CERTAIN ASPECTS OF TWISTED LINEAR ACTIONS, II

Dedicated to Professor Akio Hattori on his 60th birthday

Fuichi Uchida*)

(Received May 17, 1988)

0. Introduction. In the previous papers [1], [2], we have introduced the concept of a twisted linear action which is an analytic action of a non-compact Lie group on a sphere.

We have shown that there are uncountably many topologically distinct analytic actions of SL(n, R) on an (nk-1)-sphere for each $n > k \ge 2$. Furthermore, we have shown that there are uncountably many C^1 -differentiably distinct but topologically equivalent analytic actions of SL(n, R) on a k-sphere for each $k \ge n \ge 2$.

In this paper, we shall show other aspects of twisted linear actions. In particular, we shall show that there are uncountably many C^2 -differentiably distinct but C^1 -differentiably equivalent analytic actions of \mathbb{R}^n on an n-sphere for each n.

- 1. Twisted linear actions. Here we recall the definition of twisted linear actions. Throughout this paper, a matrix means only the one with real coefficients.
- 1.1. Let $u = (u_i)$ and $v = (v_i)$ be column vectors in \mathbb{R}^n . As usual, we define their inner product by $u \cdot v = \sum_i u_i v_i$ and the length of u by $||u|| = \sqrt{u \cdot u}$. Let $M = (m_{ij})$ be a square matrix of degree n. We say that M satisfies the condition (T) if the quadratic form

$$\mathbf{x} \cdot \mathbf{M} \mathbf{x} = \sum_{i,j} m_{ij} x_i x_j$$

is positive definite. It is easy to see that M satisfies (T) if and only if

(T')
$$\frac{d}{dt} \|\exp(tM)x\| > 0 \quad \text{for each} \quad x \in \mathbb{R}_0^n = \mathbb{R}^n - \{0\}, \quad t \in \mathbb{R}.$$

If M satisfies (T'), then

$$\lim_{t \to +\infty} \| \exp(tM)x \| = +\infty \quad \text{and} \quad \lim_{t \to -\infty} \| \exp(tM)x \| = 0$$

for each $x \in \mathbb{R}_0^n$, and hence there exists a unique real valued analytic function τ on \mathbb{R}_0^n

^{*)} Partly supported by the Grants-in-Aid for Scientific Research, The Ministry of Education, Science and Culture, Japan.

such that

$$\|\exp(\tau(x)M)x\| = 1$$
 for $x \in \mathbb{R}_0^n$.

Therefore, we can define an analytic mapping π^{M} of R_{0}^{n} onto the unit (n-1)-sphere S^{n-1} by

$$\pi^{M}(x) = \exp(\tau(x)M)x$$
 for $x \in \mathbb{R}_{0}^{n}$,

if M satisfies the condition (T).

1.2. Let G be a closed subgroup of $GL(n, \mathbb{R})$. A square matrix M of degree n is called a G-endomorphism if gM = Mg for each $g \in G$. For a G-endomorphism M satisfying the condition (T), we can define an analytic mapping

$$\xi: G \times S^{n-1} \to S^{n-1}$$
 by $\xi(g, x) = \pi^{M}(gx)$,

and we see that ξ is an analytic G-action on S^{n-1} . We call $\xi = \xi^M$ a twisted linear action of G on S^{n-1} determined by the G-endomorphism M.

1.3. For a given closed subgroup G of $GL(n, \mathbb{R})$, we introduce certain equivalence relations on G-endomorphisms satisfying the condition (T). Let M and N be G-endomorphisms satisfying the condition (T).

We say that M is algebraically equivalent to N, if there exist a G-automorphism A and a positive real number c satisfying

$$cN = AMA^{-1}$$

We say that M is C^r -equivalent to N, if there exists a C^r -diffeomorphism f of S^{n-1} onto itself such that the following diagram is commutative:

$$G \times S^{n-1} \xrightarrow{1 \times f} G \times S^{n-1}$$

$$\downarrow \xi^{M} \qquad \qquad \downarrow \xi^{N}$$

$$S^{n-1} \xrightarrow{f} S^{n-1} .$$

We call f a G-equivariant C^r -diffeomorphism.

REMARK. It is known that (cf. [1], [2]), if M is algebraically equivalent to N, then M is C^{ω} -equivalent to N.

- 2. Certain twisted linear actions on the circle. Here we shall introduce certain twisted linear actions on the circle S^1 .
 - 2.1. Let G be the closed subgroup of $GL(2, \mathbb{R})$ consisting of matrices in the form

$$\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$$
.

