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Abstract. In this paper we introduce the term “perfect graph™ to refer to those
graphs which characterize resolutions of certain isolated singular points of complex
surfaces. Using techniques for graphical evaluation of determinants, we reduce questions
about perfect graphs to problems involving partial fraction representations of positive

integers; the solutions to those Diophantine problems thus have interesting geometric
interpretations.

1. Introduction and statement of results. In [5] Brieskorn gave the first examples
of isolated singularities of complex n-varieties, n> 3, that are topologically non-singular
(locally homeomorphic to the 2n-ball) but analytically singular. Earlier Mumford [16]
had shown that this is impossible in dimension 2. In this paper we pursue the natural
analogue of the Brieskorn singularities for complex surfaces, namely those singular
points xe X which are homologically non-singular in the sense of being locally
homeomorphic to the cone on a homology 3-sphere. (The rational double point Eg is
the most familiar example.) This condition is equivalent to the requirement that the
local fundamental group of x in X be a perfect group (cf., for example, [16], [17], and
[19], where the topic of classifying isolated two-dimensional singularities by the
group-theoretic properties of the local fundamental group is introduced and developed).

Let x be an isolated singularity of a normal complex surface X, and let p: X¥>X
be the minimal resolution of singularities. We will assume that the exceptional curve
C=p~'(x)=J}-,C: is contractible, that each component C; is non-singular rational,
and that the components meet transversally with no triple intersections. In this case
the topology of the singularity is completely determined by the weighted dual intersection
graph G, of the exceptional curve. In particular, the local fundamental group =,(x) can
be computed directly from G, in terms of generators and relations, by the technique
of Mumford [16]. Using this method it can be shown that 7,(x) is perfect exactly when
the intersection matrix (— C;- C;) has determinant 1. Indeed, the following are necessary
and sufficient conditions for a weighted graph G to be the dual graph of the minimal
resolution of a normal complex surface singularity whose minimal resolution is normal
(““good”) and whose local fundamental group is perfect:

(a) G is a tree (a connected graph with no circuits).

(b) Each weight w; is an integer >2.

(¢) The associated intersection matrix is positive definite with determinant 1.
(Section 1 of [4] gives an elementary expository review of the geometry of complex surface
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singularities as reflected by their resolutions, graphs, and local fundamental groups; [1]
investigates and classifies some of the global settings in which such “perfect” singular
points occur.)

These considerations motivate the following:

(1.1) DeriNiTIONS. A weighted graph G is perfect if it satisfies conditions (a),
(b), and (c) above. A graph G is perfectable if there exist integer weights w; for its
vertices such that the resulting weighted graph G(w,, - - -, w,) is perfect. Such a set of
weights is called a set of perfect weights. A minimal perfectable graph is a perfectable
graph none of whose proper subgraphs is perfectable.

The goal of this paper is to find perfect graphs and to point out connections between
perfect graphs and solutions of certain Diophantine equations of interest in number
theory. Our results can be summarized as follows:

(1.2) MAaINTHEOREM. Let G be any graph which is not of the form shown in Figure
I for n=0, 1, or 2. Then G is perfectable if and only if G is a tree that contains one of
the 25 minimal perfectable graphs listed in Table 1 at the end of this paper.

In consequence we obtain the following results for particular kinds of graphs.

(1.3) THEOREM. There is no perfect weighted graph on 7 or fewer vertices. The
perfect weighted graphs on 8 vertices appear in Figure 2. Of the 47 trees on 9 vertices
exactly 30 are perfectable (most with several sets of perfect weights). In fact, “almost
all” trees with sufficiently many vertices are perfectable; that is,

lim number of perfectable trees on n vertices )
n~w  total number of trees on n vertices

The distance between two points of a graph G is the number of edges in the shortest
path joining them. The diameter of a graph G is the maximum of the distances between
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pairs of points in G. In the case of a tree it is the number of edges in the longest “chain”
(tree without branch points) contained in G.

(1.4) THEOREM. (a) Among ordinary and extended Dynkin diagrams of types A, D,
and E, only Eg and Eg are perfectable, and each of these graphs has only one set of perfect
weights.

