all densely defined operators in C(X). B(X) stands for the Banach algebra of bounded
linear operators on X.

For a linear operator 4 on X, three types of invariant subspaces are most frequently
used: analytically invariant subspaces [8], spectral maximal spaces [7] and 4-bounded
spectral maximal spaces Z(A4, F), where F is a compact subset of C. Their pertinent
properties and relationships to each other are analyzed in the first chapter of the

monograph [4]. The main theorems of this paper are anchored to two spectral-type
analytic properties:

PROPERTY (k): the given operator A has the single valued extension property and,
for every closed Fc C, the spectral manifold X (A4, F) is closed.
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PROPERTY (B) [2]: for any sequence { f,: w—D(A)} of analytic functions on an open
wcC, (A—A)f,(A)—0 as n— oo uniformly on every compact subset of w, implies that
f(A)—0 uniformly on every compact subset of w.

A third spectral-type property (Property (y)) will be added later in this paper.
The spectral decomposition property (SDP) was extensively studied in the second

chapter of the monograph [4].
Given Se C(X), {S}’ denotes the set of all bounded commutants of S. For a subset

E of C, we write Co(E) for the convex hull of E. .
The following property, part of [5, Theorem 5.5] will be frequently referred to.

THEOREM A. Given Te Cy(X), the following assertions are equivalent:
(1) T has the SDP;
(i) for every pair of open disks G, H with G = H, there exist invariant subspaces

X and Xy such that
X=Xg+Xy; XycDr; o(T|Xg)cH and o(T|Xs)cGe;
(iii) both T and T* have property (f).

1. In this section, we determine sufficient conditions for the sum 7T+ S of two
operators S€ C4X) and Te{S}’ to possess the SDP.

1.1. DEFINITION. We say that a finite cover {G;}7-, of a set EcC is a convex
open cover if each G; is both convex and open.

1.2. DerFiNITION. TeB(X) is said to have the convex spectral decomposition
property (abbrev. convex SDP) if, for every convex open cover {G;}}-, of ¢(T), there
exists a system {X;}7_; of T-invariant subspaces with the following spectral de-
composition

X=X, oT|X)=G,, 1=5isn.

In particular, if 7' is decomposable then it has the convex SDP.

1.3. THEOREM. If T has the convex SDP, then T has the single valued extension
property and, for each convex closed set F, X (T, F) is closed.

Proor. First, we show that T has the single valued extension property. Let
f: w—X be analytic in an open w< C and identically verify the equation

(1.1) A-7)f(A)=0 on .

Without loss of generality, we may assume that w is connected. For some A,e C and
r>0, define G={1: [A—A,|<r} subject to G=w. Let ¢>0 be sufficiently small for the
sets G, ={4: Re A<Re 1y +¢}, G,={A: Re A>Re l,—¢} to satisfy: G—G,#J, i=1, 2.
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By the convex SDP, there are T-invariant subspaces X;, X, such that

(1.2) X=X,+X,, o(T|X)<=G;, i=1,2.

In view of (1.2), there are analytic functions f;: G- X, i=1, 2 such that
JA)=fi(D+1(2).

By (1.1), we have

(1.3) A-DfiD)=—GA-D)f,(ADeX,nX,.

For Ae G—G,, the inverses (A—T'|X;) ", (A—T| X, nX,)~* exist. Therefore (1.3) gives
rise to

[i)=CG-=T|X) " (A—D i) =G=T|X;n X)) " (A-T)/i(A)eX;n X, .
Hence f;(4)e X, n X, for all 1€ w, by analytic continuation. Similarly, one obtains that
f2(A)eX;nX, on w, and hence f(A)eX,;nX, on w.

Since Aew subject to |Re A—Re A |>¢ implies that Ae p(T|X,nX,), it follows

from (1.1) that f(4)=0 on w, by analytic continuation. Thus, 7 has the single valued
extension property.

