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The sum and product of two commuting bounded spectral operators in a Hubert
space are spectral operators. This property, however, cannot be extended unconditionally
to spectral operators in Banach spaces, as shown by an example of Kakutani [9]. In
general, the stability problem under the sum and product of two commuting operators
having in common a given spectral property, is subject to restrictive conditions. In
extending the stability under sum and product to the class of decomposable operators
[7], Apostol in [1] found that if T and S are commuting bounded operators one of
which is decomposable as a multiplication operator, then T+ S and TS are decomposable
operators. Sun [10] substituted the extra condition of T or S being a multiplication
operator, by requiring that T be strongly decomposable relative to S, in terms of the
following definition. If Γ, S are commuting bounded operators such that, for every
spectral maximal space Y of S, both the restriction Γ| Y and the coinduced T/Y on the
quotient space X/Y are decomposable, then T is said to be strongly decomposable
relative to S.

In this paper, we shall determine sufficient conditions for two commuting operators
T and S to preserve under sum and product the more general spectral decomposition
property, by allowing one of the operators to be unbounded. The bounded operator
techniques used by Apostol and Sun are not applicable to our case.

The terminology and notation are consistent with the ones used in [4]. For a Banach
space X over the complex field C, we denote by C(X) the set of all closed operators S
with domain D(S) and range R(S) in X. Cd(X) denotes the subset of C(X) consisting of
all densely defined operators in C(X). B(X) stands for the Banach algebra of bounded
linear operators on X.

For a linear operator A on X, three types of invariant subspaces are most frequently
used: analytically invariant subspaces [8], spectral maximal spaces [7] and ^-bounded
speςtral maximal spaces Ξ(A, F), where F is a compact subset of C. Their pertinent
properties and relationships to each other are analyzed in the first chapter of the
monograph [4]. The main theorems of this paper are anchored to two spectral-type
analytic properties:

PROPERTY (K)\ the given operator A has the single valued extension property and,
for every closed Fa C, the spectral manifold X{A, F) is closed.
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PROPERTY (/?) [2]: for any sequence {/„: ω-+D(A)} of analytic functions on an open

ωaC, (λ—A)fn(λ)->0 as n-+co uniformly on every compact subset of ω, implies that

fn(λ)->0 uniformly on every compact subset of ω.

A third spectral-type property (Property (γ)) will be added later in this paper.

The spectral decomposition property (SDP) was extensively studied in the second

chapter of the monograph [4].

Given Se C(X\ {S}' denotes the set of all bounded commutants of S. For a subset

E of C, we write Co(E) for the convex hull of E.

The following property, part of [5, Theorem 5.5] will be frequently referred to.

THEOREM A. Given TeCd(X), the following assertions are equivalent:

(i) T has the SDP;

(ii) for every pair of open disks G, H with GaH, there exist invariant subspaces

XG and XH such that

X = XG + XH XH^DT; σ(T\XH)czH and σ(T\XG)c:Gc

(iii) both T and T* have property (β).

1. In this section, we determine sufficient conditions for the sum T+S of two

operators SeCd(X) and Te{S}' to possess the SDP.

1.1. DEFINITION. We say that a finite cover {G^n

i=ι of a set E<^C is a convex

open cover if each Gt is both convex and open.

1.2. DEFINITION. TeB(X) is said to have the convex spectral decomposition

property (abbrev. convex SDP) if, for every convex open cover {Gi}Ί=1 of σ(T), there

exists a system {X^ni=ι of Γ-invariant subspaces with the following spectral de-

composition

i=ί

In particular, if T is decomposable then it has the convex SDP.

1.3. THEOREM. If T has the convex SDP, then T has the single valued extension

property and, for each convex closed set F9 X(T9F) is closed.

PROOF. First, we show that T has the single valued extension property. Let

/ : ω^X be analytic in an open ω<=C and identically verify the equation

(1.1) (λ-T)f(λ) = 0 on ω.

