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Abstract. An explicit method of construction of a family of abelian varieties each

member of which has a large Mordell-Weil rank is given. Also, an example of elliptic

curve defined over a function field of one variable such that its Mordell-Weil group is

of arbitrarily high rank is constructed.

Introduction. In our earlier paper [3], we proved the following theorem:

THEOREM 0.1. Let C be a hyperelliptic curve over afield k and let A be an abelian

variety over k. Let Λb denote the twist of A by the quadratic extension A^C)/^/*1) so that

Ab is an abelian variety over k(P1) = k(t). Then we have an isomorphism of abelian groups

Ab(k(t))^Uomk(J(C), A)®A2(k),

where A2(k) denotes the group of k-rational 2-division points on A.

In PART A of this paper we investigate what occurs if one specializes the value

of t in (0.1) (see Theorem 2.1). This enables one to reduce the problem of the injectivity

of the specialization map of the family to that of the unsolvability of a certain

Diophantine equation. Such examples are given in Section 3. In particular, we obtain

an example of a family Et of elliptic curves over P1 such that for any teP\Q)— {0, ± 1, oo},

the Mordell-Weil group Et(Q) has rank > 2 . In PART B we formulate a generaliza-

tion of Theorem 0.1 to the case of arbitrary double coverings (see Theorem 4.1).

As a corollary, we obtain an elliptic curve E defined over the function field of a

curve C over Q such that its Mordell-Weil group E(Q{C)) is of arbitrarily high rank (see

Theorem 4.5). For the construction, we use certain modular curves and its Atkin-Lehner

involutions.
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PART A

1. Preliminaries. First we recall the following criterion:

LEMMA 1.1 (cf. [10, p. 152]). Let φ: M->7V be a homomorphism of abelian groups

and let n be an integer > 2. We assume that

(1) M is finitely generated,

(2) M/nM-*N/nN is injective,

(3) φ is injective on the torsion subgroup of M,

(4) φ defines an isomorphism of Mn = {xeM; nx = 0} onto Nn.

Then φ is injective.

Next we recall the following construction. This is explained in Silverman's book

[11, Ch. X, Th. 1.1] in the case of elliptic curves. The following description is a

straightforward generalization to the hyperelliptic case. Let fc be a field of arbitrary

characteristic and denote by C the hyperelliptic curve defined by

y2 = (x-eί)-'(x-e2g+1),

where etek, e{Φe^ for iΦj. We denote by oo the point at infinity of C. We define a map

oc:J(C)-+(k*/k*2)2g by

4 t (Pt-(ao))) = ( f\ μjiPi))
\ i = 1 / \ / = 1 /j=l,...,2g

where

{P)-ej if PΦ(ej,0),oo,

f'2g+l \ /

^ ( P H Π (x(P)-ei)) (x(P)-ej) if P = (eP0),
\i=l / /

1 if P = o o .

It is known that this α gives a well-defined homomorphism J(C)(fc)->(/c*/fc*2)2ί/. Note

that Silverman's proof in [loc. cit.] for the elliptic case also goes through in the

hyperelliptic case, since the divisor (x — et) of the function x — et is equal to 2(eh 0) — 2(oo).

2. Specialization. In this section we formulate a theorem which gives us a large

supply of abelian varieties whose Mordell-Weil groups are of rank > 1.

THEOREM 2.1. Let c be a rational number and let g(X) be an irreducible polynomial

of even degree 2g in Q\_X~\ such that g(c) is not a square in Q. Let f(X) = (X—c)g(X)

and let Ct denote the hyperelliptic curve over Q(t) defined by the equation
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If for a given aeQ, neither g(a) nor g(c)g(a) is a square in Q, then the Q-rationalpoint

{a, l)-(oo)eJ(Ca)(Q) is not torsion.

PROOF. Let θί9..., θ2g denote the roots of g(X) = 0 and let k denote the field

Q{θ1,..., θ2g). We put θo = c for convenience. First we note that there is an isomor-

phism of curves over Q{t)

βt'.Ct-*Xt9

where Xt denotes the hyperelliptic curve defined by

and βt(x, y) = (f(t)x, (f(ή)9y). Further, for aeQ-{c} we denote by φa the specialization

homomorphism of J{Ct)(Q{t)) to J(Ca)(Q). By Theorem 0.1, we see that the point

Pt = (t9 \) — (oo)eJ(Ct)(Q(t)) is not torsion in J{Ct){Q{t)), since it corresponds to the

identity eEndβ(/(C)) via the isomorphism. Now we apply Lemma 1.1 to the case:

φa: M^N, the specialization homomorphism, and

n = 2.