Then any G-endomorphism satisfying the condition (T) is written in the form

$$c\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$$
; $c > 0$, $|a| < 2$.

Denote by ξ^a the twisted linear G-action on S^1 determined by the G-endomorphism $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$ satisfying |a| < 2. Then

$$\xi^a \left(\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} u \\ v \end{pmatrix} \right) = e^{\theta} \left(\begin{pmatrix} u + (x + a\theta)v \\ v \end{pmatrix}, \right)$$

where θ is uniquely determined by the equation

$$(u+(x+a\theta)v)^2+v^2=e^{-2\theta}$$
.

If $v \neq 0$, then we see that

(1)
$$\begin{pmatrix} u \\ v \end{pmatrix} = \xi^a \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 \\ \varepsilon \end{pmatrix} \end{pmatrix} \iff \varepsilon = v |v|^{-1}, \quad x = uv^{-1} - a \log|v|.$$

In particular, if a=0, then

(2)
$$\begin{pmatrix} u \\ v \end{pmatrix} = \xi^0 \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 \\ \varepsilon \end{pmatrix} \end{pmatrix} \iff u = \frac{\varepsilon x}{(1+x^2)^{1/2}}, \quad v = \frac{\varepsilon}{(1+x^2)^{1/2}}.$$

Denote by E_+ (resp. E_-) the upper (resp. lower) semicircle. Then, by the above arguments, we see that the G-action ξ^a has just four orbits, two of them are fixed points and the other two of them are open orbits E_+ and E_- .

Denote by $S^1(a)$ the circle with the twisted linear G-action ξ^a . In the rest of this section, we shall show the following.

THEOREM 2.1. Let a, b be real numbers satisfying |a| < 2, |b| < 2. Then, there exists an equivariant C^1 -diffeomorphism from $S^1(a)$ onto $S^1(b)$. If $a \ne b$, then there is no equivariant C^2 -diffeomorphism from $S^1(a)$ onto $S^1(b)$.

2.2. Define

$$L(v) = v \log |v|$$
 for $v \neq 0$ and $L(0) = 0$.

Then L is a continuous function on the real line. Put

$$D(u, v; a) = ((u - aL(v))^2 + v^2)^{1/2}$$

and define

(3)
$$\bar{u} = (u - aL(v))D(u, v; a)^{-1}, \quad \bar{v} = vD(u, v; a)^{-1}.$$

Then the correspondence from (u, v) to (\bar{u}, \bar{v}) defines a continuous mapping f_a of the circle onto itself. By 2.1(1), (2) we see that f_a is an equivariant homeomorphism from $S^1(a)$ onto $S^1(0)$.

Geometrically the above correspondence (3) is explained as follows (see Figure). Consider integral curves of the linear system

$$\dot{u} = u + av$$
, $\dot{v} = v$.

If $v \neq 0$, then there is just one point $(\varepsilon x, \varepsilon)$ on the integral curve through (u, v), where $\varepsilon = v|v|^{-1}$, and we can define (\bar{u}, \bar{v}) as the intersection point of the circle and the line segment joining the origin and $(\varepsilon x, \varepsilon)$.

By (3), we obtain

$$\begin{split} &\frac{\partial \bar{u}}{\partial u}(u,v) = v^2 D^{-3} \;, \qquad \frac{\partial \bar{u}}{\partial v}(u,v) = -v(u+av)D^{-3} \;, \\ &\frac{\partial \bar{v}}{\partial u}(u,v) = -v(u-aL(v))D^{-3} \;, \qquad \frac{\partial \bar{v}}{\partial v}(u,v) = (u+av)(u-aL(v))D^{-3} \end{split}$$

for $v \neq 0$, where D = D(u, v; a), and we obtain directly

$$\frac{\partial \bar{u}}{\partial u}(u,0) = \frac{\partial \bar{u}}{\partial v}(u,0) = \frac{\partial \bar{v}}{\partial u}(u,0) = 0, \qquad \frac{\partial \bar{v}}{\partial v}(u,0) = |u|^{-1}.$$

Let us show $(\partial \bar{u}/\partial v)(u, 0) = 0$, for completeness.

$$\frac{\partial \bar{u}}{\partial v}(u,0) = \lim_{v \to 0} \frac{\bar{u}(u,v) - \bar{u}(u,0)}{v} = \lim_{v \to 0} \frac{u - aL(v) - |u|^{-1}uD}{vD}$$

$$= \lim_{v \to 0} \frac{(u - aL(v))^2 - D^2}{(u - aL(v) + |u|^{-1}uD)vD} = \lim_{v \to 0} \frac{-v}{(u - aL(v) + |u|^{-1}uD)D} = 0.$$

