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0. Introduction. In the previous papers [1], [2], we have introduced the concept
of a twisted linear action which is an analytic action of a non-compact Lie group on
a sphere.

We have shown that there are uncountably many topologically distinct analytic
actions of SL(n, R) on an (nk—1)-sphere for each n>k=2. Furthermore, we have
shown that there are uncountably many C!-differentiably distinct but topologically
equivalent analytic actions of SL(n, R) on a k-sphere for each k>n>2.

In this paper, we shall show other aspects of twisted linear actions. In particular,
we shall show that there are uncountably many C2-differentiably distinct but
C*-differentiably equivalent analytic actions of R" on an n-sphere for each n.

1. Twisted linear actions. Here we recall the definition of twisted linear actions.
Throughout this paper, a matrix means only the one with real coefficients.

1.1. Let u=(y;) and v=(v;) be column vectors in R". As usual, we define their
inner product by u- v =2i uv; and the length of u by ||u|| = \/ﬂ Let M =(m;;) be a square
matrix of degree n. We say that M satisfies the condition (T) if the quadratic form

x-Mx= Z m;X;X;
iJ
is positive definite. It is easy to see that M satisfies (T) if and only if
(T) % lexp(zM)x|| >0 for each xeRG,=R"—{0}, teR.
If M satisfies (T'), then
:—l»iToo lexp(tM)x| = +o0 and 'lir_nw lexp(tM)x|| =0

for each x € Ry, and hence there exists a unique real valued analytic function t on R
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such that
lexp(t(x)M)x|| =1 for xeRj.
Therefore, we can define an analytic mapping =™ of R} onto the unit (n— 1)-sphere
S"1 by
mM(x)=exp(z(x)M)x  for xeR},
if M satisfies the condition (T).

1.2. Let G be a closed subgroup of GL(n, R). A square matrix M of degree n is
called a G-endomorphismif gM = Mg for each g e G. For a G-endomorphism M satisfying
the condition (T), we can define an analytic mapping

E:GxS" 158"t by &g, x)=nM(gx),

and we see that ¢ is an analytic G-action on S"~!. We call ¢ =¢M a twisted linear action
of G on S"~! determined by the G-endomorphism M.

1.3. For a given closed subgroup G of GL(n, R), we introduce certain equivalence
relations on G-endomorphisms satisfying the condition (T). Let M and N be
G-endomorphisms satisfying the condition (T).

We say that M is algebraically equivalent to N, if there exist a G-automorphism
A and a positive real number c¢ satisfying

cN=AMA™*.

We say that M is C"-equivalent to N, if there exists a C’-diffeomorphism f of §"~!
onto itself such that the following diagram is commutative:

stn—l le stn-l
Ssn-1 I Sn—l X

We call f a G-equivariant C"-diffeomorphism.

ReMARk. It is known that (cf. [1], [2]), if M is algebraically equivalent to N, then
M is C®-equivalent to N.

2. Certain twisted linear actions on the circle. Here we shall introduce certain
twisted linear actions on the circle S*.

2.1. Let G be the closed subgroup of GL(2, R) consisting of matrices in the form
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()

Then any G-endomorphism satisfying the condition (T) is written in the form

1
c< “); ¢>0, |al<2.
01

Denote by £ the twisted linear G-action on S* determined by the G-endomorphism

1
<0 T) satisfying |a|<2. Then

Ao D)),

where 0 is uniquely determined by the equation
(u+(x+abp)? +vi=e"2°,
If v#£0, then we see that

Y e p—
v 0 1 €

In particular, if a=0, then

u\_ Lol x 0 > _ e . P
@ (v)’é ((o 1>’<e> R TIO C R TR R

Denote by E, (resp. E_) the upper (resp. lower) semicircle. Then, by the above
arguments, we see that the G-action £ has just four orbits, two of them are fixed points
and the other two of them are open orbits E, and E_.

Denote by S'(a) the circle with the twisted linear G-action £°. In the rest of this
section, we shall show the following‘.

THEOREM 2.1. Let a, b be real numbers satisfying |a| <2, |b|<2. Then, there exists
an equivariant C'-diffeomorphism from S'(a) onto S*(b). If a#b, then there is no
equivariant C*-diffeomorphism from S*(a) onto S*(b).

2.2. Define
L(v)=vlog|v| for v#0 and L(0)=0.
Then L is a continuous function on the real line. Put
D(u, v; a)=((u—aL(v))* + v?)!/

and define
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3) #=(u—aL(v))D(u, v;a)"*, t=vDu,v;a)"!.

