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SOME PREHOMOGENEOUS REPRESENTATIONS
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Abstract. Using the notion of Jordan pairs, we give an axiomatic construction of

some linear representation of an algebraic group over an arbitrary commutative ring.

This representation is prehomogeneous in the sense that all the geometric fibers are

prehomogeneous vector spaces modulo scalar multiplications. We also determine one

generic stabilizer.

Introduction.

1. Let k be a field. Consider a triple (G, θ, M) consisting of a reductive fc-group

G, and a finite-dimensional linear representation θ: G -• GL(M) which, after tensoring

with k and replacing G®kk by its simply connected cover, becomes isomorphic to the

semi-simple part of one of the following prehomogeneous vector spaces (notation is of

[Sato-Kimura, §7, I)]):

(5) = (GL(6),Λ3, F(20)),

(14) = (GL(l)xSp(3\

(23) = (GL(1) x Spίn{\2\ D ® half-spin rep., K(l)<g> F(32)), and

(29) = (GL(1) x £ 7 , Π®Λ6, V(l)® K(56)).

((5) is the third exterior power of the six-dimensional standard representation of GL(6),

and (14) is obtained from (5) via the inclusion Sp(3) -• GL(6).)

2. It is known that those (G, θ, M) in 1 are related to Jordan algebras J=H3(
(£)

of 3 x 3 Hermitian matrices with coefficients in various composition algebras # (cf.

[Freu, VIII]). Among the many works concerned with such (G, θ, M\ [Igusa] and

[Baily] are closely related to our research. For (G, θ, M) of type (14), (23), or (29) in

1, Igusa determined the quotient set G(k)\M and the corresponding stabilizers in G,

under the assumption that k is an algebraically closed field of characteristic different

from two and three (cf. [Igusa, §7]). On the other hand, using a Z-form of the real

octonion division algebra, Baily treated a triple (G, θ, M) over the ring of rational integers

such that the associated analytic group G(R) is a Lie group of type EΊ acting on a

bounded symmetric domain in C 2 7 (cf. [Baily]).
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To apply the theory of prehomogeneous vector spaces to number theory, we assume
k to be a global field. Then the main problem is to determine the quotient set
(k* xG(k))\M and the corresponding stabilizers in GmkxG (cf. [Wright-Yukie]).
Equivalently, considering the projective representation G -• Aut(P(M)) associated to θ,
the quotient set G(k)\P(M)(k) and the corresponding stabilizers in G need to be de-
termined. In general, one prehomogeneous vector space admits several forms over a
given field, on the choice of which the above problem depends. Instead of considering
all the forms of a special prehomogeneous vector space, we are trying to define a triple
(G, θ, M) over an arbitrary commutative ring such that some (or all, if possible,) of the
fibers have the property stated in 1. The construction of (G, θ, M) and almost all of the
calculations work over an arbitrary commutative ring. Also our construction contains
Baily's case, which is not of split type and causes special difficulties in characteristic
two. In fact, the desire to handle such a case leads us to considering schemes over Z,
and hence we are obliged to construct everything without assumption on the base ring.
In particular, we need to include the case of characteristics two and three, which are
avoided in [Igusa]. In this paper, we give an axiomatic construction of (G, θ, M) and
determine one stabilizer. More precisely:

3. Let k be an arbitrary commutative ring. Consider a quadruple (/; N, #, T) as the
data, where / is a finitely generated projective λ:-module, N a cubic form on /, i.e., N is
a homogeneous element of degree three of the symmetric algebra 5(ί/) of the fc-module
ί/ dual to /, # a quadratic map in /, which is a certain endomorphism of the fc-scheme
Spec £('/), and T a symmetric bilinear form on /, satisfying certain conditions (cf. §1).
Then:

(a) We define a &-group sheaf G with respect to the fppf topology and its linear
representation θ: G-+GL(M) in the A:-module M:=k®J®k®J.

(b) We choose one k-valued point u0 of the projective space />(M): = Proj5(ίM)
and determine its stabilizer CentG(w0) in G (cf. §3).

(c) We choose a quartic form feS^M) stabilized by G (cf. §4). Then the action
of G is induced on the open subscheme D+(f) of P(M). The point u0 in (b) belongs to

(d) Under some additional condition on (/; N, #, Γ), we prove that, for any
/c-algebra k -> K with K an algebraically closed field, the action of G(K) on D+(f)(K) is
transitive.

4. Main tools of our construction are the notion of Jordan pairs and the general
theory of associated algebraic groups both due to Loos (cf. [LJP], [LAG]). Also there
is an axiomatic construction of Jordan algebras /=// 3 (^) of 3 x 3 Hermitian matrices
by McCrimmon (cf. [Me]). We modify McCrimmon's construction to adapt to Loos's
theory, and obtain our quadruple (/; N, #, T) (cf. 1.1). To use the general theory of
Loos in the construction of (G, θ, M), we have to prove some identities through
complicated calculation (cf. 2.6-2.8). Once we get (G, 0, M) and the quartic form / on
M, which is taken from [Freu, I], the remaining part of this paper (§§3-4) is reduced
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to direct calculations.

5. Thanks are due to Professor Yasuo Morita for introducing the author to

this problem and giving him constant support and encouragement. Thanks are also due

to the referee for valuable comments, and to the members of the number theory seminar

of Tohoku University.

Terminology.

0.1. Throughout this paper, k is an arbitrary commutative associative unitary

ring, λ -alg stands for the category of commutative associative unitary /c-algebras. We

denote by λ>algA the category of k-functors, whose objects are set-valued covariant

functors on fc-alg and morphisms are natural transformations of functors. We fol-

low the general conventions of [D-G]. In particular, the category of k-schemes is

a full-subcategory of &-algA. By a k-sheaf we understand an fppf fc-sheaf. Ok e /:-algΛ

stands for the affine line, i.e., the forgetful functor. μfce/c-algA stands for the functor

R i—• R* : = {invertible elements of R}, which is an open subfunctor of Ok. For an integer

AI>0, we denote by nμk the functor R\-+{teR*\tn=l}.

0.2. Following [LAG, 1.4], we use the notion of dense subfunctors. Namely, for

Xek-a\gA and a subfunctor UaX, U is said to be dense in X if the following property

holds for any scalar extensions: any open subfunctor V of X has no closed subfunctor

Z c V containing Un V other than V. The next lemma is cited from [LAG, 1.5]. It is

based on [EGA IV, 11.10.10] and [SGA3, Exp. XVIII, Prop. 1.2].

LEMMA (cf. [LAG, 1.5]). Let X be a smooth separated algebraic k-scheme with

non-empty connected fibers, and U an open subscheme of X. Then the following conditions

are equivalent:

( i ) U is dense in X.

(ii) There exists an fppf extension R of k such that U(R)Φ0.

(iii) U(K) Φ 0 for any algebraically closed field Kek-alg.

0.3. Let M be a fc-module. We define /c-functors Ma, P(M\ and Mm by setting

P(M)(R): = {LI direct factor of MR and invertible as an i?-module} ,

Mm(R): = {xeMR\λ(x)=h3λe\MR)} ,

for Re/:-alg, where \MR) stands for the i^-module dual to MR. Denote by

PM : Mm -• P(M) the morphism of /c-functors sending x e Mm(R), R e &-alg, to pM(x): =

R x, the i^-submodule of MR spanned by x. If M is finitely generated and projective,

these A>functors are all ^-schemes and we have, in the terminology of EGA, Ma =

SpecSfM) and P(M) = ProjS(ίΛf) (cf. [EGA II, 4.2.3]). For example, we have ka =

Ok andkm = μk.