The condition (1) of Lemma 1.1 is assured by the Mordell-Weil theorem. The condition

(3) is implied by (4) in view of Theorem 0.1. As for the condition (4), recall that the

set of the two division points J(Xt)2(k(ή) consists of the points YlieT((θi, 0) —(oo)), where

Γruns through the subsets of {0, 1, . . . , 2g} (see [6, Ch. Ilia, §2]). Therefore J(Xt)2(Q{ή)

consists only of Q = (c, 0) —(oo) and the zero element 0 of J{Xt). Since this also holds

for J(Xa)2(Q)> t n e condition (4) is satisfied. Hence we are reduced to checking the

condition (2), namely, the injectivity of the induced map MβM^N/lN. This amounts

to showing that φa(Pt), φJiQ), and φa(Pt + Q) are not divisible by two in J(Ca)(Q). Using

the homomorphisms βt (which is bijective) and α (which is injective) constructed above,

we are reduced to showing that

( i ) x(βa(φa(Pt))),

(ϋ)

(iii)

are not equal to the identity element of (k*/k*2)2g.

(i) oc{βa{φa(Pt)))\ By the definition of βa and α, we see that the condition

(x(βa(φa(Pt)))= 1 in (k*/k*2)2g is equivalent to



338 F. HAZAMA

(a-θ^a-θi) (a-θ2g)ek*2,

(a-c)x (a-θ2) (a-θ2g)ek*2 ,

[(a-φ-θ^a-ΘJ- • •(a-θ2g_1)x(a-θ2g)ek*2 .

This, as a whole, is equivalent to

( i = l , . . . , 2 0 ) .

Considering the norm of (a — c)(a — ΘJ with respect to the extension k/Q, this implies

Π f = i ( α ~ ^ i ) G δ * 2 ' n a m e t y #(α) i s a square in β*. But this is not the case by the

assumption of the theorem.

(ii) 0L{βa(φa(Q))): By the definition, we see that the equality θί(βa(φa{Q)))=\ in

(k*/k*2)2g is equivalent to the condition that

ϊϊ(f(φ-f(a)θdek*2 and

If we take the norm of c — θί9 this implies that g(c)eQ*2

9 which is not the case by the

assumption of the theorem.

(iii) oc(βa(φa(Pt + Q))): Since φa9 βa and α are homomorphisms, we see that the

condition (x{βa(φa{Pt + Q))) = 1 in (k*/k*2)2g is equivalent to

(a — c)g(c)ek*2 and

-ΘMc-θdek*2 ( ι = l , . . . , 2 ^ - 1 ) .

If we take the norm of (α — θ^c — θ^, this implies that g(a)g(c)eQ*2, which is not pos-

sible by the assumption of the theorem. This completes the proof of Theorem 2.1.

3. Examples. In this section we give some examples of abelian varieties defined

over the rational function field Q{t) such that each specialized member has Mordell-Weil

rank > 1 when the variable t is specialized to a value in Q—S, where S is an explicitly

determinable finite subset of Q.

EXAMPLE 3.1. Given a positive integer n, let g(X) = X*n+\ and let f(X) =

(X-l)(X*n+\\ so that in the notation of Theorem 2.1, c=\ and g{c) = 2φQ*2. It is

known that, for n > 1, the equation

has no rational solution except (x, y) = (0, ± 1), and it is also known that

2y2=x*n+ 1

has no rational solution except (x, y) = {±l, ±1) (see [5, p. 16 and p. 18]). Hence by
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Theorem 2.1, we obtain the following:

PROPOSITION 3.1.1. Let n denote a positive integer. For the hyperelliptic curve Ct

over Q(ή defined by the equation

Ct: (t-\)(t*n+\)y2=(x-\)(x4n+\),

the Mordell- Weil group J(Ca)(Q) of the jacobian variety of the specialized curve Ca for

any aeQ-{09 ±1} is infinite. More precisely, the rational point (a, 1) — (oo)e J(Ca)(Q)

gives rise to a non-torsion element for each such a.

EXAMPLE 3.2. Let C denote the hyperelliptic curve over Q defined by the equation

y

2=f(x) = x6 + 2x4 + 2x2 + l ( = (JC2 + 1)(X4 + JC2 + 1)) .

Let E denote the elliptic curve defined by the equation

J 2 = x 3 + 2x 2 + 2 x + l .