To show that X (T, F) is closed for every convex closed set F, let G be the family
of all half open planes containing F. For given G € G, let H be another half open plane
satisfying conditions GUH=C and FnH=(j. By the convex SDP, there exist
T-invariant subspaces X, Xy such that

X=Xg+Xy with o(T|X)<G, oT|Xy)cH.

Furthermore, X/X; and Xyz/XgnXy are topologically isomorphic, 7'=T/X; and
T:(T|X w/XgnXy are similar. It follows from the convexity of H that
o(T|Xsn Xy) < H. Then the following inclusion

o(TYco(T| Xg)ua(T| Xgn Xy)
implies that o(T)=0(T)c H.

Let I' be a simple positively oriented closed contour surrounding o(7") and leaving
F in its exterior. If A¢ F, for every xe X (T, F), one has (1— T)x(A)=x and hence

1 A A A ~
(1.9) f=— f R(A; TYXdA= 1 j R(A; TYA—T)x(A)dA= 1 J X(A)dr=0,
2ni ) r 2ni ) r 2ni )

1)

where x(*) is the local resolvent function of x and £=x+ X;; is the element of X/Xg
corresponding to x. In view of (1.4), xe X; and since G € Gy, one has

X(T,F)cN{Xs:GeGy} .
On the other hand, the convexity of F implies that
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and hence the opposite inclusion holds. Therefore
X(T, F)= n{XG: GGGF}
and hence X (7, F) is closed. O

1.4. DEFINITION. Given Se C(X)and Te {S}'. If, for every spectral maximal space
Yof S, T| Y has the convex SDP, then we say that T has the strong convex SDP relative
to S.

Clearly, if T has the above property, then T has the convex SDP.

1.5. PROPOSITION. Given Se C(X) and Te{S}'. Suppose that T has the strong
convex SDP relative to S, S has the single valued extension property and, for every compact
subset F of C, X(S, F) is closed. Then, for every S-bounded spectral maximal space
Y=E(S, F), T| Y has the convex SDP.

ProoF. The S-bounded spectral maximal space Y has the representation
Y=E(S, o(S [ Y)). Furthermore, it follows from [4, Theorem 4.34], that

X(S, a(S| V)= E(S, a(S| V))DX(S, &) .

Since, by hypothesis T|X (S, a(S| Y)) has the convex SDP, it follows from the above
decomposition that T'|Y=T|&(S, ¢(S|Y)) has the convex SDP. O

1.6. THEOREM. Given S€ C(X)and Te{S}'. If S has the SDP and T has the strong
convex SDP relative to S, then T*+ S* has property (B).

Proor. Let {f,: ®—X*} be a sequence of analytic functions in an open w=C
such that

[A—=(T*+8%)f£(A)|-0 as n-oo
uniformly in every compact subset of w. For 4,e® and r>0, define the sets
G0={i:|l_10|<r}, G1={1:11—20|<2r}

such that G, = w. Denote by D a closed disk centered at the origin of radius d, satisfying
inclusion ¢(T) < D. Furthermore, suppose that {¢;}}_; and {0,}}-, are open covers of
Co(a(T)) and o(S), respectively, with a; (1<j<n), 6, (1<k<m) open disks and J, the
complement of a closed disk centered at the origin such that

(1.5) G n(D+3)=0 .

By the sum 4+ B of two sets 4, Bc C, we mean A+ B={a+b:aec A, be B}. We may
choose the disks g; and &, such that the radius of the disk &;+ &, is less than r/2 for
1<j<nand 1<k <m. For all pairs (j, k), the following two cases may hold:

(i) 6;+6)nGy=¢ for some (j, k) ;



SPECTRAL DECOMPOSITION PROPERTY 661

(i) (6;+0)nGo#F, and hence 6;+8,=G, for some other pairs (j, k) .
The SDP of S implies the spectral decomposition

(1.6) X=X(S,8)+ Y &(S,35,).
k=1
Set Yo=X(S, 8,) and Y,=E(S, §,) for 1<k<m. Since Te{S}, for 0<k<m, Y, is
invariant under T and
%)) a(T| Y,)=Co(a(T)), 0<ksm.

