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Abstract. The technique of dimensional reduction of an integrable system
usually requires symmetry arising from a group action. In this paper we study a
situation in which a dimensional reduction can be achieved despite the absence
of any such global symmetry. We consider certain holomorphic vector bundles
over a Kahler manifold which is itself the total space of a fiber bundle over a
Kahler manifold. We establish an equivalence between invariant solutions to the
Hermitian-Einstein equations on such bundles, and general solutions to a coupled
system of equations defined on holomorphic bundles over the base Kahler man-
ifold. The latter equations are the Coupled Vortex Equations. Our results thus
generalize the dimensional reduction results of Garcίa-Prada, which apply when
the fiber bundle is a product and the fiber is the complex projective line.
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1. Introduction. Techniques involving dimensional reduction are important
in many areas of mathematical physics when one is looking at solutions to partial
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differential equations which are invariant under a group of symmetries. The term
'dimensional reduction' then refers to the fact that the invariant solutions to the
original equation can be interpreted as ordinary solutions to a related set of equations
on the (lower dimensional) orbit space of the group action. The latter in their own right
can be the equations of an equally important physical system and correspondences
between these two systems involve exploiting a whole range of mathematical ideas
(examples relating to monopole and soliton type equations can be found e.g. in [37]).

The vortex equations were first studied (over R2) by Ginsburg and Landau [19] in
the study of superconductivity and their mathematical framework was later developed
in the book of Jaffe and Taubes [28]. Taubes in [44] showed that a reduction of
the anti-self-dual equations on R2 x S2 led to the vortex equations on R2 and by
analogous means, Witten [51], on taking H2 x S2, obtained the vortex equations on the
hyperbolic plane H2. The holomorphic geometry of these equations over a compact
Kahler manifold X along with their corresponding moduli spaces was studied by the
first author in [6], [7], [8], [10]. Garcίa-Prada in [17], [18] showed that the coupled
vortex equations over X could in fact be obtained as a dimensional reduction of the
Hermitian-Einstein equations over X x CP1, and in effect generalized the cases studied
in [44] and [51]. When dime X = 2, the abelian vortex equations are known to be
equivalent to the Seiberg- Witten equations [43], [50], [10].

In [11] we generalized the Garcia-Prada technique of dimensional reduction from
the case X x CP1 to a projectively flat CP1-bundle over X. In this paper, we
consider a generalization from the fiber CP1 to the case of a fiber F which is a
compact symmetric Kahler manifold. Thus we consider holomorphic Kahlerian fiber
bundles F —> M —• X, where M is taken to have a flat structure. The holomorphic
vector bundles on M that we study are the analogues of the S£/(2)-equivariant bundles
considered in [17], [18]. We show that such bundles correspond to holomorphic objects
on X. These objects are holomorphic triples consisting of a pair of holomorphic
bundles together with a holomorphic bundle map between them. Our main result
(Theorem 8.9) establishes an equivalence between special solutions to the Hermitian-
Einstein equations on the bundles over M and general solutions to the Coupled Vortex
Equations on the corresponding triples on X. It is in this sense that our main result
can be viewed as a dimensional reduction result.

An outline of the paper is as follows. As apparent in [11], an essential difference
from [18] is that the 5[/(2)-orbits appearing there are generalized to the leaves of a
foliation by the fibers F as above. So in §2, we establish some concepts from the theory
of Riemannian foliations, in particular a general structure theorem for vector bundles
over generalized flat bundles and the notion of extendability to M of bundles and forms
defined over F; here the flat structure on M plays a crucial role. Although foliation
methods are motivationally important (cf. [20]), the eventual reduction procedure is
achieved by making substantial modifications to the holomorphic-geometric approach
of [18].
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In §3 we present a short discussion of equivariant and homogeneous bundles. In
§4 we establish a generalization of the Borel-Leray spectral sequence (as given in [27])
for non-trivial coefficient bundles on the fiber, that in §5 leads to a Kunneth formula
in Hodge cohomology (with non-trivial coefficients). In §6 we turn to an important
class of examples namely, holomorphic projective bundles CPι °-> M —> X. Quite
naturally it is the most geometrically realizable case. It is necessary to look at the
essential topological aspects and make note of the differences between the GL(l + 1)
and PGL(l + l) cases. Then we adapt the main results of §5 to establish the necessary
vanishing theorems which are needed later.

Having recalled the notion of the Ext functor, we proceed in §7 to apply the main
results of §5 and §6 to obtain an essential parametrization of certain holomorphic ex-
tensions over M by basic sections. In §8 we start by formulating some results which
yield base and fiber degree invariants of the various bundles defined on X and F re-
spectively. In the latter case, the extension of objects to M involves subtle technical
work which is incumbent upon the flat structure and justifies certain calibration con-
ditions on the fiber. In §8 we establish the main result of the paper which proves that
the classes of holomorphic vector bundles on M described in §7, when endowed with a
Hermitian-Einstein metric connection, reduce to the Coupled Vortex equations on X,
and conversely. We also establish a number of formulas relating the parameters of the
vortex equations to the slopes of the various bundles featuring in the construction.

The important example of the CP^-fibration reappears in §9 where the necessary
hypotheses needed in the main result of §8 are automatically satisfied. Following this
we state explicit formulas for computing the fiberwise invariants. In §10 we introduce
the notion of holomorphic triples and the relationship with solutions of the Coupled
Vortex equations. With regards to these, we establish a priori estimates for solutions
and stability. We conclude with an appendix which accounts for the topological details
needed in completing our description of the geometric structure of projectively flat
bundles over X.
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2. Generalized flat fiber bundles and Riemannian foliations. Let M
be a compact oriented Riemannian manifold and let T be an oriented foliation on
M. Denoting by TT the tangent bundle along the leaves of T and by Q the normal
bundle, we have the exact sequence

O^Tf —>TM — > Q ^ 0 .

The metric QM on M gives the identification TT^ = Q and #M = 9τT + 9Q The
foliation (M,T) is said to be Riemannian if QQ is T-holonomy invariant; specifically,
for all Z G C00^^), the Lie invariance condition LZ9Q = 0 is satisfied. Henceforth
we assume that (M, T) is a Riemannian foliation (for further details see e.g. [39]). The
type of Riemannian fibrations which we will consider are seen as particular cases. An
important class of examples is provided by the following general construction which
will be implemented in the following sections.

EXAMPLE 2.1. Let X be a compact Riemannian manifold with fundamental
group Γ = τri(X) and universal covering I , F a compact Riemannian manifold and
a a representation

α : Γ - D i f f o ( F ) ,

into the orientation-preserving diffeomorphisms of F. We consider the action of 7 G Γ
on X x F given by

Let M be the quotient of X x F by this action. There are two foliations which can
be considered on the generalized flat bundle [29]

(2.1) F^ M = X xΓF -^ X

(1) the foliation (M, Tπ) by the fibers of π;
(2) the foliation (M,^*α) by the holonomy covers X.
For a bundle-like metric gM on M of the form π*gχ + gτ(π), the fibration π is

a Riemannian submersion and hence (M,Tπ) is a Riemannian foliation such that the
transverse metric gQ{^Ή) = π*gχ. It is well-known (e.g. [30]) that this is equivalent to
(M, To) being totally geodesic. If a: Γ —>Iso(F) is a representation into the isometries
of F, then a bundle-like metric gM on M is induced by the product metric π*gχ + P * ^ F

o n l x F via the natural projection p: X x F —> F. In this case, the foliation (M, TQ)
is also Riemannian and consequently (M, T^) is totally geodesic.

Let G be a connected Lie group and φ: P —> M a principal G-bundle. We say
that P is foliated if P has a foliation .F obtained by a choice of horizontal lifting of
T (cf. [29], [16]). Specifically, for tangent vector fields Z G C°°(TT), there is a lift
Z e C°°(T^) such that:

(1) Z is G-invariant and hence -0-projectable, that is, φ*Z = Z and Rg*Z = Z
for all ^ G C;
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(2) [Z, Y]~ = [Z, Ϋ] for all Z, Y e C°°(TF).
Thus for each p 6 P , the differential ψ*: TpP —> Tψ(p)M maps the tangent space

TVT isomorphically onto the tangent space Tψ^T and the action of G on P permutes
the leaves of T. The definition carries over in the usual way to any vector bundle
8 —• M associated with P.

Associated to T is its holonomy groupoid Qjr [49], whereby a vector bundle E —> M
is said to be Qjr-equivariant if there is an action of Q? on the fibers of E via holonomy
transport. Conversely, a foliated bundle E —> M is naturally a Qπ-equivariant bundle
with respect to the fundamental groupoid QΈ —> Qjr of homotopy clases of paths along
the leaves of T. For further details see [13], [49].

Recall that p : X x F —* F is the natural projection. Then if V is a .Γ-equivariant
vector bundle over F, we obtain an extension V of V to M by

(2.2) V = p*V/a ^X xΓV ^ M = X xΓF,

with the restriction property

(2.3) V\F = V.

Next, we state a structure theorem for <7jτ-equivariant bundles on a generalized
flat bundle M.

THEOREM 2.2. For M = X xp F as in Example 2.1, the equiυariant vector
bundles are described as follows.

(1) There is a one to one correspondence between vector bundles W over X and
Qp^-equivariant vector bundles on M, given by W —• π*W.

(2) There is a one to one correspondence between Γ-equivariant vector bundles
V over F and Qjra-equivariant vector bundles on M, given by V -^ V= p*V/a, where
V is the extension of V to M in (2.2).

PROOF. The foliation (M, T^) is a fibration and the holonomy groupoid Qjrn is
given by the fiber product

M xxM
 pri ) M

(2.4) p

M ^-^ X ,

which records the fact that TΉ has trivial holonomy. The statement in (1) then follows
immediately from the definition of (?jr-equivariance.