Then the correspondence from (u, v) to (4, 7) defines a continuous mapping f, of the
circle onto itself. By 2.1(1), (2) we see that f, is an equivariant homeomorphism from
S*(a) onto S§*(0).

Geometrically the above correspondence (3) is explained as follows (see Figure).
Consider integral curves of the linear system

u=u+av, =v.

v-axis

/

u-axis

FIGURE

If v#0, then there is just one point (ex, ¢) on the integral curve through (u, v), where
e=v|v|™!, and we can define (i, 7) as the intersection point of the circle and the line
segment joining the origin and (ex, ¢).
By (3), we obtain
ou

P
—(u, v)=0v2D"3 —u(u, v)=—v(u+av)D"3,
ou ov

a— —
a_v (u, V)= —v(u—aL(v))D"3, % (u, v)=(u+av)(u—aL(v))D 3
u ov
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for v#0, where D =D(u, v; a), and we obtain directly
oul il ov ov
_ ’0 = —_— ’0=— ,0=0, _ , = _1,
au(u ) av(u ) au(u ) av(u 0)=]ul

Let us show (0u/dv)(u, 0)=0, for completeness.

4 u —u - _yl-1
ou (4, 0)=lim #(u, v)—#(w,0) _ . u—al(v)—|u|"'uD
av v—0 v =0 UD

(u—al(v)*—D* im —v

= = =0
v=0(u—aL(v)+|u| uDwD v-o(u—al{v)+|u|” 'uD)D

Hence we see that f, is C*-differentiable. Moreover, we obtain

1+ au(1 —u?)t/?

d
Eﬂ(u,(l—u2)1/2)= o3 >0 for —1l<u<l

and

d _ (1—v*)'"2 —aL)(1 +av(1—0*)'?)
E;U((l —v)'2, v)= (1—p2)12p3 >0

for | v|« 1. Hence we see that f, is a C*-diffeomorphism by the inverse function theorem.
Consequently, we see that a composite mapping f,'f, is an equivariant
C'-diffeomorphism from S'(a) onto S*(b). This proves the first half of Theorem 2.1.

2.3. Next, we shall show that the composite mapping f; ! f, is not C*-differentiable
at a point (1, 0) if a#b.

fo'fe maps (1-v)"%0) to (1-w)'2 w),

where w=w(v) is a C!-diffeomorphism of an open interval (— 1, 1) onto itself satisfying
w(0)=0. By 2.1(1), we obtain

(C)] v~ (1 —v?)? —aLl@E)=w"H(1-w?)'?—bLW)) .
Differentiating both sides of (4) as functions of the variable v, we obtain

av+(1—v?)""2 bw+(1—w?)""2 dw

—? —w? dv

Therefore

dw _ av+(1—v?)"12

—-1\2
W b () B

Moreover, we obtain
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d*w 12 4 av+(l—uz)‘1/2) av+(1—v?)~ 1?2 - 4 -1

=2 e + 2w~ ) — (wo

dvz (WU ) dl) (bw+(1_w2)—1/2 bw+(1_w2)_1/2( )dl)( )
and

i(wv_l)—— (a—bw? ww(l —w?)1/2 — (1 —p?)1/2)

do T b (1w ) o wt (1—wD) (1 — o) (1 —w)

By (4), we obtain
w1l —w2)12 — (1 — 1) = (0 + w)(1 — w2 — (1 —v?)V?) + awL(v) — bvL(w)

v+ w)©v*—w?)

= (= o) (1 e T oW logl vl =bloglwl).

Moreover, we obtain

_w2\l/2 _ _p2)-1/2
lim(wv_l)=lim(1 w?) bL(W)=1’ limi(M>=a—b.
P v~0 (1—0%)Y2 —alL(v) v=0 dv \bw+(1—w?)~1/2

Hence we obtain

N .

lim 2 — lim (a— b)(3 + 2 log] v]) .

v-0 dv?  v-0
Therefore, we see that w=w(v) is not C2-differentiable at v=0 if a#b. Consequently,
we see that the composite mapping f, 1/, is not C2-differentiable at the point (1, 0) if

a#b.

2.4. Finally, we shall show that there is no equivariant C>-diffeomorphism from
S'(a) onto S*(b) if a#b.

Suppose that there is an equivariant C2-diffeomorphism f from S'(a) onto S'(b).
Then, we can assume that f(E,)=F,, because the correspondence from (u,v) to
(—u, —v) is an equivariant C®-diffeomorphism of S'(a) onto itself. Moreover, we can
assume f((0, 1))=(0, 1), because the abelian group G acts transitively on E, via £°.

