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Abstract. In this note, we show that there exists a unique holomorphic extension
of a given map which satisfies the tangential Cauchy-Riemann equation on the
hyperconvex boundary of a Kahler manifold into a complete Kahler manifold with
strongly seminegative curvature, provided there is a plurisubharmonic function on the
domain which has at least two positive eigenvalues at some point.

1. Introduction. Let Ω be a bounded domain in C" with smooth connected
boundary. The classical theorem on global holomorphic extensions of Bochner [Boc]
asserts that if / is a smooth function on dΩ which satisfies the tangential Cauchy-
Riemann equation dbf= 0 on dΩ, then / can be extended from dΩ to Ω so that / is
holomorphic in Ω. When M is a complex manifold, the Bochner type extension problem
becomes much harder; even the local extension problem for a hypersurface is not
necessarily solvable in general. Some sufficient conditions for local extendability have
been found by Lewy [L] and other people (see the reference in [B]). Kohn and Rossi
[KR] proved by using the technique of solving the ^-Neumann problems the existence
of a holomorphic extension of functions, which satisfy the tangential Cauchy-Riemann
equation on the boundary of a finite complex manifold with connected boundary whose
Levi form has one positive eigenvalue everywhere.

The Bochner type global holomorphic extension problems for maps, namely,
extending holomorphically a boundary map satisfying the tangential Cauchy-Riemann
equation from the boundary of a domain in a Kahler manifold to another Kahler
manifold, have been studied by several authors. In the early 70's, Shiftman [Sh] and
Griffiths [Gr] applied the analytic disc technique to study the extension problem and
solved a problem posed by Chern in 1970. In the 1980's, Nishikawa and Shiga [NS],
[Shi], Siu [SI], [S2] and Wood [W] took a harmonic map approach by using Siu's
δ^-Bochner formula. In fact, the complex-analyticity of certain harmonic maps was
studied earlier by Siu and Yau in their resolution of FrankeΓs conjecture.

Let D be a domain in a Kahler manifold M with smooth compact boundary dD.
We say that D is hyperconvex if D has a smooth defining function with nonnegative
trace of the Levi-form on dD. The main purpose of this paper is to study the global
holomorphic extension problems for maps from the boundary dD to another complete
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Kahler manifold N. We shall generalize Bochner's holomorphic extension theorem, for
a boundary map/ : dD^N satisfying the tangential Cauchy-Riemann equation on dD,
to Kahler manifolds, provided some geometric conditions on the manifold M and the
target manifold N are satisfied. According to Siu [SI], we say that N has strongly
seminegative curvature if R denotes the Riemannian curvature tensor, then

is nonnegative for arbitrary complex numbers A\ B\ C* and D* when A^W-
for at least one pair of indices (α, β). Clearly the strong seminegativity of the curvature
tensor implies seminegativity of the sectional curvature. The main theorem of this paper
is the following.

THEOREM 1.1. Let M (dimc M=m > 1) be a Kahler manifold and D a hyperconvex
domain in M with compact closure and non-empty smooth boundary dD. Suppose there
is a plurisubharmonic function ηeC2(D) so that H(η) has at least two positive eigenvalues
at some point in D. Suppose N is a complete Kahler manifold with strongly seminegative
curvature. Let f: D->N be a smooth map satisfying the tangential Cauchy-Riemann
equation δbf = 0 on dD. Then there exists a unique holomorphic extension off