Essentially the same argument applies in the case of the foliation T&. Here, the
global holonomy is given by the image of Γ under a in Diffo(F) and one requires
equivariance with respect to a. D

REMARK 2.3. This result plays the role of the structure theorem in [18, Proposi-
tion 3.1]. One of our main observations is that the dimensional reduction procedure of
[17], [18], can be generalized to the case where the (smooth) bundles over M are direct



86 S. B. BRADLOW, J. F. GLAZEBROOK AND F. W. KAMBER

sums with summands of the form π*W<S)c V For instance, in going from bundles over

X x CP1 to bundles over a flat CP1-bundle over X, one replaces the S'£/(2)-action

on X x CP1 by the 'double foliation' of the Ci^-bundle with respect to the foliations

Tπ and Ta. The analogues of the 6't/(2)-equivariant bundles on X x CP1 are then

the 'doubly C/jr-equivariant' bundles on M. By Theorem 2.2, these are of the indicated

form.

We define the extension of a Γ-equivariant V-valued form φ on F to a V-valued

form φ by the formula

(2.5) φ=p*φ/a,

noting that p*φ is Γ-equivariant under the diagonal action oϊ Γ on X XpV- Let

q: X x F -> M = X xΓ F

be the quotient map under Γ. Then φ and φ are related by

(2.6) q*φ = p*φ.

For a Riemannian foliation (M, T), the basic forms with coefficients in a foliated

vector bundle E are defined by

(2.7) Ωl{M,T E) = {aeΩ*(M,E)\i2a = O, L2a = 0; Z e C°°(M,Tf)} .

In degree 0, only the latter condition applies and the basic sections are also called

invariant.

We remark that for a Riemannian fiber bundle

the basic forms relative to TΈ are given by pull-backs from the base space X. In fact,

there is a canonical isomorphism

(2.8) π*: Ω*(X,W) ^ Ω*b(M,fπ;π*W),

where TTΈ is given by the tangent bundle T(π) along the fibers of π. This fact explains

of course the origin of the terminology (cf. [29], [39]).

We also note that in the flat case (2.1), the basic forms relative to the transverse

foliation T& are exactly given by the extensions φ of .Γ-equivariant V-valued forms φ

on F as described in (2.5).

3. Equivariant and homogeneous bundles. In this and the following sec-

tions we consider a holomorphic fibration

(3.1) F^M-^X,

of compact complex analytic manifolds. We refer to [27, Appendix Two by A. Borel]

for the details of some of the following constructions. The structure group of this

fibration is a complex Lie group G acting on F via a holomorphic map ψ: Gx F —> F.

Let gij : Uij = UiΠUj —> G be the transition functions defining the fibration where
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hi = {Ui} is a suitable covering of X. If F is Kahler, the induced representation

ψ : G —> GL{Hp'q(F)} is constant on the connected components of G, that is, ψ

factors through πo(G). The composition φ o g^ defines then locally constant transition

functions for the associated vector bundles

xex

and

P,Q

both of which are therefore flat holomorphic vector bundles on X.

If P —• X is the holomorphic G-principal bundle determined by the cocycle {gij},

the fiber bundle (3.1) is associated to P by the formula

(3.2) M^PxGF -^ X .

To a G-equivariant holomorphic vector bundle V -̂> F, we may associate a holomorphic

vector bundle V —• M, called the canonical extension of V to M, by

(3-3) V = P X G V ^ M = PXGF.

The assignment V —> V is evidently an additive exact functor, compatible with

tensor products, and V satisfies the restriction property (2.3).

REMARK 3.1. On the topological level, the above construction determines a

natural homomorphism of rings

aP:KG(F)^K(PxGF),

which for F =pt specializes to the well-known homomorphism

ap:R(G) -• K{X).

The Hodge cohomology with coefficients in V, defined by

P,Q

H™(F, V) - Hq(F, ΩP(F, V)),

is computed by the Dolbeault 9-complex (cf. [27])

A*>*(F, V) = V 0 c Λ%*(T*(F) 0 β C).

Here Ω*(F, V) = V 0 C vl^0(T*(F) (g)R C) is the holomorphic bundle of (p,0)-forms

with coefficients V.

Even if F is Kahler, the induced representations

(3.4) Ge
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are no longer trivial in general. We will always assume that they are holomorphic and

hence define a holomorphic associated bundle of fiber cohomology groups

(3.5) Tis(F,V) = P xG HS(F,V)-^ X .

Suppose in particular that the above holomorphic fibration has the structure of

a generalized flat bundle

(3.6) F^>M = X XrF^+X,

where a : Γ —> G C Hol(F) is taken to be a representation into the holomorphic

diffeomorphisms of F. This is equivalent to saying that the transition functions {gij }

are locally constant. Thus the principal bundle P is flat as well, namely given by

P = X Xp G. In this case, the bundle V is given by formula (2.2). The bundle of

fiber cohomology groups (3.5) is a flat holomorphic vector bundle over X with respect

to the representation a: Γ -• G -> GL{HB(F,V)}. The bundle HQ{F,V) may then

be regarded as a system of local coefficients, whose associated sheaf of locally constant

sections will be denoted by HQ(F, V).

For a holomorphic vector bundle W —> X, we denote by W the locally free

holomorphic sheaf of (9χ-modules associated to W and mutatis mutandis for the other

spaces involved.

EXAMPLE 3.2. Homogeneous bundles:

Let F = G/H = U/K be a compact Hermitian symmetric space, where

17 = Holi s o(F) e , K = UΠH.

Much is known about these symmetric spaces and we refer to [26, Ch. VIII], [34] for

details. In particular, F is simply connected, G and H are connected complex Lie

groups with G semisimple and H parabolic. U and K are connected compact Lie

groups; U is semisimple and K is the centralizer of a torus. Further, any invariant

Hermit ian metric on F is Kahler.

The equivariant holomorphic vector bundles on G/H are now homogeneous [4],

[47], that is, they are given by representations (p, Vp) of H:

pκ-> Vp = G xH Vp,

inducing an isomorphism

The canonical extension Vp is then of the form

For (pr,Vpf) e R(G), the associated bundle
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is a holomorphic vector bundle over X and Vi*p> and Vp> are related by

(3.7) V i V * π*Vp>,

under the restriction map z* : R(G) —> R(H). In the flat case, Vp/ —> X is flat and so

is therefore %p> -* M by (3.7).

We further have the Frobenius formula

(3.8) HB(F, V i V 0 p ) * Vp/ ®c HΘ(F, Vp),

as G-modules and hence

(3.9) H8(F, V < V Θ p ) ^ Vp/ 0 c Wa(F, Vp),

for (p, Vp) G R{H). The same is true if the pair of complex groups (G, JEf) is replaced

by the corresponding compact pair (U,K).

Relative to the Cartan sequence

respectively the Cartan decomposition

(3.10) u = ! θ m ,

and the complex adjoint representation po : H —> GL(m, C), the Dolbeault complex

AP'*(F,VP) is associated to the representation

(3.11) Vp ®c Λ%* (mb), m c = m ( g ) R C .

Since U is compact semisimple and the differential 3 is {/-invariant, the decomposition

of the Dolbeault complex according to irreducible representations of U must preserve

cohomology. The U-invariant forms are given by

(3.12) A^(F, Vp)
u s (Vp

 κ

and we have therefore in particular

)u) <* H«((V 0 C Λ%*(m*))κ)(3.13) H^(F, Vp)
u <* H*(AP>*(F, Vp)

u) <* H«((Vp 0 C Λ%*(m*c))κ).

For p = 1 , the Hodge cohomology HQ{F) is invariant under U and the total differential

d on ΛΊζ?{m:c)κ vanishes since [m, m] c t. Hence we have (cf. [22, IV])

(3.14) H™(F) ^ Ap>q(F)u ^ Apόq(xtι*c)
κ .

These formulas are very useful for explicit computations.

According to Bott's generalization of the Borel-Weil theorem [4], H°'*(F,VP) is

an irreducible {/-module, if the induced highest weight of an irreducible representation

(p, Vp) E R{K) is non-singular. The degree of the non-vanishing cohomology group is

given by the index of the induced highest weight of p. If the induced highest weight

of p is singular, then H°>*(F, Vp) = 0.
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4. The Borel-Leray spectral sequence. Using the concept of extension of
equivariant bundles, we give here a generalization of BoreΓs Theorem 2.1, p. 204 in

[27], to non-trivial coefficient bundles on the fiber.

T H E O R E M 4.1. Let F -̂> M —> X be a holomorphic fiber bundle of compact

complex analytic manifolds. Let W be a holomorphic vector bundle on X and V be a

holomorphic G-equivariant vector bundle on F. Then there exists a spectral sequence

(Er,dr), {r > 0), with the following properties:

(1) Er is A-graded by the base degree, the fiber degree and the complex type. Let
p'qEpt be the subspace of elements of Er of type (p,q), base degree s and fiber degree

t. We have p'qEpt = 0 if p + q ^ s + t, or if one ofp, q, s,t is < 0. The differential dr

(2) The spectral sequence converges to HQ(M, π*W 0 V). For allp,q > 0, we

have

for a suitable filtration of H™{M, τr*W ® c V).

(3) For p + q = s + t, we have

^ , v))

(4) // the fibrαtion is α generalized flat bundle (3.6), the bundle HQ(F,V) is a

flat holomorphic vector bundle and we have forp + q — s + ί,

^ ^ H^^X, ar®c Hp^q-s+i{F, V)).
ΐ>0

The conclusion also holds if HQ(F,V) is a trivial Ge-module, the flat structure being

induced by the connecting homomorphism d*: Γ = πι(X) —> π o(C).

(5) IfW =lχ and V =1F are trivial of rank 1, then (Er,dr) is multiplicative

and the isomorphisms of (2) and (3) are compatible with products.

(6) // the fiber F is Kάhler, HQ{F) is a trivial Ge-module.

PROOF. For our application in §5 to §8, it will be crucial to recognize the Borel

spectral sequence as a special type of Leray spectral sequence. We therefore outline

here an alternative proof to the one in [27, Appendix 2] which allows non-trivial

coefficients on the fiber. We will refer to this spectral sequence as the Borel-Leray

spectral sequence.

First, we recall the Leray spectral sequence (cf. e.g. [23], [24]): For any (coherent)

sheaf J^of $M-modules, there exists a convergent spectral sequence

(4.1) Es/ = i r p f ^ V * ^ ) ) =» Hs+t(M^).