Hence we see that f_a is C^1 -differentiable. Moreover, we obtain

$$\frac{d}{du}\bar{u}(u,(1-u^2)^{1/2}) = \frac{1+au(1-u^2)^{1/2}}{D^3} > 0 \quad \text{for } -1 < u < 1$$

and

$$\frac{d}{dv}\bar{v}((1-v^2)^{1/2},v) = \frac{((1-v^2)^{1/2} - aL(v))(1+av(1-v^2)^{1/2})}{(1-v^2)^{1/2}D^3} > 0$$

for $|v| \ll 1$. Hence we see that f_a is a C^1 -diffeomorphism by the inverse function theorem.

Consequently, we see that a composite mapping $f_b^{-1}f_a$ is an equivariant C^1 -diffeomorphism from $S^1(a)$ onto $S^1(b)$. This proves the first half of Theorem 2.1.

2.3. Next, we shall show that the composite mapping $f_b^{-1} f_a$ is not C^2 -differentiable at a point (1,0) if $a \neq b$.

$$f_b^{-1} f_a$$
 maps $((1-v^2)^{1/2}, v)$ to $((1-w^2)^{1/2}, w)$,

where w = w(v) is a C^1 -diffeomorphism of an open interval (-1, 1) onto itself satisfying w(0) = 0. By 2.1(1), we obtain

(4)
$$v^{-1}((1-v^2)^{1/2}-aL(v))=w^{-1}((1-w^2)^{1/2}-bL(w)).$$

Differentiating both sides of (4) as functions of the variable v, we obtain

$$\frac{av + (1 - v^2)^{-1/2}}{-v^2} = \frac{bw + (1 - w^2)^{-1/2}}{-w^2} \cdot \frac{dw}{dv}$$

Therefore

$$\frac{dw}{dv} = \frac{av + (1 - v^2)^{-1/2}}{bw + (1 - w^2)^{-1/2}} (wv^{-1})^2.$$

Moreover, we obtain

$$\frac{d^2w}{dv^2} = (wv^{-1})^2 \frac{d}{dv} \left(\frac{av + (1-v^2)^{-1/2}}{bw + (1-w^2)^{-1/2}} \right) + \frac{av + (1-v^2)^{-1/2}}{bw + (1-w^2)^{-1/2}} (2wv^{-1}) \frac{d}{dv} (wv^{-1})$$

and

$$\frac{d}{dv}(wv^{-1}) = \frac{(a-b)w^2}{v^2(bw+(1-w^2)^{-1/2})} + \frac{w(w(1-w^2)^{1/2}-v(1-v^2)^{1/2})}{v^3(bw+(1-w^2)^{-1/2})(1-v^2)^{1/2}(1-w^2)^{1/2}}.$$

By (4), we obtain

$$\begin{split} w(1-w^2)^{1/2} - v(1-v^2)^{1/2} &= (v+w)((1-w^2)^{1/2} - (1-v^2)^{1/2}) + awL(v) - bvL(w) \\ &= \frac{(v+w)(v^2-w^2)}{(1-v^2)^{1/2} + (1-w^2)^{1/2}} + vw(a \log|v| - b \log|w|) \;. \end{split}$$

Moreover, we obtain

$$\lim_{v \to 0} (wv^{-1}) = \lim_{v \to 0} \frac{(1 - w^2)^{1/2} - bL(w)}{(1 - v^2)^{1/2} - aL(v)} = 1 , \qquad \lim_{v \to 0} \frac{d}{dv} \left(\frac{av + (1 - v^2)^{-1/2}}{bw + (1 - w^2)^{-1/2}} \right) = a - b .$$

Hence we obtain

$$\lim_{v\to 0} \frac{d^2w}{dv^2} = \lim_{v\to 0} (a-b)(3+2\log|v|).$$

Therefore, we see that w = w(v) is not C^2 -differentiable at v = 0 if $a \neq b$. Consequently, we see that the composite mapping $f_b^{-1} f_a$ is not C^2 -differentiable at the point (1, 0) if $a \neq b$.

2.4. Finally, we shall show that there is no equivariant C^2 -diffeomorphism from $S^1(a)$ onto $S^1(b)$ if $a \neq b$.

Suppose that there is an equivariant C^2 -diffeomorphism f from $S^1(a)$ onto $S^1(b)$. Then, we can assume that $f(E_+)=E_+$, because the correspondence from (u,v) to (-u,-v) is an equivariant C^{ω} -diffeomorphism of $S^1(a)$ onto itself. Moreover, we can assume f((0,1))=(0,1), because the abelian group G acts transitively on E_+ via ξ^a .