In view of Theorem 1.3, X;=X(T, ;) is closed for 1<j<n and (1.7) implies that, for
1<k<m, {0;}}-, is also a convex open cover of a(T| Y,). Then, Theorem 1.3 and
Proposition 1.5 imply the spectral decomposition

Y,=Y Y(T|Y6), 1<k<m.
j=1
Since Y(T|Y,, 6;)= Y, nX;, 1<j<n, 1 £k <m, one obtains
(1.8) Y,=) X;nY,, 1=Zk<m.
ji=1

Since 6}, &, (1=<j<n, 1 <k <m) are convex, we have

o(T|X;nY)<éd;, o(S|X;nY)cd,, 1<j<n, 1<k<m.
It follows from the inequality
1.9) r(A;+A3)Sr(4,)+1r(4,)
on spectral radii of mutually commuting bounded operators 4, 4, that
(1.10) o(T+8)|X;nY)<=6;+8,, 1<jsn, 1<k=<m,

since 6; and &, are disks.

As regarding the subspace Y, let 4,¢ D+8,. Then A€ p(S|Y,), and it follows
from the spectral mapping theorem that

1

1)§m< 7

On the other hand, o(T|Y,) = Co(a(T)) = D implies r(T'| Y,) <d. Therefore,
Ao—(T+8)|Yo=(Ao— S| Yo)I—(Ao— S| Yo) " M(T| Yo))

is invertible and hence

(1.11) o((T+S)|Yo)=D+3,.

Combining (1.6) and (1.8), one obtains

r(Ao—S|Yo)™
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(1.12) X=Yo+ Y Y X;nY,.

j=1k=1
There is M >0 such that, for every xe X, there is a representation
x=xO+Z ijk, erYo, x]'kernYk,
j=1k=1
satisfying condition
(1.13) Xl + X X llxul = Miix|l.
j=1k=k
For 6;+ 6, satisfying (i) and A€ G,, by virtue of (1.10), one obtains
(1.14) 1<% FuW) |= KA—=(T+SNA—(T+8) | X;n Yi) ™ "xj, fu(A) |
=|<A—=(T+8) |1X;n ¥}) ™ 'xy, A—(T*+5%) f,(A) |
éMjk”xjk“ A= (T*+S*) DIl ,
where M, =sup{||(A—(T+S)| X;n Y,) || : 1€ G,}.
For 6,+§, satisfying (ii) and A€ G, —(G;+ ), one has
(1.15) |<Xjis Sl 1= [ KA—=(T+ SN A—(T+8) | X;n Y) ™z, /(DD
=[KA—=(T+S) | X;n Y) ™ 'xp, (A—(T*+S5*) f,(A)) |
SMlxpll 1A= (T*+S*N S
where M =sup{|(A—(T+S)| X;n Y,) | : 1e G, —(6;+5y)}.
By the maximum modulus principle, (1.15) remains valid for 1€ G,.
Finally, it follows from (1.5) and (1.11) that, for AeG,,
(1.16) | <Xos S | = LA=(T+ S)(A—(T+5) | Yo) ™ x0, ful DD
=|[<A—(T+8))| Yo) " 'x0, A—(T*+5%) ()|
S Mollxoll [(A—(T*+S8*) £ (DIl ,
where Mo =sup{[|(A—(T+S)|Y,) " *|: 1€ G,} .
Relations (1.13)(1.16) imply the existence of a constant K> 0 satisfying

(1.17) |<x, S | ZKIxI A= (T*+ SN LM, 1€y
It follows from (1.17), that
(1.18) | f,(AD)]—0 as n-oo

uniformly on G,. By the Heine-Borel theorem, (1.18) remains true for every compact
subset of w. Consequently, T*+ S* has property (B). O

1.7. THEOREM. Given S€ CyX) and Te{S}'. If S has the SDP, T and T* have the
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strong convex SDP relative to S and S*, respectively, then T+ S has the SDP.