0.4. Let M, N be ^-modules. By a polynomial law on the couple (M, N), we
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understand a morphism of/^-functors Ma-+Na (cf. [Roby, p. 219]). Let/: Ma-+Na be

a polynomial law and p an integer >0. We say that/ i s homogeneous of degree p if

f(tx) = tpf(x) for all teR,xeMR, Rek-a\g. Denote by Θ{M, N) (resp. by ΘP{M, N)) the

Λxmodule of the polynomial laws (resp. those which are homogeneous of degree p) on

(M, TV). For N=k9 we write Θ(M): = Θ(M, k) and ΘP(M): = $P(M, k). Denote by N M the

^-module of the maps from the underlying set of M to that of N. We say that a map

QeNM is quadratic if β(/x) = ί2β(x) for ίeλ: and xeM, and if the map MxM^N

sending (x, y) to Q(x + y) — Q(x) — Q(y) is bilinear. In this case, we write

Q(x,y): = Q(x+y)-Q(x)-Q{y).

By definition, we have a natural map from ΘP(M, N) to NM, which is not injective in

general. However, this is the case if p<2. More precisely, Θ°(M, N) (resp. Θι{M, N),

Θ2{M, N)) is identified with the constant (resp. linear, quadratic) maps from M to N. We

refer to [Roby] and [Bou, IV, §5, Exercises] for details. For this reason, an element

of Θ2(M, N) is also called a quadratic map. Similarly, an element of Θ2(M) is called a

quadratic form. By a cubic (resp. quartic, ...) form on M, we understand an element of

ΘP(M) for p = 3 (resp. /? = 4,...).

0.5. Let M, iV be ^-modules and / a polynomial law on (M, N). (cf. 0.4). For

any x,yeMR, Rek-alg, we set

/(x + εy) = /(x) + εdyf(x) e NR[ε],

where R[έ] is the ring of dual numbers, to obtain the polynomial law dyfe 0(MR, NR).

This definition may be read as follows: the tangent bundle TMa of the fc-functor Ma can

be identified with Ma x Ma by means of TMa(R): = MR[ε]3a + eb\-*(a,b)eMR x MR. f

is a morphism Mα >̂ Na (cf. 0.4), from which the morphism Tf: TMa -+ TNa is induced.

Then we have

Tf(x,y) = (Λx),dyf(x))

for all x,yeMR, Rek-dλg.

1. Basic Jordan identities.

1.1. Consider a quadruple (/; TV, #, Γ), where / is a finitely generated projective

^-module, TV a cubic form (cf. 0.4) on /, ?*: x\-^»x* a quadratic map (cf. 0.4) from /

to /, and T a symmetric /:-bilinear form on /, satisfying the following two identities

(CJ1), (CJ2) and the condition (*): for all x, yeJR, Rek-dλg, we have

(CJ1) xn = N(x)x,

(CJ2) dyN(x)=T(x\y),

and

There exist cu c2eJ and a linear form λ on J such that
(*)

Nicjek* and l(c|)=l.
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The identities (CJ1) and (CJ2) should be read as commutative diagrams

and

(CJ2bis)

of k-schemes, where φ: OkxJa^Ja is the scalar multiplication and ̂ : Ja

χJa-*Ok is

the morphism sending (x, j/) to Γ(x#, jμ) (cf. 0.5). In the following, we fix such a quadruple

(/; N, #, Γ) and set

(1) x x ^ :

(2) Q(x)y: = T(x,y)x-x*xy,

(3) 7V(x, j ) : = 1 - T(x, y) + T(x\ y*)-N(x)N(y),

(4) P(x,y):=x-x*xy + N(x)y\

for all x,yeJR, Rek-a\g, to obtain a bilinear product x in / and polynomial laws

QeΘ2(J, End(/)), N( , )eΘ{JxJ\ P{ ,)eΘ(JxJ, J) (cf. 0.4). By definition, (x, y, Z)H>

Q(x, z)j; (cf. 0.4) is a trilinear product in /. Denote any scalar extension of it by { }

and let D(x, y)z: = {xyz}. Hence we have

(5) D(x, y)z: = {xyz} : = Q(x, z)y = T(x, y)z + T(y9 z)x-(zxx)xy ,

for all x, y, zeJR. Finally we set

(6) B(x, y)z:=z-{xyz} + Q(x)Q(y)z ,

to obtain a polynomial law BeΘ(JxJ, End(/)).

1.2. Let Rek-alg, and x, y, z, u, veJR. Since TV is a cubic form, there exists an

iWinear form N on the degree 3 component Γ3(JR) of the Γ-algebra Γ(JR) of JR such

that N{x) = (y3{x\ N} (cf. [Bou, IV, §5, exerc. 10)]). γp: JR^Γ(JR) (p>0) satisfy

1W+y2( y)y i(z

(cf. [Bou, IV, §5, exerc. 2)]), and we have T(u\ v) = dvN(u) = (γ2(u)γ1(v), N} by (CJ2).

Hence, applying <?, N} to the above identities, we get
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(CJ3) N{x + y) = N(x) + T(x*9 y) + T(x9 y*) + N(y),

(CJ4) T(x x y , z ) = N ( x , y9 z) = T(x, y x z ) ,

(CJ5) T(x*9x) = 3N(x)9

where N(x9y9z): = <γί(x)yί(y)y1(z)9Ny =

N(x) + N(y) + N(z). Since 7V(x, y, z) is symmetric, the latter equality of (CJ4) follows

from the former. Next, taking the scalar extension R->R[t2 to the polynomial ring in

one variable t9 replacing x by x + ty in (CJ1), expanding the result by using 1.1(1) and

(CJ3), and comparing the terms in t9 t
2, we get

(CJ6) x*χ(χχy) = N(x)y + T(x \y)x ,

(CJ7) x*xy* + {xxy)* = T(x\ y)y + T(x, y*)x .

Linearization of (CJ7) with respect to y yields

(CJ8) x* x (y x z)4-(x x y) x (x x z) = Γ(x#, j)z + Γ(x*, z)j + Γ(x, y x z)x .

Applying Γ(?, z) to (CJ6) with (CJ4) in mind, we get

(CJ9) N(x\ xxy9z) = N(x)T(y9 z) + T{x\ y)T{x, z).

If we interchange y and z in (CJ9), and calculate the left-hand side using (CJ4) and the

symmetry of N( , , ) , then the result is

(CJ10) N(x, x* x y, z) = N(x)T(y9 z)+T{x\ z)T(x, y).

Applying T(x\ ?) to (CJ7) with (CJ4), (CJ5), and (CJ1) in mind, we get

(CJ11) T{x\ (x x yf) = T(x\ yf + N(x)T(x, y*).

On the other hand, we have

(1) T(Q(x)u, v) = T(x, u)T(x9 v ) - T ( x \ u x υ ) 9

by 1.1(2) and (CJ4), which gives T(Q(x)u, v)=T(Q(x)v, w), since the right-hand side of

(1) is symmetric in u and v. However T is also symmetric by assumption. This gives

(2) T(Q(x)u,υ)=T(u,Q(x)υ).