(b) Every tree of diameter d>29 is perfectable except those isomorphic to A,, D,,
and D,.

(c) Every tree of diameter d>1 is perfectable except A,, D,, D,, and the graphs in
Figure 3.

DEerFINITION. Let p, <p,< --- <p, be positive integers. A graph G is of type
E,, .., if G has a vertex v, such that G—{v,} is the disjoint union of r graphs of types
Ap,....p,» €ach joined to v, only at a terminal vertex (cf. Figure 4).

(1.5) THEOREM. (a) There is a one-to-one correspondence between perfect weighted
graphs of type E,, ..., and solutions in reduced proper fractions s;/t; of the equation

z': §;
i=11;
with n an integer >2 and s,, t; positive integers for i=1, - - r.

(b) A4 graph G of type E,, ... ,, with r>3 and p,_,>2, is perfectable if and only if
G contains one of the following:

Ei24:E235E12225E11,1,235E11111,2,2 -

This last result shows one of the connections of this topic with certain problems
of independent interest in number theory. For instance, putting each s;=1 above leads
to the following unresolved question in the theory of Egyptian fractions (Paul Erdos
offers $100 for a solution): Given positive integers ¢,, - - -, t;, relatively prime in pairs
and all >2, do there always exist integers m, .y, "' *,1, all >2, such that
n=Y"_,(1/t)+1/(];-,%)? Connections with number theory will be discussed more

’—{—0- + —® forn<28
b%—o— for 22#n<26 T
b—{—k for 22#n<26 ’ -'\

FIGURE 3 FIGURE 4
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fully in Section 4.

As noted above, finding perfect weighted graphs is equivalent to finding symmetric
bilinear forms ¢:Z"x Z"—>Z of determinant 1, corresponding to the intersection
matrices (—C;-C)). In Section 2 we present techniques for quickly calculating the
determinant of the intersection matrix associated to a weighted graph directly from the
graph. The results are stated in sufficient generality to apply in a wide range of settings.

2. Graphical evaluation of determinants. In this section, we describe methods of
evaluating the determinant of a matrix by use of an associated graph. The initial results
are useful for general sparse matrices, but do not seem to be well known. The more
specialized versions are useful in our classification of perfectable graphs. (See also
references [1], [4], [7], and [8].)

Let M =(m;;) be an n x n matrix with entries in a commutative ring 4 with identity
element 1 different from 0. The determinant of M is given by the formula
(2.1) |M|= Zs: (sgno)my o1 yM2.02) " " * Mnotm >
where S, is the set of all permutations of {1,2, ---,n}. Let c=[ij, - -, ] (1<k<n)
denote the k-cycle in S, that cyclically permutes the distinct indices i;, - - -, . (When
k=1, c is the identity permutation of a singleton set.) ¢ is even if k is even. The weight
of ¢ is the ring element w(c)=m;, ;, - - m;_, . m; ;. Wc)=m; ; if k=1.) The signed
weight of ¢ is the ring element W(c)=(sgnc)w(c)=(—1)*"w(c). More generally, if
g=c, - ¢, is a product of disjoint cycles, we define w(o)=w(c,) - -- w(c,) and
Ww(e)=Ww(c,) - - - W(c,) = (sgn a)w(c) =(— 1)*w(c), where (o) is the number of even cycles
among c,, - -, ¢;. Then (2.1) can be rewritten as
22) IM|= Y Wo)= Y (—~1)*w(o).

oeS, oeSy,

Define the associated graph of M to be the directed graph G=G(M) with n vertices
(labelled 1,2, - - -, n) that has a directed edge (i,j) from the vertex i to the vertex j
precisely when m;;#0. (i=j is allowed.) A circuit of length k (1<k<n) in G is a k-cycle
c=[iy, -, i] such that (i, i,,,) (for 1 <r<k) and (i, i,) are directed edges of G. A
product p=c, - - - ¢, of circuits of G will be called a circuit partition of G if the domains
of ¢y, - - -, ¢, form a partition of {1, 2, - - -, n}. The set of all circuit partitions of G will
be denoted P. Formula (2.2) implies that

| M= #(p)= 2 (= )*"w(p).
peP peP
This means that we can calculate | M| just by looking at the graph G with its directed
edges labelled by the ring elements m;;. The labelled graph G uniquely determines the
matrix M, so we can write | G| for | M| and obtain the graph-theoretic formula
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(2.3) |Gl= 2 #(p)= 2 (=1)""w(p).
peP peP