PROOF. T*+S* has property (), by Theorem 1.6. By a similar proof to that of
Theorem 1.6, one can show that 7+ .S has property (). Then, it follows from Theorem
A that T+ S has the SDP. 0

1.8. CoROLLARY. Te B(X) is decomposable if and only if both T and T* have the
convex SDP.

ProoOF. The “only if” part is evident. To show that the asserted conditions on T
and T* are sufficient, note that the only spectral maximal space of the zero operator
S=0 is X itself. Thus, the assumptions on T and T* imply that 7 and T* have the

strong convex SDP relative to S(=0) and S*, respectively. Hence T is decomposable,
by Theorem 1.7. O

1.9. LeMMA. If Ae C(X) has property (k) then, for every A-invariant subspace Y,
A ‘ Y has property (k).

PrOOF. Let F<C be closed and let the sequence {x,} = Y(4|Y, F) converge to x.
Then, since {x,} = X(4, F), it follows from

lim R(4; 4| X(A4, F))x,=lim x, ((A)=lim x, ,,(2)  for A¢F,

n— oo

and x, 4,y(A) e Y for A¢F, that

x(A)=lim x, , ,()eY.

Above, we wrote R(-; B) for the resolvent of an operator B=A4 | X(A, F), and x, g(*)
for the local resolvent of x, with respect to B, in cases B=A4 and B=A| Y. For the
limit point x, x(*) is its local resolvent. The operator A being closed, at the limit as

n— o0 equation
()'_A)xn,AIY(A')zxn s A‘¢F

becomes
A—ADx(A)=x, A¢F.

Thus it follows from x(1)eY (A¢F), that xe Y(Al Y, F) and hence Y(A| Y,F) is
closed. 0

1.10. CoROLLARY. Given S€ C(X) and Te{S}'. Suppose that S has the SDP, T
and T* have the strong convex SDP relative to S and S*, respectively. Then, for every
spectral maximal space Y (or S-bounded spectral maximal space), T|Y has the SDP.
The dual counterpart, i.e. for a (S*-bounded) spectral maximal space Y* of S*, T*| Y*
has the SDP, also holds.
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Proor. It suffices to consider the case in which Y is a spectral maximal space of
S. By Corollary 1.8, T has the SDP and hence, for every closed F= C, X(T, F) is closed.
Then, by Lemma 1.9, Y(T|Y, F) is also closed.

Let D, be an open disk and D, be the complement of a closed disk such that
Dyu D, =C. Wemay choose open disks {d,} /-, such that { Dy, d,, 8,, - - -, 8,} is a convex
open cover of a(T) satisfying inclusions

(1.19) s,cD,, 1<i<n.

Since T has the strong convex SDP relative to S, the following decomposition of Y
holds:

Y=Y(T, 50)+ﬁ) Y(T, 5) .

In view of (1.19), Y(T, 8;)c Y(T, D,), 1 <i<n, one obtains
Y=Y(T, Do)+ Y(T, D,).
By Theorem A, T|Y has the SDP. O

1.11. DeFINITION. Te B(X) is said to be regularly decomposable with respect to
the identity if, for every open cover {G;}?-, of o(T), there is a system of T-invariant
subspaces {X;}}_; and a system of bounded linear operators {P;}7_, such that each P,
commutes with all closed commutants of 7 and

(1.20) o(T|X)<=G,, 1<ign;
(1.21) I=)Y P;,, R(P)cX;, 1=Zi<n.
i=1

The following theorem gives some examples of known operators which, as bounded
commutants of Se C,(X), satisfy the sufficient conditions of Theorem 1.7.