Similarly, we have T(D(x, y)u, v) = T(x, y)Ί\u, v) + T(y, u)T(x, v) — T(u x x, υ x y) by 1.1(5)

and (CJ4), which gives

(3) T(D(x9y)u,v)=T(u9D(y9x)Ό).

Finally, using (2), (3), and 1.1(6), we get

(4) T(B(x9y)u9v) = T(u9B(y9x)υ).

1.3. Now we shall use the assumption (*) in 1.1. Recall that the Λ -functor

Ja: R i—• JR is a smooth separated algebraic /^-scheme with non-empty connected fibers
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(cf. 0.3). Moreover we have:

(a) The inverse image of Jm <= Ja under the morphism ?*: Ja^>Ja and the principal

open subscheme defined by the section NeΘ(J) are both dense in Ja.

(b) The morphism ?*: Ja-+Ja is scheme-theoretically dominant (cf. [EGA 1,5.4.2]).

Indeed, (a) follows from 0.2, and (b) amounts to saying that the corresponding

ring homomorphism Θ(J)->Θ(J), say φ, is injective (cf. [EGA I, 5.4.1]). This can be

verified as follows: since ?# is quadratic, we have φ(Θp(J))<^Θ2p{J) for all p>0. This

implies that ker φ is a homogeneous ideal. Thus it suffices to show that any homogeneous

element / of kerφ is zero. Indeed, choosing p>0 so that feΘp(J), we have 0 =

φ(f\x*) = f(x**) = f{N{x)x) (by (CS\)) = N{xYf(x). Hence / : Ja^Ok vanishes on the

principal open subscheme of Ja defined by the section NeΘ(J). This implies / = 0 , in

view of (a).

Using (a), we get

(CJ12) N(x*) = N(x)2,

(CJ13) JC x (JC* x y) = N(x)y + T(x, y)x*,

for all x,yeJR, Rek-sύg. Indeed, we have N(x*)x* = x*** = N(x)2x* by (CJ1). Hence

the morphisms No#: Ja-+Ok and N2: Ja -• Ofc coincide on the invese image of Jm^Ja

under the morphism ?*: Ja^Ja I n γ i e w of (a), this implies 7VΌ# = 7V2, namely (CJ12).

As for (CJ13), we fix y and consider the morphisms / : Ja%kR^Ja®kR sending x to

xx(x*xy) and g: Ja®kR^Ja®kR sending x to N(x)y + T(x, y)x*. Replacing x by x*

in (CJ6) and using (CJ1) and (CJ12), we get N(x)xx(x* xy) = N(x)2y + N(x)T(x, y)x\

namely N(x)f(x) = N(x)g(x). Hence the morphisms / and g coincide on the ®kR of

the principal open subscheme of Ja defined by the section NeΘ(J). In view of (a), this

implies f=g, namely (CJ13).

1.4 THEOREM (a modification of McCrimmon [Me, Th. 1]). The data {V±, Q±)

with V+ = V~ :=J, Q+=Q_: = Qisa Jordan pair over k, which has an invertitle element.

1.5. The proof of the theorem requires long calculations. Here we indicate its

outlines with some additional identities for later use. We first recall that (cf. [LJP, 1.2])

a Jordan pair over A: is a pair of λ -modules (V+, V~) together with a pair (Q+, Q_) of

quadratic maps Qσ: Vσ -»Hom(F~σ, Vσ), σ= ± , satisfying

(JP1) DJίx, y)Qσ(x) = Qσ(x)D_σ(y, x),

(JP2) DJLQJLx)y, y) = Dσ{x, Q-σ{y)x),

(JP3) Qσ{Qσ{χ)y)=Qσ{χ)Q-σ{y)Qσ(χ),

for all σ = ± , x e Vσ

R, y e V^σ, R e k-dλg. Here we set Dσ(x, y)z: = Qσ(x, z)y. An element

x in Vσ is said to be ίnvertible if the linear map Qσ(x): V~σ -• Vσ is invertible (cf. [LJP,

1.10]). Returning to the situation in 1.1, let Rek-a\g, and x, y, zeJR. By direct
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calculations using 1.2, we have Q(x)Q(x*) = N(x)2Id and Q(x*)Q(x) = N(x*)Id, which

become

(CJ14) Q(x)Q{x*) = Q(x*)Q(x) =

by (CJ12). Hence Qic^eEndiJ) is invertible for c1 in 1.1(*). Thus it remains to

check the defining identities of Jordan pairs. Start with taking the scalar extension

R-+R[t~\ to the polynomial ring in one variable t, replace x by x + tz in (CJ13), expand

the result by using 1.1(1) and (CJ3), and compare the terms in t. Then we get

(CJ15) x x ((x x z) x y) + z x (x# x y) = T(x\ z)y + Γ(x, y)x x z + Γ(y, z)x* .

Moreover, by direct calculations using 1.1(1), (2), and (CJ13, 1, 7), we have

(CJ16) (Q(χ)y)* = Q(χ*)y*.

We can now verify (JP1), (JP2), and (JP3) by straightforward calculations using (CJ6,

3), (CJ15, 8, 4), and (CJ16, 6, 15, 10), respectively. Thus the proof of the theorem is

complete. Let us introduce some more identities. Add 2N(x)y to (CJ6) (resp. (CJ13)),

use (CJ5), and subtract x* x(xxy) (resp. x x (x*xy)). Then we get

2N(x)y = T(x\ x)y + T(x\ y)x-x* x (x x y)

(resp. 2N{x)y = T(x\ x)y + T(x, yjx'-xx (x* xy)),

which in operator forms become

(CJ17) D(x, x*) = D(x\x) = 2N{x)Id ,

whose linearization yields

(CJ18) D{x, x x y) + D{y, x*) = D(x x y, z) + D(x\ y) = 2T{x\ y)lά .

1.6. From now on, we apply the notion of Jordan pair (cf. [ U P ] ) to (V±, Q±)

with V+ = V~ : = J, Q+ = Q_ : = Q. Recall that an element x of J is said to be invertible

if <2(x)eEnd(J) is invertible (cf. [ U P , 1.10]). In this case, x~ι\ = Q(x)~ιx is the

inverse of x (cf. [LJP, 1.10]). If N(x)ek*, then x is invertible by (CJ14), and we have
1 2 > 1x* by 1.1(1), (2), and (CJ1, 5).

PROPOSITION. An element x ofJ is invertible if and only if the scalar N(x) is invertible;

if that is the case, we have

(1) χ-ί=N(x)~ίx\

and, for any yeJ,

(2) N(x,y) = N(x)N(χ-1-y).

Indeed, we have N(x*-N(x)y) = N(x)2N{x, y) by (CJ3, 12, 1). Hence (2) follows

from (1). It remains to prove the implication: x invertible => N(x)ek*. This is a
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consequence of (CJ20) in the following lemma, since there exist cuyeJ such that
= cuN(c1)ek* (cf. 1.1(*)).

1.7 LEMMA. For all R e &-alg, and x,y,ze JR, we have

(CJ19) N(x xy)= T(x\ y)T(x, y*)-N(x)N(y),

(CJ20) N(Q(x)y) = N(x)2N(y),

(CJ21) N(B(x, y)z) = N(x, y)2N(z).