Decomposition of a determinant relative to components of the associated graph. If
G has connected components G,, - - -, G,, and if P, - - -, P, are the corresponding sets
of circuit partitions, then P=P, --- P, so

t t
2.4 [Gl=Yw(p, -+ p)=T1( X w(p)=T11Gil,
i=1 pieP; i=1

where the first sum is taken over all (p,, - - -, p)€ Py X - - - x P,. A directed graph is said
to be strongly connected if there is a directed path from each vertex to every other
vertex. Equivalently, each pair of distinct vertices can be joined by a circuit. A strongly
connected component is a maximal strongly connected subgraph. Each connected
component of a directed graph contains one or more strongly connected components.
The strongly connected components partition the vertices of the graph, but edges that
do not belong to any circuit of the graph are not in any of the strongly connected
components. If G has strongly connected components G, - - -, G}, and if P}, - - -, P;
are the corresponding sets of circuit partitions, then P=P} --- P, as before, so
|G|=|G|" - |Gs| by (2.3).

Expansion of a determinant relative to a vertex of the associated graph. Let C(i)
denote the collection of all circuits of G passing through vertex i. Since every circuit
partition of G must have one factor which is a circuit passing through i, we have
P(G)={c'p:ceCli), pe P(G—c)}, where G—c is obtained from G by deleting all the
vertices of the circuit ¢ and all the edges of G incident with those vertices. By (2.3),

IGl=Y, Y WwWewp)= zw)[ > W(p)]; ie.

ceC(i) peP(G—c¢) ceC(i) peP(G —¢)

2.5 |Gl= % W) G—c]|.

ceC(i)

Let C,(i) denote the set of circuits of length k passing through vertex i. Then it follows
that

(2.6) IGI=l (=D Y WA G—cl=my G—{i}| - (=1F X W)l G—c].

<k<n ceCy(i) 2<k<n ceCi(i)

IA

In the important special case where G has no circuits of length >2,

2.7 |Gl=my G—{i}|— Y. wc)|G—c].

ceCa(i)

Expansion of a determinant relative to an exclusive circuit of the associated graph. A
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circuit ¢ of a graph G is exclusive if none of its directed edges belongs to another circuit.
Let G— E(c) denote the graph obtained from G by deleting the directed edges (but not
the vertices) of ¢. Then P(G)=c"P(G—c)u P(G— E(c)), so (2.3) implies

(2.8) IGl=" Y Wwp)+ Y wg=wc) G—cl+|G—E@)]|.

peP(G —c) qeP(G — E(c))
When G has more than one exclusive circuit, successive applications of (2.8) with
different exclusive circuits can be used to expand | G| in terms of determinants of smaller
subgraphs of G.

Associated graphs and determinants for a special class of symmetric matrices. We
will need to compute determinants of matrices representing intersection forms, which
are symmetric bilinear forms associated to resolutions of singularities of complex
surfaces. In our applications, the symmetric matrices for these forms have integral entries
greater than 1 along the diagonal, and nothing but 0’s and — I’s off the diagonal.

Let M be an nxn symmetric matrix of the type just described. We represent M
by a graph on n vertices, each labelled with the corresponding diagonal entry of M.
The i-th such entry is the weight of the circuit of length 1 at the i-th vertex, so we
denote it w; and call it the weight of the i-th vertex. Note: To simplify the labelling of
our graphs, we omit the label w; when w;=2. For distinct i and j in {1, 2, - - -, n}, either
m;;=mj;=0 or m;;=m;= —1. In the second case, we join the i-th and j-th vertices with
a single unlabelled, undirected edge. This yields an undirected graph G =G(M), some
of whose vertices may be labelled with a positive integer (not 2). Conversely, any such
graph G together with an ordering of the vertices uniquely determines a symmetric
matrix M with positive integers > 1 along its diagonal and with 0’s and — 1’s elsewhere.