1.12. THEOREM. Given S€ C(X) and Te{S}'. If any of the following conditions is
satisfied then T and T* have the strong convex SDP relative to S and S*, respectively:

(1) o(T) is totally disconnected,

(ii)) T is a spectral operator;

(iii) T is boundedly decomposable [6];

(iv) T is a generalized scalar operator and S commutes with one of the spectral
distributions of T [3];

(v) T is regularly decomposable with respect to the identity.

ProOF. Since the implications (i) = (v), (ii) = (iii) = (iv) = (v) are evident, it
suffices to prove that (v) implies that T and T* have the strong convex SDP relative
to S and S*, respectively. Let {G;}?-, be a convex open cover of a(T). By hypothesis,
T is regularly decomposable with respect to the identity. There exists a system {X;}7_,
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of T-invariant subspaces and a system {P;}?_, of bounded operators with each P,
commuting with all closed commutants of 7" and satisfying conditions (1.20) and (1.21).
By hypothesis, S commutes with each P;. Let Y be a spectral maximal space of S. Then
Y is invariant under T and P; (1 <i=<n). Relations (1.20), (1.21) and the convexity of
G; imply

(1.22) I|Y= Z P|Y;
i=1

(1.23) R(P|Y)cYnX,, o(T|¥YnX)cG, for 1<i<n.

By (1.22) and (1.23), T'| Y has the convex SDP and hence T has the strong convex SDP
relative to S. Similarly, T* has the strong convex SDP relative to S*. O

In view of Theorems 1.7 and 1.12, if S has the SDP, then T+ S also has the SDP.

1.13. THEOREM. If'S, T'€ B(X) commute with each other and satisfy one of conditions
()~«(v) of Theorem 1.12, then S+ T is strongly decomposable.

ProoF. Without loss of generality, we may assume that S and T are both regularly
decomposable with respect to the identity. Theorems 1.7, 1.12 imply that S+ 7T is
decomposable. Let W be a spectral maximal space of S+ T. Then W is invariant under
S, T and P; (1<i<n).

First, we prove that T| W is decomposable. Let G=C be open and denote
Y=X (T, G). Since, by hypothesis T is regularly decomposable, we may choose Pe {T}’
such that Px=x for xe Y. Since S+ T commutes with T, it follows that (S+ T)| Y
commutes with (A—T|Y)* for 2¢G and hence S+ T commutes with (A—T|Y) 'P.
Consequently, W isinvariant under (1— T'| Y) ~* P and hence o(T| Wn Y) = G. By putting
Y;=X(T, G;), 1 £i<n, the above argument leads one to the following inclusions:

(1.24) o(T|WnY)<G,, 1<i<n.

Since we also have
(1.25) I|\W=1} P/|W,
i=1

(1.24) and (1.25) imply that T| W is decomposable (actually decomposable with respect
to the identity).

Next, assume that Z is a spectral maximal space of T| W. Since S is regularly
decomposable, it can be shown by the routine applied above, that S| Z is decomposable.
Specifically, S| W has the strong convex SDP relative to T'| W.

. Similar argument applied to (S| W)* and (T'| W)* leads one to the conclusion that
S | W)* has the strong convex SDP relative to (T’ | W)*. Thus it follows from Theorem
1.7 that (S+ T)| W is decomposable and hence S+ T is strongly decomposable. a

1.14. CoroLLARY. If S, TeB(X) commute with each other, T is regularly
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decomposable with respect to the identity and S is compact, then S+ T is strongly

decomposable.

PrOOF. By the Riesz-Dunford functional calculus, S is regularly decomposable
with respect to the identity. Thus the assertion of the Corollary follows from Theorem
1.7. ' O

2. In this section, we obtain sufficient conditions for the product ST of two
operators S€ C4X) and Te{S}’ to have the SDP.
For Se C(X) and Te B(X), the product ST is clearly a closed operator.