In the classical Bochner extension theorem in Cm, dD is assumed to be connected.
Clearly, some type of convexity on the boundary is needed when domains are general
complex manifolds. For instance, take D = CPn \B where B is a small geodesic ball in
CPn biholomorphic to the unit ball in Cn. Then for any non-constant map / from 3D
into N satisfying the tangential Cauchy-Riemann equation, its harmonic extension
cannot be holomorphic nor pluriharmonic, since otherwise it must be constant. However,
it seems than if we assume there is a pluriharmonic exhaustion function on M (for
instance, M is a Stein manifold), and N as before, we may expect to have a holomorphic
extension without any convexity conditions on dD. In our Theorem 1.1, we assume
that dD is hyperconvex. We would like to point out that hyperconvexity only leads to
pluriharmonicity of the harmonic map extension. In order to conclude that the harmonic
map extension is holomorphic, one needs either stronger conditions on the curvature
of the image spaces and an assumption on the rank of df of the boundary map / or
stronger convexity on the boundary of domains (cf. [NS], [S2], [Shi]). Our observation
is that the existence of certain plurisubharmonic functions allows us to construct a
holomorphic extension under the weaker assumptions as in Theorem 1.1. In particular,
we have:

COROLLARY 1.2. Let M (dimc M=m>l)bea Kahler manifoldandD a hyperconvex
domain in M with compact closure and non-empty smooth boundary dD. Let N be a
complete Kahler manifold with strongly seminegative curvature. Suppose there are two
holomorphic functions φί9 φ2eC°°(D) such that dφl9 dφ2 are linearly independent at
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some point in D.Iff: D^N is a smooth map satisfying the tangential Cauchy-Riemann

equation δhf=0 on dD, then there exists a unique holomorphic extension of f

The paper is organized as follows. In Section 2, we introduce basic notation and

definitions and prove preliminary results on a smooth map satisfying dbf=O; and we

derive some technical lemmas for use in later section. Finally, in Section 3, we prove

Theorem 1.1 and some corollaries.

The authors would like to thank Peter Li, Richard Schoen and Gang Tian for

many helpful conversations during the preparation of the work. Thanks are also due

to the referee for very careful reading of the manuscript and valuable comments.

2. Some lemmas for ̂ and db operators. Throughout this paper, we always assume

TV to be a Kahler manifold of complex dimension n with a Kahler metric tensor

(2.1) g = ΣdΛβd
«,β

and let M be a Kahler manifold of complex dimension m > 1 with a Kahler metric tensor

(2.2) h = Σhi7dzW.
ij

Let TN denote the real tangent bundle of N when N is regarded as a real manifold. The

complex structure of N gives a decomposition of TN®C into the tangent vectors of

type (1,0) and type (0, 1), i.e.,

If M is a complex manifold and / : M^>N is a smooth map, then df: TM^TN gives

rise to a map

Composing this with the projection map

we have

Πuoo(df®Q:TM(

and this is equivalent to a bundle map

of C-vector bundles over M. Thus the ̂ -operator can be defined as follows: δf is the

bundle map T^-^f^T^0 if we compose the above with the inclusion map:

T M ' 1 - * / * ^ ' 0 . Therefore, df is a smooth section of C-vector bundle
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over M. In other words df is an /*Γ^°-valued (0, l)-form on M. Let {z1,..., zm} be
a local holomorphic coordinate chart on M and (wα) a holomorphic coordinate chart
on N. Then df can be simply expressed as dτf

a = dif
a, where dτ=di = d/dzi. We also set

dt = d/dz\ doc = d/dwιx, and d-=d/dw". Similarly, we may define df, df and δ/, where df
is an /*Γ1'°-valued (1, 0)-form on M represented by (dj*). df is an /^Γ0'1-valued
(1, 0)-form on M represented by (dja). Finally df is an /^Γ0'1-valued (0, l)-form on
M represented by (<3Γ/

α). It is clear that 3/is the complex conjugate of df and df is the
complex conjugate of df

In order to define the ^-operator, we recall that one can introduce the tangential
Cauchy-Riemann operator extrinsically or intrinsically. The intrinsic approach leads to
the definition of abstract CR-manifolds and the problem of embedding abstract
CR-manifolds into Cn. This direction has been studied extensively by many people. To
study the Bochner type global extension problem, it is natural to require that the almost
complex structure used to define the tangential Cauchy-Riemann operator at the
boundary dM is consistent with the complex structure of M. This extrinsic approach
and the first formal definition of db on the boundary of a finite complex manifold is due
to Kohn and Rossi in [KR]. Let us recall a definition [KR]. A finite complex manifold
is a pair {M, M'} where M' is a complex manifold and M is an open submanifold
of M' such that (a) the closure M of Mis compact; (b) the boundary <9Mis a C°°-submani-
fold of M' and (c) for any point P e dM, there exists a coordinate neighborhood U
of P with coordinates t2,...,t2m, p such that p(x)<0 if xeUnM, and p(x)>0

if XG Un(M'\M). Our treatment on a domain D in M with compact closure and
smoothly connected boundary is equivalent to (D, M) being a finite manifold.