Without loss of generality, we may assume that ω is connected. For some λoeC and

r>0, define G = {λ:\λ — λo\<r} subject to Gaω. Let ε>0 be sufficiently small for the

sets Gί = {λ:RQλ<Reλ0-\-ε}, G2 = {λ: Re λ>Re λo-ε} to satisfy: G - G f ^ 0 , ι = l , 2 .
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By the convex SDP, there are Γ-invariant subspaces Xu X2 such that

(1.2) X=XX + X29 σ(T\Xd^Gi9 i = l , 2 .

In view of (1.2), there are analytic functions ft: G->Xi9 i— 1, 2 such that

By (1.1), we have

(1.3) (λ - T)fx(λ) =-(λ- T)f2(λ) eX1

For λeG-G^ the inverses {λ-T\X^)'ι9 (λ-T\X1nX2y
1 exist. Therefore (1.3) gives

rise to

\ \

Hence f1(λ)sX1nX2 for all λeω, by analytic continuation. Similarly, one obtains that
f2(λ) eXίnX2 on ω, and hence f(λ) eXίnX2 on ω.

Since λeω subject to |Re λ — Re J,0 |>ε implies that λsρ(T\X1nX2), it follows
from (1.1) that ΐ(λ) = 0 on ω, by analytic continuation. Thus, Γhas the single valued
extension property.

To show that X(T9 F) is closed for every convex closed set F, let GF be the family
of all half open planes containing F. For given G e GF, let H be another half open plane
satisfying conditions GvH=C and FnH=0. By the convex SDP, there exist
Γ-invariant subspaces XG, XH such that

X=XG + XH with σ{T\XG)<^G, σ(T\XH)^H.

Furthermore, X/XG and XH\XG n XH are topologically isomorphic, f= T/XG and
T=(T\XH)/XGnXH are similar. It follows from the convexity of H that
σ(T\XGn XH)czH. Then the following inclusion

σ(f)^σ(T\XH)uσ(T\XGnXH)

implies that σ(f) = σ(f)czH.
Let Γ be a simple positively oriented closed contour surrounding σ(f) and leaving

F in its exterior. If λφF, for every xeΛΓ(7; F), one has (Λ- Γ)JC(A) = JC and hence

(1.4) x = — I R(λ; f)xdλ = — \ R(λ; f)(λ-f)x(λ)dλ = — \ x(λ)dλ = 0 ,
2πiJΓ 2πiJΓ 2πiJΓ

where x( ) is the local resolvent function of x and x = x + XG is the element of X\XG

corresponding to x. In view of (1.4), xeXG and since GGGF, one has

On the other hand, the convexity of F implies that
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and hence the opposite inclusion holds. Therefore

X(T,F)=(]{XG:GeGF}

and hence X(T, F) is closed. •

1.4. DEFINITION. Given Se C(X) and Te {S}'. If, for every spectral maximal space
Fof S, T\ Y has the convex SDP, then we say that Γhas the strong convex SDP relative
to S.

Clearly, if T has the above property, then T has the convex SDP.

1.5. PROPOSITION. Given SeC(X) and Te{S}'. Suppose that T has the strong
convex SDP relative to S, S has the single valued extension property and, for every compact
subset F of C, X(S, F) is closed. Then, for every S-bounded spectral maximal space
Y=Ξ(S, F\ T\ Y has the convex SDP.

PROOF. The ^-bounded spectral maximal space Y has the representation
Y=Ξ(S, σ(S\ Y)). Furthermore, it follows from [4, Theorem 4.34], that

X(S9 σ(S\ Y)) = Ξ(S, σ(S\ Y))®X(S, 0).

Since, by hypothesis T\X(S9 σ(S\ Y)) has the convex SDP, it follows from the above
decomposition that T\ Y= T\ Ξ(S, σ(S\ Y)) has the convex SDP. •

1.6. THEOREM. Given S e C^X) andTe{S}'.IfS has the SDP and T has the strong
convex SDP relative to S, then Γ* + S* has property (/?).