2.1. LEMMA. Given Se Cy(X) and Te{S}', the following inclusions hold
T*S*c(ST)*<=S*T*.
PrOOF. Let x*e D(T*S*). For every xe D(ST), one has
{x, T*S*x*) =(STx, x*>={x, (ST )*x*) .
Consequently, we have x* e D((ST)*), T*S*x*=(ST)*x* and hence
T*S*c(ST)*.
Next, let x* e D((ST)*). For every xe D(ST), one has
{x, (STY*x*> =(STx, x*>={TSx, x*)=_x, S¥T*x*) .
Consequently, we have x*e D(S*T*), (ST)*x*=S*T*x* and hence
(ST)*<=S*T*. O

2.2. LEMMA. Suppose that T,, T, € B(X) commute with each other. If o(T;)<D;,
where D;={A:|A—u;|<r;} for some r;>0, i=1,2, then o(T,T,)cD,, with
Dy, =Dy —p)(Dy—p3) + p1 Dy + py Dy — py .

Proor. It follows from the inequality
2.1 r(A,4;) Sr(A,)r(A,)
on spectral radii of mutually commuting bounded operators 4,, 4, that
o((Ty —pi Ty — pa)) = (Dy— py)(Dy— 1) -

This combined with

I\ To=(T,—pu Ty —p) + g T+ Ty — iy

o T)epD. o o(p,Ty)=p,Dy
and property (1.9), gives

o(T,T5) =(Dy — py)(Dy— p) + py Dy + Dy — pypiy =Dy a
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REMARK. It is easy to see that D,,, as defined above, is a disk centered at u u,
of radius ryry +| py |ry+ | pylry.

2.3. LEMMA. Given SeC(X) and Te{S}'. Suppose that T has the SDP and
X(T, F)=D(S), for some F= C. Then X (T, F) is invariant under S.

Proor. Let X (T, F)cD(S). Since S is closed, it follows that the restriction
S |X (T, F) is bounded. Let xe X (T, F) and let x(*) denote the local resolvent of T at
x. Since Sx(Z) is analytic, it follows from

(A—T)Sx(A)=S(A—T)x(A)=Sx, A¢F,
that ¢,(Sx)c F and hence Sx € X(T, F). Thus X(T, F) is invariant under S. O

2.4. COROLLARY. Given Se CyX) and Te{S}'. Suppose that T has the SDP and
X(T, F)c D(S), for some FcC. Then, for any closed neighborhood K of oo with the
property FOu K®=C, X*(T*, K) is invariant under S*.

ProoF. The set G=C—K is open and is contained in F°. It follows, by a routine
technique (used in the proof of Lemma 2.3), that X (7, G) = D(S) and X(T, G)is invariant
under S. It follows from [4, Theorem 9.8 (ii)] that

X(T, G)-=X*(T*, K)

and hence X*(T*, K) is invariant under S*. O

In a similar way, one can prove the following

2.5. LEeMMA. Given Se€Cy/X) and Te{S}'. Suppose that T has the SDP and
X*(T*, F)c D(S*), for some closed F=C. Then X*(T*, F) is invariant under S*.

Furthermore, for every closed neighborhood K of oo with the property FCuK°=C,
X(T, K) is invariant under S.

2.6. DErINITION.  If SeCy(X) and Te{S}' are such that X (7T, F)=D(S) and
X*(T*, F)c D(S*), for some closed F= C with F°% ¢ and Oe F°, then we say that S
and T have property (y).

2.7. THEOREM. Given S€ C(X) and Te{S}'. If
(1) S and T have property (y);

(it) S has the SDP, T has the strong convex SDP relative to S and T* has the
strong convex SDP relative to S*, then ST has the SDP.