PROOF. Taking the scalar extension R-+R[t] to the polynomial ring in one
variable t, replacing x by x + ty in (CJ12), expanding the result, and comparing the
terms in t3, we get N(xxy) + N(x*9 xxy, y*) = 2N(x)N(y)+T(x\y)T(x, / ) , which
becomes (CJ19) by (CJ9) and (CJ5), (CJ20) follows from the expansion of the left-hand
side using 1.1(2), (CJ3), and (CJ19). For (CJ21) we may assume N(x) to be invertible,
since the principal open subscheme defined by the section (x, y) ι—• N(x) is dense in Ja x Ja

(cf. 0.2). Then x is invertible by the remark at the beginning of 1.6 (which is independent
of the proposition) and we have B{x,y) = Q{x)Q{x~ι-y) by [LJP, 2.12]. Thus the
assertion follows from (CJ20) and 1.6(2).

1.8. Recall that a pair (x, y) of elements of J is said to be quasi-ίnvertίble if
B(x,y)eEnά(J) is invertible (cf. [LJP, 3.2]). In this case, xy :=B(x, y)~1(x-Q(x)y) is
the quasi-inverse of (x, y) (cf. [LJP, 3.2]).

COROLLARY. A pair (x, y) of elements of J is quasi-ίnvertίble if and only if the
scalar N(x, y) is invertible; if that is the case, we have

(CJ22) x» = N(x,y)-1P{x,y),

(CJ23) {xyf = N(x, y)-\x*-N{x)y),

(CJ24) N(xy) = N(x, y)~ ιN{x),

and, for any z, weJ,

(CJ25) (B(x, y)z)* = N(x, y)2B(y, xy'z*,

(CJ26) (B(x, y)z) x (B(x, y)w) = N(x, y)2B(y, x)-\z x w).

The quasi-invertibility of (x, y) implies the invertibility of N(x, y) by (CJ21), since
there exist cί9 zeJ such that B(x, y)z = cί9 7V(c1)eA:*. Conversely if N(x, y) is invertible,
then we have B{x, y)z = x- Q(x)y and B(x, y)Q(z)y = Q(x)y for z\=N(x,y)~ιP{x,y) by
the following 1.9(3), (4). This implies the quasi-invertibility of (x, y) together with (CJ22)
by [LJP, 3.2 (ii)]. We have

(CJ23bis) P(x, yf - N(x, y)(x* -N(x)y),

by direct calculation using (CJ1, 6, 7, 13). Hence (CJ23) follows from (CJ22). Since
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(CJ26) is a linearization of (CJ25), it remains to verify (CJ24) and (CJ25). We may
assume x to be invertible, since the principal open subscheme defined by the section
(x,y)t-*N(x) is dense in JaxJa (cf. 0.2). Then, we have xy = (x~ι—y)~1, B(x,y) =
Q(x)Q(χ-1 -y),andB(y, x) = Q(x~' -y)Q{x)(cf. [UP, 2.12,3.13]). Hence(CJ24)follows
from 1.6(2), and (CJ25) can be verified as follows:

(B(x,y)zf = (Q(x)Q(x'ι-y)zf

= Qίχt)Qί(χ~1 - J ) V (by (CJ16))

= N(x)2N(χ-1-y)2Q{xΓιQ{χ-ι-yyiz* (by (CJ14))

= N(x,y)2B(y,xy1z* (by 1.6(2)).

1.9 LEMMA. For any x, y, ze JR, R e λ>alg, we have

(1) B(x, y)y*=y*-N(y)x-N(y)(x-Q(x)y),

(2) B(x,y\zxy) = zxP(y, x)+T(z, x)(y*-N(y)x)-T(z,y*\x-Q{x)y),

(3) B(x,y)P(x,y) = x-Q(x)y,

(4) B(x, y)Q(P(x, y)) = N(x, y)2Q{x)y ,

(5) B(x,y)(z-(zxx)xy+T(z, x*)y*) = N{x,y)z-T(z, P(y,x))(x-Q{x)y).

This lemma was used in the proof of 1.8 (also will be used in 2.7). All the formulas
can be proved independently of 1.8 by direct calculation.

1.10 LEMMA. For any x, y, ze JR, teR, Rek-alg such that (x, y) is quasi-invertible,
we have

(1) N(tx,z) = N(x9tz),

(2) P(tx,z) = P(x,tz),

(3) N(

(4) N(

PROOF. (1), (2): Direct consequences of the definitions 1.1(3), (4).
(3): We may assume x to be invertible, since the principal open subscheme

defined by the section (x,y,z)\-*N(x) is dense in JaxJaxJa. Then, by 1.6(2)
and (CJ24), we have N(xy, z) = N(xy)N((xyy1-z) = N(x,yyiN(x)N({χ-1-y)-z) =
N(x9 yy1N(x)N{χ-ί-{y + z)) = N(x, yy

ιN(x,y + z).
(4): We may assume (x, j -fz) to be quasi-invertible, since the principal open

subscheme defined by the section (x, y, z) i—• N(x, y + z) is dense in JaxJa

χ Ja

Then, by (CJ22), (3), and [UP, 3.7 (a)], we have P(x,y + z) = N(x, y + z)xy+z =
N(x9 y)N(xy, z)(xy)z = N(x9 y)P(xy, z\
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2. Representation.

2.0. In this section, let (J; N, #, T) be a quadruple as in 1.1, and we use the

following notation:

(/, /): the associated Jordan pair (cf. 1.4), i.e., the Jordan pair V=(V±, Q+) with

V+ = V-:=J,Q+ = Q_: = Q:Q(x)y: = T(x,y)x-x*xy(cf. 1.1(2)).

iV\ the scheme of quasi-invertible pairs in (/, /). This is precisely the principal

open subscheme of Ja x Ja defined by the section (x, y) ι-> N(x, y) (cf. 1.8), which is dense

in Ja x Ja.

Recall that the automorphism group Aut(F) of a Jordan pair V=(V±, Q±) is the

group of all (A + , h_)eGL(V+) x GL(V~) such that hσQσ(x) = Q(hσ{x))h_σ for σ = ± ,

xeVR, Rek-alg (cf. [LJP, 1.3]). The λ -group functor R\-+Aut(VR) is denoted by

Aut(K), which is an affine algebraic /:-group scheme (cf. [LAG, 2.3]).

2.1. Consider the k-gτoup scheme μk x GL(J)2 and denote any R-valued point h

of it in the form

(1) h =

where χ(h)eR* and λ + , h_ eGL(JR). Denote by H the subgroup scheme of μk x GL(J)2

whose i^-valued points is the group of /z's satisfying

(HI) T(h+x9h-y)=T{x,y),

(H3) N(h + ίx) = N(h.x) = χ(h)N(x),

for all x, yeJs, SeR-a\g. Note that we have

/ττ̂ i \ Syh+x) = Zvv rϊ-X •> (n+x) x {n+y) = χ(n) /z_(xxy),
(H2bis) ) # «

which is the linearization of (H2). Note also that the inclusion //-• μkxGL(J)2 is a

finitely presented closed immersion. Indeed, our definition amounts to saying that the

diagram
incl.

H • μkxGL(J)2

d

Spec A: — * Ea

is Cartesian, where E:=\J<g)J)x(92(J,J)2x@3(J)2, s : = t h e section corresponding to

(T, #, if, N, N)eE=Ea(k), and d(λ9 h + , A_) \ — {To(h+ ®//_), λhZ1 °§°h + , λ~ιh^.1 °%oh_,

λ~ιNoh + ι, λ~ιNohJ) for λeR*, h + , h^eGL(JR), Rek-sΛg. However the section s is

a finitely presented closed immersion, since E is a finitely generated projective ^-module.