PROOF. Let {/„: ω-+X*} be a sequence of analytic functions in an open
such that

>0 as «->oo

uniformly in every compact subset of ω. For λosω and r>0, define the sets

G0 = {λ:\λ-λ0\<r}, Gx = {λ'.\λ-λ0\<2r}

such that G1c:ω. Denote by D a closed disk centered at the origin of radius d, satisfying
inclusion σ{T)^D. Furthermore, suppose that {σ, }"=i and {δk}ΐ=0 are open covers of
Co(σ(T)) and σ(S), respectively, with σ,- (1 ̂ j^n), δk(l^k^m) open disks and <50 the
complement of a closed disk centered at the origin such that

(1.5) σ i

By the sum A + B of two sets A, BczC, we mean A + B={a + b:aeA, beB}. We may
choose the disks σ,- and δk such that the radius of the disk σ/H-^ is less than r/2 for
l^j^n and l^k^m. For all pairs (/, k), the following two cases may hold:

(i) (άj + δk) n Go = 0 for some (/, k)
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(ii) (δj + δk) n Go φ 0 , and hence δj + δk <= Gx for some other pairs (j, &)

The SDP of S implies the spectral decomposition

k=ί

(1.6) X

Set Y0 = X(S,δ0) and Yk = Ξ(S, Sk) for \<Lk^m. Since Te{S}\ for O^k^m, Yk is

invariant under T and

(1.7) σ(T\Yk)c:Co(σ(T)), O^k^m.

In view of Theorem 1.3, Λr

J = ̂ (Γ, δj) is closed for l^j^n and (1.7) implies that, for

l^k-^m, {σj}n

j=1 is also a convex open cover of σ(T\Yk). Then, Theorem 1.3 and

Proposition 1.5 imply the spectral decomposition

Yk=Σ Yk(T\Yk,σj),

Since Yk(T\ Yk, <7,.)cz Ykf\Xp lύj^n, \^k<>m, one obtains

(1.8) ϊ*=Σ*}nrk,

Since σp <5k (1 Sj^n, l^k^m) are convex, we have

σίΓlJ^nYfcJczσ,., σ(S\XjΠYk)czSk, l^j^

It follows from the inequality

(1.9) r(A1 + A2)£r(A1) + r(A2)

on spectral radii of mutually commuting bounded operators AUA2 that

(1.10)

since δj and δk are disks.

As regarding the subspace Yo, let λoφD + δo. Then λ0ep(5Ί 70), and it follows

from the spectral mapping theorem that

dist(λ0,5o) ^

On the other hand, σ(T\ Y0)cCo(σ(T))cD implies r(T\ Y0)^d. Therefore,

λo-(τ+s)\γo=(λo-s\ γoχr-(λo-s\ γor\τ\ Y0))

is invertible and hence

(l.Π) σ((Γ+S)|7 0 )

Combining (1.6) and (1.8), one obtains
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(1.12) X=Y0+t ΣXj"Yk.

There is M>0 such that, for every xeX, there is a representation

Σ Σj

satisfying condition

(1.13) Kll+Σ Σ IM

j = l k = k

For δj+Sk satisfying (i) and λeG0, by virtue of (1.10), one obtains

(1.14) κXβofjiλ)>\=\<.(λ-(τ+sMλ-(τ+s)\Xj(\ γky
1χJkjn(λ)y\

= \<(λ-(T+S)\Xjn Yύ^xjt,(λ-(
ύMJk\\xJk\\\\(λ-(T* + S*))fn(λ)\\,

where Mjk = sup{\\(λ-(T+S)\Xjf\ YJ-ι\\:λeG0}.
For σs+Sk satisfying (ii) and λeG^ — (dj+Sk), one has

^M'jk\\xjk\\\\λ-(T* + S*)

where M'jk = sup{\\(λ-(T+S)\XJr\Yky
1\\:λ<=G1-(σJ + ̂ )}.