ProOF. First, we prove that (ST)* has property (B). Let { f,: w—X*} be a sequence
of analytic functions on an open w < C such that

IA—=(ST)*) fuDI-0,  as n—oo

uniformly in every compact subset of w. Let ;€ w and set
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Go={A:|A—4Ao|<r}, G,={A:|A—2y|<2r}

for some r>0 subject to G, cw. Let {0,}}-, and {5}y, be open covers of Co(c(T))
and o(S), respectively, where J, is the complement of a closed disk centered at the
origin and ¢; (15j<n), 6, (1=k<n) are open disks. We assume that

o;={A:|A—pjl<ri} A5jsn);  S={A:1A—pil<ri} (1sks=m)

and let

v

A= (05— pi) (0 — i) + Wjbp + pico;— i -

By the Remark following Lemma 2.2, 4, is a disk centered at uu; of radius
rire+ringl+rilp;l. For the given bounded T and fixed J,, we may always assume
that there is K>0 such that

lujl=K (15jsn); |wl=K (1sks=m)

for any choices of ¢; and ;. For rj and r{ sufficiently small, the radii of the disks 4
(1=j=n,1<k<m) are less than r/2. Therefore, two cases may occur:

4;nGy=  for some (j, k);
4;nGy# and hence 4, =G, for other pairs (j, k).
As in (1.12), the following decomposition holds
(2.2 X=Yo+ ) Y X;nY,,
j=1k=1

where Y,=X(S, &), Y, =Z(S, 8,), 1 <k<m, X;=X(T, ), 1=j<n. By Lemma 2.2, we
have
2.3) o(ST|X;nY) =4, 1<j<n, 1<k<m.

We investigate for the structure of Y,. Let G4, be open. By [4, Theorem 9.8],
one has X (S, G)* =Z(S*, G°). Since T* | E*(S*, G°) has the SDP by Corollary 1.10, the
coinduced operator T/X (S, G) also has the SDP. In particular, 7/X (S, G) has the single
valued extension property and hence X (S, G) is analytically invariant under 7.
Furthermore, it follows from

Yo= (] X(S,G)
G>8
that Y, is analytically invariant under 7. By virtue of property (y), one may choose a
closed disk D, centered at the origin so that X(T, Dy) <= D(S) and X*(T*, Dy) = D(S*).
Then Lemmas 2.3 and 2.5 imply that X (T, D,) is invariant under S and X*(T*, D,) is
invariant under S*. Let D, be the complement of an open disk centered at the origin
so that D,°uD,°=C. In view of Lemma 2.5, X(T, D,) is invariant under S and
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X*(T*, D,) is invariant under S*. It follows from the hypotheses on T and Corollary
1.10, that

(2.4) Yo=Yo(T, Do)+ Yo(T, D)= Yon X(T, Dy)+ Yo n X(T, D,) .

The second equality holds because Y, is analytically invariant under 7. We may choose

D, so that the spectral radius (ST | X (T, D)) is sufficiently small to produce the rela-
tions '

(2.5) Co(a(ST|X(T,Do)))=G,, if 4,=0;
(2.6) Co(a(ST|X(T, D)))nGo=F,  if 4,#0.

Using again the fact that Y, is analytically invariant, (2.5) and (2.6) can be rewritten
as follows:

@2.7) o(ST|Yon X(T, Dp))=G,, if 1,=0;
(2.8) o(ST| Yon X(T, D)nGo=@, if Ao#0,

for any choice of §, (note that Y,= X (S, 8,)). Since S commutes with T, it follows that

R(u; S| Y,) commutes with T| Y, for u¢d, and hence Y,n X (T, D,) is invariant under
R(u; S| Y,) for pu¢d,. Then

a(S|Yon X (T, Dy)) =3,
and hence
(2.9) o((S|YonX(T,Dy)) NG,

where (§,) " '={0}u{A™':1€d,}.
On the other hand, one has

o(T| Yon X(T, Dy))=0(T| Yo(T, D,)) =D,
and hence
(2.10) o((T|Yon X(T,D,)) YYD, *.
In view of property (2.1), it follows from (2.9) and (2.10) that
o((ST|Yon X(T, D)) 1= (8p)"'D, " .
By the spectral mapping theorem, one obtains
(2.11) o(ST|YonX(T, Dy))=8,D; .
We may choose J, so that
(2.12) o(ST|Yon X(T, D))NGo=( .

