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Abstract.  This paper is concerned with a general existence and continuous dependence
of mild solutions to semilinear functional differential equations with infinite delay in Banach
spaces. In particular, our results are applicable to the equations whose Cp-semigroups and
nonlinear operators, defined on an open set, are noncompact.

Introduction. Let E be a Banach space over the real field R withnorm |- | and B a
phase space satisfying the fundamental axioms given in [3], [4], [15]. If x : (—00, 0 +a) —
E,0 < a < 400, then for any t € (—00, 0 + a) define a mapping x; : (—00,0] — E
by x;(0) = x(t +6), —oo < 6 < 0. Denote by C([a, b], E) the space of all continuous
functions from [a, b] into E with the supremum norm. Let A be the infinitesimal generator of
a Co-semigroup 7'(¢) on E.

In this paper we deal with the initial-value problem for the semilinear functional differ-
ential equation with infinite delay in E (for brevity, IP(o, ¢)):

d
Eu(t):Au(t)+F(t,u,), o<t<o+a,

with us = ¢ € B, where (o, ¢) € R x B is given initial data and F is a (strongly) continuous
function mapping an open subset D in R x Binto E. If u : (—o0, 0 +a] — E is a continuous
function satisfying the integral equation

t

u(t) = T — o)) +/ T(t —s)F(s,us)ds fort e lo,o0+al

et —o) for t € (—o0, o],

then u is called a mild solution of IP(o, ¢).

Roughly speaking, the study of the existence of mild solutions to IP(c, ¢) has been
developed in two different directions. One direction is to find conditions to guarantee the
existence and uniqueness of mild solutions for IP(o, ¢); for instance, refer to Iwamiya [8],
Martin [11], Schumacher [16], Shin [21], [22] and Travis and Webb [24], etc. The other is
to find conditions to ensure only the existence of mild solutions to IP(o, ¢), which is mainly
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described in terms of the measure of noncompactness («¢-measure for short) introduced by
Kuratowskii; for instance, refer to [1], [7], [9], [10], [13], [14], [17], [19], [20].

In the present paper we will investigate the existence and the continuous dependence of
mild solutions to IP(o, ¢) in the latter direction.

First, we will establish a general existence theorem on mild solutions for IP(o, ¢). The
fundamental results on the existence of mild solutions for the case of ﬁon-delay were estab-
lished by Krasnoselskii, Krein and Sobolevskii [9] and Pazy [14] in which it is assumed that
T(t) is a Co-compact semigroup on E or F is a compact operator. Recently, in the work of
Henriquez [7] the above result was extended to IP(o, ¢). Thus, in the case that both T (¢)
and F are noncompact operators, we will develop an existence theorem of mild solutions to
IP(o, ¢) in the present paper. In such a direction Bothe [1] showed a result on the existence of
mild solutions to the multivalued semilinear differential equation on a closed set, which is a
partial extension of the one due to Monch and Harten [13] for ordinary differential equations.
However, even Bothe’s result cannot directly extend to IP(o, ¢), because, contrary to the case
of non-delay, it is difficult to obtain the compactness of a sequence {z"},eny C C([a, b], E)
of approximate solutions for IP(a, ¢).

To overcome this difficulty, we establish the following inequality (Theorem 1) on the
«a-measure: For a bounded subset ¢/ in C([a, b], E)

. t
o ({/ T(-—s)f(s)ds|la,b]| f eu}) < yr sup a([/ T(t—s)f(s)ds|f euD ,
a a<t<b a

where

/. T(-—s)f(s)ds|la,b] € C([a,b]l, E) and yr =Ilimsup|T(S)| .
a §—>0+

Using this result and the integral inequality [6] (refer to [2], [13]) on the ¢-measure, we can
prove our existence theorem (Theorem 2) for IP(o, ¢). Of course, our result extends Monch’s
and Harten’s one [13] and contains Bothe’s one [1] for the single valued case on an open set
as well as Henriquez’s one [7] (see Remark 2.2). See [23] for an application of the above
inequality.

Secondly, based on our existence theorem, general results (Theorem 3 and Proposition
4.7) on the continuous dependence of mild solutions are formulated in semilinear functional
differential equations. Our theorem is an extension of Kamke’s theorem given in functional
and ordinary differential equations in finite dimensional spaces or in infinite dimensional
spaces (refer to [4], [15], [16], [19], [25]). In the case A = 0, a similar result to Theorem 3
can be found in [19], but its proof is based on the assumption that F is uniformly continuous.
We note that the result given in [16, Theorem 3.1] is related to the local Lipschitz condition
onF.

1. Phase space B, Cy-semigroup and o-measure. Let R~ = (—o0,0], Rt =
[0,00) and R = (—00,00). Let B = B(R™, E) be a linear space, with semi-norm | - |g,
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consisting of functions mapping R~ into E. Throughout this paper we assume that the fol-
lowing axioms on the phase space B are satisfied:

B1) Ifx:(—o00,0 +a) — E iscontinuous on [0,0 + a) and x, € B, then x; € B
forall ¢ € [0, 0 + a) and x; is continuous in ¢t € [0, 0 + a).