Then we have two morphisms πί9π2: C-+E defined by

One can check that π^(dx/y) and π^(dx/y) span the vector space of regular 1-forms on

C. Therefore the morphism (π 1 ? π 2 ) : C-+ExE induces an isogeny J(C)->E x E. Hence

it follows from Theorem 0.1 that the Q{t)-reiuona\ points (t2, 1) and (1/ί2, I//3) give a

set of generators of the free part of the Mordell-Weil group Et(Q(ή), where Et denotes

the elliptic curve over Q(t) defined by

As for specializations of this curve, we obtain the following:

PROPOSITION 3.2.1. For any aeQ—{0, ±1}, the Mordell-Weil group Ea(Q) has

rank >2 .

PROOF. Let us put Pt = (t2, 1), Qt = (\/t2, l/t3) and R = (-\,0). We know by

Theorem 0.1 that these elements give rise to a set of generators of Et(Q(t)). Reasoning

as in the proof of Proposition 3.1.1, we are reduced to showing the following:

CLAIM. None of the points Pa, Qa, R, Pa + Qa, Pa + R, Qa + R, Pa + Qa + R can be

divided by two in Ea(Q) for any aeQ—{0, ±1} .

PROOF OF THE CLAIM. We put b = f(a) and let Xa denote the curve

y2 = x3 + 2bx2 + 2b2x + b3 .

Then we have an isomorphism βa: Ea-+Xa of elliptic curves defined by



340 F. HAZAMA

For notational simplicity, we use the convention that PΈXa represents the element
which corresponds to PeEa under the isomorphism βa.

(i) Indivisibility of Pa\ By the definition of α, we have

where ω denotes a primitive cube root of unity. The condition a4 + a2 + \ e ()(ω)*2 is
equivalent to a4 + a2 + leQ*2, since α 4 + α 2 + 1 is a positive rational number. But this
is not possible since there is no non-trivial solution of the Diophantine equation
z 2 = x 4 + x V + / (see [5, p. 19]). Therefore P'a cannot be divisible by two in Xa(Q)9

hence Pa is not divisible by two in Ea(Q).
(ii) Indivisibility of Qa: We compute

Hence for the same reason as in (i), we see that Qa is not divisible by two in Ea(Q).
(iii) Indivisibility of R: We compute

Since — 6(1 + ω) = ω26, we are reduced to showing that the equation

has no integer solution with (x, y)=\. Note that the right hand side of this equation
can be factored as

{x2+y2)(x2-xy+y2)(x

and that the three factors are relatively prime. Hence (x2-xy+y2)(x2 + xy+y2) = x4 +
x2y2-\-y4 must be a square. But this is not possible as we saw in (i). Hence R is not
divisible by two in Ea(Q).

(iv) Pa + Qa' We compute

As for the second coordinate,

(a2-ω2)(l-ω2a2)=-ω2(a4 + a2 + \)=-(a4 + a2 + l)

in β(ω)*/β(ω)*2. Since β(ω) = βί^Λ-^) and a4 + a2 + \>0, the condition - (
l)eg(ω)*2 is equivalent to the condition that there exists deQ* such that 3d2 =
a4 + a2 +1. Hence we are only to show the following:

LEMMA. There is no triple (x, y, z)eZ3 such that 3z2 = x4 + x2y2+y4 holds except
the obvious ones (x, y9 z) = (x, ±x, ±x).
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(Note that the last solutions give rize to the solutions (a,d) = (±l, ±1) of the
equation 3d2 = a* + a2 + l.)

PROOF. We may assume (x, y) = 1. Then x2 — xy+y 2 and x2 + xy+y2 are relatively
prime. Hence there is a pair (m, n) of integers such that

x2 — xy-\-y2 = m2

(Replace y by — y if necessary.) This implies

9n2-m2 = 2U2

3m2-3n2 = 2V2,

where U=x+y, V=x—y. Therefore we have
ι + 3V2 = 4m2

3U2+V2 = \2n2 .

The last equation implies that Fis divisible by 3, hence, if we put V= 3v, then we obtain
ι = (2m)2

Now it is known that, for any M, NeZ with M^N, the curve

UN):-

in P 3 with coordinate (X, Y, Z, PΓ) and the elliptic curve

C(M, N):y2z = (N-M)x{x-z)(x-(N/(N-M))z)

in P2 with coordinate (x, y, z) are isomorphic by the map

(see [9]). Hence it suffices to show that

C(27, 3X0 = {(0,0,1), (1,0,1), (-1/8,0,1), (0,1,0)}

( = C(27,3)2(0),

since these four points correspond exactly to the ones deleted in the statement of the
lemma. The equation of the curve C(27, 3) is transformed into

E*: y2 = x(x-3)

The invariants of this elliptic curve are computed as follows (in the notation of [2]):
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4 = 2 4 3 2 7 3 ,

Therefore the conductor of E* must be of the form 2fl 3b. Such curves are completely

classified in [loc.cit.]. We see from the table there that this elliptic curve is called 72C

and its Mordell-Weil group consists exactly of its 2-division points. This completes the

proof of the lemma. Hence Pa + Qa is not divisible by two in Ea(Q).