Let D be a domain in M with non-empty smooth boundary dD. If PedD, we let
HP(dD) denote the complex subspace of TP(M) ® C consisting of those vectors which
are tangent to dD. Thus HP(dD) n TpΛ is a complex (m— l)-dimensional subspace of
HP(dD). If / is a function on dD, we say that / satisfies the tangential Cauchy-Riemann
equation dbf=0 on dD if ξ(f) = O for every ξeHP(dD)nT^1. If f:dD-+N is a map,
we say that / satisfies the tangential Cauchy-Riemann equation dbf= 0 on dD if for
any z e dD, there is an open neighborhood UZ<=M and a local holomorphic coordinate
chart (V, φ) on TV around f(z) such that

3b(0αo/) = θ on UzndD, α = l , . . . , n .

It is easy to show that the above definition is independent of the choice of the coordinate
charts (V, φ). For completeness, we give a proof of this fact.

PROPOSITION 2.1. Suppose PedD is an arbitrary point. If (V, φ) and (V, ψ) are
any two complex coordinate charts for N around f(P), then there is a neighborhood Up

of P in M such that
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db(φ«of) = 0 on UpndD<=^eb(ιl/βof) = 0 on UpndD.

PROOF. Since (F, φ) and (V, φ) are two complex charts around /(/?), there is an

n x n matrix A = (AΛβ) with Aaβ are holomorphic functions on φ(Vn V) so that φ = Aφ.

Thus, let Up be a neighborhood of P in M such that f(UPnD)c:Vn V. For any

xeUpndD and ξeHx(dD)n T°Λ(M), we have ξ(φβof)(χ) = 0 by assumption. Now

we have

since ^4α)3 is holomorphic.

Let /* (in (2.2)) be a Kahler metric for M and ω the Kahler form

(2.3) ω = y/^ΪΣhiJdzi Adzj.

Let Z) be a hyperconvex domain in M with smooth boundary. Then there is a defining

function p e C°°(Z)) so that for each P e 3Z>, we may choose local holomorphic coordinates

{z1,..., zm} around P such that z 2 , . . . , zm are complex tangential to dD at P, with

I dp I = 1 at P, and the trace of the Levi form on HP(dD) with respect to the Kahler

metric htj on M at P is

Σ ^

The following lemma is necessary in proving the pluriharmonicity of harmonic

extensions.

LEMMA 2.2. Let M be a Kahler manifold and D a hyperconvex domain in M with

compact closure and non-empty boundary dD. Let N be a complete Kahler manifold. Let

/ : D-+Nn be a smooth map such that dbf=O on dD. Then

(2.4) ί dϊ(g,ξfΛdf}Λωm-2<0,
JD

where g is a Kahler metric on N.

PROOF. Since Mis Kahler, dω = 0 and d=d + d. Also, we have d2 = 0 hence dδ= dd.

Thus

=\ d(d(g,
J D
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dD

by the Stokes theorem. We will prove that the last integral vanishes by using the as-

sumption δbf=0 on dD. Indeed, given any PedD, we may choose local coordinates

without loss of generality such that z 2 , . . . , zm are the complex tangential directions near