(B2) There exist a continuous function K(¢#) > O and a locally bounded function
M (t) > 0 such that

lx|8 < K(t —o)sup{|x(s)| |0 <s <t} +M(t —0)lx|B

fort € [0, 0 + a) and x having the properties in (By).
(B3) There exists a constant L > 0 such that |¢(0)| < L|g|g forall ¢ € B.
(B4) The quotient space B= B/| - |p is a Banach space.
For examples of the phase space B refer to [3], [4], [15]. Frequently, we will use the following
notations in this paper: K, = sup {K(t) | 0<t< a} and B(p,r) = {1// € BI lo—¥iIB < r}.
Let Y be a linear space with a semi-norm | - |y and the quotient space Y = Y/|-|y bea
Banach space. For a bounded subset £2 in Y, the a-measure of §2 is defined as follows:

a(£2) = inf {d > 0| £2 has a finite cover of diameter < d}.

Hereafter, we will use the same notation « for Kuratowski’s measure of noncompactness in
any linear and semi-normed space whose quotient space is a Banach space. Refer to [10],
[17], [19] for elementry properties of the a-measure.

Denote by C[a, b] for short the space C([a, b], E) and by |x|[4 5] the supremum norm
of x in Cla, b]. Let X be a set of functions x from (—o0, 0 +a),0 < a < o0, to E such that
Xs € B and x is continuous on [0, o + a). Then we will use the following notations:

Xt)y={x)eE|xeX}, X={xeB|xeX} fortelo,0+a),

Xl|[c,d] = {x|[c,d] € Clc,d]|x € X} and X(t) = {x(t) € E|x € X},

where 0 < ¢ <d < o + a, x|[c, d] stands for the restriction of x to [c, d] and x(¢) denotes
the differential of x at . If X|[o, t],t € [0, 0 + a), and X, are bounded, then the relation

1.1 %a(?\’(t)) <a(X) < Kt —o)a(X|[o,t]) + Mt — 0)a(Xy)

holds (see [17, Theorem 2.1] and [19, Lemma 1.5]). We denote by £![a, b] the space of all
integrable functions from [a, b] to R with the norm | f|,1 = f ab | f(®)|dt.
The following result is found in [6, Theorem 2.1] (refer to [2], [13]).

LEMMA 1.1 Let W be a countable set of strongly measurable functions from [a, b] to
E. Assume that there exists a i € L[a, b] such that |x(t)| < u(t) for all x € W and for a.a.
t € [a, b]. Then x(W(t)) is integrable on [a, b] and

b b
a ({/ x(t)dt|x € W}) < 2/ a(W(1))dt .
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If T : Y — Y is continuous and takes bounded sets into bounded sets and if there is a
k& > 0 such that «(T B) < ka(B) for all bounded sets B C Y, we define

a(T) = inf {k € R* | (T B) < ka(B) for all bounded sets B C Y}

Then we have a(T B) < a(T)ax(B) for every bounded set B C Y.
Similarly,

a(T) = inf {x € R* | (T B) < xa(B) for all bounded countable sets B C Y} .

REMARK 1.2. LetT : E — E be a bounded linear operator. Then T is a compact
operator if and only if @(T) = 0.

It is well-known that if T(¢) is a Co-semigroup on E, then | T ()| < Mye®" for all
t € Rt, where M, > 1 and w € (—00, o0) (see [14]). Hence it follows that

(1.2) (T () <a(T () <|IT@)| < Mpye® forall t € R .

If H is a bounded subset in Cla, b], then for § > 0 and ¢ € [a, b] we set a(t,5; H) =
a(H | [t — 8,t + 8]) and define

a(t; H) = inf {a(t, 8, H) |8 > 0} = Jim a8 H).

The following result is found in [12, Lemma 1].
LEMMA 1.3. Let'H C Cla, b]and a(t; 'H) be as above. Then a.(H) = sup, <, <p @ (t; H).

For a bounded set H C Cla, b] and for ¢t € [a, b] we use the following notations:
w(8;t,H) = sup{lg(r) — g(s)| |, s € [t = 8,t + 8], g H},
w(t, ) = inf{w(8;1,H) |8 > 0} = Jim (81, H)

and
w(H) = sup w(t, H).

a<t<b
Clearly, H is uniformly equicontinuous on [a, b] if and only if w(H) = 0.
For a continuous function u : [a, b)] - E we put

t
T x u(t) =f T(t —s)u(s)ds fort € [a,b],

and for a subset Y C Cla, bl weput T «U = {T *u|u € U}.
We are now in a position to prove the main theorem in this section.