Consequently, we can assume $f = f_b^{-1} f_a$ on the closure of E_+ . Hence we obtain a = b by the arguments in 2.3. Therefore, we see that there is no equivariant C^2 -diffeomorphism from $S^1(a)$ onto $S^1(b)$ if $a \neq b$. This proves the second half of Theorem 2.1.

3. First generalization.

3.1. Let G_n be the closed subgroup of $GL(n+1, \mathbb{R})$ consisting of matrices in the form

$$\begin{pmatrix} 1 & x_1 & \cdots & x_n \\ & 1 & & 0 \\ & & \ddots & \\ 0 & & & 1 \end{pmatrix} .$$

Denote by $[x_1, \dots, x_n]$ the above matrix. Then G_n is an abelian Lie group isomorphic to \mathbb{R}^n . Moreover, any G_n -endomorphism satisfying the condition (T) is written in the form

$$c[a_1, \dots, a_n]; c>0, a_1^2+\dots+a_n^2<4.$$

For $\mathbf{a} = (a_1, \dots, a_n)$ satisfying $a_1^2 + \dots + a_n^2 < 4$, denote by $\xi^{[a]}$ the twisted linear G_n -action on S^n determined by the G_n -endomorphism $[a_1, \dots, a_n]$. Then

$$\xi^{[a]}([x_1, \dots, x_n], (u_0, u_1, \dots, u_n)) = e^{\theta}(u_0 + (x_1 + a_1\theta)u_1 + \dots + (x_n + a_n\theta)u_n, u_1, \dots, u_n),$$

where θ is uniquely determined by the equation

$$(u_0 + (x_1 + a_1\theta)u_1 + \cdots + (x_n + a_n\theta)u_n)^2 + u_1^2 + \cdots + u_n^2 = e^{-2\theta}.$$

If $(u_1, \dots, u_n) \neq (0, \dots, 0)$, then we see that

$$(u_0, u_1, \dots, u_n) = \xi^{[a]}([x_1, \dots, x_n], (0, v_1, \dots, v_n))$$

if and only if

(1)
$$v_j = u_j (1 - u_0^2)^{-1/2} \quad \text{for} \quad 1 \le j \le n,$$

$$u_0 = x_1 u_1 + \dots + x_n u_n + (a_1 u_1 + \dots + a_n u_n) \log(u_1^2 + \dots + u_n^2)^{1/2}.$$

In particular, if $(a_1, \dots, a_n) = (0, \dots, 0)$, then

$$(u_0, u_1, \dots, u_n) = \xi^{[0, \dots, 0]}([x_1, \dots, x_n], (0, v_1, \dots, v_n))$$

if and only if

(2)
$$u_{j} = \frac{v_{j}}{(1 + (x_{1}v_{1} + \dots + x_{n}v_{n})^{2})^{1/2}} \quad \text{for} \quad 1 \leq j \leq n,$$

$$u_{0} = \frac{x_{1}v_{1} + \dots + x_{n}v_{n}}{(1 + (x_{1}v_{1} + \dots + x_{n}v_{n})^{2})^{1/2}}.$$

By the above arguments, we see that the G_n -action $\xi^{[a]}$ has just two fixed points

$$(1, 0, \dots, 0), (-1, 0, \dots, 0)$$

and each of the other orbits is diffeomorphic to an open interval.

Denote by $S^n(a)$ the *n*-sphere with the twisted linear G_n -action $\xi^{[a]}$. In the rest of this section, we shall show the following.

THEOREM 3.1. Let
$$\mathbf{a} = (a_1, \dots, a_n)$$
 and $\mathbf{b} = (b_1, \dots, b_n)$, for $n \ge 1$. Suppose $a_1^2 + \dots + a_n^2 < 4$, $b_1^2 + \dots + b_n^2 < 4$.

Then, there exists a G_n -equivariant C^1 -diffeomorphism from $S^n(a)$ onto $S^n(b)$. If $a \neq b$, then there is no G_n -equivariant C^2 -diffeomorphism from $S^n(a)$ onto $S^n(b)$.