By the maximum modulus principle, (1.15) remains valid for λeG0.
Finally, it follows from (1.5) and (1.11) that, for λeG0,

(1.16) l<*

where M0 = sup{| |(2-(Γ+S)| r o)~Ίl :λeG0} .

Relations (1.13)—(1.16) imply the existence of a constant K>0 satisfying

(1.17) l<*,/.(A)>|^AΠ|*|| | |α-(Γ + S*))/,α)||, λeG0.

It follows from (1.17), that

(1-18) IIΛ(A)||-»0 as

uniformly on Go. By the Heine-Borel theorem, (1.18) remains true for every compact
subset of ω. Consequently, T* + S* has property (/?). •

1.7. THEOREM. Given Se Cd(X) and Te {S} '.IfS has the SDP, T and T* have the
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strong convex SDP relative to S and S*, respectively, then T+ S has the SDP.

PROOF. T* + S* has property (β), by Theorem 1.6. By a similar proof to that of
Theorem 1.6, one can show that T+S has property (β). Then, it follows from Theorem
A that Γ+ S has the SDP. •

1.8. COROLLARY. TGB(X) is decomposable if and only if both T and Γ* have the
convex SDP.

PROOF. The "only if" part is evident. To show that the asserted conditions on T
and T* are sufficient, note that the only spectral maximal space of the zero operator
S=0 is X itself. Thus, the assumptions on T and Γ* imply that T and T* have the
strong convex SDP relative to S( = 0) and S*, respectively. Hence Γis decomposable,
by Theorem 1.7. D

1.9. LEMMA. If AeC(X) has property (K) then, for every A-invariant subspace Y,
A I Y has property (K).

PROOF. Let Fez C be closed and let the sequence {xn} c= Y(A \ Y, F) converge to x.
Then, since {xn}aX(A, F), it follows from

limR(λ;A\X(A,F))xn=\imxnA(λ)=\imxnMY(λ) for λφF,
n-»oo n-+oo π-*oo

and xn<A i γ(λ) e Y for λ φ F, that

Above, we wrote R(", B) for the resolvent of an operator B=A \X(A, F), and xnB( )
for the local resolvent of xn with respect to B, in cases B=A and B = A \ Y. For the
limit point x, x( ) is its local resolvent. The operator A being closed, at the limit as
n-+oo equation

xn, λφF

becomes

(λ-A)x(λ) = x, λφF.

Thus it follows from x(λ)eY (λφF), that xeY(A\Y,F) and hence Y(A\Y,F) is
closed. •

1.10. COROLLARY. Given SeCJ.X) and Te{S}'. Suppose that S has the SDP, T
and T* have the strong convex SDP relative to S and S*, respectively. Then, for every
spectral maximal space Y (or S-bounded spectral maximal space), T\ Y has the SDP.
The dual counterpart, i.e. for a (S*-bounded) spectral maximal space Y* of S*, Γ* | Γ*
has the SDP, also holds.
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PROOF. It suffices to consider the case in which Y is a spectral maximal space of

S. By Corollary 1.8, Γhas the SDP and hence, for every closed Fez C, X(T, F) is closed.

Then, by Lemma 1.9, Y(T\ Y, F) is also closed.

Let Do be an open disk and D1 be the complement of a closed disk such that

DouD1 = C. We may choose open disks {δ^ n

i=x such that {Do, δί9δ2, * , δn} is a convex

open cover of σ(T) satisfying inclusions

(1.19) δtcDl9 \ύiύn.

Since T has the strong convex SDP relative to 5, the following decomposition of Y

holds:

Y=Y(T,D0)+Σ

In view of (1.19), Y(T, fya Y(T, Z5J, l^i^n, one obtains

Y=Y(T,D0)+Y(T,Dί).