In particular, H is an affine algebraic λ -group scheme. If h e H(R), then
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(2) hv:=(χ(hΓ\h-,h+)

also belongs to H(R) and Af—>/zv becomes an automorphism of H of period two. If

teR*, then

(3) z(t): = (Γ3, tld, rnd)

belongs to H(R) and, varying R, we get an inclusion z: μk^H, which factors through

the center of H. Define — 1 eH(k) to be z(— 1) and set

(4) -h.=z{-\)heH(R)

for heH(R), Rek-sdg. Then λi—• — h becomes an automorphism of H of period two.

Since we have χ(z(t)) = t ~3 by (3), the character χ: H-> μk is an epimorphism of ^-sheaves.

By 1.2(2), (CJ4), (CJ16), and 1.6(1),

(5) b(x): = (N(x\ Nixy'Qixl N(x)Q(χ-1))

belongs to H(R) for invertible xeJR.

2.2. We see from (H2bis) and 2.0 that p r 2 : H->GL(J)2 factors through

Aut(J, J). Since there exists x e / s u c h that N(x)ek* (cf. 1.1(*)), we see from (H3) that

the morphism H-+Aut(J, J) sending h to (/z + , h_) is a monomorphism. If heH(R) and

(x,y)eir(R), then

(1)

as well as (A + , /z_) belongs to Aut( J, J)(i?), while

(2) b(x, y) : = (N{x, y), N(x, y)'1^, y\ N(x, y)B{y, x)'1)

belongs to H(R) by 1.2(4), (CJ25), and (CJ21). Varying R, we get a homomorphism

p: H^>Aut(J,J) of λ>groups and a morphism b\Ψ' -*H of/:-schemes. Note that we

have

(3) p+(/*v) = P - W , P-(hΊ = P+(h),

(4) b(x9yr=b{y9xr1

9

by definition and 2.1(2).

2.3 LEMMA. ((J, J), H, p, ft) w α Jordan system and the kernel of p : //-> Aut( J, J)

zs1 the functor-image of 2l
ik(^lιk under z\ μk-+H.

PROOF. We first recall that (cf. [LAG, 5.1]) a Jordan system over A: is a quadruple

(F, H, p, b) where (1) F = ( K ± , Q±) is a Jordan pair with V± finitely generated projective

^-modules, (2) H is a separated fc-group sheaf, (3) p = (p + , p_) is a homomorphism

//-> Aut(F) of /^-groups, (4) ft is a morphism Ψ"^>H, with T ^ the scheme of quasi-

invertible pairs of V, satisfying
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(JSl) p(b(χ, y))=(B+(χ, y), B4y,

(JS2) hb(x, J

(JS3) b(tx,Γ1y) = b(x,y),

(JS4) fc(x, y)fo(xy, w) = b(x, y + w)9

(JS5) b(z,

for all Rek-alg, teR*, heH{R\ and x, ze Fj, y, we V^ such that (x,y), (x,y + w),

(x + z,y)e HT(R). Here we set, in the notation of 1.5, Bσ(u, v): = Id - Dσ(u, v) 4- Qσ(u)Q - » •

In our situation, (JSl) follows from the definitions (1) and (2) in 2.2, and (JS2-5) from

[LJP, 3.9] and 1.10. As for the last assertion, we have ρ(z{t)) = (t~2Id, t2Id) by

2.1(3) and 2.2(1). Hence pz is trivial on 2μk (cf. 0.1). Conversely if p(A)=l, then we

have A + = ί " 1 I d and h-=tld with t:=χ(h), from which we get t2 = \ by (H3). This

shows h = z(t) by 2.1(3).

2.4. Denote by (G, φ) the elementary system associated to the Jordan system

((J, J), //, p, b) in 2.2 (cf. [LAG, 5.2]). By definition, G is a separated &-group sheaf,

φ is an action μk x G -• G of μk on G, and we have a diagram

exp +, exp _

of k-group sheaves whose arrows are all monomorphic (cf. [LAG, 3.1, 3.3]). Hence,

//can be identified with its image, which coincides with the subgroup sheaf G^, the set

of fixed points of G under φ (cf. [LAG, 4.9]). Denote by Uσ (σ= ±) the functor-image

of expσ. Then, H normalizes Uσ and the multiplication U+ x U~ x Hx U+ -• G is an

epimorphism of/:-sheaves (cf. [LAG, 3.6, 3.8]). The multiplication U~ xHx U+ ->G

is an open immersion (cf. [LAG, 3.4]) whose functor-image Ω is dense in G (cf. [LAG,

3.8]). We have

exp+(x) exp _ (y) = exp _ (y x)b(x, y) exp+(xy)

for (x, y) e i^(R), Rek-a\g, and i^czjaχja coincides with the inverse image of ΩczG

under the morphism JaxJa-^G sending (x, y) to exp+(x)exp_(j>) (cf. [LAG, 4.1]).

2.5. Consider the ^-module

(1) M:=k@J®k®J=:\(CC U ) α,

and set

(2) 0O(A) ( ~ ~ ): = ( A V V ίQC h+a V
I Ί n I \ , , χ { h ) β J
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α a \ ( α a + ocx
(3) fl+W , , .

s# βj \b-\-axx + (xx β+T(b,x)+T(a,.

<AΛ ft i,Λ l'α α V ί « - ^ ί ) + m / ) - W a-bxy + βy*(4) θ - ω ' U J Λ *-̂  /»
a a\ (t~ι(χ a

(5)

( 6 ) ' βJ \a -a

for all Rek-a\g, heH(R\ teR*,x9y, a, beJR, and oc.βeR. Thus we have

(7) s2=-ld,

By (2), the endomorpshisms θo(h) of the i?-module MR are invertible and h i—> ΘO(Λ) is

a homomorphism. Since θ+(O) = Id and θ+(x)θ + (y) = θ+(x+y) by (3) and (CJ3, 4), it

follows, in view of (7) and (8), that the endmorphisms θσ(x) (σ=±) are also invertible

and x\->θσ(x) are homomorphisms. Varying R, we get a diagram

fl+,fl β0

of &>group schemes. Note that we have

(10) (lntφ(t)) (θo(h)) = θo(h),

(Π)

(12)

for teR*, heH(R), x,yeJR. In addition, we have

(13) θo(-h)=-θo(h),

for invertible xeJR, by (2), (3), (4), 2.1(4), (5), and straightforward calculation.

2.6 THEOREM. There exists a unique homomorphism θ: G —• GL(M) of k-group

sheaves extending θ0, θ + , and 0_; moreover, θ is a monomorphism.