Consequently, we can assume f'= f, £, on the closure of E,. Hence we obtain
a=b by the arguments in 2.3. Therefore, we see that there is no equivariant
C2-diffeomorphism from S*(a) onto S'(b) if a# b. This proves the second half of Theorem
2.1.

3. First generalization.

3.1. Let G, be the closed subgroup of GL(n+ 1, R) consisting of matrices in the
form
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I x X,
" 10
0 o

Denote by [x,, - - -, x,] the above matrix. Then G, is an abelian Lie group isomorphic
to R". Moreover, any G,-endomorphism satisfying the condition (T) is written in the form

clay, " ,a,];  ¢>0, ai+---+a2<4.

For a=(ay, -, a,) satisfying a?+ - - - +a2 <4, denote by £* the twisted linear
G,-action on S" determined by the G,-endomorphism [a,, - - -, a,]. Then

S Dxy, oy X0, (oy s s ) = €t + (g + @y 00ty + - -+ + (o + @Otk 14y, -+, 1)
where 0 is uniquely determined by the equation
(uo+(xy +a,0u; + - +(x,+a,0u,)* +u2+ - 4ul=e"2,
If (uy, - -+, u,)#(0, - - -, 0), then we see that
(o, uy, =+, u)=EN[xy, -+, x,1, (0,05, =~ -, 0,))

if and only if
M vi=u(1—uf)~'? for 1<j<n,

Ug=X Uy + ** + XU, +(auy + - - +au,) logui+ - +u)t?.
In particular, if (aq, - - -, a,)=(0, - - -, 0), then

(o 1, - =5 ) =8 [xy, -+, x, 1,5 (0,04, -+, 0,)

if and only if

UJ .
u;= for 1<j<n,
TG+ o)) ==

@

B X0+ X0,
(1 +0ey0;+ - +x,0))2

Up

By the above arguments, we see that the G,-action & has just two fixed points
(1,0!“"0): (_1’0330)

and each of the other orbits is diffefomorphic to an open interval.
Denote by S™(a) the n-sphere with the twisted linear G,-action ¢!, In the rest of
this section, we shall show the following.
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THEOREM 3.1. Let a=(a,, ', a,) and b=(b,, - - -, b,), for n=1. Suppose
a4+ +at<4, bi+---+bi<4.

Then, there exists a G,-equivariant C*-diffeomorphism from S"(a) onto S"(b). If a#b,
then there is no G,-equivariant C*-diffeomorphism from S"(a) onto S™(b).

3.2. Define

L=L(uy, ", thy; @)=(ayu; + - - - +au,) logui+ - +ul)'’?
for (uy, -+, u,)#(0, - -,0) and L(0, - - -, 0; @)=0. Then L is a continuous function on
the n-plane. Put
D=D(ug, uy, -, uy; @)=((g— L)> +u?+ - - +u?)'/?

and define
3 tho=(uo—L)D™*, ﬁj=“jD_1 (I=sjsn).

Then the correspondence from (uq, uy, - - -, u,) to (i, u;, - - -, i,) defines a continuous
mapping f of the n-sphere onto itself. We see that f induces the identity mapping on
the (n— 1)-sphere determined by the equation u,=0. By 3.1(1), (2) we see that f is a
G,-equivariant homeomorphism from S"(a) onto S™(0), where 0=(0, - - -, 0).

By (3), we obtain '

dii .
o it +up™?, P _yu—D)D® (15j<n),
Ou, uy

i oL

o (@i +uD) =t ufuy—L)DP (1Sj<n),

au,. 6uj

i, L
j=<5ij1)2_’f‘iuj‘f'(uo_L)uia_>1)_3 (1=, j=n),

(?uj au,.

for (uy,- -+, u,)#(0, - - -, 0), where
éé=uj(a1ul + e +anun)

auj u%+."+u3

+a;logui+ - +up)t? (15j<n),

and we obtain directly

dii Oii. i 5.
Go _0%_o 0<j<my, SH_ % (<ij<nm
Ou; Ou, ou;  up|

for (uy, -+ -, u,)=(0, - - -0). Hence we see that f is C!-differentiable.

By the geometric meaning of the construction (3), we see that f induces a
C®-diffeomorphism from S*(a)—{(e, 0, - - -; 0)} onto S"(0)—{(&, 0, - - -, 0)}.
Moreover, we obtain
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i"71'(8(1 _u%— e —u:)l/z s Uy, T, un)=5ij (1 §la1§n)
Ou;
at the point (g, 0, - - -, 0). Hence we see that f= f, is a C!-diffeomorphism from S"(a)
onto $"(0) by the inverse function theorem.