We claim that for a suitable choice of J^, (4.1) coincides with the Borel spectral

sequence of Theorem 4.1.
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Next, we need the projection formula for pull-backs [25]:

(4.2) &*<**(** ΊT®e t

Third, the tangent bundle of the fiber F is obviously a G-bundle and so is the holo-

morphic bundle of forms Λ£°(Γ*(F) ®R C) of type (p,0). From (3.3) it follows that

we may extend the bundle V 0 c Λ%f(T*(F) ®R C) to M and we will denote by

Ωp

M,χ(V) = If 0 &M ΩV

F the locally free ©M-module of its holomorphic sections (this

corresponds of course to relative forms on the tangent bundle along the fiber). Thus

the graded sheaf of modules J*7* = Ω^(π* W<g>c V) can be written as a bigraded sheaf

(4.3) &* = Ω*M(

The derived direct image ^*τr*(V) of V may be computed as the sheaf J f *(F, V) of

holomorphic sections in the bundle W^'£(F, V) of fiber cohomologies [4]. Applied to

the relative cotangent complex Ω*M,χ(V) this yields

(4.4)

Thus we have, using (4.2) and (4.3)

(4.5) #*7r*(F*) ^ Ω*X(W) ® ΦX tf\F, Ω*F(V)) * ΩMW ®c H^(F, V)).

We observe that the total cohomology in the Borel-Leray spectral sequence in Theorem

4.1(2) is given by the cohomology of M with coefficients 3F* above, that is

(4.6) Hp«(M, π*W 0 C V) = HP(M, Ωq

M(π*W 0 C V)),

while the ^2-term in (4.1), using (4.5), is seen to coincide with the i^-term of the

Borel-Leray spectral sequence in Theorem 4.1(3). In fact, we have

(4.7) Ha{X^tπ^η)^H3(X,Ω

The equivalence of the two spectral sequences follows from a well-known argument

in sheaf theory, using fine resolutions to compute derived functors [21]. The Leray

spectral sequence is associated to the composition of left exact functors [24]

while Borel's proof makes use of a Dolbeault-type resolution of the bigraded sheaf J^*

of &M modules in (4.3), namely the 4-graded sheaf complex

(4.8) Jία'b'C'd(W, V) - sέ(π*W) ® ̂  f $
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Here ^ ^ / X =^^b denotes the sheaf of smooth germs on M of fiberwise (α, b)-forms,

that is (α, 6)-forms along the tangent bundle of the fibers. Hence, applying π* to (4.8),

we have

(4.9) π*Jίa'b'c'd(W, V) =^a/(W) ®jx π * ^ / x ( V ) .

It is then apparent that the ^-differentials defined in loc. cit. extend by linearity to

the case with coefficients V and produce the required resolution.

The i?2-te r r n (4.7) is now computed by

while the total cohomology (4.6) is computed by

H™(M, π*W ® σ V) - Hq

BΓ{M,Jίp'*).

Part (4) of the theorem follows by a standard argument about local systems of co-

efficients, since HQ{F, V) is holomorphically flat. D

5. Kunneth formulas in Hodge cohomology. Let F be a compact com-

plex manifold. The Hodge to DeRham spectral sequence

H™(F) = Hp

d(H"(F, Ω*(F))) =* Hg£(F,C),

associated to the Dolbeault double complex A***(F), has ϋ^-term given by the Hodge

groups Hq(F, ΩP(F)) and the differential d\ is given by the differential d on the sheaf

complex Ωp of holomorphic forms. If (F,ωF) is a Kahler manifold, this spectral

sequence degenerates at the £Ί-term.

THEOREM 5.1 ([48]). For a Kahler manifold F, there is a multiplicative isomor-

phism

(5.1) H*B(F)^H*DR(F,C).

Thus the homotopy invariance of DeRham cohomology implies that Ge acts triv-

ially on HQ(F). We also recall Deligne's theorem on the degenerescence of the Borel-

Leray spectral sequence.

THEOREM 5.2 ([14]). // the total space M and the base space X in the fiber bundle

(3.1) are compact Kahler manifolds {hence the fiber F is Kahler), W =lχ and V = 1 F ?

then the Borel-Leray spectral sequence degenerates at the E^-term and we have

E2 — Eoo ,

that is, there is a multiplicative isomorphism

(5.2) Gr lϊJ (M) - H^(X, H?(F)).

For connected G there are therefore module isomorphisms over X, that is, additive

Kunneth formulas:
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and

H*DR(M, C) ~ H*DR{X, C) ®c H*DR{F, C).

Via the Chern character, this gives a Kunneth formula for rational K-theory as

well

K*(M)Q 9* K*(X)Q 0 Q K*{F)Q .

We state now the main result of this section, using Theorem 4.1 to obtain a Kun-

neth type formula for Hodge cohomology with non-trivial coefficients. This formula

is crucial in our discussion of holomorphic extensions in §7.

THEOREM 5.3. Fix 0 <po <l and assume there exists an integer m, po < m <

21 so that

(5.3) Hu'υ(F,V) = HV{F,ΩU(F,V)) = 0, forO<u + v<m, 0<u<po.

For 0 < p < po, the Borel-Leray spectral sequence has the following properties:

(1) P^E^ = 0, for p + q < s + m.

(2) The total cohomology Hp'q(M, π*W 0 c V) vanishes for p + q < m.

(3) For p + q = ra, there is a canonical isomorphism

Hp>q(M, τr*W <8>c V) = p'qE^m ^ H°(X, W 0 c Hv'q{F, V)).

(4) For (//, Vpf) € R(G), we have in the homogeneous case

Hp>q(M, π*W O c Vi*p*) = H™(M, π*(W ®c Vp>))

^ H°{X, (W 0 c Vp/) 0 c Hp>q(F)).

(5) If Hp>q(F,V) is a trivial G-module, or if F -* M -> X is flat and the

Γ-action trivial, the holomorphic vector bundle 7ίp>q(F,V) is trivial:

H™(M, π*W 0 c V) = H°(X, W) 0 c Hp>q(F, V).

P R O O F . First, we observe that the condition p+q < s+m is equivalent to t < ra,

since non-zero terms occur only for p + q = s-{-t. Part (1) follows from the assumption

(5.3) and Theorem 4.1(3). In fact, the total fiber degrees in the formula for the E<ι-

terms satisfy u + v = (p — i) + (q — s + i) = p + q — s = t < m and u = p — i < p < po.

Thus we have p^qE^t = 0, for p + q < ra, s > 0 or p + q = ra, s > 0. Part (2) follows

immediately from this and the expression for the total cohomology in Theorem 4.1(2).

For p + q = ra, we have further P>«E%'m = H°(X, W 0 c H P l V , V)). Since the spectral

sequence has no non-zero terms for t < ra, p < pOi the assertion in part (3) follows

from a standard argument, e.g. the 5-term exact sequence for p + q — ra,

0 _> VΛE™$ -> Hp*{M, π*W 0 C V)
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Observing that the base terms are zero by part (1), we conclude that the edge homo-
morphism

is an isomorphism. Part (4) follows from (3.7), the Probenius formula (3.9) and
Theorem 5.1. Part (5) follows from Theorem 4.1(4). In fact, under our assumption,
the coefficient bundle 7ίp'q(F, V) is holomorphically trivial. D

COROLLARY 5.4. Suppose G is connected, semisimple and

H° (F, V) - 0, dimcH°Λ (F, V) = 1.

Then H°(M,π*W ®c V) = 0, the bundle of fiber cohomologies H°Λ(F,V) is a holo-
morphically trivial line bundle and we have

^ HΌ(X, W) 0 c H^ι(F, V) ^ H°(X, W),

for any holomorphic vector bundle W on X.

PROOF. We only need to observe that G, being connected and semisimple, has
no non-trivial 1-dimensional representation. D

6. Projective fiber bundles. We now consider the case where M is the total
space of a (holomorphic) projective bundle over the compact Kahler manifold X with
structure group G = PGL(l + 1, C):

(6.1) CPι ^M = P xPGL CPι -^ X .

The linear and projective groups are related by the commutative diagram

(6.2)

1

1
SL(l + l) - 1

GL(l + l) -^

}det

C x

1

1
?—* PSL(l-

1-
?—• PGL(l-

Let E -+ X be a holomorphic vector bundle of rank I + 1. The projectivisation
P(E) gives rise to a holomorphic projective bundle

(6.3) CPι --> P(E) -^ X .
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If pE = F(E) denotes the holomorphic frame bundle of E, then the PGL(l + 1,C)-
principal bundle is given by P = J*(PE) and

P(E) <* PE XGL CPι Q* P xPGL CPι.

The topology of projective bundles is essentially derived from the commutative
diagram of groups (6.2) at the level of classifying spaces. There are obstructions for the
linearization (respectively the unimodular linearization) of a projective fiber bundle.
For convenience, we discuss these topics in an Appendix (§11).

Here we mention only the following facts. If E is projectively flat, that is

(6.4) CPι <-> M ^ X xά CPι - ^ X ,

with holonomy ά : Γ -» PGL{1 + 1,C), it follows from Chern-Weil theory (cf. [34])
that the Chern classes of E are determined by the first Chern class cι(E), namely

For k = 2, we obtain therefore the strong Bogomolov relation

(6-6) c2(E) = L 2

ϊ- 1)

At this point, we recall the Hitchin-Kobayashi correspondence [34] for a holomor-
phic vector bundle E —> X over a compact Kahler manifold (X, ojχ). We define the
normalized degree of E —> X relative to ωx by the formula

( n - l ) l V o l W

where Ax is contraction against the Kahler form ωx and the volume element dvolχ
is taken to be

n!

The slope of E is defined to be

μ>E =
rank(E)

(E, h) —> X is an Hermitian-Einstein bundle if

(6.8) ^ x f t = 2πλIE ,
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where Fh is the curvature of type (1,1) of the unitary, integrable connection (Chern
connection) determined by the Hermitian metric h.