3.2. Define

$$L = L(u_1, \dots, u_n; \mathbf{a}) = (a_1u_1 + \dots + a_nu_n) \log(u_1^2 + \dots + u_n^2)^{1/2}$$

for $(u_1, \dots, u_n) \neq (0, \dots, 0)$ and $L(0, \dots, 0; \mathbf{a}) = 0$. Then L is a continuous function on the *n*-plane. Put

$$D = D(u_0, u_1, \dots, u_n; \mathbf{a}) = ((u_0 - L)^2 + u_1^2 + \dots + u_n^2)^{1/2}$$

and define

(3)
$$\bar{u}_0 = (u_0 - L)D^{-1}, \quad \bar{u}_j = u_j D^{-1} \quad (1 \le j \le n).$$

Then the correspondence from (u_0, u_1, \dots, u_n) to $(\bar{u}_0, \bar{u}_1, \dots, \bar{u}_n)$ defines a continuous mapping f of the n-sphere onto itself. We see that f induces the identity mapping on the (n-1)-sphere determined by the equation $u_0 = 0$. By 3.1(1), (2) we see that f is a G_n -equivariant homeomorphism from $S^n(a)$ onto $S^n(0)$, where $0 = (0, \dots, 0)$.

By (3), we obtain

$$\begin{split} &\frac{\partial \bar{u}_0}{\partial u_0} = (u_1^2 + \dots + u_n^2)D^{-3} , \qquad \frac{\partial \bar{u}_j}{\partial u_0} = -u_j(u_0 - L)D^{-3} \quad (1 \leq j \leq n) , \\ &\frac{\partial \bar{u}_0}{\partial u_j} = -((u_1^2 + \dots + u_n^2)\frac{\partial L}{\partial u_j} + u_j(u_0 - L))D^{-3} \quad (1 \leq j \leq n) , \\ &\frac{\partial \bar{u}_i}{\partial u_j} = \left(\delta_{ij}D^2 - u_iu_j + (u_0 - L)u_i\frac{\partial L}{\partial u_j}\right)D^{-3} \quad (1 \leq i, j \leq n) , \end{split}$$

for $(u_1, \dots, u_n) \neq (0, \dots, 0)$, where

$$\frac{\partial L}{\partial u_{i}} = \frac{u_{j}(a_{1}u_{1} + \cdots + a_{n}u_{n})}{u_{1}^{2} + \cdots + u_{n}^{2}} + a_{j} \log(u_{1}^{2} + \cdots + u_{n}^{2})^{1/2} \quad (1 \leq j \leq n),$$

and we obtain directly

$$\frac{\partial \bar{u}_0}{\partial u_j} = \frac{\partial \bar{u}_j}{\partial u_0} = 0 \quad (0 \le j \le n) , \qquad \frac{\partial \bar{u}_i}{\partial u_j} = \frac{\delta_{ij}}{|u_0|} \quad (1 \le i, j \le n)$$

for $(u_1, \dots, u_n) = (0, \dots 0)$. Hence we see that f is C^1 -differentiable.

By the geometric meaning of the construction (3), we see that f induces a C^{ω} -diffeomorphism from $S^{n}(\mathbf{a}) - \{(\varepsilon, 0, \dots, 0)\}$ onto $S^{n}(\mathbf{0}) - \{(\varepsilon, 0, \dots, 0)\}$.

Moreover, we obtain

$$\frac{\partial}{\partial u_i} \bar{u}_i (\varepsilon (1 - u_1^2 - \dots - u_n^2)^{1/2}, \quad u_1, \dots, u_n) = \delta_{ij} \quad (1 \le i, j \le n)$$

at the point $(\varepsilon, 0, \dots, 0)$. Hence we see that $f = f_a$ is a C^1 -diffeomorphism from $S^n(a)$ onto $S^n(0)$ by the inverse function theorem.

Consequently, we see that a composite mapping $f_b^{-1}f_a$ is a G_n -equivariant C^1 -diffeomorphism from $S^n(a)$ onto $S^n(b)$. This proves the first half of Theorem 3.1.

3.3. Next, we shall show that there is no G_n -equivariant C^2 -diffeomorphism from $S^n(a)$ onto $S^n(b)$ if $a \neq b$.