P, and z 1 is the complex normal direction to dD near P. Moreover, we let p =

p(z *, . . . , zm, z x, . . . , zm) be a real-valued smooth function defined in a neighborhood U

of P such that DnU={xeU: p(x)<0} are dp{x)ΦQ on dDnU; and (dp/dzj)(0) =
(dρ/dzj)(0) = 0 for all7 = 2, . . . , m and (δp/δz 1)(0) = l. To handle the boundary term,

we need to use the tangential Cauchy-Riemann equation (see [NS]). Since dbf—0

on dD, we may rewrite Shf=Q in UndD in terms of p — ρ(x) as

Λ= Σ
i = 2

Thus

Without loss of generality, we may assume that gaβ(f(P)) = δaβ and dgaβ(f(P)) =

= Q' Using such facts and direct computation, at P, we have

df"

-2 Σ i
l<Λ<n,2<i<m

where W is a positive (2ra-l)-form on cλD. Since the trace of the Levi form on the

boundary dD are nonnegative, we see that Y™=2{d2pldzidzi) coincides with the trace

of the Levi form of p at PedD which is nonnegative. Since P is an arbitrary point of

dD and the sign of trace of the Levi form on dD is invariant under biholomorphic

changes of variables, we have

dD

m

Recall that a map / : M->N is harmonic if

where Δ M = 2Al7δI <3j and (hij) is the inverse matrix of the matrix (hφ of the Kahler
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metric of M, and Γξy is the Christoffel symbol of TV. A Cx-map / : M^N is holomorphίc
if df=0 on M. We say that a smooth map / : M-+N is pluriharmonic if Dof=0 on M
where Z>ξf is the d exterior derivative of the /*Γ10-valued (0, l)-form δf on M. In
local coordinates, we may write

The following are well known: (a) any pluriharmonic map is a harmonic map; (b) any
holomorphic map is a pluriharmonic map when both M and N are Kahler.

Next we prove a pointwise identity if / : M^N is a harmonic map satisfying the
tangential Cauchy-Riemann equation, and N has strongly seminegative curvature. The
lemma below is known (cf. [SI], [NS], [Shi]), although stated and proved in slightly
different forms. We will sketch a proof for the readers' convenience.

LEMMA 2.3. Let M be a Kahler manifold and D a hyper convex domain in M with
compact closure and non-empty smooth boundary. Let N be a complete Kahler manifold
with strongly seminegative curvature. Let f\D—>N be a harmonic map such that
feC\D, N) and $bf=0 on dD. Then

(2.5) 3a"<0,δ/Λδ/>Λωm-2 = O on D

and

(2.6) δ(g,δfΛdJs)Λωm-2 = d(gJf/\dJs)Λωm-2 = Q on dD.

In particular, f is pluriharmonic.

PROOF. Since N has nonpositive sectional curvature, the regularity theory for
harmonic maps asserts that fGCcc(D)r\C2(D). Next, let us recall the d^-Bochner
formula for harmonic map of Siu [SI]:

where σ and — 9C are some nonnegative functions as shown in [SI]. Now we integrate
the above identity over D and apply Lemma 2.2. We have

0> dδ(gJfAdJs>Aωm-2=\ (σ-3C)ωm>0.
J D J D

Therefore

D

This immediately implies that
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(2.7) σ = 0 and 3T = 0.

Therefore, (2.5) holds. Moreover, by Lemma 2.2, we have

0 = ί
JdD

and

d<g

is a nonpositive (2m—I) differential form on dD. Therefore, we have

d(g,dfΛdf}Λωm-2 = O

on dM. By taking complex conjugate, we have

Therefore (2.6) follows. In particular, & = 0 implies that Ddfa = 0 for all α = 1, . . . , w.

This means that / is pluriharmonic. •

3. Proof of Theorem 1.1. Before we start Theorem 1.1, we need the following

lemma.

LEMMA 3.1. Let M (dimc M=m> 1) be a Kάhler manifold and D a hyper convex

domain in M with compact closure and non-empty smooth boundary dD. Let N be a

complete Kάhler manifold with strongly seminegative curvature. Let f:D-*N be a

harmonic map such that fe C2(D, N) and dbf=0 on dD. Then

(3.1) I
for allηeC\D).