The above definition of the degree has the advantage that the Hermitian-Einstein
constant λ is given by the slope μ#. In fact, we have the Chern-Weil formula C\(E) =
(t/2π)[TrFh] and hence

f ΛχCl(E) ωx = ̂ - ί
Jx 27T Jx

which implies λ = μ#.
The Hitchin-Kobayashi correspondence (cf. [34]) may then be stated as follows.
Let E —> X be a holomorphic vector bundle over the compact Kahler manifold

(X,ωχ). Then the following conditions are equivalent:
(1) E is polystable, that is

3

where the Ej are stable (relative to u>χ) holomorphic bundles of equal slope μEj = μE\
(2) E admits a solution of the Hermitian-Einstein equation

iΛxFh = 2πμElE

Together with the Bogomolov relation below (for n = dimc(X) > 2), (2) is further
equivalent to:

(3) E is projectively flat, that is P(E) is flat with holonomy a: Γ -> PU(l +1).
The existence theorem (1) => (2) is due to Donaldson [15] and Uhlenbeck-Yau

[45]. If E is projectively flat, E is obviously Hermitian-Einstein and the equation (6.6)
implies the Bogomolov relation

(6.9) / (la(E)2 - 2(1 + l)c2(E)) A ωx~
2 = 0 .

Jx
This latter relation is sufficient to prove (2) => (3). In fact, if (2) holds, then (3) is
equivalent to (6.9) (cf. [36]).

EXAMPLE 6.1. The case of rank(E') = 2:
P(E) has a flat P£/(2)-structure exactly in one of the following two cases.
(1) E is stable and fχ(cλ(E)2 - Ac2(E)) Λ ωx~

2 = 0;
(2) E = L i θ £ 2 , withci(Li) = cλ(L2) and hence Jχ(cι(Lι)-cι(L2))2/\ωx~

2 =
0. For a proof of (2), see [11].

On the projectivized bundle P(E), we have the tautological line bundle Ή*E —>• M
which is defined by

(6.10) H*E = {(/, υ) E M xx E \ v e 1} C π*E.

We follow the common notation and denote the powers 7ίE by 0M(&)> f°r k £ Z.
Similarly, we denote Hk = Hk

E\CPι on CPι by O(k).
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From the definition (6.10) and the multiplicativity of the extension (3.3), we
obtain directly the following Lemma.

LEMMA 6.2. The tautological bundle HE on M — P{E) is the canonical exten-
sion of the GL(l + 1, C)-equivariant tautological bundle Ή* on CPι and we have for
any k E Z\

(6.11)

The exact Euler sequence

(6.12) 0 - Ω\,/x -> (π*E*)(-l) -+ OM -+ 0,

derived from (6.10), is the canonical extension of the GL(l + 1, C)-equivariant exact
sequence

(6.13) 0 -+ Ω1(CPι) -> V0*(-l) ^ ( 9 ^ 0 ,

where Vo = CPι x C / + 1 is the GL(l 4- 1, C)-equivariant bundle with the standard
action of GL(Z+1,C).

The relative canonical bundle JCM/X OΪ P{E) is computed from the determinant
bundle of (6.12). Setting C = det E = Λι+ιE, we have (cf. [25])

(6.14) KMIX = Ωι

M/x * π*(Λz+1E*) 0 c OM{-1 - 1) ^ π*£* 0 C O M ( - 1 - 1)

Equivalently, JCM/X
 m a v D e computed as the extension of the PGL(l+l, C)-equivariant

canonical bundle

(6.15) KCPι = Ω\CPι) ^ (det Vo)* 0 c O(-Z - 1),

obtained from the Euler sequence (6.13) on CPι.
It follows from the projection formula and (6.14) that

(6.16) £

The multiplicative structure of the cohomology ring of M is determined by the
Leray-Hirsch theorem (cf. [5], [23], [31]):

(6.17) H*(P(E),Z)*H*(X,Z)[t] /I Y^

where t corresponds to the first Chern class CI{Ή,E) of the tautological bundle HE- In
other words, H*(P(E), Z) is generated as an H*(X, Z)-algebra by CI(HE) subject to
the defining equation

H-l

3=0

This shows that the Chern classes Cj(E) measure how the ring structure of H*(P(E))
deviates from that of the product H*{X x CPι).



98 S. B. BRADLOW, J. F. GLAZEBROOK AND F. W. KAMBER

If X is a compact Kahler manifold and E holomorphic, there is an analogous result
for Hodge cohomology. The Chern class t = C\(ΎLE) is of type (1,1) and the classes
Cj(E) of type (j,j). We obtain then from (5.1) and (6.5) corresponding multiplicative
Kunneth formulas for Hodge cohomology.

THEOREM 6.3. Let E —> X be a holomorphic vector bundle over a compact
Kahler manifold X.

(1) There is a multiplicative isomorphism

(6.18) H*§'*(P(E)) - H*'*(X)[t]

(2) If E is projectively flat, there is a multiplicative isomorphism

(6.19) H*8 *(P(E))*H δ'*(X)[t]

(3) If E is topologically flat, there is a multiplicative isomorphism

H*8 *(P(E)) * H*d'*(X) ®c H*5'*(CPι).

Thus for M = P{E), we have a more precise form of Deligne's Theorem 5.2 on
the degenerescence of the Borel-Leray spectral sequence. If E is flat, we have indeed a
multiplicative Kunneth formula for the Hodge cohomology of such a twisted product.

We now apply the degeneracy results of the previous section to the case of a
projective fiber bundle (6.1). The PGL-equivariant holomorphic line bundles on CPι

are the powers of the canonical bundle JCCPι and the relative canonical bundle JCM/X

is given by the P5X-extension JCM/X = ίtCPι. The line bundle O(—l — 1) and its
powers carry a canonical P5L-structure isomorphic to that on JCCPι and we have

(6.20) KMIX = O(-l - l)pSL .

PROPOSITION 6.4. The vanishing conditions (5.3) are satisfied andHOjrn(CPι,V)
is a trivial PGL{1 + 1, C)-module of rank 1, for V = i? m (CP / ), p0 = 0 < m < I:

i ί o ' m (M, 7r*W 0 c βJS/χ) - H°(x> w ®c H^iCP1, Ωm(CP1))) ^ H°(X, W).

PROOF. This follows from Corollary 5.4, since H™(CPι) = H<*(CPl, Qv(CP1))
= C for p = q and zero otherwise. D

In the linear case (6.3), Theorem 5.3 and the Bott formulas for H™(CPι, O{k))
(cf. [41], [25, III, §8]) yield in the following result.

PROPOSITION 6.5. The vanishing conditions (5.3) are satisfied for V = O(k),
0 < po < I, m = po + I and p0 — I — 1 < k < 0. Hence we have for 0 < p < po,

, π*W 0 c OM{k)) ^ H°(X, W 0 C

In addition, we have:
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(1) jV0>ι(CPι,ΰ)(k)) = @ιπ*((9M(k)) ^ &®6xπ*(0M(-k-l-l))*, andhence

H°>ι(M, π*W 0 C OM(k)) * H°(X, (W 0 C C) 0 c π*(OM(-k - I - 1))*).

(2) Jn particular, for V = O(-/ - 1), H^ι(CP\ O(-l - 1)) ^ £ is the determi-

nant bundle C = det E and

H°>ι(M, π*W 0 c O M (-/ - 1)) = H°(X, W 0 c C).

(3) // £ zs unimodular, we have

H°'\M, TΓ*W 0 C O M ( - ' - 1)) = ff°(^, W) 0 c C ^ i^°(X, W).

PROOF. We need to check the vanishing conditions (5.3), that is

Hu>v(CPι, O(k)) - 0 , foΐO<u + v<m=po + l,0<u<p0.

It follows from the Bott formulas that Hu'v(O(k)) = 0 for υ < I and k < 0. For

v = /? we have ιz < po — 1 < ' and the Bott formulas imply that Hu'l(O(k)) = 0 for

0>k>po-l-l>u-l. D

We also note that we have the formula

(6.21) «zπ*( JΓM/X) =^°\CP\ J Γ C P 0 =J?.ι\CPι) *έ Θx ,

with the last isomorphism being induced by the volume form η = ωι, where ω is the

Kahler form of CPι. Using (6.14) and (6.21) we may reformulate Proposition 6.5(2)

as follows:

(6.22) H°>ι(M, π*W 0 C OM(-l - 1))

^ #°'*(M,τr*(W0c C) 0 c (7Γ*£* 0 c OM(-l - 1)))

^ fr°'z(M, π*(W 0 c £) 0 c /CM/x)

^ i7°(X, (W 0 c £) 0 c HQ\CP\ JCCPι))

^ H°(X, (W 0 c £) 0 c Hι\CP1))

with the last isomorphism again being induced by the fiber volume η.

The above observation allows us to construct an explicit inverse to the edge

isomorphism in Proposition 6.5(2):

PROPOSITION 6.6. (1) The fiber volume form η is PSL(l 4- l)-invariant and

extends to a closed form ή of (fiber) type (1,1) on M.

(2) The inverse of the edge isomorphism in Corollary 6.5(2) is induced by the

assignment φ ι—> βφ, where

(6.23) βφ =

PROOF. The Kahler form ω is harmonic and hence PU(l + l)-invariant. Its

canonical extension ώ is of fiber type (1,1) and further extends to a closed form on
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M, which we also denote by ώ. In fact, we may take for ώ the first Chern form of the

holomorphic line bundle HE = OM (1)? using a suitable connection (compare (6.17)).

The form ή = ώι, evidently restricts to a generator of Hl'ι(CPι) = C on each fiber

and one checks easily that (6.23) defines an inverse to the above edge isomorphism,

provided the volume form η is normalized, that is JCPι η = 1. •

7. Holomorphic extensions and their parametrization. We begin with

a flat holomorphic bundle (3.6)

F ^ M = X x f F Λ l ,

and consider a type of holomorphic bundle over M on which a dimensional reduction

of the Hermitian-Einstein equations will be possible. Recall that in the case where

M = X x CP1, the appropriate class of bundles consists of those with specially

chosen 5£/(2)-equivariance properties (cf. [18]). In the present, more general setting,

we generalize the S77(2)-equivariance by the requirement of compatibility with the

two foliations of M. In particular, we consider holomorphic bundles S —> M, having

the following properties:

(1) S is a holomorphic extension of £2 by £i;

(2) their smooth structure is that of a direct sum ̂ θ ^ 2 , where £̂  is a tensor

product of two bundles with one factor being foliated with respect to T^, and the

other being foliated with respect to Ta.