By Theorem A, T\ Y has the SDP. •

1.11. DEFINITION. TeB(X) is said to be regularly decomposable with respect to

the identity if, for every open cover {Gt }"=1 of σ(T), there is a system of Γ-invariant

subspaces {Xi}"=1 and a system of bounded linear operators {Λ}?=i s u c h that each Pt

commutes with all closed commutants of T and

(1.20) σ(T\Xd^Gi9

(1.21) I=ΣPt>

The following theorem gives some examples of known operators which, as bounded

commutants of Se Cd(X), satisfy the sufficient conditions of Theorem 1.7.

1.12. THEOREM. Given Se Cd(X) and Te {S}'. If any of the following conditions is

satisfied then T and T* have the strong convex SDP relative to S and S*, respectively:

(i) σ(T) is totally disconnected;

(ii) T is a spectral operator;

(iii) T is boundedly decomposable [6];

(iv) T is a generalized scalar operator and S commutes with one of the spectral

distributions of T [3];

(v) T is regularly decomposable with respect to the identity.

PROOF. Since the implications (i)=>(v), (ii) => (iii) => (iv) => (v) are evident, it

suffices to prove that (v) implies that T and T* have the strong convex SDP relative

to S and S*, respectively. Let {G,.}"=1 be a convex open cover of σ(T). By hypothesis,

Γis regularly decomposable with respect to the identity. There exists a system {Xi}Ί=1
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of Γ-invariant subspaces and a system {Λ}?=i °f bounded operators with each Pt

commuting with all closed commutants of T and satisfying conditions (1.20) and (1.21).

By hypothesis, S commutes with each Pt. Let Y be a spectral maximal space of S. Then

Y is invariant under T and Pt (l^i^ή). Relations (1.20), (1.21) and the convexity of

Gi imply

(1.22) l\Y=tPi\Y\
i=l

(1.23) R(Pi\Y)czYnXi, σ(T\ YnX^czGi for lg/^/i.

By (1.22) and (1.23), T\ Y has the convex SDP and hence Γhas the strong convex SDP

relative to S. Similarly, T* has the strong convex SDP relative to S*. •

In view of Theorems 1.7 and 1.12, if S has the SDP, then T+S also has the SDP.

1.13. THEOREM. IfS, TeB(X) commute with each other and satisfy one ofconditions

(i)-(v) of Theorem 1.12, then S+T is strongly decomposable.

PROOF. Without loss of generality, we may assume that S and T are both regularly

decomposable with respect to the identity. Theorems 1.7, 1.12 imply that S+T is

decomposable. Let Wbe a spectral maximal space oΐS+T. Then Wis invariant under

S, TzndPiil^i^n).

First, we prove that T\W is decomposable. Let GaC be open and denote

Y=X(T, G). Since, by hypothesis Γis regularly decomposable, we may choose Pe{T}f

such that Px = x for xe Y. Since S+T commutes with Γ, it follows that (S+T)\Y

commutes with (λ- T\ Y)'1 for λφG and hence S+T commutes with (λ-T\Y)~1P.

Consequently, Wis invariant under (λ—T\Y)~1P and hence σ(T\ W(\ Y) a G. By putting

Yi = X(T, Gi), 1 ̂ /^Ai, the above argument leads one to the following inclusions:

(1.24) σ(T\WnYd<=Gi9

Since we also have

(1.25) l\W=ΣPt\W>

(1.24) and (1.25) imply that T\ Wis decomposable (actually decomposable with respect

to the identity).

Next, assume that Z is a spectral maximal space of T\W. Since S is regularly

decomposable, it can be shown by the routine applied above, that S\Zis decomposable.

Specifically, S\ JΓhas the strong convex SDP relative to T\W.