THEOREM 1. LetU be a bounded set in Cla, b] and T (t) a Co-semigroup on E. Then

(1.3) La)(t, TxU) < sup a(T xU()) <a(T xU|[a,t]) < yr sup a(T *U(7))

2yr a<t<t a<t<t

forallz € [a, b], where yr = limsupy_, o, |7 (8)]l.
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In particular, if 7'(¢) is a Co-contraction semigroup on E, then the above relation (1.3) is
reduced to

1
(1.4) —w@, T*xU) <a(T xU|[a,t]) = sup a(T xU(T)).
2 a<t<t
PROOF. Since U is abounded subset in C[a, b], thereis an L > Osuchthat ||z < L

forall f e . Set X =T xU. Forany ¢t € (a, b] and for any &, 0 < ¢ < t — a, there exist
Ki@t—e)c K@ —¢),i=1,2,...,m,such that

(1.5) dialC,-(t—s)sa(lC(t—s))+% (=12....m), Kt-e=|JKit—o.
i=1

Set
Killt —e,t+el={Txh|[t—e,t+el€K|[t —e,t +6]|Txh(t — ) € Ki(t — &)}.
Then we have

m

Kilt—et+el=|JKillt —et+el.
i=1
Now we will prove the first inequality in (1.3). Forany 7T x f € K thereisa j €

{1,2,... ,m}suchthat T x f|[t —e,t +¢€]l € K;|[t —&,t +¢]. SelectthenaT xge K
suchthat T x g|[t —¢&,t + €] € Kj|[t —e,t + ¢€]. Since T * g is uniformly continuous on

[a, b], thereisad (¢ > § > 0) suchthat |T x g(t) — T * g(s)| < ¢/3 if |t — s| < §. Thus we
have, for t,s € [t — §,t + 6],

(1.6) IT*f(t)—T*f(s)IsIT*g(r)—T*f(t)l+|T*g(S)—T*f(S)I+§.

The first term in the right hand side of (1.6) is estimated as follows. Let C = supy<;<p_, I T (s)].
Then

IT % g(r) = T * f(7)]

t—¢ t—¢
/ T(t —s)g(s)ds — / T(t —s)f(s)ds

=

4_

/r T(r —s)g(s)ds — /T T(r—s)f(s)ds
t—e t

—&

(¢W))]
<T@ —t+ell

t—¢ t—¢

/ T(t—s—s)g(s)ds—/ T —¢e—s)f(s)ds
+2CL|t —t + €|

< sup [[TWIT xgt—e)—Tx f(t—¢)|+2CLe1,

O<y=<e

where €1 = ¢ + 8. Since the second term in the right hand side in (1.6) is similarly estimated
as (1.7), the inequality (1.6) becomes

IT* f(x)—T*f(s)| <2 sup IIT(V)IIIT*g(t—S)—T*f(t~8)|+4CL61+§-

O<y<g
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Using (1.5), we have

IT* f(r)—Tx* f(s)| <2 sup || T(y)|ldiaK;(t —&)+4CLeg +§

O<y<g

<2 sup TV sup a(K(r))+ 4CL+ Oy,
as<t<t

O<y=<e

and hence

w(@;t,K) <2 sup [|IT)| sup a(K(r))+ @4CL+ C)e;.

O<y<e ast=<t

Therefore, letting ¢ — 0+ in both sides of the above inequality, we have w(t, K) <
2yr SUP, <7< a(K(t)) as required.

Next, we will prove the third inequality in (1.3). In view of (1.7) we have that for any
Txf|[t—et+el,Txh|[t—¢e,t+elek|[t—¢ct+¢]

sup {IT % f(s) — T xh(s)| |t —e <s <t+¢])

=|T* f(t) — T xh(r)] forsome T €[t —¢&,t+ €]
< sup ||ITWINT *=f(t—¢e)—T*h(t—¢e)|+2CLe;

O<y=<e

and hence,

a(t,e; K) <dialkl; |[t —&,t + €]
< sup |IT(v)|| sup a(K(s)) + (2CL + C)ey,
a<s<t

O<t<g

from which it follows that a(z, K) < yr sup,,, @(K(s)). Using Lemma 1.3 we can obtain

a(K|[a,t]) = sup a(r,K) < yr sup a(K(1))

a<t=<t a<t=<t

as required.
If T(¢) is a Co-contraction semigroup on E, then ||7(t)|| < 1 on R*. Hence we have
yr < 1and so, yr = 1, because of (1.3). q.ed.

COROLLARY 1.4. Let T xU be as in Theorem 1. Then a(T xU) = 0 if and only if
a(T xU()) =O0forallt € [a, b].

REMARK 1.5. In general, if H C Cla, b] is a bounded set, then it follows that
1
max { —w(H), sup a(H((1)); <a(H) <2w(H)+ sup a(H())
2 a<t<b a<t<b

(see [12, Theorem 1]). Also refer to [5]. Theorem 1 refines on the above result for a special
case.

Combining Theorem 1 with the relation (1.1) we can easily obtain the following result.
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PROPOSITION 1.6. LetU be a bounded set in Cla, b] and T (t) a Cy-semigroup on E.
Put K ={Gy : (—00,b]l > E| f € U}, where

t
/ T —s)f(s)ds fortela,b],

0 for t € (—o0,al.

Gr()=

Then
1
Za(’C(t)) < oK) <yrK(t —a) sup a(K(s)).

ass<t

Define linear operators S(¢) : B — B,t > 0, by

pt+0) ift+6<0,

Furthermore, according to [19], we here assume that 8, € R, where
1
By = limsup —{a(S(1)) — 1}.
t—»0+ !

In general, the following result holds, which refines on Theorem 1.12 in [19] for a special
case. Denote by C![a, b] the set of all continuously differentiable functions from [a, b] to E
and denote by N the set of all positive integers.