For such a graph G, the terms ‘“connected” and ‘“‘strongly connected” are
synonymous. Every circuit of length > 1 has signed weight — 1, s0 (2.6) and (2.8) become

(2.9) |Gl=w|G—{i}|— Y ) |G—c]
k> 1 ceCy (i)

and

(2.10) |G|=|G—E(l)|—|G—c]|.

ExaMPLE. We compute the determinant of the graph G in Figure 5.
Using (2.3) is impractical because the number of circuit partitions is too large. It
is better to break up the calculation into several easier calculations by use of (2.9)

DO,

FIGURE 5
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= e 7

FIGURE 6

and/or (2.10) in combination with (2.4).

First note that recursive use of (2.9) shows that a chain of k vertices has determinant
k+1. Now it follows from (2.9) that the cyclic graph or “necklace” formed by joining
a vertex to the two ends of a chain of k vertices (with k>2) has determinant 0.

If we apply (2.9) and (2.4) to the original graph G at v, we get |G|=
2:8:4—4-4-4—8-3—8-3—8—8= —64. The last two terms arise from deletion of the
two circuits of length 4 through v.

A better method is to apply (2.10) to the exclusive circuit of length 2 represented

by the undirected edge e of G. There are only two terms, as pictured in Figure 6. Thus
|G|=8-0—4-4-4=—64.

When G is a tree, (2.9) and (2.10) become

Q.11 |Gl=w;|G—{i}| — Y |G—c]
ceCa(i)

and

(2.12) |Gl=1G, ]G, |-G, |Gy,

where G— E(c)=G, UG, and G—c=G; UG, (canonical disjoint unions).
It is useful to recast (2.11) in notation that emphasizes what remains of the graph

rather than what was deleted. For clarity, we now use subscripted v’s rather than integers
to name vertices.

PROPOSITION.  Let v, be a vertex with weight w, in a weighted tree G, and set
G=G—{v,}. Let vy, - - -, v, be the vertices joined to vy in G. Fori=1, - - - r, let G; denote
the component of G that contains v;, and put G;=G;—{v;}. Then

(2.13) 1Gl=wo[]1G:| — Y1GITTIGI,
i=1 i=1 j#i

SO

(2.19) Wo= 3. |G, Gl

_i=1 |Gi| H;=1|Gi| .

(2.15) APPLICATION. Say that v, is a terminal vertex if exactly one other vertex
of G is joined to v,. In that case G, =G, so we write G’ for G, and (2.13) becomes

(2.16) |Gl=wol G|-|G'|.
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In practice, we start with a tree G and join a new vertex v, to a vertex v; of G to form
a larger tree G. We try to choose w, so that 1<|G|<|G|. Repetition of the process
often produces a graph with determinant 1.

We also note for later use that if G is positive definite (that is, if the associated
matrix of G is positive definite) and |G |>0, then G is positive definite. This follows
from the fact [18, p. 250] that a symmetric n x n matrix M is positive definite if and
only if the upper left k x k submatrix of M has positive determinant for k=1,2, - - -, n.

3. Perfect graphs. We will now apply these ideas to the special graphs under
consideration in this paper.

(3.1) LemMA. If G is a perfectable graph, then any tree containing G is also
perfectable.

Proor. Every tree G containing G can be constructed from G by successively
adjoining vertices v,.,, - *, v, to G , each by means of a single edge. In this way we
obtain a chain of trees G=G,<G,,, < - <G,=G. Fork=n+1, - - -, m, let u, be the
vertex of G, _,, to which v, was joined in forming G,. Set G, =Gy _ 1 —{w}.