. Similar argument applied to (S\ W)* and (T\ W)* leads one to the conclusion that

(51 W)* has the strong convex SDP relative to (T\ W)*. Thus it follows from Theorem

1.7 that (S+ T) I W is decomposable and hence S+T is strongly decomposable. Π

1.14. COROLLARY. If S, TeB(X) commute with each other, T is regularly
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decomposable with respect to the identity and S is compact, then S+T is strongly

decomposable.

PROOF. By the Riesz-Dunford functional calculus, S is regularly decomposable

with respect to the identity. Thus the assertion of the Corollary follows from Theorem

1.7. ' D

2. In this section, we obtain sufficient conditions for the product ST of two

operators SeCd(X) and Te{S}' to have the SDP.

For SGC(X) and TeB(X), the product STis clearly a closed operator.

2.1. LEMMA. Given SeCd(X) and Te{S}f, the following inclusions hold

T*S*a(ST)*^S*T* .

PROOF. Let x*eD(T*S*). For every xeD(ST), one has

<x, τ*s*χ*y = (STX, x*) = <JC, (sτ)*x*y.

Consequently, we have ;c*eZ)((ST)*), T*S*x* = (ST)*x* and hence

T*S*cz(ST)* .

Next, let x*eD((ST)*). For every xeD{SΊ), one has

<x, (sτ)*x*y = <sτx, x*y = {τsχ, χ*y = <*, s*τ*x*y.

Consequently, we have x*eD(S*T*)9 (ST)*x* = S*T*x* and hence

(ST)*cS*T*. D

2.2. LEMMA. Suppose that 7\, T2eB(X) commute with each other. If σ(Ti)c:Dh

where Di = {λ: \λ — μi\<ri] for some r^O, i '=l,2, then σ(T1T2)^D12 with

PROOF. It follows from the inequality

(2.1) i O M

on spectral radii of mutually commuting bounded operators Au A2 that

σ((T1-μ1)(T2-μ2))cz(D1-μ1)(D2-μ2) .

This combined with

τ i T2 = (Tx - μx)( T2 -μ2) + μ i T2 + μ2 Tι-μ1μ2;

σ(μiT2)czμιD:+ σ(μ2T1)cμ2D1

and property (1.9), gives
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REMARK. It is easy to see that Z>12, as defined above, is a disk centered at μxμ2

of radius rίr2 + \μί\r2 + \ μ2 k i

2.3. LEMMA. Given SeC(X) and Te{S}'. Suppose that T has the SDP and

X(T, F)aD(S\for some FczC. Then X(T, F) is invariant under S.

PROOF. Let X(Γ, F)aD(S). Since S is closed, it follows that the restriction

S\X(T, F) is bounded. Let xsX(T, F) and let x(-) denote the local resolvent of T at

x. Since Sx(λ) is analytic, it follows from

(λ - T)Sx(λ) = S(λ - T)x(λ) = Sx, λφF,

that στ(Sx) c F and hence Sx e X(T, F). Thus X(T9 F) is invariant under S. D

2.4. COROLLARY. Given SeCd(X) and Te{S}'. Suppose that T has the SDP and

X(T, F)aD(S), for some FaC. Then, for any closed neighborhood K of oo with the

property F°uK° = C, X*(T*, K) is invariant under S*.

PROOF. The set G = C—K is open and is contained in F°. It follows, by a routine

technique (used in the proof of Lemma 2.3), that X(T, G) a D(S) and X(T, G) is invariant

under S. It follows from [4, Theorem 9.8 (ii)] that

and hence X*(T*, K) is invariant under S*. Π

In a similar way, one can prove the following

2.5. LEMMA. Given SeCd(X) and Te{S}'. Suppose that T has the SDP and

X*(T*9F)aD(S*), for some closed FczC. Then JT*(Γ*, F) is invariant under S*.

Furthermore, for every closed neighborhood K of oo with the property F°uK° = C,

X(T, K) is invariant under S.

2.6. DEFINITION. If SeCd(X) and Te{S}' are such that X(T, F)czD(S) and

X*(T*9 F)czD(S*), for some closed FczC with F°Φ0 and OeF°, then we say that S

and T have property (γ).