Let Wi —> X and Vi —> F, i — 1,2, be holomorphic vector bundles, where

the Vi are G-equivariant and thus extend to the bundles Vi on M. Then we set

£{ — τr*Wi 0 c Vΐj a n d observe that by Theorem 2.2, the holomorphic bundles £i

satisfy the second of the above requirements.

For the remainder of this section we will be concerned with the first requirement,

namely the nature of the holomorphic extension. Except for one Lemma, the flatness

condition is not needed in this section and it will be sufficient to have a complex fiber

bundle as in (3.1), respectively a projective bundle as in (6.1).

Recall from [25, III, §6], that in terms of the corresponding locally free sheaves

of GM-modules on M, an extension of $2 by $Ί is a short exact sequence

(7.1) 0 ^ Sx -> δ -> S2'-»0,

over M. In view of the properties of the functor Έxt' [25, III, §6], such holomorphic

extensions are parametrized by classes in

(7.2) Ext^M( δ2, Sλ) * Ext\M(G)M, δι®eM δl)

For the bundles Si = π*Wi <S>c Vi as above, we have then

(7.3) Ext1, (^2, δi)^H°>1(M,π*W®cV),
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where W = Homc(W2, Wi) and V = Homc(V2, Vi).

PROPOSITION 7.1. Suppose that G is connected, semisimple and

H°(F,V) = 0, ώmcH°>ι(F,V) = 1.

TTien Ή 0 ) 1 (F, V) zs holomorphically trivial and

(7.4) Ex4M(<f2, A ) = i ί O ' 1 ( M , π * W 0 c V )

^ 77°(X, >V) 0 c ff0'1^, V) - H°(χiw)>

for any holomorphic vector bundle W on X.

This follows directly from Corollary 5.4.

In §8 it will be important to have an explicit realization of the isomorphism in

Proposition 7.1.

LEMMA 7.2. Suppose that the fiber bundle (3.1) is flat with holonomy α: Γ —>

U, wii/z Ϊ7 C Holiso(F)e connected, compact semisimple, and that the U-equivariant

holomorphic vector bundle V satisfies the conditions in Proposition 7.1.

Then the following hold:

(1) HOyl(F,V) = C is generated by an invariant, d-closed (0,1)-form η£

A°^(F,V)U.

(2) η extends to a d-closed (0, l)-form ή G A°^(M, V).

(3) [ή] is a generator of H°^(M,V), that is H°^(M,V) ^ C.

(4) There is a one-one-correspondence between holomorphic sections φ G

H°(X,W) and classes [βφ] G H0^(M,π*W(^c V), given by

PROOF. Since H°>ι(F,V) is a trivial [/-module, we have from (3.13)

This implies (1). If p : X x F -> F denotes the projection, the form p*η is 9-closed

and /^-invariant by construction. Thus it defines ή = (p*η)/a on M, satisfying dή =

θ(p*η)/a = (θp*η)/a = 0. From Proposition 7.1 it follows that ή has the remaining re-

quired properties (2) to (4). D

We remark that Proposition 7.1 and Lemma 7.2 apply in particular to the situa-

tion in Proposition 6.4 for m = I = 1.

In the linear case

CPι ^ P(E) -^ X,

we consider line bundles V; = O(ki) with kι—k2 — —i—1, satisfying V = Homc(V2, Vi)

= O(-l-l). By Corollary 6.5(2), the coefficient bundle H°^(CPι, O(-l-1)) is given

by

(7.5) H0Λ(CPι, O(-l - 1)) = πιπ*(OM(-l -l))
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The induced representation

(7.6) GL(l + 1, C) -> GL{HQΛ(CP\ O(-l - 1))} ,

is therefore the determinant representation. Thus for / = 1, we have the following

characterisation of extensions by basic sections.

PROPOSITION 7.3. For I = 1 and Si = π*Wi ®c O M ^ I ) , &I — &2 = —2, we Λαi e

^ H°(X, W 0c nOA(CP\ O(-2))

PROOF. This follows from Proposition 6.5(2), compare also [35, §2]. D

Recalling (6.14), we may rephrase Proposition 6.6 in the case / = 1, in order to

obtain an explicit parametrization of the extension classes in (7.7).

LEMMA 7.4. Letη e A 0 ' 1 (C f P 1 ,/C C P i) ^ Aι'ι(CPλ) be a PSL-invariant, closed

form generating

τjOA /S~Ί Γ)l \r \ r^j ττl,l (s~i n l N ~ /^
ii \l^> Jr , /Y^cpi J = ii \Lsir ) = O ,

e.g. we may take η corresponding to the Kahler form ω of CP1.

There is a one-to-one correspondence between holomorphic sections φ G H°(X, VV<S>c

C) and classes [β] e HOil(M,π*W ®c O M (-2)) , given by

βφ = π*φ<8> ή .

If E is holomorphically flat and Γ acts via SX(2, C), or more generally, if C =

det E is holomorphically trivial, the formulas in Proposition 7.3 and Lemma 7.4 simpli-

fy accordingly. In particular, the generator η defines then a class in H0'1 (CP1, O(—2)).

8. Reduction to the coupled vortex equations. In this section we will

establish the main result on the reduction of the Hermitian-Einstein equation on the

total space M to the Coupled Vortex equations on the base manifold X.

First we construct a family of Kahler metrics on the total space M of the flat fiber

bundle (3.6). We wish to combine Kahler metrics on X and F to define a 1-parameter

family of Kahler metrics on M. To this end, we now assume that the base manifold

(X,ωχ) and the fiber (F,ωF) come equipped with Kahler structures.

PROPOSITION 8.1. Let X and F be Kahler manifolds and let

be a generalized flat bundle with holonomy a: Γ —> U C Holi^i7"), where U is a con-

nected compact subgroup of the group of holomorphic isometrics of F. Let ωx and ωp

denote the respective Kahler (1, l)-forms on X and on F. Then for a (constant) param-

eter σ > 0, there exists a family of Kahler metrics defined on M with corresponding
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weighted Kάhler forms

(8.1) ωσ = π*ωχ + σώp ,

where ώp = (p*ωp)/a is the extension of the invariant Kάhler form ωp to M.

PROOF. Let gx and gp denote the Kahler metrics on X and the fiber F. The
product metric π*gχ + P * # F o n ΐ x F via the natural projection p: X xF —> F, defines
a Kahler metric on X x F. The same applies on introducing the constant parameter σ
fiberwise. Since a is a representation into the holomorphic isometries of F, the metric
gp is -Γ-invariant. Hence π*gχ + σp*gp descends to M = X Xp F, thus defining a
Kahler metric on M having the required Kahler form. D

REMARK 8.2. In the last result, the flat structure of M was crucial. For more
general fiber bundles, such a combination of gx and gp may not define a Kahler
structure on M (see e.g. [12]).

With respect to (8.1), the definition of the normalized degree in (6.7) for a holo-
morphic vector bundle £ on M, takes the form

(8.2) de g σ(£) = degσ(det S) = ( f f | ^ ^ £ <>(*) Λ u ^

where dimc-^ = n, d imc^ = I, m = n + I and Λσ denotes contraction against the
Kahler form ωσ. The binomial expansion of ωσ in (8.1) gives

(8.3) dvolσ - σ = ^ Λ - f σz,
(n + /) n! /!

and

= Λ < τ + Λ σ

Using formula (8.3), the proof of the following Lemma is essentially the same as
in [11], Lemma 4.9.

LEMMA 8.3. For a complex smooth function f on X, we have

[
M

In particular, for f = 1:

π*(/)dvolσ= f fdvo\χ Vol(F)σz.
Jx

Volσ(M) = Vol(X)Vol(F)σ/.
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The following formulas for pull-backs and extensions will be needed in the proof
of the main theorem. We will make use of the defining equation for the 'Lambda'-
operator on any Kahler manifold (X,ωχ) (compare (8.2))

(8.5) Axφ ®cϋχ =nφΛ ω7^1 .

LEMMA 8.4. Let W —> X be a complex vector bundle and φ a (1, l)-form with
values in VV. Then

Λσπ*(φ) =π*(Λxφ).

PROOF. Note that the flatness of the fiber bundle is not required here. The
Lemma is proved by direct calculation, using (8.4) and (8.5):

ωn+l-l

Λσπ*φ 0 dvolσ = π*φ Λ
n + I — 1)1

-l-ll-l , 1 *// Λ Λ , , n - l \

= —π*(Λxφ 0 ω%) Λ ώι

Fσ
ι

IL ί I

ω% Λ ώι

F)σι

D

PROPOSITION 8.5. Let W —> X be a holomorphic vector bundle. Then

degσ(π*W)=degχ(W),

and so degσ(π*W) is a base invariant.

PROOF. This follows from (8.2), Lemma 8.3 and Lemma 8.4 for φ = ci(W):

= degx(W).

D

LEMMA 8.6. Let the flat fiber bundle (3.6) be given as in Proposition 8.1 and let
V —> F be an U-equiυarίant complex vector bundle. For an equivariant (1, l)-form φ
with values in V with extension φ = {p*φ)/a, we have

Λσφ=-{ΛFφΓ.
σ
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PROOF. The flatness of the fiber bundle is essential here, as we make use of the
extension φ of φ described in (2.5). The Lemma is proved by direct calculation, using
(8.4) and (8.5):

Aσφ 0 dvolσ = φ A
(n + Z-1)!

—ττ7π*ω% Λ{φA ώιfι)σι~ι + - TTΠΊ^^'1 Λ (Φ Λ ^ F ) ^

π α J Λ {φ A α^Γ1) V " 1 +

σn!/!

(τlF^)~ 0 (π*ωχ A ώι

F)σι

0 dvolσ .