If G is perfectable, fix a set of perfect weights wy, - - -, w,. Assign weights w, to the
vertices v, (k=n+1, - - -, m) by defining w, = | G} | + 1. Then repeated use of Application
(2.15) above shows that each weighted tree G, is positive definite with determinant 1.
Hence each G, is perfect. In particular, G=G,, is perfect.

In view of Lemma (3.1), finding all perfectable graphs is equivalent to finding all
minimal perfectable graphs. Our main result is that the graphs of Table I are minimal
perfectable. To show this we must first check that each of these ‘trees G is positive
definite and has determinant 1. These properties can easily be verified recursively by
use of (2.16). For example, consider entry (13) of Table I. We construct this weighted
graph one vertex at a time, using the formula |G, . ;| =w;+./Gi|—|G,_, | to compute
the determinants. (See Figure 7.) G, is the subgraph spanned by v,, -, v,. The
determinants |G, |, - - -, | Gy | are 12, 23, 34, 45, 179, 1381, 692, 3, and 1. Since each
determinant is positive and the last determinant is 1, the graph is perfect. The other 24
examples are checked similarly.
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To show that each of these perfectable graphs G is minimally perfectable we must
show that for each proper subgraph G’ of G there do not exist weights w;>2 for which
G’ is perfect. On the integer lattice Z", write (x, * -+, X,) <(¥y, - = -, ya) if x;<y; for all
i and x; <y, for at least one index i,. If G is any graph on vertices vy, - - -, v,, we have
the mapping | G|: Z"—Z whose value at (w,, - - -, w,) is the determinant of the weighted
graph G(wy, - - -, w,).

(3.2) LeMMA. Let G be a tree on vertices vy, - * *,v, and let w=(wy, - - -, w,) be a
point of Z" at which G(wy, ---,w,) is positive definite. Then if y=(yy, * =, y)>W,
G(yy, ***, y,) is also positive definite and | G(yy, - -, y,) |>1G(wy, = -+, wy)|.

PrOOF. The first assertion is obvious, since the intersection matrix of G(y) is the
sum of the intersection matrix of G(w) and the diagonal matrix D(y —w) whose diagonal
entries are the non-negative integers y;—w; and whose off-diagonal entries are zero.
Since G(w) is positive definite and D(y—w) is positive semi-definite, G(j) is positive
definite.

As for the determinant, (2.13) implies that, for each i,

|Gl(wy, = w)=w;"|G—{v;} Wy, - -, W;, - -, w,)—(terms that do not involve w;) ,

where " means “‘omit this entry”. Since G—{v;} is positive definite at
Wy, ==, Wy, =+, w,), |G| is a strictly increasing linear function of w; Hence
|G |(y)> |G |(w) as claimed.

In fact, more is true.

(3.3) LEMMA. Let v, be a vertex in a weighted tree G and set G=G — {vo}. Then
theratio| G|/| G| strictly decreases as(wgy, w1, * * -, W,) increases withrespect to < in Z"*1.

PRrOOF (induction onn). If n=0 the claim is just that 1/wy> 1/y, whenever wy < y,,.
Now let >0 and suppose the assertion to be true for all smaller trees. Let vy, - - -, v,
be the vertices joined to v, in G, and for i=1, - - -, r, let G, be the component of G that
contains v;. By (2.14),

!

1Gl _
Gl

where G;=G;—{v;}. | G|/| G| clearly increases as a function of w,, and by the induction
hypothesis, each term | G}|/| G;| strictly decreases as a function of (w,, - - -, w,). Thus
|G|/| G| strictly increases as a function of (wg, wy, * - -, w,).

To determine whether any particular graph is perfectable or not is now a finite
calculation (perhaps a lengthy one if G is complicated). If G, vy, G;, and G, are defined
as above, then it is clear from Lemma (3.3) that for each i the function |G}|/|G;|

achieves a maximum value M; on the part of Z" where G; is positive definite. Hence
we have the bound
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for the weight w, on v,. Since there is a similar bound for each weight, only finitely
many choices of weights wy, - - -, w, need be checked. In practice it may not be easy
to determine the maxima M, if G, is a large and complicated graph, but shortcuts of a
number-theoretic nature are often available. For example, for most of the graphs in
question, judicious use of (2.14) shows that many of the weights must be quite small
(often 2 is the only possibility), and must be chosen such that, for all choices of v, and
of components G;, G; of G—{v,}, the determinants |G;| and | G;| are coprime. If all
but two weights have been determined, the last two weights must satisfy a quadratic
equation whose coefficients are the determinants of various subgraphs and which has
at most finitely many solutions (often none) in integers.