Denote by $G_n(i)$ the closed subgroup of G_n consisting of matrices in the form

$$[x_1, \dots, x_n]; \qquad x_i = 0,$$

and by $F_i(a)$ the fixed point set of the restricted $G_n(i)$ -action on $S^n(a)$. Then we see that

$$F_i(a) = \{(u_0, \dots, u_n) \in S^n | u_j = 0 \text{ for } j \neq 0, i\}.$$

Define a C^{ω} -diffeomorphism h_i from S^1 onto $F_i(a)$ by the correspondence from (u, v) to $(u, 0, \dots, 0, v, 0, \dots, 0)$. Then, we obtain

(4)
$$\xi^{[a]}(\lceil x_1, \cdots, x_n \rceil, h_i(u, v)) = h_i(\xi^{a_i}(\lceil x_i \rceil, (u, v))).$$

Now, we suppose that there is a G_n -equivariant C^2 -diffeomorphism f from $S^n(\mathbf{a})$ onto $S^n(\mathbf{b})$. Then, f induces naturally a G_n -equivariant C^2 -diffeomorphism from $F_i(\mathbf{a})$ onto $F_i(\mathbf{b})$. Then, by (4), we obtain an equivariant C^2 -diffeomorphism from $S^1(a_i)$ onto $S^1(b_i)$ for each $i=1,\dots,n$. Then we obtain $\mathbf{a}=\mathbf{b}$ by Theorem 2.1. This proves the second half of Theorem 3.1.

4. Second generalization.

4.1. Let G_n^* be the closed subgroup of $GL(n+1, \mathbb{R})$ consisting of matrices in the form

$$\begin{pmatrix} 1 & & 0 & x_1 \\ & & & \vdots \\ & & 1 & x_n \\ 0 & & 1 \end{pmatrix}.$$

Denote by $[x_1, \dots, x_n]^*$ the above matrix. Then G_n^* is an abelian Lie group isomorphic to \mathbb{R}^n . Moreover, any G_n^* -endomorphism satisfying the condition (T) is written in the form

$$c[a_1, \dots, a_n]^*; c>0, a_1^2+\dots+a_n^2<4.$$

For $a = (a_1, \dots, a_n)$ satisfying $a_1^2 + \dots + a_n^2 < 4$, denote by $\xi^{[a]^*}$ the twisted linear G_n^* -action on S^n determined by the G_n^* -endomorphism $[a_1, \dots, a_n]^*$. Then

$$\xi^{[a]*}([x_1, \dots, x_n]^*, (u_1, \dots, u_{n+1}))$$

= $e^{\theta}(u_1 + (x_1 + a_1\theta)u_{n+1}, \dots, u_n + (x_n + a_n\theta)u_{n+1}, u_{n+1})$,

where θ is uniquely determined by the equation

$$(u_1 + (x_1 + a_1\theta)u_{n+1})^2 + \cdots + (u_n + (x_n + a_n\theta)u_{n+1})^2 + u_{n+1}^2 = e^{-2\theta}.$$

If $u_{n+1} \neq 0$, then we see that

$$(u_1, \dots, u_{n+1}) = \xi^{[a]}([x_1, \dots, x_n]^*, (0, \dots, 0, \varepsilon))$$

if and only if

(1)
$$\varepsilon = \frac{u_{n+1}}{|u_{n+1}|}, \quad x_j = \frac{u_j}{u_{n+1}} - a_j \log|u_{n+1}| \qquad (1 \le j \le n).$$

In particular, if $(a_1, \dots, a_n) = (0, \dots, 0)$, then

$$(u_1, \dots, u_{n+1}) = \xi^{[0, \dots, 0]^*}([x_1, \dots, x_n]^*, (0, \dots, 0, \varepsilon))$$

if and only if

(2)
$$u_{j} = \frac{\varepsilon x_{j}}{(1 + x_{1}^{2} + \dots + x_{n}^{2})^{1/2}} \quad \text{for} \quad 1 \leq j \leq n,$$

$$u_{n+1} = \frac{\varepsilon}{(1 + x_{1}^{2} + \dots + x_{n}^{2})^{1/2}}.$$

Denote by E_+ (resp. E_-) the upper (resp. lower) hemisphere determined by the inequality $u_{n+1} > 0$ (resp. $u_{n+1} < 0$). Then, by the above arguments, we see that E_+ and E_- are open orbits of the G_n^* -action $\xi^{[a]^*}$ and the other points are fixed points.

Denote by $S^n(a)^*$ the *n*-sphere with the twisted linear G_n^* -action $\xi^{[a]^*}$. In the rest of this section, we shall show the following.

THEOREM 4.1. Let
$$\mathbf{a} = (a_1, \dots, a_n)$$
 and $\mathbf{b} = (b_1, \dots, b_n)$, for $n \ge 2$. Suppose $a_1^2 + \dots + a_n^2 < 4$, $b_1^2 + \dots + b_n^2 < 4$.

Then, there exists a G_n^* -equivariant homeomorphism from $S^n(a)^*$ onto $S^n(b)^*$. If $a \neq b$, then there is no G_n^* -equivariant C^1 -diffeomorphism from $S^n(a)^*$ onto $S^n(b)^*$.