Consequently, we see that a composite mapping f,'f, is a G,-equivariant
C'-diffeomorphism from S™(a) onto S"(b). This proves the first half of Theorem 3.1.

~ 3.3. Next, we shall show that there is no G,-equivariant C 2_diffeomorphism from
S"(a) onto S"(b) if a+#b.
Denote by G,(i) the closed subgroup of G, consisting of matrices in the form

[xh ”'sxn]; xi=05
and by Fy(a) the fixed point set of the restricted G,(i)-action on $"(a). Then we see that
Fla)={(uo, " * *, u,) € S"|u;=0 for j#0, i} .

Define a C*-diffeomorphism 4; from S! onto Fy(a) by the correspondence from (u, v)
to (u,0,--+,0,v,0, ---,0). Then, we obtain

) N Dxy, -+, x,), hiw, 0) = ([x], (u, v)) -

Now, we suppose that there is a G,-equivariant C2-diffeomorphism f from S"(a)
onto S"(b). Then, f induces naturally a G,-equivariant C2-diffeomorphism from Fy(a)
onto F(b). Then, by (4), we obtain an equivariant C>-diffeomorphism from S(a;) onto
S1(b;) for each i=1, ---,n. Then we obtain a=b by Theorem 2.1. This proves the
second half of Theorem 3.1.

4. Second generalization.
4.1. Let G* be the closed subgroup of GL(n+ 1, R) consisting of matrices in the
form

1 0 x,
(**)
1 x,
0 1

Denote by [x,, - - -, x,]* the above matrix. Then G} is an abelian Lie group isomorphic
to R". Moreover, any G ¥-endomorphism satisfying the condition (T) is written in the
form

clay, "+, a,0*; c>0, ai+---+al<4.
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For a=(ay, * - -, a,) satisfying a?+ - - - +a? <4, denote by £ the twisted linear
G}-action on S" determined by the G ¥-endomorphism [a,, ‘- -, a,]*. Then

E (Doxyy - oy X, 0%, (uys 7, s y))
=e%(uy+ (X1 + a0y gy s Uy F (X @Oy, Ui )
where 6 is uniquely determined by the equation
Uy +(xy +a 0,y )2+ -+ U+ (X + @,y 4 ) Hul  =e 2.
If u,, ,#0, then we see that
(g, =ty ) =E9([xy, -, x,J*, (0, - - -, 0, £))
if and only if

= Mt xj=li—a,~loglu,.+1l (I=sj=n).

M T
In particular, if (a,, - - -, a,)=(0, - - -, 0), then

WUy, s Uy ) =0 ([xy, -+, X050, -+, 0, 8))
if and only if

eX; .
J for 1<j<n,

Uu.=
T xi4 o +xH?

)

€
(I+x3+- - +xH?

Up+y

Denote by E, (resp. E_) the upper (resp. lower) hemisphere determined by the
inequality u, ., >0 (resp. u,,, <0). Then, by the above arguments, we see that E, and
E_ are open orbits of the G*-action ¢! and the other points are fixed points.

Denote by S"(a)* the n-sphere with the twisted linear G*-action £, In the rest
of this section, we shall show the following.

THEOREM 4.1. Let a=(ay, ‘-, a,) and b=(b,, - - -, b,), for n=2. Suppose
a’l+---+at<4, bi+---+b2<4.

Then, there exists a G*-equivariant homeomorphism from S"(a)* onto S"(b)*. If a#b,
then there is no G*-equivariant C!-diffeomorphism from S™(a)* onto S™(b)*.

4.2. Define
L(v)=vlog|v]| for v#0 and L(0)=0.
Then L is a continuous function on the real line. Put

D=((u, _alL(un+l))2+ Tt +(un_anL(un+l))2+u3+ 1)1/2
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and define
©) =~ a;L(Uy))D™' (1SjSn), dyy =t D",

Then the correspondence from (uy, -+, u,,,) to (i, - - -, #,+,) defines a continuous
mapping f =f, of the n-sphere onto itself. By 4.1(1), (2) we see that f is a G *-equivariant
homeomorphism from S"(a)* onto S"(0)*.

Consequently, we see that the composite mapping f,'f, is a G*-equivariant
homeomorphism from S"(a)* onto S"(b)*. This proves the first half of Theorem 4.1.