D

σn!/!v

PROPOSITION 8.7. Suppose that U C HolisoC-F) acts transitively on F and let
V —> F be an U-equiυariant holomorphic vector bundle. Then

degσ(V) = -degF(V),
σ

and so degσ(V) is a fiber invariant for the flat structure on M —• X.

PROOF. We represent ci(V) by a closed ^/-invariant (1, l)-form a on F. Then
using the flat structure on M, we have ci(V) = [ά], where ά is the extension of a and
a A ώι

F = (a A ωι

F)~ = 0. By t/-invariance, AFa is constant. The result follows from
(8.2) and Lemma 8.6 by setting φ — a:

ΛΓ Ί ,,,>. / (ΛFα)~dvolσσVolσ(M) JM
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Finally, we observe that

Vol(F)
/ Λpcx dvol^

JF

D

8.8. Calibration conditions on the fiber. We assume now that F = U/K is

a compact irreducible Hermitian symmetric space, equipped with its unique (up to

homothety) invariant Kahler structure. Further, we are given homogeneous holomor-

phic bundles VPi = U XK VPi —» F = U/K associated to complex representations

{Pit ^PΪ) ^ R(K) a s m Example 3.2. In order to establish the main result below, we

need to impose a number of conditions for the data on the fiber.

(1) The representations (pi,VPi) G R(K) are irreducible.

By [34] VI, Prop. 6.2, the VPi —• F are irreducible [/-equivariant Hermitian-

Einstein bundles and therefore stable (cf. [33], [42], [46]).

(2) μp = μPl - μP2 < 0.

It follows that any Vp

κ = Romκ(VP2, VPl) = 0 and

H°(F, Vp) = H°(F,Homc(VP21 VPl)) = 0.

(3) ώmcH°>1(F,Vp) = l.
Since U is simple, H0'1^, Vp) is a trivial [/-module and we have by (3.13)

Here Proposition 7.1 and Lemma 7.2 apply.

Observe that degi^VpJ and hence μPi — μVp. are computable in terms of the

weights of the representations (pi, VPi) G R(K) by the methods of [3].

The following theorem is the main result of this paper.

THEOREM 8.9. LetF^M = XxΓF^>Xbe aflat holomorphic fiber bundle of

compact Kahler manifolds where the fiber F = U/K is a compact irreducible symmetric

Kahler manifold as above.

Suppose that the homogeneous holomorphic bundles VPi on F satisfy the conditions

in S.8 and let hi be the U-equiυariant solution of the Hermitian-Einstein equation on

v P i .
Consider the proper holomorphic extension

EΦ : o -+ εi -> ε -> ε2 -> o ,

as in (7.4), where Si = π*Wi 0 c VPi, and Eψ corresponds to φ € H°(X,W) —

Homc(H;2, Wi) for holomorphic vector bundles Wi on X.



REDUCTION OF THE HERMITIAN-EINSTEIN EQUATION 107

Let h = hi 0 h2, where the Hermitian metric

hi = h[® ki

on Si is defined by an invariant (basic) Hermitian metric h[ on π*Wi and the extension
ki of the U-equiυariant Hermitian-Einstein metric ki on VPi. Let Fh be the curvature
of the Chern connection determined by h and Aσ the contraction against the Kdhler
form ωσ = τr*u;χ -f-

For σ > 0, let

relative to
(2)

equations:

(8.6)

(M,ω.
There

«r)

exist Hermitian metrics h

iAxFhl +

ιΛχFh2 -

— φ o

V
σ

and define the vortex parameters Ti by

τi = τi(σ)=με(σ)-^-.

Then the following statements are equivalent:
(1) There exist Hermitian metrics of the form h on the extension bundle E which

satisfy the Hermitian-Einstein equation

iAσFh = 2πλlε ,

on Wi which satisfy the coupled σ- Vortex

* = 2πτi JΓWl ,

φ = 2τcτ2ly\;2 ?

where the adjoint in </>* is taken with respect to the metrics hi and h2.
There is a one-to-one correspondence between solutions in (1) and (2), given by

the assignment hi ι—• h[ = π*hi.

PROOF. First, we observe that the assignment hi H-» h\ — π*hi realizes the
isomorphism between Hermitian metrics hi on Wi and invariant Hermitian metrics
h\ on π*>Vΐ. This follows from (2.8). Without loss of generality, we may therefore
assume that h'{ is of the form h\ — π*hi.

We continue by analyzing the Hermitian-Einstein condition on the holomorphic
vector bundle E on M as in [18, §3]; compare also [11]. The main part of the proof
relies substantially on the technical results established in this section and the previous
section.

Relative to a smooth decomposition E = Eι®E2, the unitary integrable connection
A on (E, h) can be expressed in the form

Άy β
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where Ai, A 2 are the metric connections of (£i,/ii) and (£2,^2) respectively, and

βeA^\M,Horned £1))

is the representative of the extension class in Ext$M( 82, <?i) as in (7.2). A routine

calculation (cf. e.g. [34]) shows that the curvature of A has the form

hl-βAβ* D'β

where D: A1(M,Homc(£i,£2)) ~^ A2 (M, Home (£1^2)) is constructed from A± and
A2 in the standard way.

Now if we take
(1) Ai to be the integrable unitary connection on (Wi, hi), and
(2) Ai to be the Hermitian-Einstein metric connection on (VPi, fc$),

then

(8.9) Ai = π* Ai 0 1 + 1 0 A*.

The corresponding curvature form of type (1,1) can be expressed as

(8.10) Fhi = π*Fhi <8> ίPi + I* <8> Fk. ,

where ϊi = π* i\v and /,, = /<-, .

Under the assumptions 8.8(2) and (3), Proposition 7.1 gives the required parametr-
ization of

Ext^ M (^ 2 , Sx) ̂ H^ι(M,π*W®cVp) ^ H°(X, W) 0 C H°>ι(F,Vp) ^H°(X,W).

The one-to-one correspondence in Lemma 7.2 states that β is of the form β — βψ =
π*φ 0 77, where ή G A°'1(M, Vp) is the extension of the invariant, <9-closed (0, l)-form
η e A°>ι(F,Vp)

u generating H°^(F,VP) ^ C.
The following Lemma implements the results which are necessary to carry out

the reduction process to the coupled vortex equations.

LEMMA 8.10. With ή and β as above, we have
(1) ΛσD'β = 0;
(2) ΛσD"β* = 0;
(3) ΛσF^hi=π*ΛxFhi;
(4) ΛσFki = (l/σ){ΛFFkir

(5) Λσ{ήAή*)_= {l/σ)ΛF(ηΛη*)~ = (t/σ)ϊpi andΛσ(ή*Λή) = (l/σ)ΛF(η*Aη)~
= —(ι,/σ)IP2, for a suitable calibration ofη, independent of σ.

PROOF. (1) and (2) follow essentially by the arguments in [18] and [11]. We
observe that ΛpD'η £ A°(F, Vp)

u = Vp

κ must vanish as a consequence of assumption
8.8(2). (3) follows from Lemma 8.4 by taking ψ = F^ and noting that Fπ*hi — π*Fhi-
(4) follows from Lemma 8.6 by taking ψ = Fki and noting that F~ki = Fki.
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To prove (5), we first apply Lemma 8.6 to the (1, l)-form φ — η Λ 77*, to obtain

Λσ{ήΛή*) = -ΛF(ηΛη*)~.
σ

In terms of the Cartan decomposition (3.10) and formula (3.12), we have

where me = πα (S>R C. Thus we see that, as an [7-equivariant form, ΎrΛj?(η Λ 77*) is

realized by the commutative diagram

(8.11)

+,V;) ^—> ( Λ ^ O c ) ®c Enάc(Vpi))κ ^—

As (pi,VPl) e R{K) is irreducible by assumption 8.8(1), it is simple by Schur's lemma.

Thus we have Endκ(VPί) = C and the (normalized) trace Tr is an isomorphism.

Consequently, the invariant endomorphism

ΛF (η A η*) € Endy (VPl) ^ Endx (VP1),

must be a constant multiple of the identity.
In terms of the Kahler structure, the pointwise norm of η is given by (1/t) Tr Λp(ηΛ

77*). Hence we have

1 a ~
^σ(r)Λry*) = -(ΛF(η Λ τ f ) Γ = — J P l , c > 0 .

σ σ

Since the generator 77 is determined up to a complex constant ξ £ C x and

we may calibrate 77 by ξ and φ by £ - 1 , with | ξ | 2 = c " 1 to have the desired property.

The second equation is proved likewise. D

By 8.8(1), the bundles VPi —> F = U/K have tZ-equivariant Hermitian-Einstein

metrics fci, unique up to a positive constant. For the extension kι of k{ to VPi —»• M,

we obtain the following result from Proposition 8.7 and Lemma 8.10(4).

PROPOSITION 8.11. The holomorphic bundles VPi -^M have Hermitian-Einstein

structures

(8.12) iAσF~ki =2πμPiϊPi1

with constant given by

(8.13) μPi = μ%i = ^f .

We may now complete the proof of the main theorem as follows.
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We use Lemma 8.10 to compute Aσ of the following forms:

β Λ β* = τr*(0 o ψ*) ®(ήΛ ή*) G A^(M, εndc(π*Wι) <g)C Sndc(VPl)),

and

β* Λ β = π*(φ* oψ)® (77* Λ ή) G A M (M, Sndc(^W2) ®c Sndc(VP2)).

Thus we get

-iΛσ{β A β*) = -t,π*(φ o φη 0 Λσ(ή A ή*) = -π*(0 o 0*) ® J P 1 .
σ

Similarly, using Tr(ry* Λ ηr) = —Ύr(ηf Aη*) and the irreducibility of (p2? ̂ 2)5 w e βe^

dσ(/3*Λ/3) = - π * ( f o ^ ) ^ J p 2 .
(7

Substituting the previous formulas into (8.8), and using (8.10), (8.12) and Lemma
8.10, we see that the Hermitian-Emstein condition on h on (M,ωσ) is now equivalent
to

( ι Λ F +π* (ιΛχFhl +-φφ* + 2πμplIWl ) 0 ΪP1 0

0 π* [ιΛχFh2 φ*φ +
V σ

- 2πλ Γ

0 J 2 ® /p2

and hence equivalent to the system of equations on X:

LΛxFhl + -φoφ* + 2π(μPl - λ)IW l = 0 ,

φ* o φ + 2π(μP2 — λ)Iw2 = 0.