PROOF. By (2.5) and integration by parts, we have

0= ηddig, dfΛdf}Λωm-2=\ ηdd(g, δfΛδf} Aω
JD J D

= ηd(g,dfAdf}Aωm-2-\ dηAθζg, dfAdf} Aωm~2 .
JdD JD

Now applying integration by parts again, we have

Γ Γ
dη A dig, 3/Λ df} A ωm~2= dη A <#, df A df) A ω

J D JdD
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Since M is Kahler, we have dω = 0 and δω = 0. Therefore by combining the above
calculations, we have

δdηA(g,dfAdfyAωm-2

Γ - Γ
= — yj&ζg, Sf A dfy A com 2 + I (

J dD JdD

Therefore, the lemma follows if we prove

(3.2) ί η$(gJfAdfyAwm-2=\ dηζg
JdD JdD

By Lemma 2.3, we have

Now we prove

(3.3) δη A <& 5fA dfy Λw m " 2 =0.

Since δbf=0 on δZ), we compute the integrand dη A <#, 3/Λ 3/> Λ wm 2 as follows. Let
PedD be any point. Take local complex coordinates z 1 , . . . , zm in M around P such
that 3/δz2,..., d/dzm are the complex tangential vector fields to 3D at P. Since δbf=09

we have at P

Λ ωm~2 = Σ g^ΓdjPdz1 A dz* A ωm~2

« β J J Adz1 Aωm~2 .
*.β

We observe that only the tangential part of dη contributes to the above form. Therefore

dηA(g,dfAdf}Aωm-2= Σ dkη A(g,ξfAdf} Aωm~2 .
k = 2

Since dD is a compact manifold, we let φj9 j= 1,..., K, be a partition of unity on dD
such that φj has support in Uj and each Uj is contained in a single complex coordinate
chart. On each Uj9 we can carry out integration by parts and obtain

Uj

Γ Γ
= φid(η A (a, df A dfy A wm 2)—\ Φiηd((g, SfAdfy ΛI

Jϋj Jϋj
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= ί
J UUj

where we have used (2.6) in Lemma 2.3 were ω is the Kahler form in the second equality.

Thus

dD J= _

= Σ ί niβφ})Λ <β> 5f* # * > Λ w m" 2 = ί n Σ ( # j ) Λ <0» ̂ Λ ^ > Λ wtn~2

7=1 Jl/j 7 = 1

= f ηd( Σ φ)<g,

and (3.3) follows. Therefore, we have completed the proof of (3.2) and (3.3). Hence

(3.1) holds. •

Let η be a real-valued function on D. We let H(η) denote the complex Hessian of

η. We say that η is plurisubharmonic on D if and only if H(η) is positive semi-definite.

N o w we are ready to prove Theorem 1.1.

P R O O F OF THEOREM 1.1. Since the sectional curvature of N is nonpositive, the

existence theorem of Hamilton [ H ] and Schoen [Sc] asserts that there is a unique

harmonic m a p u smooth up to boundary which solves the Dirichlet problem u =f on

dD. F o r convenience, we still use / to denote the harmonic extension u on D. By our

assumption, there is a real-valued function ηeC2(D) such that its complex Hessian

H(η) is positive semidefinite on D and H(η) has at least two positive eigenvalues at

some point PoeD. We shall prove that ddη A <#, <5/Λ<3/> Aωm~2 is a seminegative

(m, m)-form. Since holomorphic changes of coordinates preserve the orientation, the

sign of any (m, m)-form is unchanged under different holomorphic coordinates. F o r any

PedD, without loss of generality, we choose a normal coordinate at P, i.e., at P the

Kahler form has the expression

In particular, for any iΦj, we have

_ / _\m-2

dzι Adz1 AdzJ AdzJ Aωm 2 = {J—\)m 2dzι Adz1 Adzj Adzj A [Ydzk Adzk)
\k J

= (^ϊ)m-\m-2)\dz1 Adz1 A ••• AdzmAdzm

(m — 2)\
— — ωr

ml
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Thus, at the point P, we have

Σg<*$^Y\ A δfΛ A djβ Acom~2 = Σ Σ gajidijVl^sf^dtf^dzJ Adz1 Adzs Adzx Acom~2 .