4.2. Define

$$L(v) = v \log |v|$$
 for $v \neq 0$ and $L(0) = 0$.

Then L is a continuous function on the real line. Put

$$D = ((u_1 - a_1 L(u_{n+1}))^2 + \cdots + (u_n - a_n L(u_{n+1}))^2 + u_{n+1}^2)^{1/2}$$

and define

(3)
$$\bar{u}_i = (u_i - a_i L(u_{n+1})) D^{-1} \quad (1 \le j \le n), \quad \bar{u}_{n+1} = u_{n+1} D^{-1}.$$

Then the correspondence from (u_1, \dots, u_{n+1}) to $(\bar{u}_1, \dots, \bar{u}_{n+1})$ defines a continuous mapping $f = f_a$ of the *n*-sphere onto itself. By 4.1(1), (2) we see that f is a G_n^* -equivariant homeomorphism from $S^n(a)^*$ onto $S^n(0)^*$.

Consequently, we see that the composite mapping $f_b^{-1}f_a$ is a G_n^* -equivariant homeomorphism from $S^n(a)^*$ onto $S^n(b)^*$. This proves the first half of Theorem 4.1.

4.3. Next, we shall show that the composite mapping $F = f_b^{-1} f_a$ is not C^1 -differentiable at a point $(0, \dots, 0, 1, 0, \dots, 0)$, if $n \ge 2$ and $a \ne b$. F maps (u_1, \dots, u_{n+1}) to (w_1, \dots, w_{n+1}) , where

$$w_j = w_j(u_1, \dots, u_{n+1})$$
 $(1 \le j \le n+1)$

are continuous mappings. Then, by 4.1(1), we see that

(4)
$$(u_i - a_i L(u_{n+1})) w_{n+1} = (w_i - b_i L(w_{n+1})) u_{n+1}$$

for $1 \le j \le n$.

For each k $(1 \le k \le n)$, define a C^{ω} -differentiable mapping

$$c_k(s) = (u_1^k(s), \dots, u_{n+1}^k(s))$$

from an open interval (-1, 1) to the *n*-sphere by

$$u_j^k(s) = \delta_{kj}(1-s^2)^{1/2}$$
 for $1 \le j \le n$, $u_{n+1}^k(s) = s$,

and put

$$F(c_k(s)) = (w_1^k(s), \dots, w_{n+1}^k(s)).$$

By (4), we obtain

$$\frac{w_{n+1}^k(s)}{s} = \frac{w_{n+1}^k(s)}{u_{n+1}^k(s)} = \frac{w_k^k(s) - b_k L(w_{n+1}^k(s))}{u_k^k(s) - a_k L(u_{n+1}^k(s))},$$

and hence

$$\lim_{s\to 0}\frac{w_{n+1}^k(s)}{s}=1,$$

because $w_k^k(0) = u_k^k(0) = 1$ and $w_{n+1}^k(0) = u_{n+1}^k(0) = 0$. Moreover, by (4), we obtain

$$\frac{w_j^k(s)}{w_{n+1}^k(s)} = (b_j - a_j) \log|s| + b_j \log|w_{n+1}^k(s)s^{-1}|$$

for each $j \neq k, n+1$. Hence we obtain

$$\frac{dw_{j}^{k}}{ds}(0) = \lim_{s \to 0} \frac{w_{j}^{k}(s)}{s} = \lim_{s \to 0} \frac{w_{j}^{k}(s)}{w_{n+1}^{k}(s)} = \lim_{s \to 0} (b_{j} - a_{j}) \log|s|$$

for each $j \neq k, n+1$.

Therefore, if the mapping F is C^1 -differentiable at $c_k(0)$, then we obtain $a_j = b_j$ for each $j \neq k, n+1$. Consequently, we see that if $n \geq 2$ and F is C^1 -differentiable at each point $c_k(0)$ $(1 \leq k \leq n)$, then a = b.

4.4. Finally, we shall show that there is no G_n^* -equivariant C^1 -diffeomorphism from $S^n(a)^*$ onto $S^n(b)^*$, if $n \ge 2$ and $a \ne b$.

Suppose that there is a G_n^* -equivariant C^1 -diffeomorphism f from $S^n(a)^*$ onto $S^n(b)^*$. Then, we can assume that

$$f(0, \dots, 0, 1) = (0, \dots, 0, 1)$$

for the same reason as in 2.4. Hence we can assume $f = f_b^{-1} f_a$ on the closure of the upper hemisphere E_+ . Hence we obtain a = b by the arguments in 4.3. This proves the second half of Theorem 4.1.