2.7. THEOREM. Given SeCd(X) and Tε{S}'. If

(i) S and T have property (y);

(ii) S has the SDP, T has the strong convex SDP relative to S and T* has the

strong convex SDP relative to 5*, then ST has the SDP.

PROOF. First, we prove that (ST)* has property (β). Let {/„: ω->X*} be a sequence

of analytic functions on an open ωczC such that

uniformly in every compact subset of ω. Let λoeω and set
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G0 = {λ:\λ-λ0\<r}, (?! = {*: U -

for some r > 0 subject to Gxc:ω. Let {σ, }"=i and {δk}%=0 be open covers of Co(σ(T))

and σ(S), respectively, where <50 is the complement of a closed disk centered at the

origin and G>3 (1 ̂ j^n), δk(l^k^n) are open disks. We assume that

σj={λ:\λ-μ'j\<r'j} {IZjZή); δh = {λ:\λ-μ»k\<rϊ}

and let

By the Remark following Lemma 2.2, Ajk is a disk centered at μ}μ£ of radius

r'jrk + r'j\μk\ + rk\μfj\. For the given bounded T and fixed <50, we may always assume

that there is K>0 such that

for any choices of σ3- and δk. For r) and rk sufficiently small, the radii of the disks A jk

(l^j^n^l^k^m) are less than r/2. Therefore, two cases may occur:

Δjk π Go = 0 for some (J, k);

AjknGoΦ0 and hence ΔjkcG1 for other pairs (/, k).

As in (1.12), the following decomposition holds

(2.2) X=Y0+Σ Σ * i n r t ,

where yo = ̂ ( ^ $ol Yk = Ξ(S, ^fc), 1 ̂ fc^m, Xj=X(T, σj)9 1 ̂ g « . By Lemma 2.2, we

have

(2.3) σ(ST\XjΠYk)c:Ajk, lύjύn, X^k^m.

We investigate for the structure of Yo. Let G=><)0 be open. By [4, Theorem 9.8],

one has X{S9 G)λ = Ξ{S*,Gc). Since T* \ Ξ*(S*, Gc) has the SDP by Corollary 1.10, the

coinduced operator T/X{S, G) also has the SDP. In particular, T/X{S, G) has the single

valued extension property and hence X(S,G) is analytically invariant under T.

Furthermore, it follows from

that Yo is analytically invariant under T. By virtue of property (y), one may choose a

closed disk Do centered at the origin so that X(T, Z)0)czD(S) and X*(T*, Z)0)c=Z)(S*).

Then Lemmas 2.3 and 2.5 imply that X(T, Do) is invariant under S and X*(T*, Do) is

invariant under S*. Let Dx be the complement of an open disk centered at the origin

so that D0°\JD1° = C. In view of Lemma 2.5, X^D^ is invariant under S and
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X*(T*9 Dx) is invariant under S*. It follows from the hypotheses on T and Corollary

1.10, that

(2.4) Yo= Y0(T, Do)+ Y0(T, D,)= YonX(T,Do)+ YoΠX^D,) .

The second equality holds because Yo is analytically invariant under T. We may choose

Do so that the spectral radius r(ST | X(T9 Do)) is sufficiently small to produce the rela-

tions

(2.5) Co(σ{ST\X(T,D0)))cGl9 if λo = 0;

(2.6) Co(σ(ST\X(T, Z)o)))nGo = 0 , if λo^0.