We have carried out these calculations for each of the graphs in Table II at the
end of this paper, with this result:

(3.4) PROPOSITION. None of the graphs in Table 11 is perfectable.

It is now easy to complete the proof of the minimal perfectability of the graphs
in Table I: each proper subgraph of a graph in Table I is contained in one of the
non-perfectable graphs in Table II, so by Lemma (3.1) it must also be non-perfectable.

Likewise the proofs of Theorems (1.2), (1.3), (1.4), and part (b) of (1.5) are completed
by verifying that every graph described in these theorems either contains a graph from
Table I, and so is perfectable, or else is contained in a graph from Table II, and so is
not perfectable. In particular, every tree not of the type shown in Figure 1 with n=0, 1,
or 2, is accounted for. Also, for any perfectable graph G, a finite computational search
suffices to find all sets of perfect weights. This was done, for instance, for the 8-vertex
graphs listed in Theorem (1.3). (The first part of Theorem (1.5) will be proved in the
next section.)

As for the last assertion of Theorem (1.3), the existence of a single perfectable
graph is sufficient to prove that

lim number of perfectable graphs on n vertices -1
n—o total number of trees on n vertices

9

since for any given tree G,, almost all trees with sufficiently many vertices contain G,,.
Indeed, our results show that for each »>31, all but at most 5 trees on n vertices are

.
. .
. .
. .
. .,

FIGURE 8
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perfectable, the 5 exceptions being the Dynkin diagrams 4, and D,, the extended Dynkin
diagram D, _,, and possibly one or both of the graphs in Figure 8.

4. Open questions and connections with number theory. The equation w,=
Y G;1/1G;: )+ 1/([T1 G;]) makes it clear that finding perfect graphs is equivalent to
finding solutions of certain Diophantine equations. As a particularly interesting example,
we now give a proof of part (a) of Theorem (1.5).

(4.1) PROPOSITION. There is a one-to-one correspondence between perfect weighted
graphs of the form E,, ... , and solutions in integers of the equation
LA, 1
WO = Z +

i=1 Bi H:=lBi

with WO22, Bi—>—2’ 0<AI<B, and (Al" Bl)= 1.

13

First we need a lemma.

(4.2) LeMMA. Given relatively prime positive integers A<B, there is a unique
weighted chain G (cf. Figure 9) such that |G|=B, |G’ |=A, and w;>?2 for all i.

PROOF (induction on B). If B=2, then A=1, and the unique solution is that G
consists of one vertex of weight 2 and G’ is empty. Now let B>2 and assume that the
result is true for all smaller numbers. Given 0<A4 < B with (4, B)=1, if A=1, then
again one solution is for G to be a vertex of weight B and G’ an empty graph. This
solution is unique since no non-empty chain G’ with all weights >2 can have determinant
1.

If A>1, let w, be the unique integer >2 for which B<wy4<A+B. Put
A'=wgA—B. Then 0<A’< A< B, and (4', A)=1, so by the induction hypothesis there
is a unique weighted chain G’ (cf. Figure 10) with | G'|=4 and | G"|=A4'. But then for
this choice of weights the graph G in Figure 9 has |G’ |=4 and |G |=w,| G’ |—|G"|=B
as required. G is unique since if G, G’ is another solution, with weights W, - - -, W5,
then B=|G|=wo| G |—| G’ |=woAd—|G"|. But w,, - - -, w;>2 implies that | G | < 4. (To
see this, note that the chain Az(Ww,, - - -, w;) is positive definite if w;>2 for all i, so by
Lemma (3.3), |G"|/A=|G"|/|G'|<| 4712, -, DI/ A2, - - -, 2)|=nA/(i+ 1)< 1.) Thus
|G"|=A'" and wy,=w,, so uniqueness of the solution for 4, 4’ implies that G=G.