PROPOSITION 1.7. Leta <bandlU = {u" :(—o0,b] > E | u"|[a, b] € C'a, b],
uh e B,neN } Suppose that U | [a, b] is bounded and equicontinuous and that there exists
ap € L'a, b] such that | (t)| < u(t) for alln € N and for a.a. t € [a, b]. Then

(1.8) DiaU) < 2K0)aU(®)) + BuaUs),

(1.9 %a(Ul[a,t])sZa(Z](t)) and %a(U(t))SZa(Z](t))

fora.a. t € [a, b, where D denotes the right-hand upper derivative.

PROOF. First, we shall show that the inequality (1.8) holds. Combining the relation
(1.1) and Lemma 1.1, we have, for ¢t € [a, b) and for & > 0,

a({ul,, — S(hyu} |n € N}) < K(h) sup ha({u"(s) —u"(t)|n € N})
t<s<t+

<K() sup «a ({fs W"(t)dt |n GN})
t<s<t+h t

<2K(h) sup / aU(t))dt
t

t<s<t+h

t+h .
< 2K(h)f aU(r))dt.
t
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Hence we get
aUi+n) — aUs)

(1.10) <a({u},, — Shu} |n e N}) +a({Sh)u} |n € N}) — alh)

t+h
< 2K(h)f aU(r)dt + {a(Sh) — Do) .
t

Moreover, we have that for a.a. t € [a, b),

t+h
%K(h)f aU))dt - KO)aU@)) as h— 0+ .
t

Thus, dividing the both sides by 4 and letting & — 0+ in the above inequality (1.10), we can
easily obtain the inequality (1.8).
Next, we shall prove that the inequality (1.9) holds. For ¢ € [a, b) and for & > 0 we have
aUlla,t+h]) —ald|la,t]) = sup a@l(s)) — sup ali(s))

a<s<t+h as<s<t

<ot +r1))—a@()) forsome T € [0, h]
<a({u"C+1)—u"@)|n eN})

t+r
< 2/ aU(s))ds,
t
from which we can easily obtain the relation (1.9). q.e.d.

2. Existence of mild solutions for IP(o, ¢). In this section we will prove existence
theorems for IP(o, ¢). For a compact set I” in B, we set
ps(t, ) = sup sup {|(S(x) — SO)YIs|¥ € I}

O<r<t
and
rr(t, T (0)) = sup sup {|(T(x) = TO)¥ O |y eT}.

O<t=<t
In particular, if I = {¢}, then we denote pgs(¢, I') and r7 (¢, "' (0)) by ps(t, ¢) and rr (¢, ¢(0)),
respectively. It is obvious that

2.1) pst, I'y—>0 and rr(, I'0) >0 ast—>0+.

We make the following hypotheses for IP(o, ¢):

(H1) F :lo,0 +a] x B(p,r) > E,0 < a < o0, is a continuous function such that
|F (¢, ¥)| < H over there.

(H2) A is the infinitesimal generator of a Cp-semigroup 7'(¢) on E.

Throughout this paper we put C, = sup {||T(#)]| |0 < t < a} in (H2).

LEMMA 2.1. Suppose that the hypotheses (H1) and (H2) are satisfied for 1P(o, ¢).
Let

(2.2) y =sup {t €[0,al| ps(t, ) + Karr(t, 9(0)) + KaHCat <r}.
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Then for each e, € (0, min{r, y}), &, — 0 monotone as n — 00, there exists a function
72" 1 (—00,0 +y] — E suchthat 7} = ¢,7" |[0,0 + y] € Clo, 0 + y] and

t

2.3) "@) =Tk —o)p0) — / T(t —s)F(s,z3)ds| < 3Caen(t —0)

o

forallt € [o,0 + y].

For the proof refer to [22, Lemma 5.3].

A function w : (a, b) x [0, c) — R is said to be a Kamke-type function if the following
conditions hold:

(w1) w:= w(t,s) is Lebesgue measurable in ¢ for each s € [0, ¢) and is continuous in
sfora.a.t € (a,b).

(w2) Foreach r € (0, ¢) there exists a function m,, defined on (a, b) and locally inte-
grable on (a, b), such that |w(z, s)| < m,(¢t) fora.a. t € (a,b) and all s € [0, r].

Sometimes, the following condition is needed for a Kamke-type function w.

(w3) w(t,s) is nondecreasing in s for a.a. t € (a, b).

We are now in a position to state the main result in this paper.

THEOREM 2. Suppose that the hypotheses (H1) and (H2) are satisfied for IP(o, ¢).
Then IP(o, @) has a mild solution existing on [0, 0 + y], where vy is as in Lemma 2.1, under
the assumption that either T (t) is a Co-compact semigroup on E or the following conditions
are satisfied: There exists a Kamke-type function w : (0,0 + a] x [0,2r] = RT with (w3)
such that

(1) wi, K@—0o)u@®)) > 0ast > o+,where K(t)isasin(By)andu : [0, 0+a] —>
R is any continuous function satisfying the condition

(2.4) lim =u(o) =0;

(2) the inequality a(F(t, B)) < w(t, a(B)) holds for each bounded set B C B(p,r)
and fora.a. t € (0,0 + a); and
(3) u(t) = 0 is the unique absolutely continuous function satisfying the equation

2.5) %u(t) =2yr sup &(T(x)w(t, K@t —o)u(t)) foraa.te€ (0,0 +a)

O0<t<a

with the condition (2.4), where yr is as in Theorem 1.