Using again the fact that Yo is analytically invariant, (2.5) and (2.6) can be rewritten

as follows:

(2.7) σ(ST\Y0(\X(T9D0))c:Gl9 if λo = 0

(2.8) σ(ST\YonX{T,Do))nGo = 0 , if A 0 #0,

for any choice of <50 (note that Y0 = X(S, So)). Since S commutes with T, it follows that

R(μ; S\ Yo) commutes with Γ| Yo for μφδ0 and hence Yor\X(T, Dx) is invariant under

R(μ; S\ Yo) for μφS0. Then

and hence

(2.9)

On the other hand, one has

σ(T\ Yo n I ( Γ , O1)) = σ(Γ|

and hence

(2.10) tftTlYonXfrDj

In view of property (2.1), it follows from (2.9) and (2.10) that

By the spectral mapping theorem, one obtains

(2.11) σiSTlYonXiT.D^c

We may choose So so that

(2.12) σ(ST\Yoc\X(T,Dί))Γ\(

Relations (2.2) and (2.4) give rise to the decomposit
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(2.13) X= r0 n X(T, Do) + Yo nX(T, DJ+t Σ Xin Yk •
7 = 1 k = l

By using (2.13), (2.3), (2.7) (or (2.8)) and (2.12), one can apply the routine expanded
in the proof of Theorem 1.6, to show that

0 as /!->oo

uniformly on Go. In terms of the Heine-Borel theorem, it follows that (ST)* has prop-
erty (/O.

Next, we prove that ST has property (/}). A decomposition, similar to (2.13), holds
in the dual space:

(2.14) X*=Y$nX*(T*,D0)+Y*nX*(T*,D1)+ £ £ XfnY{9
7 = 1 f e = l

where Y$ = X*(S*9 δ0) is analytically invariant under Γ* and

7* = Ξ*(S*, $k), 1 ̂ k^m Xf = X*(T*9 σj),

It follows from Lemma 2.1 and from inclusions 7?czD(5*), 1 ̂ k^m, that

T*S* I 7? = (5Γ)* I Yί = S*T* I 7* .

Consequently, we have

Thus the dual counterpart of (2.3) is obtained:

(2.15) σ((ST)* I Xf n 7*) = σ(S* T* \ Xf n 7?

Quoting again Lemma 2.1 and noting that X*(T*, D0)<^D(S*), one obtains

Γ*S'*| Y%nX*(T*,D0) = (ST)*\ Yξr\X*(T*,D0) = S*T*\ YξnX*(T*,D0).

Hence we may choose Do so that σ((ST)* | FJ n X*(T*, Do) satisfies conditions:

(2.16) σ((ST)*\Y$nX*(T*,D0))cGl9 if ^ 0 = 0;

(2.17) σ((SΓ)*|r*nJT*(Γ*,Z)o))nGo = 0 , if λo*0,

for any choice of δ"0.

Finally, applying the technique that lead us to (2.11), to the spectrum of
(ST)* I 7*. nX*(T*9 DO, we obtain the inclusion

As in the former case, we may choose So so that

(2.18) |
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Now, with the help of (2.3), (2.15), (2.16) (or (2.17)) and (2.18), one can show that ST
has property (β).

Since both ST and (ST)* have property (β), Theorem A implies that ST has the
SDP. •

2.8. COROLLARY. If SeCd(X) and Te{S}' satisfy the following conditions:
(i) either T is invertible and Se Cd(X) or both T and S are bounded;

(ii) S has the SDP, T has the strong convex SDP relative to S and T* has the
strong convex SDP relative to S*,
then ST has the SDP.

PROOF follows from Theorem 2.7 and the fact that (i) implies that T and S have
property (y). •

2.9. THEOREM. IfS and T commute with each other, and both S and T are regularly
decomposable with respect to the identity, then ST is strongly decomposable.

PROOF. It follows from Theorem 2.7 that STis decomposable. Let Wbea spectral
maximal space of ST. As in the proof of Theorem 1.13, using the hypothesis on regular
decomposability of T, one can show that 7"| Ĥ  is decomposable and hence (T\ W)* is
decomposable. Moreover, S\ W and (S\ W)* have the strong convex SDP relative to
T\ W and (T\ W)*9 respectively. Therefore, *ST| W is decomposable or, equivalently,
ST is strongly decomposable. •
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