REMARK. The proof shows that the unique solution {w,, - - -, w,} is just the set of
integers that appear in the continued fraction expansion

G G
A —

G: o—eo— . —@ G:0—eo— . —@
Wo W, w, wyoow, w,

FIGURE 9 FIGURE 10
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[[WO’ Wi, 00, W"]]=W0—

Wl—

Wz—

for B/A (cf. Brieskorn [6, Section 2.4] for example).

We now prove Proposition (4.1). Let G be a perfect weighted graph of type E,,..p.
whose central vertex v, is joined to terminal vertices v,, - - -, v, of graphs G,, - - -, G, of
types 4, - - -, A, respectively. Then by (2.14) the weight of v, satisfies

LA 1
" ‘;1 B, * IT7-.8: ’

where B;=|G;| and 4;=|G;—{v;}|. Clearly (4,,B)=1, as is seen by clearing
denominators. Also 4,/B; <1 since if all weights on G; are 2 then 4,/B;=p,/(p;,+1)<]1,
and A4,/B; is a decreasing function of its weights by Lemma (3.3).

Conversely, let wo=)7_,(4/B)+1/([]-,B) be a solution to this Diophantine
equation, with wo>2, B;>2, and 4;<B; for all i. By Lemma (4.2), for each i there
exists a unique weighted chain G; as in Figure 9 with | G;|=B; and | G:| = 4,. Then the
graph G of type E, .., whose central vertex v, has weight w, and whose arms are
Gy, -+, G,, with v, joined to G; at the vertex of G;,— G/, is the required perfect graph.
This completes the proof.

In a similar fashion, given any special type of graph we can identify the Diophantine
equation that must be solved to produce the perfect weights. In particular, we will do
this for the graphs of the type shown in Figure 1 (with no restrictions on #) for which
we do not know all minimal solutions.

Given a rational number A/B, and Egyptian fraction expansion for A/B is a
decomposition of the form

M=

A4 1
B i=1 ;,
with the w;’s distinct positive integers. It is well known that every positive rational
number can be so expressed, and in many different ways. Indeed, papers such as [10],
[11], [2], and [3] either prove this fact in an especially nice way or give algorithms for
producing such expansions with particular features, such as a minimal number of

summands.
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(4.3) LeMMA. Let G be the weighted graph in Figure 11 with all weights >2. Then
|G|=1 if and only if the following equation is satisfied.
1
B[Ti 1%

where A|B has the ‘“‘continued fraction” expansion

L |
I:I:WOa Wi, " s Wy Wy g — 'Zl y_]:l .
=17

Proor. Expand | G| about the vertex w, and apply (2.14) to obtain

(4.4) ——Z +
i=1X;

o_ —_— b
Ex G |Gllﬂf=1xi

where G, and G, are the graphs in Figure 12. As in the remark following Lemma (4.2),
it is easy to check by induction that

il -]
= Wi, " 5 Wy, Wy, _Z* .
16,1 LU =t

The assertion now follows by putting B=|G,| and A=wyB—|G,|.

For n>3 a complete set of minimal solutions to this equation is represented by
graphs (20), (22), (23), (24), and (25) of Table I. For instance, the example (22)
corresponds to the solution

1 1 1 1 1 1

1
[[2’2’2a292,3]]=‘“+"‘+—+—+—+ + .
2 3 S 7 179 24323  11-2-3-5-7-179-24323

To complete our analysis of perfectable graphs, then, we must find all minimal solutions
for n=0, 1, and 2. Some solutions that may be minimal are represented by the seven

X3 Y2
X3 X N Y3
. Wo W ',—' T \ )
1 W Wy Wn+t
X M ©
FiGure 11
N )2 Y1 V2
Gl: *—eo— . . - . GZ: *>— . . . .
lwy  w, Wn+1 1123 Wnt
Wi M

FIGURE 12
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TABLE I. Minimal Perfectable Graphs.