4.3. Next, we shall show that the composite mapping F=f,!f, is not
C'-differentiable at a point (0, --,0,1,0,---,0), if n=2 and a#b. F maps
(uys =5 Uyiq) to (Wy, “ - -, W,y y), where

wjzwj(ula "',ll,,+1) (1§]§n+1)
are continuous mappings. Then, by 4.1(1), we see that
4) (uj—a;L(thy 4 )Wpr 1 =W;—b;L(Wy 1 1))thy 1

for 1<j<n.
For each k (1 £k<n), define a C“-differentiable mapping

cils)=(u(s), - -, up+1(5))
from an open interval (—1, 1) to the n-sphere by
uk(s)=6,,(1—-sHY?>  for 1=5j<n,  uk, (s9)=s,
and put
F(eds)=(wi(s), -, whss(s) .
By (4), we obtain

W:+ 1(5) _ W:+ 1(5) _ W’li(s)_ bkL(WL 1(8)

§ “:ﬂ(s) u,l:(s)—akL(u:+l(s» '
and hence
k
im 1) _ ,
s—=0 S

because w¥(0)=uk(0)=1 and w¥, ;(0)=u*, ,(0)=0. Moreover, by (4), we obtain
wi(s)
w‘r‘|+ (s

for each j (#£k, n+1). Hence we obtain

= (b;—a) log|s|+b; log| Wk, (s |
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k k k
5 0y=1tim "1 —tim 1__tim (5, a;) logl |
ds 520 S s20Wuyq(s) s—O

for each j (#k,n+1).

Therefore, if the mapping F is C'-differentiable at c,(0), then we obtain a;=b; for
each j (#k, n+1). Consequently, we see that if n=>2 and F is C!-differentiable at each
point ¢,(0) (1<k<n), then a=b.

4.4. Finally, we shall show that there is no G*-equivariant C'-diffeomorphism
from S"(a)* onto S"(b)*, if n=2 and a#b.

Suppose that there is a G*-equivariant C!-diffeomorphism f from S"(a)* onto
S"(b)*. Then, we can assume that

f(O, . .,0, 1)=(0, .. .,0, 1)’

for the same reason as in 2.4. Hence we can assume f=f, !/, on the closure of the
upper hemisphere E, . Hence we obtain a=b by the arguments in 4.3. This proves the
second half of Theorem 4.1.

5. Concluding remark.

5.1. Let G be a closed subgroup of GL(n, R) and let M and N be G-endomorphisms
satisfying the condition (T). We say that M is weakly C"-equivalent to N, if there exist
an automorphism o of G and a C’-diffeomorphism f of S"~! onto itself such that the
following diagram is commutative:

Gxsmt —2 ., Gygrt
JéM léb]
sr—1 / Ssn-1

We call f a weakly G-equivariant C’-diffeomorphism.

5.2. For x=(x,, - -, x,), denote by [x] and [x]* the matrices in the form 3.1(x)
and 4.1(*+), respectively. We shall show the following result due to a colleague, Shin-
ichi Watanabe.

THEOREM 5.2. Let a=(ay, ‘-, a,) and b=(by, - - -, b,), for n=1. Suppose
O<ai+ - +al<4, O0<bi+- - +b2<4.

Then, (i) there exists a weakly G,-equivariant analytic diffeomorphism from S"(a) onto
S™(b), and (ii) there exists a weakly G ¥-equivariant analytic diffeomorphism from S"(a)*
onto S"(b)*.
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ProoF. We see that there exist P, Q in GL(n, R) satisfying a=bP and b=a'Q.

Denote
1 0 Q 0
<0 P) ) Q(l) ( 0 1 )&

respectively. Define automorphisms o, of G, and a of G} by
ap((x)=[xP7'],  aB([x]*)=[x'QT*,
respectively. Define an Vanalytic diffeomorphism f, from S™(a) onto S"(b) by
So@)=m®(PVu)  for w=(uy, --,u,),
and an analytic diffeomorphism f¥ from S$"(a)* onto S"(b)* by
S 5w)=n"(Q4u) for u=(uy, """, tU4q).
Then, we see that the following diagrams are commutative:

Ap X Jp

G, x S"(a) G, x S"(b)

j éla] lé[bl

S"(a) ——fP—> S*(b),

* x5 f*

s
G* x S"(ayt ——— G* x S"(B)*

J gler f glor
7%

S"(a)* S™(b)* .
Therefore, fpis a weakly G,-equivariant analytic diffeomorphism from S"(a) onto S"(b),
and f} is a weakly G-equivariant analytic diffeomorphism from S"(a)* onto S"(b)*.
q.e.d.
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