PROOF. Set ZK = (7" : (00,0 +y] = E|n > k), k € N, and X* = {x" :
(—00,0 + y] — E|n > k}, where 7" is as in Lemma 2.1 and

t

T —o0)p(0) +f T(t—s)F(s,zy)ds fortelo,0+y],
ot —o) ’ for t € (—o0,0].

@) =
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Alsoput Z = Z! and X = X! Using (2.3) we have that for ¢ € [0, 0 + y] and for k € N,
l(Z |[o,1]) — (X | [0, 1])] < a({" —x") [0, 1] |n > k})

<2sup|Z" — x"|jg,r] < 6Ca8x(t — ).
n>k

(2.6)

Letting k — oo in both sides of the above inequality, we get
2.7 a(Zllo, 1) =a(X|[o,1]).

On the other hand, by Theorem 1 and Lemma 1.1 we have

a(X [[0,1]) < a ({/ T( — $)F(s, s [0, 1] |n € N})

T
<yr sup « ({/ T(t —s)F(s,20)ds | ne N})
o<t<t o

(2.8) T
<2yr sup / a({T(x —5)F(s,2})|n € N})ds

o<t<t
t
<2yr sup &(T(x)) | a({F(s,z})|n€N})ds.

O<t<a o
If {T (¢)}:>0 is a Co-compact semigroup on E, then it follows from Remark 1.2 that & (7T (¢)) =
Oforallt € (0, a]. Hence, from (2.7) and (2.8) it follows that the set Z | [0, o +y] is relatively
compact in C[o, o + y].

Let us consider the case where sup,_, <, @(7(t)) > 0. If we put

v(t) =2yr sup a(T(r))

t
O0<t<a o

a({F(s,2})|n e N})ds,

then v(z) is continuous on [0,0 + Y], v(c) = 0 and a(X | [0, t]) < v(t). We claim that
lim; 4+ v(¢)/(t — o) = 0. Using Lemma 2.1 we have

lzf —¢lg <z} — St —0o)plg+ St —0)p —¢|B
<K(—o0) sup [2"(s) —(0)|+|S(t —0)p — ¢lB

o<s<t
< KoCo(H +3)(t —0) + Kor7(t — 0, 9(0)) + ps(t — 0, ¢)
-0 ast—>o+.

Hence, from the continuity of F we have that for any ¢ > 0 there exists a § > 0 such that
|F(t,2})— F(o, )| <eg/2foralln € Nif |t —o| < §. From this we have, fort € (o, 0 +9),

t

1 1 4
—— | a({FGs, 2D |n eNpds = —— [ a({F, z;')—F(o,go)ln € N})ds
t—0o Jo t—o Js
1 t
<—— [ eds=¢,
t—o ),

which implies that lim;, 54+ v(t)/(t — o) = 0.
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Furthermore, using (1.1), (2.7) and (2.8) we see that a(Z;) < K(s — o)a(Z | [0, s]) <
K (s —o)v(s) for s € (0,0 + y]. Therefore we get, together with the assumption (2),

t

t
/ a({F(s,z}) |n € N})ds < / w(s, K(s —o)v(s))ds < 00.

o+

If we set

t
u(t) =2yr sup &(T(r))f w(s, K(s —o)v(s))ds,

0<1<a +

then v(¢) < u(¢) and u(¢) is absolutely continuous. Hence we find

%u(t) <2yr sup &(T(1))w(t, K —o)u(t)) aa. te(o,0+y).

0<t<a

Using the assumption (1), we can easily see that u(¢) satisfies the condition (2.4). Combining
a comparison theorem ([18, Lemma 4.1]) with the assumption (3) we have u(t) = 0 and
hence, a(Z | [0, t]) = 0 for all ¢ € [0, 0 + y]. Therefore, Z | [0, o + y] is relatively compact
in C[o, o + y]. By Ascoli-Arzela’s theorem, we see that there are a sequence {n(i)} C N and
a function z : (—00, 0 + y] — E such that z, = ¢ and |2"® — z|s 54,] = Oasi — oo.
Hence it follows from the axiom (B) that z;'(i) — z; uniformly on [0, 0 + y]asi — oo. By
Lebesgue’s dominated convergence theorem, we see that the function z is a mild solution of

IP(0, ¢). qe.d.

REMARK 2.2. Recently, Henriquez [7] showed the existence of mild solutions to
IP(o, ¢) under the condition that «(T' (¢) F ([0, o + a] x B(g,r))) = 0 for each t € (0, al.
This condition is satisfied whenever T'(¢) is a Co-compact semigroup on E or F : [0,0 +
a) x B(p,r) — E is a compact operator. Our condition states a sufficient condition on the
existence of mild solutions to IP(o, ¢) for the case where both 7'(¢) and F are noncompact
operators.

COROLLARY 2.3. IfT(t) is a Co-contraction semigroup on E in Theorem 2, then the
equation (2.5) is reduced to the equation

j—tu(t) =2w(t, K —o)u(t)) foraa. t e (0,0 +a].