Each graph is pictured with a set of perfect weights. (Unlabelled vertices have weight 2.) The choice of
perfect weights is not unique in general.

(0] (2)

3)

(5)

R
“) H—l—I—z—O
R

4o

i

7) 8)

3 3
(10)
4
19

(&)

(n

N
O w
w w
—
~
P
w
w

1233 3



(13)

(15)

(17)

(19)

(21

(23)

5

9

1
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TaBLE I. (Continued).

6 E s 1501212

5

11
1
25
3
7 179

5
12
9
9
201
5
9

1733

87

»—-;—o—l—o—<3
1
5

3
3

1811

4287055

+ftﬁ__\\
(25) 3 s e e

5

(14)

(16)

(18)

(20)

(22)

(24)

—e

w

3
5
5,
7

3
: :7
67
3
I 7
11
3
5
}11
: 3
7
3
3
179

i ; 24323

521



522 L. BRENTON AND D. DRUCKER

TaBLE II. Examples of Non-perfectable Graphs.

e phe pie i
P e B beled
e e
Kook W fes

27 vertices

Feede X deoad

n vertices n vertices,
22#n<26 58 arms any n

weighted graphs of Table III.
To illustrate the role of Egyptian fractions in problems of this kind we will show

how we determined the weights for the fourth example of Table III. (Examples 1, 2, 3,
and 7 are similar.) Suppose that we wish to find perfect weights for the graph in Figure
13. By (4.4) we have

A N1 1
Aovg

B i=1X; BH' 1

with

Xy Xy

xs.%—‘-—ﬁ

y
XN

FIGURE 13
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TasLE III. Some Special Perfect Graphs.
(Unlabelled vertices have weight 2).

s 3
7
(1)
43 33816127
3816 127526515252229407
3559 3667
@) . . .
9652426938574 09
4398619
157 961
5 3
7 965242693857409
(3) 11
17 398619 ® 1677048224481193064065349690497
157 961
5
) ! 8385241122405949876443646733953
179
5 8687184244716671
1 398619
3
[ ]
11 8\
(5) 3
25
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TaBLE III. (Continued).

13

(6) 3
25
2981

67

2580074191509526602878760930107

(7)
8687184244716683
$61 4398619

157

A 4y—3 1 1
Za2,2,2,y])= 2 g — — .
g -2 3 3Gy-2)

Thus if one of the x;, say xy, is equal to 3, we have

1—Nfl P 1
S1x 3G3y-2) 3Cy-l] )%

That is, we seek a solution to the unit fraction equation
4.5) 1= —

with the additional constraints that ny=3(3y—2)=3mod 9 and that ny , ; = ]’]f’= n;. For
then the perfect weights are x;=n, for i=1, ---, N—1, xy=3, and y=(ny+6)/9.

Now the problem (4.5) of expressing 1 as the sum of unit fractions has been much
studied and has a substantial literature. (See for example the bibliographies in [9] and
[12].) In particular, in [4] we considered the condition nNH=I_[f'=ln,~ in some detail,
and, by computer search techniques, obtained a list of solutions for small N. N=9 is
the smallest value of N for which we have a solution (n,, - - -, ny, ) that satisfies the
extra condition ny=3 mod 9 (but ny>3 so that y=(ny+6)/9>2). The solution is

(4.6) 2,5,7,11,17, 157, 961, 4398619, 8687184244716671,
75467170101653548887992820605571,
5695293763151911320400374304363730155668749225304912374335630470.

These numbers give the perfect weights for the graph of Example 4.
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X

FIGURE 14

It is worth noting that from a purely number-theoretic viewpoint the most interest-

ing of our unsolved cases is the star-shaped graph in Figure 14. For this graph, Equa-
tion (4.4) is simply

@.7) S S
' 0 i=1X; l_[?;lxi

(cf. (4.5)), which we wish to solve in integers wy, X;, all >2. In [4] we show that there
is no solution for N<58. No solution to (4.7) is known for any N.
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