Relations (2.2) and (2.4) give rise to the decomposition
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(2.13) X=YonX(T,Dp)+ YonX(T, D)+ Y, ¥ X;nY,.
ji=1k=1

By using (2.13), (2.3), (2.7) (or (2.8)) and (2.12), one can apply the routine expanded
in the proof of Theorem 1.6, to show that

I£A]-0 as n—o0

uniformly on G,. In terms of the Heine-Borel theorem, it follows that (ST)* has prop-

erty (f).
Next, we prove that ST has property (). A decomposition, similar to (2.13), holds

in the dual space:

(2.14) X*=Y¥nX*(T* Do)+ Y*nX*(T*, D))+ ), ) X¥nY},

j=1k=1
where Y¥=X*(S*, §,) is analytically invariant under T* and
Y¥=E*(S*5,), 1<k=<m; X¥=X*T*a3), 1<j<n.
It follows from Lemma 2.1 and from inclusions Y < D(S*), 1 £k <m, that
T*S*| Y¥=(ST)*| Y¥=S*T*|Y}.
Consequently, we have
T*S*| X¥nY¥=(ST)*| X¥nY}=S*T*|X¥nY}, 15j<n, 1Zk=m.
Thus the dual counterpart of (2.3) is obtained:
(2.15) o((ST)*| X*n YH=0(S*T*|X¥nY¥H <4, .
Quoting again Lemma 2.1 and noting that X*(T*, Dy) < D(S*), one obtains
T*S*| Y$n X*(T*, Do)=(ST)*| YEn X*(T*, Do)=S*T*| Y§n X*(T*, D,) .
Hence we may choose D, so that a((ST)*| Y& n X*(T*, D,,) satisfies conditions:
(2.16) o((ST)*| Y¥n X*(T*, D)) <=G, , if 4,=0;
(2.17) o((ST)Y*| YEnX*(T*, Do))nGo= , if Ap#0,

for any choice of J,,. )
Finally, applying the technique that lead us to (2.11), to the spectrum of
(ST)*|Y¥nX*(T*, D,), we obtain the inclusion

a((ST)* | YEn X*(T*, D)) <5,D, .
As in the former case, we may choose J, so that

(2.18) o((ST)*| YEn X*(T*, D)nGo=0 .
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Now, with the help of (2.3), (2.15), (2.16) (or (2.17)) and (2.18), one can show that ST
has property ().

Since both ST and (ST)* have property (), Theorem A implies that ST has the
SDP. 4

2.8. CorROLLARY. If SeCyX) and Te{S}' satisfy the following conditions:

(i) either T is invertible and Se€ Cy(X) or both T and S are bounded,

(ii) S has the SDP, T has the strong convex SDP relative to S and T* has the
strong convex SDP relative to S*,
then ST has the SDP.

ProoF follows from Theorem 2.7 and the fact that (i) implies that 7" and S have
property (7). O

2.9. THEOREM. If S and T commute with each other, and both S and T are regularly
decomposable with respect to the identity, then ST is strongly decomposable.

Proor. It follows from Theorem 2.7 that ST is decomposable. Let W be a spectral
maximal space of ST. As in the proof of Theorem 1.13, using the hypothesis on regular
decomposability of T, one can show that T'|W is decomposable and hence (T'| W)* is
decomposable. Moreover, S| W and (S| W)* have the strong convex SDP relative to
T| W and (T] W)*, respectively. Therefore, ST| W is decomposable or, equivalently,
ST is strongly decomposable. O
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