We note that if o = 0 and T'(¢) is a Cop-contraction semigroup on E, then the function
w(t,s) = (1 + &(t))s/2K (¢)t satisfies the assumption (1) and (3) in Theorem 2, where ¢ :
(0,a] - R* is continuous and [, &()/tdt < oo.

COROLLARY 2.4. If F(t,y) = F(t, ¥ (0)) in Theorem 2, then the equation (2.5) is
reduced to the equation

%u(t) =2 sup a(T(1))w(t,u()) foraa. telo,0+a].

0<1<a



566 J. S. SHIN AND T. NAITO

PROOF. Using the same argument as in the proof of Theorem 2, a(X(¢)) is easily
estimated as follows:

t
a(X()) <2 sup &(T(r))f w(s,a(X(s)))ds.

0<t<a

Hence, we can easily prove the corollary. q.e.d.

REMARK 2.5. Corollary 2.4 generalizes Bothe’s result in the single valued case with
non-delay on an open set, in which it is assumed that

lim a(F(Jin x B)) < k(@)a(B)
h—0+

on [0, 0 + a] and for all bounded set B C E, where J;, = [t — h,t] N [0,0 + a] and
kello,o + a].

PROPOSITION 2.6. Suppose that A = 0 in IP(o, ¢) and Hypothesis (H1) is satisfied.
Then 1P(o, ) has a solution existing on [0, 0 + y] for some y > 0, under the following
assumptions:

(1) There exists a Kamke-type function o : (0,0 + a] x [0,2r] — R such that
the inequality a(F (¢, B)) < w(t,a(B)) holds for a bounded set B C B(yp, r) and for a.a.
t €lo,0+al.

(2) u(t) = 0is the unique absolutely continuous function with (2.4), which satisfies the
equation

2.9) %u(t) =2w(t, Kt —o)u(t)) foraa. te€lo,o+al,
provided that w satisfies the condition (w3), or
(2.10) %u(t) =2KO)w(t, u(t)) + Buu) foraa.telo,o+al.

PROOF. Since A = 0, we have T'(t) = I (the identity operator). Let Z and X be as in
the proof of Theorem 2 with 7'(r) = [ and W = {w" : (=00, + y] — E |n € N}, where

t
w'(t) = /a F(s,z5)ds forteo,0+y]

0 for t € (—o0, 0].

Then we have that x! = S(t —o)p+w/ fort € [0, 0 +y]. We can easily obtain the following
properties:

(i) |w} —wlip < KqH|t —s|fort,s € [o,0 + y]and foralln € N;

(i) JaOW;) —aWs)| <2K,H|t — s|forallt,s € [o,0 + y]; and

(iii)) aW;) = a(Xy) fort € [0,0 + ¥]
(see [19, Lemma 2.1}).
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Now, we will show that ¢(Z;) = a(X;) fort € [0, 0 + y]. Using (2.6) and the relation

(1.1), we have
e (Z,) — 2 (X)| < er({z! — x| n > k})
< Kaa({@" = x") |[o, 1] |n > k}) < 6Kaer(t — o),

which implies the assertion.

To complete the proof, it is sufficient to show that «(Z;) = 0 for all t € [o0,0 + y].
Using Proposition 1.7, we get

Dia(W)) < 2K0)a0V(1)) + Bua (V)

211 <2KOa({F(t,2!) |n € N}) + Bua(W))

fora.a. t € [0,0 + y]. Since a(Z;) = a(X;) = a(W;) fort € [0, o + y], we have, together
with the assumption (1),

%a(z\.’,) <2K0)w(t, (X)) + Bua(X;) foraa. t elo,0+y],

because of the property (ii). We note that lim;_, 54 a(X;)/(t — o) = 0 by using (2.11). Put
v(t) = a(X;) fort € [0, 0 +y]. Then v(t) is absolutely continuous on [o, o +y] and satisfies
the differential inequality

%v(t) <2K0)w(t,v(t)) + Buv(t) foraa.telo,0+y].

Hence, from a comparison theorem ([18, Lemma 4.1]) and the assumption (2) it follows that
v(t) = Oforall ¢ € [0,0 + y]. The rest of the proof is easily proved by using Proposition
1.7. q.ed.

REMARK 2.7. (1) If F is uniformly continuous, then the equations (2.9) and (2.10)
in Proposition 2.6 can be replaced by the equations

%u(l) =w(,K(t —o)u@®)) foraa.te[o,o+y]

and
d
Eu(t) = K©O)w(t,u(t)) + Buu(t) foraa.telo,o+y],
respectively (refer to [17], [19], [20]).
(2) Proposition 2.6 is an extension of the result due to Monch and Harten [13].

EXAMPLE. Let us consider the initial value problem of the integro-partial differential
equation:

du(t,x) 10%u(t,x) 1

t
ar 4 ox2 +Ef_ooA(s—fﬁx)f(t,u(s,x))ds

(2.12)

(e ]

+%B(t,x)u(t—r,x)+f G, x,y)g(t,u(t—r,y)dy,

—00
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for (¢, x) € [0, c0) x R, with the initial condition

u(t,x) =¢,x) for (t,x) € (—00,0] x R,

(2.13) tli)r(I)lJru(t, x)=¢(0,x) and ¢eLl.
Here we take
C= { f:R—>R ] f is a continuous function such that
xlirfoof(x) and x—lirlloo f(x) exist}
and
L = {¢p: (—00,0] > C| ¢ is measurable on (—o0, —r], r > 0,
continuous on [—r, 0] and |¢|z < oo},
where

0

lelc = sup |<p(9)|c+/ ’l©)cdo .