Since ωm~2 is an (m — 2, m — 2)-form, either s = i9t=j or /==/, s = t. Hence

Σ Σ g«βd?jηδsf%PdzjAdz1 Adz*Adz*Aωm~2

= Σ g^^-ϊiΓdjFdziΛdz1 Adz1 Adz*Acom~2

0LβiΦj tiZOZ1
0L,β,iΦj

+ Σ g^-f^SifdjPdz1 Adz1 Adz' Adz* Λffl

Σ J-4w
Therefore at P, we have

on Z) where Im is the m x m identity matrix and cϊf* is viewed as a column vector with

components J//α, and (5/*α)* = (3/α)ί as a row vector which is the adjoint of δf. Since

the matrix

/ d2η \ ( d2η \

ΛdzWJ" Wdz'J
is positive semidefinite at any point PeD, we may write it as T*T where T is an m x m

matrix for each PeD. Thus

Since Λ̂  is Kahler, (̂ fα̂ ) is positive definite. Let λ(P) be the smallest eigenvalue of (gΛβ)

at / ( P ) . Then the matrix (ga^} — λ{P)In is positive semidefinite. Therefore, we have

-ffdη A <g, δfA 3/> Λ ωm-2=
ml

m\



596 J. CHEN AND S. LI

on D. Thus, combining this and Lemma 3.1, we conclude

Hence, at any point PeD, we have

Since at Po e D, the complex Hessian of η has at least two positive eigenvalues, by

continuity, the complex Hessian of η has at least two positive eigenvalues in a small

neighborhood UPo of Po. Thus, in UPo, the matrix

dzιdzJ

is positive definite, and so Γis non-singular. Therefore, 7c^α = 0 implies 5fΛ = 0 for all

α = 1,...,«, i.e., we have proved

djf* = O for all α and j

in the small neighborhood UPo of Po. Therefore / is holomorphic in a small neighborhood

of Po. Since / is a harmonic map from D to N, the analytic continuation theorem of

Siu (see [SI, Proposition 4]) implies that / is holomorphic on the whole D. •

COROLLARY 3.2. Let Ω be a bounded smooth hyper cony ex domain in Cm with m>\.

Let N be a complete Kάhler manifold with strongly seminegative curvature. Let f: Ω-*N

be a smooth map satisfying <^/=0 on dΩ. Then there is a unique holomorphic extension

F of f ' : dΩ->N such that F: Ω—>N is holomorphic in Ω.

PROOF. Since Ω is a bounded hyperconvex domain in Cm with smooth boundary,

the function η{z) — \z\2 is smooth on Ω. Note that the complex Hessian of η is the

identity matrix, and hence is positive definite everywhere on Ω. Then, as a direct

consequence of Theorem 1.1, we have obtain Corollary 3.2. •

By Hartogs' theorem and Corollary 3.2, we have:

COROLLARY 3.3. Let Ω be a smoothly bounded hyperconvex domain in Cm with

m>\. Then dΩ is connected.

PROOF. Suppose dΩ is not connected. Since Ω is connected, there is a connected

component of the boundary dΩ which bounds a domain ί2x in Cm so that Ω2 = Ω u Ω1

is a bounded domain in Cn. It is clear that dΩ = dΩ2uδΩί. Obviously both Ωt and Ω2

are hyperconvex by assumption and dΩι n dΩ2 = 0 . Now we consider a function on

dΩ such that / = 0 on dΩx and / = 1 on dΩ2. f trivially satisfies the tangential Cauchy-

Riemann equation on the boundary dΩ. By Corollary 3.2, we have a holomorphic

function f onΩ which has nontangential limit 1 on dΩ2 and 0 on dΩγ. Hartogs' theorem

asserts that / can be extended to a holomorphic function on Ω2, which equals 1 on

dΩ2. This implies / = 1 on Ω2, but / = 0 on dΩx<^Ω2, a contradiction. •
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