D

The vortex parameters Ti(σ) are not independent. Recall that they are given by

π =n(σ) = με(σ) - -μPi.

The following Lemma is immediate from the definition.

LEMMA 8.12.

(8-14) n(σ) - r2(σ) = - I ( M p i - μP2) = -&•.

In the following, we use the additivity of the degree under holomorphic extensions

degσ(£) = d e g ^ ) + degσ(£2),
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and the additivity of the slope under tensor products

LEMMA 8.13. Set s* = rank(Vp.) and n = rank(Wi). Then

(8.15) rιsχτι{σ) + r2s2τ2{σ) = si degχ(Wi) + s2 degχ(W2)

= r1s1μWl +r2s2μW2

= (r1sϊ + r2s2)μS lyy; l θ S 2yv2

P R O O F . Observe that

degσ(£<) = Si degσ(π*W<) + n deg*(VpJ .

Since rank(£) = s\r\ -f s2r2i it follows that

r i s in + v2s2τ2 = άegσ(E) - (n degσ(VPl) -f r2 deg^ίV^))

- (degσ(5i) - n degσ(VPl)) + (degσ(£2) - r2 degσ(VP2))

= Sl degσ(π*W1) + s2 degσ(π*>V2)

= si degχ(Wi) + s2 degx(y\;2).

D

As an immediate consequence of (8.14) and (8.15), we obtain explicit formulas
for Ti(σ) and

(8.16)

(8.17)

~^r1VPlφr2VP2 -

9. Reduction to the coupled vortex equations: The projective case.

In this section we take F = CP and recall from (6.4) the flat projective bundle

CPι --> M ̂  X xά CP1 - ^ X,

with structure group U = Uollso(CPι) ^ PU(l + 1) ̂  t/(/ + 1)/U(1) and if = U(l).

THEOREM 9.1. Theorem 8.9 holds for ρ± = 1 and Vp = Ω1(CPι).

REMARK 9.2. The case I — 1, pi = 1 and Vp = /C^pi was established in
[11], Theorem 5.1. In this case, we could normalize η so that η A η* = ιωp and
ΛF(ηΛη*) = L.

THEOREM 9.3. LetF^->M = XxΓF^>Xbea flat holomorphic fiber bun-
dle of compact Kdhler manifolds where the fiber F — U/K is a compact, irreducible
symmetric Kdhler manifold. Then Theorem 8.9 holds for pi = 1, VP2 = Γ1'°(F) and
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PROOF. We have to verify the conditions 8.8(1) to (3). Referring to (8.11), we
note that Tι'°{F) is associated to the irreducible if-representation po : K —> U(xn^)
and therefore (1) is satisfied. By a result of Matsushima [38], the invariant Hermitian
metric k on T(F) is Kahler-Einstein, that is (cf. [2, Ch. XI])

±ωF, or c ^ T 1 ' 0 ^ ) ) = ^[TrFk] = ^

where s > 0 is the (constant) scalar curvature of F. Therefore deg(T1'°(F)) = s/4π >
0, deg(β£) < 0 and (2) is satisfied. (3) follows from (3.14) and H°^1(F,Ω1(F)) ^
H1Λ(F) = Λ1

(A
1(mQ)κ = C. In this case, we may use diagram (8.11) and the fact

that Vp — mJ*, to choose the generator η as the canonical isomorphism η: m^ = m^*
determined by the invariant Hermitian metric k on m. The identities

for ξi € m and ξ^ = (1/2) (ξ =f ίJζ)i m aY be reformulated as

*)

and therefore Tr yl(ryΛ?7*) = ΛΎr(η/\η*) = 2L. This gives an explicit verification of part
(5) of Lemma 8.10. D

COROLLARY 9.4.

άzgσ{Ωι

M/x) = άegσ(Ωι

M/x) = degσ(JCM/x) = --£- < 0.

PROOF. This follows from the above formula for ci(Γ1'°(F)) and Proposition
8.7. D

In the following Lemmas we compute the corresponding degree invariants for
F = CPι.

PROPOSITION 9.5. On M = Ϊ X Q CPι we have the projective invariant on M

άegσ(Ω1

M/x) = degσ(Ωι

M/x) = degσ(JCM/x) = — .

PROOF. Recall from (6.20) that

The result follows from Proposition 8.7, noting that, relative to the Fubini-Study

metric on CP\ we have s = 4τr(Z -f 1) (cf. [2] loc. cit.) and therefore άeg{KCPι) =

-(/H-l). •

To consider linear invariants of M — P{E) for E projectively flat, we set

e = degσ(π*ί;) = degx(E) = degx(C), C = det(E).
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PROPOSITION 9.6. On M = P(E) we have linear invariants, for k e Z, given
by

degσ{ΌM{k)) =

PROOF. Recall from (6.14) that

from which we obtain

degσ(OM(-l - 1)) = degσ(π*£) + άegσ{KM/x) = e -

Using degσ(OM(k)) = kdegσ(OM(l)), for fc e Z, the result follows. D

REMARK 9.7. Note that for e ^ O , the GL(l + l,C)-equivariant tautological
bundle O M ( 1 ) is not associated to the projective flat structure of M = P(E) and
Proposition 8.7 does not apply.

Finally we determine the condition under which the Kahler form ωσ on M satisfies
the Hodge condition, that is [ωσ] — ci(£), for some holomorphic line bundle C —> M,
provided the same is true for (X,ωχ), that is [uχ\ = cι(Cχ).

The problem here is that the extension ώp does not necessarily represent an
integral cohomology class, even if ωp does. Using (3.14), we represent all cohomology
classes on CPι by Pf/(/ + l)-invariant forms. If ĉ o is the Kahler form representing the
canonical generator in H1}1(CP ,Z) = Z, the Fubini-Study metric is determined by
UJF = lω0 (cf. [2] loc.cit.). Then the integral class c\(K,*Cpl) of type (1,1) is represented
by a = (l+l)ωo — ((1+1)/1)CJF. AS JCCPι is Pt/-equivariant, we may use the argument
in the proof of Proposition 8.7 to see that the Chern class c\ (1C*MιX) of the dual relative

canonical bundle K<*Mιχ — &CP1 1S r e P r e s e n t e d by the form a = ((Z + 1)/Z)ώp This
shows in particular that ώp represents a rational class. For any positive integer k we
have then

ci(π*£χ 0 c (K>*M/χ)k) = [π*ωx] + k[ά] = [ττ*ωx] + k^j-[ώF).

Comparison with (8.1) shows that we have proved the following result.

THEOREM 9.8. On M = X xά CP\ the Kahler form ωσk — π*ωx -h σ^ώp
satisfies the Hodge condition [ωσk] = cι(Ck) for Ck — π*£χ ®c (fc*M/χ)k anά σk =

k(l + 1)//, for any k G Z+. In particular, the flat projective fiber space (M,ωσk) is
algebraic.

By the same argument it follows that for any rational σ G Q + , there exists a
smallest positive integer kσ such that kσωσ satisfies the Hodge condition. We also note
that the above argument holds in particular if M = P(E) —• X, for E projectively
flat.
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10. A priori estimates for solutions and stability. So far, the parameter

σ appears as a fiberwise scaling parameter for the Kahler form ωσ on the total space

M and solutions of the Hermitian-Einstein equation are with respect to this Kahler

structure. On the other hand, σ appears in the coupled vortex equations via the

parameters τ;(σ). We will see that the existence of solutions implies strong a priori

restrictions on the range of σ, respectively Tj.

We return now to the general case where F = U/K is a compact symmetric Kahler

manifold and to the context of §8. There we considered holomorphic extensions of the

type

Eφ: 0 -> £i -» £ -+ S2 -> 0 ,

with £i = π*Wj (g>c VPi, pi G R(K). Define the deficiency of the extension Eφ by

Δμi(σ) = με(σ) - μSi{σ).

The vortex parameters are then given by

(10.1) Ti(σ) = μWi + Δμi{σ).

In terms of the deficiencies, the coupled vortex equations (8.6) can now be written as

tΛxFhl - 2 π μ W l / W l = 2πΔμλ(σ)IWl φ o φ* ,
(10.2) \

iΛxFh2 - 2πμw2lw2 = 2πΔμ2{σ)IW2 + —φ* oφ.
σσ

A straightforward calculation, using (8.14) and (8.15), shows that

(10.3) Δμi(σ) =

and

(10.4) Δμ2{σ) = + ^ (μw + ^

The data for the vortex equation are encoded in the fundamental notion from [9]:

DEFINITION 10.1. A holomorphic triple T = (Wi, W2^φ) is given by two holo-

morphic vector bundles Wi —* X and a holomorphic homomorphism φ: W2 —• Wi,

that Ίsφe H°(X, W), where W = Womc(W2, Wi).

Now if the holomorphic triple T admits a solution of the equations for a given

value of σ, the corresponding Hermitian-Einstein equation on ε —• M relative to ωσ,

admits a solution as described in Theorem 8.9. The Hitchin-Kobayashi correspondence

implies that £ must be (poly-) stable, that is Δμι(σ) > 0 and Δμ2(σ) < 0 in the stable

case. In the degenerate, polystable case, where the extension Eφ is split and hence

φ = 0, we have Δμ\{σ) = Δμ2(σ) = 0. Therefore we must have

<0
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with a strict inequality in the stable case. We will see that μw > 0 in the presence of
solutions for a non-degenerate triple T and therefore

(10.5) 0 < σμw < -μp -

Thus the bundle Vp must have negative degree, which is consistent with our assumption
(2) in 8.8.

THEOREM 10.2. // the Hermitian-Einstein equation on £ —» M relative to ωσ

admits an invariant solution as in Theorem 8.9, the corresponding solution of the
coupled σ-vortex equations for the holomorphic triple T = (Wi, W2,0) satisfies the
L2-formulas for φ:

(1)

WΦII2
— W = rΛσ)-

(2)

- — || 0 Ί I 2 = Vw2 - τ2{σ) = -Δμ2(σ).