5. Concluding remark.

5.1. Let G be a closed subgroup of $GL(n, \mathbb{R})$ and let M and N be G-endomorphisms satisfying the condition (T). We say that M is weakly C^r -equivalent to N, if there exist an automorphism α of G and a C^r -diffeomorphism f of S^{n-1} onto itself such that the following diagram is commutative:

$$G \times S^{n-1} \xrightarrow{\alpha \times f} G \times S^{n-1}$$

$$\downarrow^{\xi^M} \qquad \qquad \downarrow^{\xi^N}$$

$$S^{n-1} \xrightarrow{f} S^{n-1}.$$

We call f a weakly G-equivariant C'-diffeomorphism.

5.2. For $x = (x_1, \dots, x_n)$, denote by [x] and $[x]^*$ the matrices in the form 3.1(*) and 4.1(**), respectively. We shall show the following result due to a colleague, Shinichi Watanabe.

THEOREM 5.2. Let
$$\mathbf{a} = (a_1, \dots, a_n)$$
 and $\mathbf{b} = (b_1, \dots, b_n)$, for $n \ge 1$. Suppose $0 < a_1^2 + \dots + a_n^2 < 4$, $0 < b_1^2 + \dots + b_n^2 < 4$.

Then, (i) there exists a weakly G_n -equivariant analytic diffeomorphism from $S^n(\mathbf{a})$ onto $S^n(\mathbf{b})$, and (ii) there exists a weakly G_n^* -equivariant analytic diffeomorphism from $S^n(\mathbf{a})^*$ onto $S^n(\mathbf{b})^*$.

PROOF. We see that there exist P, Q in GL(n, R) satisfying a = bP and $b = a^tQ$. Denote

$$P^{(1)} = \begin{pmatrix} 1 & 0 \\ 0 & P \end{pmatrix}, \qquad Q_{(1)} = \begin{pmatrix} Q & 0 \\ 0 & 1 \end{pmatrix},$$

respectively. Define automorphisms α_P of G_n and α_O^* of G_n^* by

$$\alpha_P([x]) = [xP^{-1}], \qquad \alpha_O^*([x]^*) = [x^tQ]^*,$$

respectively. Define an analytic diffeomorphism f_P from $S^n(a)$ onto $S^n(b)$ by

$$f_{P}(\mathbf{u}) = \pi^{[b]}(P^{(1)}\mathbf{u})$$
 for $\mathbf{u} = (u_0, \dots, u_n)$,

and an analytic diffeomorphism f_Q^* from $S^n(a)^*$ onto $S^n(b)^*$ by

$$f_Q^*(\mathbf{u}) = \pi^{[\mathbf{b}]^*}(Q_{(1)}\mathbf{u})$$
 for $\mathbf{u} = (u_1, \dots, u_{n+1})$.

Then, we see that the following diagrams are commutative:

$$G_{n} \times S^{n}(\mathbf{a}) \xrightarrow{\alpha_{p} \times f_{p}} G_{n} \times S^{n}(\mathbf{b})$$

$$\downarrow^{\xi^{[a]}} \qquad \qquad \downarrow^{\xi^{[b]}}$$

$$S^{n}(\mathbf{a}) \xrightarrow{f_{p}} S^{n}(\mathbf{b}),$$

$$G_{n}^{*} \times S^{n}(\mathbf{a})^{*} \xrightarrow{\alpha_{Q}^{*} \times f_{Q}^{*}} G_{n}^{*} \times S^{n}(\mathbf{b})^{*}$$

$$\downarrow^{\xi^{[a]^{*}}} \qquad \qquad \downarrow^{\xi^{[b]^{*}}}$$

$$S^{n}(\mathbf{a})^{*} \xrightarrow{f_{Q}^{*}} S^{n}(\mathbf{b})^{*}.$$

Therefore, f_P is a weakly G_n -equivariant analytic diffeomorphism from $S^n(a)$ onto $S^n(b)$, and f_Q^* is a weakly G_n^* -equivariant analytic diffeomorphism from $S^n(a)^*$ onto $S^n(b)^*$.

q.e.d.

REFERENCES

- F. UCHIDA, On a method to construct analytic actions of non-compact Lie groups on a sphere, Tôhoku Math. J. 39 (1987), 61-69.
- [2] F. UCHIDA, Certain aspects of twisted linear actions, Osaka J. Math. 25 (1988), 343-352.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE YAMAGATA UNIVERSITY YAMAGATA, 990 JAPAN