—r<6<0 -
Then C is a Banach space with the supremum norm | - |¢ and the phase space L satisfies the
axioms (B1)—(B4) with K(#) =2 — e
Further, we define a Co-semigroup 7'(¢) on C with ||T(z)|| = 1, as

1 (o0}
[T(ul(x) = "—1/2/ e—(x_y)z/tu(y)dy fort>0 and ueC,
(rrt) -0

T (0) = I. Then the infinitesimal generator .A of the Co-semigroup 7 () is given by

2

(Aw)(x) = %‘—jx—zu(x) for u €e D(A),

DA = C i C iz— ( C
={ue dxu(x)e ,dxzux)e .

Assume that

(1) A:(-00,0] x R —> R, B:[0,0) x R — R are continuous functions such that
|A@, x)| <€, |B(t,x)| <1,A(,-) € Cand B(t,-) € C;

(2) G :[0,00) x R x R — R is a continuous function with compact support with
respect to (x,y) € R x R for each t € [0,00) and g : [0,00) Xx R — R is a continuous
function; and

(3) f:10,00) x R — R is abounded continuous function and satisfies the inequality

[f@,x)— f@, < I_x:_yl fort > 0.

As such a function, we can take the function f (¢, x) = ¢ sin(x/12).
Now, we define functions as follows: For (¢, ¥) € [0, 00) x L,
0

1
File )@ = 5 f A@, x) £ (t, Y6, x))d6 + %B(t,x)w—r,x),

—00
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[e.¢]

Fa(t, 9)(x) = f Gt x, V) glt, ¥(—r, y))dy

—0Q
and
F@, ¥)x) = F1(t, ¥)(x) + P2, ) (x) .

Then the existence of mild solutions to the initial value problem (2.12)—(2.13) is reduced to
the existence of mild solutions to the abstract initial value problem given as
2.14) %:Aw+.7:(t,w,), t>0, and wo=¢e€eL.
Applying Theorem 2 to the above problem, we shall show the local existence of mild solutions
to the initial value problem (2.14). Hence, we may assume that D(F) = [0, 1] x L(gp, 1),
where L(p, 1) = {n € L',| In —@le < 1}. Then it is easy to see that F is bounded and
continuous.

First, we consider the function Fy. For (¢, ¢1), (t, ¢2) € D(F), t # 0, we have, by the
assumptions (1) and (3),

|F1(t, p1)(x) — F1(2, 92)(x)]
1 0
=3 I/ 11, 0100, x) — £, 9200, X))|dO + |91 (=, x) — <p2(—r,x)|}

1

0
< % {/ gOI(pl(e, x) — 200, x)|dO + |1 (—r, x) — goz(—r,x)l} i

from which we get

1
[F1(t, 1) — F1(t, 92)Ic < Zl(pl —@lc.

Next, we show that a(F>(t, L(p, 1))) = O for every ¢t € [0, 1]. Take any ¢t € [0, 1]
and any sequence {h,(t)} C Fa(t, L(p, 1)). Then there exists a ¢, € L(g, 1) such that
h,(t) = F»(t, ¢,). From the assumption (2) we have that there exists a positive number M
such that G(¢, x, y) = O for (x, y) € R x R\{[-M, M] x [-M, M]} and that G(¢, x, y) is
uniformly continuous in (x, y) € R x R. Put G(t) = max {|G(z, x, y)| | (x,y) € R x R} and
9(t) = max {|g(t, w)| | lu| < lplz + 1}. Since |pa(—r, V)| < lgn(=n)lc < Ignlc < lgle+1,
n € N, we have

M
lhn (1) (x)| < /MIG(t,x,y)Ily(t,%(—h ldy
<2MG@)y(),

which implies that {4, (¢)(x)} is uniformly bounded.
Furthermore, we have, for u, v € R,
M

|hn () () — ha(H)(W)| < /M IG(t,u,y) = G(t, v, )| 19(t, pn (=1, y))|dy

M
< g(t)/M |G(t,u, y) =G, v, y)ldy.
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From this and the uniform continuity of G(t, x, y) it follows that {h,(#)(x)} is uniformly
equicontinuous. Therefore, using Ascoli-Arzela’s theorem, we see that a (F> (¢, L(p, 1))) =0
forevery t € [0, 1].

From the above results, we have the following: For B C L(g, 1),

a(F(t, B)) < a(Fi(t, B)) + a(F2(t, B))
= a(Fi(, B))

1
< —a(B).
= 5;%(B)
Hence we can take w(z, s) = s/2t as a Kamke-type function in Theorem 2. So, the equation
(2.5) becomes

dz@) 1,
ek t(2 e )z(t),

because |7 (¢t)|| = 1 for all + > 0. Therefore all conditions in Theorem 2 are satisfied (cf. [17,
Corollary 3.1]) and hence, there exists a mild solution to the initial value problem (2.14).