PROOF. Taking / χ Tr of the first vortex equation and dividing by 2πriVol(X)
gives

1

Here the normalized L2-norm || φ | | 2 is defined by

where φ* is taken with respect to the metrics hi on Wi. This establishes (1). The other
equality is proved in the same way, using the second vortex equation. D

In order to simplify formulas, we assume now that s\ = 52, where Si — rank(VPi).

THEOREM 10.3. Stable case (Δμi > 0):
If the Hermitian-Einstein equation on E —> M relative to ωσ admits an invariant

solution as in Theorem 8.9, the corresponding solution of the coupled σ-vortex equations
for the holomorphic triple T = (Wi, W2,</>) satisfies the following a priori estimates.

(1)

μwi < r i (σ) , τ2(σ) < μw2 5

(2)

(τi - τ2)(σ) = - - ^ > μ w = μwi - μw2 > 0.
σ

/n the case of unequal rank (r\ Φ r 2 ) :

(3)

τi(σ) < μ W l H-
- r 2 I
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μw2 - I rMw < τ 2 (σ),

I n - r21hence

(4)

0<σi<σ<σ o = - —
μw

μw
In the case of equal rank (r = r\ = r 2 )

(5) degχ(Wi)>degx(W2),

// 0 zs an isomorphism, then the VV* are polystable bundles.

(6)

0 < σ < σo = — σo = CXD , for μ w = 0
μ

(7)

Δμi(σ) = -Δμ2(σ) = -- {μw + ̂ ) > 0.

Thus there is a gap of length //yv > 0 between τ\ and r 2:

r 2 (σ) < μvv2 < μ W i < n θ ) .

P R O O F . Statement (1) follows from Theorem 10.2. (2) follows from (8.14), (1)

and (3), (5) below. (3) follows from [9, Proposition 3.18]. (4) follows from (1) and (3).

(5) follows from [9, Corollary 3.20 and Lemma 4.6]. (6) and (7) follow from (10.3) and

(10.4). D

THEOREM 10.4. For the degenerate, polystable case (Δμi = 0), we have:

(1)

0 = 0, S - S1 Θ ε2 , με = με! = με2

(2) We have T{ = μy^ and the vortex equations degenerate to the uncoupled

Hermitian-Einstein equations on each W .̂

(3) // the bundles Wi are polystable, the Hermitian-Einstein equation on 8 —> M

relative to ωσ admits an invariant solution as in Theorem 8.9 exactly for

μ w > 0 , σ = σ0 =

P R O O F . This follows immediately from Theorem 10.2 and formulas (10.2), (10.3).
D
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11. Appendix: Obstructions for projectively flat holomorphic bun-
dles. The topology of projective bundles is derived from the commutative diagram
of groups (6.2). At the level of classifying spaces this gives rise to the following dia-
gram.

H*(BSU(l + l),Q) J ^ - H*(BPSU(l + l),Q)

iS ^ I*

l),Q) <-^— H*(BPU(l + l),Q)

B

< — - — Q[c2, ••-

Here we choose the rational generators δfc, k > 2 so that they correspond to the
ordinary Chern classes of SU(l + 1), that is Bj^δk) = Ck and of course we have
Sz5(cfc) = cfc, SΐS(ci)=0.

The image of #7 * consists of those rational characteristic classes of complex vector
bundles E which are projective invariants. Computing on the maximal tori, we obtain
the formulas

and

If E is project ively flat, that is

CPι ^ P{E) ^ X xά CPι -^ X,

with holonomy ά: Γ -• FGfL(/ + 1,C), it follows from Chern-Weil theory (cf. [34])
that the projective classes c~k{P) = 0 and therefore from (11.3)

Consider a (holomorphic) projective bundle over the compact Kahler manifold X
with structure group G = PGL{1 + 1, C):

CPι ^ M = P xPGL CPι -^ X.

In order to simplify the exposition, we assume now that H2(X, Z) is torsionfree, and
that X ~ BΓ] in which case H*(Γ, A) = H*(X, A) for any coefficient group A.
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The obstruction for the linearization of a projective fiber bundle is given by an ele-
ment oGL(P) G H2(X, 0£). For oGL(P) = 0, that is M = P(E), the vector bundle E
is determined up to E<g>cM, where M is a holomorphic line bundle on X. The relative
obstruction for M = P(E) with E unimodular, that is C = άet(E) holomorphically
trivial, is given by OSL(P) = rci(C) G H2(X, Zι+ι). In fact, OSL{P) — 0 means that
the determinant bundle is of the form C = Mι+1 and thus P(E) = P(E ®c M*),
with E <g>c M* unimodular.

A similar discussion applies if (6.1) is flat, that is

CPι ^ M ^ X x& CPι -% X,

with holonomy a: Γ —• PGL(l + 1,C). In this case the relative obstruction for
M = P(E) with E holomorphically flat is given by

oGL(ά) e ker(# 2 (Γ,C x ) -* H\X,Θ*X)),

and the relative obstruction for unimodular flatness of E is given by

oSL(a) G ker(iϊ2(Γ, Z ι + 1 ) -» i/2(X, Z / + 1 ) ) .

The obstruction OSL(P) = 0, that is M = P ( £ ) , i f a n d o n l y i f

= ra{C), C = det(E),

where E is determined up to E ®c -M, for holomorphic line bundles M on 1 . If

OGL(P) = 0, then

) — 0 if and only if c\{£) is divisible by Z + 1.

The obstruction OQL{OL) ="0, that is M = P(E) with E flat, if and only if E ®c M
is unimodular (flat), for some Λ4 G Pico(X).

These four obstructions are related by the commutative diagram

H2{Γ,C

(11.4)

H2{Γ,Zι+1)

Thus we have the following relations:

OGL{OL) = i*θsL{ά), ή injective,

The above obstructions are defined by the 'exact' sequences associated to diagram
(6.2), using the classification of (flat) holomorphic principal bundles
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(11.5)

(11.6)

Hλ(X

H\Γ

as well

i

I-

as

?χ) ** ) Hλ(X,Θx{GL)) — ^ -

1
x) ^» , H\Γ,GL) —^~

I + 1) ^ ^ _ > g[\X,Θx(SL)) ^^

i
ί+ij • JJ (l,bL)

the classification of holomorphic

-> H\X,(9χ(PGL)) -^

ί
-^ H\Γ,PGL) — ^

-^ H\X,Gχ{PSL)) —°-±

ί
-^ H\Γ,PSL) —^

line bundles

:(^,Cχ)

ΐ
!(-Γ,Cx)

!(X,^/+i)

2 (r,z ί + 1 )

(11.7) 0 -> Pico(X) = ff H ^ ΘX)/L^H1(X, Z)

Combining the exact diagrams

z fc , c exp » c x

T T
hi ί + 1 (

1 • c e x p . c x

ϊ
Q y % L ) (a e χ P φx

T t T
z + i h + i (

Q ^ ^ ^ > ^ e x P ^ x

ί
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via their corresponding exact cohomology sequences, one obtains the following com-
mutative diagram with exact columns:

(11.8)

1
H2(Γ,CX) -

| ( ) i+ i

H2(Γ,CX) -

h
H2(Γ,Zι+1) -

T/3 = 0

HHΓ,CX) -

ϊ

• H2(X,(9*) -

ϊ
- ^ — H2(X,Zι+1) -

1
• H3(X,Z)

| l + l

• H3(X,Z)

-=-^ H2(X,Zι+1)

V
-? !— H2(X,Z)

H\Γ,Zι+ι)

ϊ

The listed properties of the obstructions are obtained by diagram chasing in (11.5)
to (11.8).

EXAMPLE 11.1. Ruled surfaces:
Consider a ruled surface, that is a flat projective fiber bundle

CP1 --> M = X x& CPι -^ X ,

with holonomy ά : Γ —> PGL(2,C), where X is a Riemann surface of genus g > 1.
Observe that X ~ BΓ and Γ/[Γ, Γ] = Z 2^. In this case, diagram (11.8) has the form
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Zι+i • 0

i-

(11.9)

( )t+1 h +1

* • i ^ p ^ x ) Cl > Z

ΐΰ Ty3 = 0

/ "7 \2σ ~ / 7̂ \2g = / 17 \2σ

v ί̂+ij * \£*i+i) *• v^z+ij

The obstruction oGL(P) for linearity vanishes, since H2(X,G^-) = H3(X, Z) = 0.
Thus M = P{E) is given by a projectively flat holomorphic vector bundle E of rank
2. The remaining obstructions are all identical. They are given by

OSL(P) = OSL{&) = rcι(detE) G H2(X,Z2) = Z2 ,

and can be identified with the Stiefel-Whitney class ^ ( P ) . Thus we know that the
ruled surface M — X X&CP1 is always linear, that is M = P(E), for a (not necessarily
unique) projectively flat holomorphic vector bundle E of rank 2.

The following properties are then equivalent:
(1) E is of degree 0, that is cι(E) = 0 or άet(E) G Pico(X);
(2) det(£?) is trivial as a smooth complex line bundle;
(3) E ®c M. is unimodular, that is det(J5 ®c -M) — det(£l) (8)c M2 1S holomor-

phically trivial, for some line bundle Λ4 G Pico(X);
(4) E 0c -M is a flat holomorphic bundle with holonomy a: Γ —> SL(2, C), for

some line bundle M G Pico(X);
(5) E is a flat holomorphic bundle with holonomy a: Γ —> GL(2, C);
(6) E1 admits a holomorphic connection.
In fact, the equivalence of (1) to (5) follows from §9 and the diagrams above.

The equivalence of (5) and (6) follows from the vanishing condition for the Atiyah
obstruction [1]:

since the curvature of a connection V of type (1,0) is given by 4?y , Ω^ being
automatically zero.

We note that this remains valid for flat projective bundles over X with fiber CP\
I > 1. Moreover, the flat holomorphic bundles with (irreducible) isometric holonomy
a: Γ —> SU(2), correspond by the theorem of Narasimhan-Seshadri [40] to the semi-
stable (stable) holomorphic bundles of degree 0 and rank 2.
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