To prove the first assertion, it suffices to verify

(1)

(2)
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(3) θ+(χ)θ-(y)=θ-(y*)θo(b(χ, y))θ+(χy),

for all Rek-a\g, heH(R), (x,y)eiT(R) (cf. [LAG, 4.14]). Direct calculation using

(HI, 2bis, 3) shows (1) and, in view of 2.5(8), (9) and 2.2(3), we see that (2) follows

from (1). We prove (3) in 2.8 after introducing some formulas. We now prove the last

assertion of the theorem on which the following 2.7 and 2.8 do not depend. Let g e G(R),

Rek-alg, such that θ(g) = ld. Then there exists an fppf extension S of R and x, y,zeJs,

heH(S) such that

gs = exp + (x) exp _ (y) exp+(z)h

(cf. 2.4). Hence we have Id = θ(gs) = θ+(x)θ-(y)θ+(z)θ0(h). In particular

Ό 0\ / -N(y) y*-N(y)x'

and

0 0 \ /O 0

are equal and we get N(y) = O,y* — N(y)x = O, i.e., >>* = O, and P(x, y) = O (cf. 1.1(4)),

i.e., ̂  = 0, successively. Hence gs = exp+(x + z)h. Thus we have Id = θ(gs) = θ+(x + z)θo(h).

In particular

1 O W 1 x + z )

,0 1 / V (* + ^)# 1+ΛΓ(JC + Z ) /

and

V 0
are equal and we get x + z = O. Hence gs = h. Now Id = θ(gs) = θ0(h) implies h= 1 by 2.5

(2) and, since R-+S is fppf and G is a sheaf, gs = h = l implies g=l. This shows the

last assertion.

2.7. For the proof of 2.6(3), we introduce some formulas. For any meM with

entries α, β, a, b (cf. 2.5(1)), we define polynomial laws mδeΘ(J), and mveΘ(J,J) by

setting

(1) (* a

n)\w):=oι-T(a,w)+T(b,w*)-βN(w),

(2) (b

for all weJR, Rek-a\g (cf. 0.4).
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LEMMA. The map M-+Θ(J)xΘ(J, J) sending m to (mδ, mx) is injectίve k-linear,

and the following formulas hold for all meM, heH(k), x, yeJ, tek* and weJR, Re

k-alg such that (w, x) is quasi-invertible:

(3)

(4)

(5)

(6)

(7) (θo(h)

(8) (θo(h)-mγ(w) = h+mv(p_(hΓίw),

(9) (θ+(x) - m)δ(w) = N{x, w)mδ{wx),

(10) (θ+(x) m)v{w) = (θ+(x) m)δ(w)xw + N(x, w)B(x9

PROOF. m\-^(mδ,mv) is ^-linear by the definitions (1) and (2). To show the

injectivity, let mδ = 0 and m v = 0 for meM with entries α, /?, α, A. Then we have, by (1)

and (2), oc = mδ(O) = O and a = mv(0) = 0. Moreover, if t is a variable over k and we/,

then βN(w)ek is the coefficient of ί3 in mδ(tw)ek[t~\ and there exists weJ such that

N(w) G k* (cf. 1.1 (*)). This shows β = 0. There remain relations T(b, w *) = 0 and b x w = 0,

which yield 6 = 0, since 0 = (ixκ/)x w# = 7V(w)ό + Γ(w*, Z?)w = 7V(w)ί? by (CJ6). Thus we

get m = 0, which shows the injectivity. Let us show the latter half of the proposition.

By the definitions (1), (2) and 2.5(4), we have

mV) ™

(notation as in (1), (2)). Hence (3) and (4) follows from the fact that #_ is a

homomorphism (cf. 2.5). On the other hand, (5) and (6) follow from

t~1m\w) m\tw

t{b-βtw) t2β

(cf. 2.5(5), (12)). Moreover we have, by (1), (2) and 2.5(2),

(θo(h) m)δ(w) = χ(hΓ1a-T(h + a, w) + Γ(A_fc, w*)-χ(h)βN(w),

(θo(h) - m)v(w) = h+a-(h-b) x w + χ(h)βw*,

from which (7) and (8) follow, in view of 2.1(H1), (H2bis), (H3). Finally, we have

(9bis) (0+(x) m)\w) = <xN(x, w) - T(a, P(w, x)) + T(b, ws - N(w)x) - βN(w)

and

(lObis) (θ+(x) m)\w) = oiP{x, w) + a-{axx) xw + T{a, x*)w*-b x w + T{b, x)w* + β
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by (1), (2), 2.5(3) and (CJ6). Thus (9) follows from (9bis) and (CJ22, 23, 24). (10) acted
on by B(x, w) becomes

B(x, w)(θ + (x) m)\w) = (θ+(x) m)δ(w)(x - Q(x)w) + N(x, w)m v(w x),

which we prove by acting B{x, w) on (lObis) and by using 1.9(1), (2), (3), (5), (CJ22,
23, 24) and the above (9bis).

2.8 Verification of 2.6(3). Now we show the identity Θ4y)θ+(x) = θ+(xy)θo(b(x,
y)~ γ)θ-(yx) which becomes 2.6(3) after we take inverses and replace (x, y) by ( — x, — y).
After taking scalar extension and applying the first part of the lemma in 2.7, we are
reduced to verifying the equalities of polynomial laws

(1) (θ-(yWΛχ) • m)a=(θΛχy)θMχ, y)~ ι)θ-(yx) mf,

(2) (θ

for arbitrary (x, y) e W(k) and meM. For this, it suffices to verify the equalities of the
values at weJR, Rek-Λ\g such that (w,xy) is quasi-invertible, since such w's form a
dense subscheme of /„. Then the following calculations work:

= N(x>, w)(θo(b(x, yyι)ΘΛyx) m)\w<χy)) (by 2.7(9))

= N{x\ w)N(x, y\ΘΛyx) • mf(B(y, x)~ V*^)) (by 2.7(7))

= N(x,y + w)m\yx + B{y,x)-\w^y))) (by 2.7(3), 1.9(3))

= N(x, y + w)mδ((y + w)x) (by [UP, 3.7 (2)])

= φ+(x) rήf(y + w) (by 2.7(9))

= (θ.(y)θ+(x)'mf(w) (by 2.7(3)),

from which (1) follows. Moreover

(M*W>(*, yΓ'KU^) ™)VM
=(θ+(χy)θo(b(χ, yTι)θΛyx) m)\w){xψ

+ N(x", w)B{x\ w)-1(fl0(ίKx.y)"1)β-(j'x) /n)ϊ(w(χS')) (by 2.7(10))

= {θ_{y)θ+(x) m)\w)xy + w

+ N(xy, w)B(x\ wyiN(x,y)B(x,y)-1(θ4yx)'mY(B{y,x)-1w(χy))

(by (1) above, 2.7(8), [LJP, 3.7 (1)])

= (θ + (JC) m)\y + w)xy + w + N(x, y + w)B(x, y + w)'1mv((y + w)x)

(by 2.7(3), (4), 1.10(3), [LJP, 3.6 (JP33), 3.7 (2)])

= {θ+(x) mny + w) (by 2.7(10))

=(β_Cv)β+(x) ifi)v(w) (by 2.7(4)),

from which (2) follows. This completes the verification of 2.6(3).
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3. Stabilizer.

3.0. We keep the notation in §2. The representation θ induces linear and projective

representations

μkxG->GL(M)

and

respectively. Note that, if meMJk) (cf. 0.3), then pr 2 : μkxG-^G induces an

isomorphism

Centμk x G(m) ^ CentG(pM(m)),

since Mm is a μΛ-torsor with structure morphism pM\ Mm->P(M). We consider the

element

" o - Z ' Λ l e W t ) , where mo: = ί

The purpose of this section is to determine the stabilizer of u0 in G, which is canonically

isomorphic to that of ra0 in μk x G.