(v) Indivisibility of Pa + R: Since

the proof in (i) shows that this is not equal to the identity of (β(ω)*/β(ω)*2)3. Hence

Pa + R is not divisible by two in Ea(Q).

(vi) Indivisibility of Qa + R: A similar argument as in (v) shows the indivisibility.

(vii) Indivisibility of Pa + Qa + R: It follows from the computation in (i), (ii),

(iii) that

But we see that

in β(ω)*/β(ω)*2. This implies that there exists deQ* such that 3d2 = a2 + \. But this

is easily checked to have no rational solution. Hence Pa + Qa + R is not divisible by two

in Ea{Q).

Combining the above (i)-(vii), we complete the proof of Proposition 3.2.1.

PART B

4. Generalization. In this section we formulate a generalization of Theorem 0.1.

Let k be a field of arbitrary characteristic. Let π: C->C be a morphism of degree two

defined over k between non-singular projective curves over k. Assume that there exists

a A>rational point, called oo, of C where π ramifies. For any abelian variety A over k,

we define a 1-cocycle 6 = (6s)eZ1(Gal(fc(C)/fc(C')), AutΛ) by

Aid = id, 6 , = - i d ,

where i denotes the involution associated to the double covering π. Let us denote by

Ab the twist of A (x) fc(C') by this 1-cocycle. Then we have the following:

THEOREM 4.1. The notation being as above, there exists an isomorphism of abelian

groups
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Ab(k(C))^Homk(J(C)/π*(J(C% A) 0 A2(k).

REMARK 4.2. Theorem 0.1 is obtained from this by taking C-+P1 as the double
covering in Theorem 4.1, since in this case J(C') = J(Pι) is trivial.

PROOF. We can argue similarly as in the hyperelliptic case (see [3]). The only
difference about which we should be careful is that (in the notation of [loc. cit.]) bx o Ψ(x)
becomes equal to

- π*((π(x)) - (π(oo)))] - c .

Therefore in order that PeAb(k(C')) holds it is necessary and sufficient that α vanishes
on the subgroup π*(J(C')) and that ceA2(k). Hence we obtain our theorem.

Using this theorem we can construct an abelian variety A defined over the function
field of a curve C over Q such that its Mordell-Weil group A(Q{C)) has an arbitrarily
high rank. In order to construct such an abelian variety, we must recall some facts
about modular curves. Let N be a positive integer. Let Γ0(N) denote the congruence
subgroup of level N of SL2(Z) defined by

Γ0(N) = <[ )eSL2(Z); cEE0 (modN)
l\c d)

This group acts on the upper half plane properly discontinuously and defines an affine
curve Y0(N) as its quotient. It is well known that we can compactify it by adding some
"cusps" (which correspond to the orbits of Qu{oo} under the action of Γ0(N)), and
we obtain a non-singular projective curve X0(N) which is defined over Q. About the
rationality of its cusps the following fact is known:

PROPOSITION 4.3 (cf. [7, Prop. 2]). If N or N/2 is square-free, then all the cusps
of X0(N) are rational over Q.

Further we recall the following:

PROPOSITION 4.4 (cf. [8, Prop. 3]). IfN=AN' with (4, N')= 1, then there exists an
involution w2 (called the Atkin-Lehner involution associated to the prime factor 2 of N)
such that it has at least one fixed point among the cusps of X0(N).

In view of these, if we let C be A^iV') where N' is an odd square-free integer and
let C be its quotient Ar

0(4Λ^r/)/<w2>, then we obtain the double covering π: C-+C defined
over Q which satisfies all the conditions in Theorem 4.1. Hence for any abelian variety
A defined over Q, we have an isomorphism

Ab(Q(C'))^HomQ(J(C)/π*(J(C% A) ® A2(Q).

Further, if Nr = 11 %pγ -pn where /?,(/= 1,...,«) are distinct odd primes different from

11, then we can check that the dimension of the (— l)-eigenspace of w2 acting on the
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"old part" ® d^pv..PnBd({Γ0(ll\ 2>0) (in the notation of [1]) is exactly equal to 2", by
Lemma 26 of [loc. cit.]. This implies that the elliptic curve JiΓ0(l 1) appears at least 2n

times in the isogeny decomposition of J(C)/π*(J(C')) (see [4, p. 21] for the decomposition
of J(C)). Hence we obtain the following:

THEOREM 4.5. The notation being as above, the rank of the Mordell-Weil group

^ o θ IJΛβίC")) is greater than or equal to 2n.
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