3.1. We first introduce a notational convention. Recall that θ is a monomorphism

(cf. 2.6) and the image of G(k) under θ(k) contains εeGL(M) (cf. 2.5(14)). We regard

ε as an element of G(k) via θ. Thus we have

(1) ε 2 = - l ,

(2) ehε'ι=hv ,

(3) exp+(x) exp _ (x ~x) exp+(*)=- b(x)ε ,

for ΛeJ7(Λ), and invertible xeJR, Rek-alg (cf. 2.5(7), (9), (13), (14)).

3.2. Let H'^Hbe the kernel of the character h^χ(hf of H (cf. 2.1). If h =

(χ(h), h + , h_)sH\R\ Rek-a\g, then

s(h):=(λ,λ2h_,λ2h + ) with λ: = χ(h)

belongs to ^'(i?). Indeed, since A 4 = l , we have z(/l2) = (/l2, 2 2Id, A2Id) (cf. 2.1(3)), and

hence s{h) = z{λ2)hw eH(R) (cf. 2.1(2)). In particular, we have

(1) χ(s(h)) = χ(h),

from which s(h) e H'(R) follows. Thus we get an automorphism s\ h\-> s(h) of the &-group

H' of period two. Let the constant A:-group (Z/2Z)k act on H' via s (cf. [D-G, II, §1,

3.3 a)]), and construct the semi-direct product H' xs(Z/2Z)k. Hence we have

(2) (Kf)'(h\f) = (hsf(h% /*/ ' ) ,
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for all ft, h'eH'(R\ and /, f e{Z/2Z)k{R\ Rek-alg, where we regard (Z/2Z)k{R) as the

group of idempotents in R with operation / * / ' : = / + / ' — 2// ' (cf. [D-G, III, §5,

2.4]), and sf{h')eH'{R) is the element corresponding to ψ, s{h'))eH\RX_f)xH\Rf)

under the decomposition R^R1_fxRf of i? with respect to the idempotent /. Therefore,

in view of (1),

is a character. Moreover, since the morphism (Z/2Z)k -» 2μk sending / t o 1 — 2/ is also

a character, we can define a character χ': H'xs(Z/2Z)k^> 2μk by setting

(3) χ'(ft,/): = χ(ft)2(l-2/),

for heH'{R) and fe{Z/2Z)k(R\ Rek-alg. Let i/"c/Γ xs(Z/2Z)k be the kernel of χ'.

Hence we have

(4) H"(R) = {(ft, f)eH(R)xR\f2 =f χ(h)2 = 1-2/},

for all i? e A -alg. For any (ft, /) ε #"(/*), R e /c-alg, define /(ft, /) ε G(R) to be the element

with components (h,hε)eG(R1_f)xG(Rf) under the decomposition R~Rί-fx Rf.

Varying R, we get a morphism

/ : H" -> G

of fc-sheaves.

3.3. THEOREM. / w α homomorphism of k-group sheaves and factors into the

composite

) G

whose first arrow is an isomorphism.

3.4. First, we show that / is a homomorphsim. Consider (ft,/), (ft', f')eH'(R)9

R e k-alg, and describe any element in G(R) in terms of four components with respect

to the decomposition

(1) R-R(i -/)(i -/') x ^(i -/)/' x Rf(i-D x Rff

of i£. Then we have

/(ft, /) = (ft, ft, ftε, Ac) and /(ft', / ' ) = (ft', ft'ε, ft', ft 'ε)

by definition, so that we have

(2) /(ft, /)/(ft', /') = (ftft', ftft'ε, ft(ft')vε, -ft(ft')v)

by 3.1(1), (2). On the other hand, we have

(3) /((ft, /)(ft\ f)) = {hsf(h% hsf(h% hsf(h% hsf{h'))
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by 3.2(2). However, by 3.2(4) and the formula s(h) = z(χ(h)2)hy, the components

of sf{hf)eH\R) with respect to R-R^ xRf is {h\s{h')) = {h\z(\-2f')h'w)e

H\Ri_f)xH\Rf\ and that of \-2feR with respect to Rz*Ri_rxR'f is (1, -1).

Thus we have

(4) sf{h') = {h\h\{h')\ -(*') v)

with respect to (1). Hence, by (2), (3), and (4), we get /((ft, /)(/*', /'))=/(Λ, /)/(/*', /').

3.5. Next, we show that/is a monomorphism. Consider (h,f)eH"(R), Rek-dλg

such that /(ft, f)=lG(Ry Then we have h— 1 in G(R1_f) and Aε = 1 in G(Rf). Hence we

have h=—ε in GCRy) (cf. 3.1(1)), which yields /z=l and — ε = l in G(Rf), since

HnU+U~U+ is trivial (cf. [LAG, 3.6 (c)]). In particular, we have A = l in H(R).

Moreover, in view of 2.5(6), — ε = l occurs only when Rf = 0. Thus we have/=0.

3.6. For any (ft, /) e H"{R\ R e&-alg, we have

Indeed, since /(ft, /) = (ft, ftε) and χ(h)2 = 1 - 2f= (1 ,-1) with respect to the

decomposition R^R^^-fXRf (cf. 3.2(3), (4)), we have

.0 1 / V 0 χ(h)

and

θ(f(h,f)) \ ' " I =θo(hε) { * " ) = ( Λ V V ' ° WtfAΓ1! 1 °
I , J ' 0 1 0 -γ(h) VO 1

from which the assertion follows. Thus the morphism / : H" -+G factors through

CentG(w0). The resulting morphism / ' : H" -• CentG(w0) is a monomorphism, since so is /

(cf. 3.5). To complete the proof of Theorem 3.3, it remains to show that / ' is an

epίmorphism (cf. [D-G, III, §1, 2.1]). In view of 2.4, the question is reduced to the

following lemma:

3.7 LEMMA. Let R efc-alg, v e R*, x9 y, z e JR and h e H(R) such that

1 0\ (\ 0
(i) vθ+(χ)θΛy)θ+(z)θ0(h) x o

Then, there exists an idempotent feR and an element h'EH(R) with the following

properties'.

( i ) χ(h')2 = l-2f,

(ii) χ(h') = v,

(iii) the components of g: = exp+(x)exp_(y)Qxγ>+(z)he G(R) with respect to the

decomposition Rc^R^^_f x Rf are (h\ h'ε)eG(R1 _f) x G(Rf).
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PROOF. We define α, teR and ae / κ , depending on (v, x, y, z, h), by

(2)

(3) *: = N(z,y)-tN(y)9

(4) a:=z-z*xy + (N(z) + t)y*.

Then direct calculation shows that (1) is equivalent to the four conditions:

(5) « = χ(A)v-1,

(6) α 3 - t2N(y)(T(z, y)-z)- tN(z, y)(T(z, j/) - 1 ) ,

(7) y = Q(y)z,

(8) χ=-(χ-1a.

By (2), (3) and (5), we have

(9) χ(hy1vN(z,y)-χ(h)vN(y)=\.

Moreover, by (7), we have

(10) N(z9y)N(y) = 0.

Indeed, the left-hand side equals N(y)-N(y)2N(z)-T(y, z)N(y) + T(y\ z*)N(y) (cf.

1.1(4)). Acting N(Ί) and Q(y*) on (7) with (CJ20, 1, 5, 14) in mind, we get N(y) =

N(y)2N(z) and N(y)y* = N(y)2z. Hence we have T(y, z)N(y)=T(y, z)N(y)2N(z) =

T(y9 N(y)y*)N(z) = 3N(y)2N(z) = 3N(y\ and T(y\ z*)N(y)=T(N(y)2z, z*) = 3N(y)2N(z) =

3N(y) (cf. (CJ5)). Thus (10) holds. By (9) and (10), the element

f:=-χ{h)vN{y)

of R is an idempotent. Since y becomes invertible after the scalar extension R^>Rf (cf.

1.6), we can define h'eH(R) to be the element with components (h, —b(y~1)hs/)e

H(R1_f) x H(Rf) (cf. 2.1) with respect to the decomposition R^Rx_fx Rf. We claim

that (/, h') is what we want. Namely:

(a) After the scalar extension R^R^-j, we have χ(h')2 = l—2f,χ(h') = v, and

g = h'. Indeed, (y,z) becomes quasi-invertible by (9) and 1.7, and we have B(y, z)y =

B(y, z)Q{y)z = Q(y-Q{y)z) = 0 by (7) and [LJP, 2.11 (JP23)], from which we get y = 0.

Then we have 1 =χ(h)y-1 (by (3), (5)), 1 =χ(h)2 (by (2), (3), (6)), x= -z (by (3), (4),

(8)), and # = exp + (;c)exp_(}>)exp+(z)/z = /ί. Thus the assertion follows, since we have

h' = h and 1 - 2 / = ( l -2/)( l -/)/(l - / ) = 1 after our scalar extension.

(b) After the scalar extension R -• Rf, we have χ(h')2 = 1 — 2/, χ(h') = v, and g = h'ε.

Indeed, y becomes invertible by 1.6, and we have z=y~x by (7), from which we get

N(z,y) = 0, T(z,y) = 3, z*xy = 2z, and y* = N(z)~1z, in view of 1.6(2), (CJ5), and (CJ1).

Then we have v = - N(y) ~ ̂ h) ~' (by (2), (3), (5)), N(y)2χ(h)2 = -1 (by (2), (3), (6)), x=y~1

(by (2), (3), (4), (8)), and ^ = 1 ( ) Λ
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— b(x)εh=—b(y~1)hvε (by 3.1(2), (3)). Thus the assertion follows, since we have

h'=-b{y-χ)h\ l - 2 / = ( l - 2 / W = - l , χ{h')=-N{yyιχ{hyι (by 2.1(1), (4)) after

our scalar extension.

4. Freudenthal quartic and transitivity.

4.0. Recall that (/; N, #, T) is a quadruple as in 1.1, that G is the fc-group sheaf

defined in 2.4, and that M is the /c-module k@J@k@J (cf. 2.5), on which G acts via

the representation θ defined in 2.6. Recall also that we have two vector subgroups Uσ

( σ = ± ) of G together with isomorphisms Ja^Uσ (cf. 2.4), and that the composite

Ja~Uσ^G Λ G X ( M ) coincides with θσ: Ja^GL(M) described in 2.5(3), (4). The

purpose of this section is to show that the projective representation G -• Aut(P(M))

associated to θ admits a G-stable open subscheme Fc?(M) such that, under some

condition on (J TV, #, T), the action of G(K) on the set Y(K) is transitive for any

algebraically closed field Kek-sdg (cf. 4.4, Corollary 1). Yis the principal open subscheme

defined by the "Freudenthal quartic" (cf. 4.1).

4.1. Consider the quartic form (cf. 0.4) feθ\M) and the alternating form

{ , }e\/\2M) such that

(1) f

for all α, α', β, β'eR, and a9b,a\b'eJR, Rek-alg. By calculation, we see that G

stabilizes f and { , }. Denote by (Ma)f (resp. D+(f)) the principal open subscheme of

Ma (resp. P(M)) defined by the section fe Θ\M\ and define subschemes (Mα)/, (MJ/ +

α a

b β

α 0

ε{Ma)f{R) ixeR'

for R e k-a\g. Since G stabilizes /, the subscheme (Ma)f is stable under G, and so is D+(f).

4.2 PROPOSITION. If Kek-a\g is an algebraically closed field, then we have

{Ma)ϊ(K)=U+(K)U-(K) ( M j ; +(K).

This follows from the same argument as in [Igusa, pp. 427-428].

4.3. Consider the following condition on a quadruple (J; N, if, 7"):

(**) For any field Kek-sΛg of characteristic different from two, the symmetric bilinear

form (x, y) \-+ T(x, y) on Jκ is non-degenerate.
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PROPOSITION. Under the assumption (**), we have

(Ma)f(K)=U-(K)-(Ma)}(K),

for any infinite field Kek-oλg.

PROOF. In view of 2.5(4) and 2.7(1), it suffices to show that for any ms(Ma)f(K)

there exists weJκ such that mδ(w)eK*. Then we are reduced to showing that the

polynomial law mδeΘ(Jκ) (cf. 0.4) is not zero, since K is an infinite field (cf. [Bou, IV,

§2, no 3, Cor. 2 of Prop. 9]). In general, we have

(1) {meM\m 0} ί(b

Indeed, the left-hand side contains the right-hand side by the definition 2.7(1). To see

the converse, let mδ = 0 for meMwith entries α, β, a, b. Then, equating the homogeneous

components of the polynomial mδ to zero, we get α = 0, T(a, Ί) = 0eΘ1{J), T(b, ?*) =

0e(92(J), and βN=0eΘ3(J). However this also implies T(b, ?) = 0 and β = 09 since the

morphism ?* is scheme-theoretically dominant (cf. 1.3(b)) and there exists cίeJ such

that Nfcjek* (cf. 1.1(*)). This shows (1). Now apply (1) after the scalar extension

k->K. If char(ΛΓ)#2, the right-hand side of (1) is {0} by our assumption (**), and if

cha,rK=2, we have f(m) = 0 for all m in the right-hand side of (1). In all cases, we have

{meMκ\mδ = 0} = {meMκ\f(m) = 0}, i.e., mδeΘ(Jκ) is not zero if me(Ma)f(K).

4.4. Let us assume the condition (**) in 4.3.

COROLLARY 1. For any algebraically closed field Kek-a\g, the action of G(K) on

D+(f)(K) is transitive.

In view of the canonical bijection {x e Mκ\ f(x) e K*}/K* ^ D+(f)(K), this follows

from:

COROLLARY 2. For any algebraically closed field Kek-a\g, the set (Ma)f(K) is a

single orbit under K* x G(K).

Indeed, if m, m'e(Ma)f(K), there exists teK* such that tA' = f(m)~1f(m'), since K

is algebraically closed. For such t, we have f(tm)=f(mf), since / is a quartic form (cf.

0.4). Now the assertion follows from:

COROLLARY 3. For any algebraically closed field Kek-alg and ieK*, the set

{meMκ\ f(m) = i} is a single orbit under G(K).

PROOF. By 4.2 and 4.3, we are reduced to verifying that two elements

/ α θ \ ,
m = \ and m =\

\0 β) V0
of Mκ are conjugate under G(K) if (ccβ)2 = (oc'β')2, or, in view of the action of ε, if

(xβ = oc'βf. Since χ:H-+μk is an epίmorphism of λ>sheaves (cf. 2.1), there exists
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heH(K) such that χ(h) = β'-1β. For such A, we have θo(h) m = m' (cf. 2.5(2)).

This corollary was proved by Igusa in [Igusa, p. 428] in the case where
2,3.
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