We note that, as shown in the above, Theorem 2 is applicable to the above initial value
problem, but in general, Henriquez’s result is not.

3. Hypotheses and some lemmas. In this section we shall give some lemmas to show
the continuous dependence of mild solutions for IP(o, ¢). If u is a mild solution of IP(c, ¢),
then we say that u is a solution of IP(T, F, o, ¢).

Hereafter, in IP(T, F, o, ¢) we will use the following hypothesis instead of (H1):

(H1-0) F is continuous on D, whee D is an open set of R x B.

PutprD = {t € R|(t,¥) € D forsome y € B} fora D C R x B and Ly,c(pr D) =
{g9:prD — E|gislocally integrable}.

First, we list the following hypotheses to discuss a continuous dependence of mild solu-
tions for IP(o, ¢) in Section 4.

(Cl) (op,¢n) = (0,¢9) € Dasn — oo.

(C2) Tn(t),n € N, is a Cp-semigroup on E and for each x € E, T,(t)x — T (t)x as
n — oo uniformly on every compact interval [0, a] in RT.

(C3) F,:D — E,n € N,is continuous and {F,},en is uniformly bounded on every
closed bounded subset of D.

(C4) F,(t,¢) > F(t,¥) as n — oo uniformly on every compact subset of D.

(C5) fj lgn(t)|dt — 0 as n — oo for every compact interval J C pr D, where g, €
Lioc(pr D), n € N.

(C6) Forevery (t,y¥) € Dandn € N, IP(T,, F, + gu, T, ¥) has a local solution.

LEMMA 3.1. Leta > 0 and suppose that Hypotheses (H2) and (C2) are satisfied.
Then

sup (I T (@)l |n € N,1 € [0,a]} < c0.
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PROOF. It follows from (C2) that for any x € E there exists an N, € N such that
SUP;¢(0,q] |T,(t)x — T(t)x| < 1 foralln > N,. Thus we have

sup |Tn()x| < sup |T()x|+ sup |T,()x — T (t)x|

t€[0,a] te[0,a] te[0,a]
< sup IT@lIx|+1 forall n > Ny,
te(0,a]

and hence sup, (g 41 17n(#)x| < Cx forall n € N and for some Cy > 0. This implies that
SUP,en SUP;e[0,q] | Tn(#)x| < oo forall x € E. Hence the assertion of the lemma follows from
the uniform boundedness theorem. q.e.d.

LEMMA 3.2. Leta > 0 and 2 be a compact subset in E. Suppose that Hypotheses
(H2) and (C2) are satisfied. Then for any € > 0 there exist a positive integer Ny and a positive
number § such that

3.1 |T,(t)x — T(s)y| <& forall n > Ny,

iflt—s| <$6,t,s €[0,al,and |x —y| < 8,x,y € £2.

PROOF. Assume that the conclusion is not true. Then we may assume that there exist
some g9 > 0, {n(k)} C N, n(k) > k, {t}, {5k}, {xx} and {yx} such that ty — 10, sx — 70,
xx — zo and yx — zo as k — oo, where g € [0, a] and zp € £2, and that &g < |T k) (tk) Xk —
T (sx)yk| for all k € N. From (C2) we have

[ Th) (t)zo — T (t0)z0l
< |Th)(t)zo — T (&) zol + 1T (tk)zo — T (T0)z0l
< sup |Tny(®)zo — T (t)zol + |T (tk)z0 — T (t0)z0|

0<t<a

(3.2)

-0 as k— o0.

Put C = sup {|T,(t)|| |n € N,z € [0,a]}. Then I < C < oo by Lemma 3.1. Hence we
have, by (3.2),

€0 < |Tneky(t)xk — T (sk) ykl
< N Taw) W)Xk — Tney ()20l + | Tniky ()20 — T (T0) 20|
+ T (v0)z0 — T (sk)zol + |T (sk)zo — T (sk) vkl
< N Ty @O xk — zol + 1 Tuw) () z0 — T (t0) 20l
+ 1T (v0)z0 — T (sk)zol + IIT (se) | |yk — zol
< Clxx — zol + Calyx — 2ol + | Tuk) (&) z0 — T (t0)z0|
+ |T (v0)z0 — T (sk)zol

—0 as k— o0,

which yields a contradiction. q.e.d.

The following results are directly obtained from Lemma 3.2.
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COROLLARY 3.3. Suppose that Hypotheses (H2) and (C2) are satisfied. Then
T, (tn)x" — T(10)x°] > 0 as n — oo,
ifty > to € Rt andx" — x% € E asn — oo.
COROLLARY 3.4. Let the same assumptions as in Lemma 3.2 be satisfied. Then for
any ¢ > 0 there exists a § > 0 such that |T,(t)x — T,(s)y| < € foralln € N, if |t —s| < 6,
s,t €[0,al,and |x —y| <$8,x,y € £2.

Denote by NS(T', F, o, ¢) the set of all noncontinuable solutions for IP(T, F, o, ¢) and
by 1, the final time of the existence-interval of x in NS(7', F, o, ¢).

LEMMA 3.5. Let (0,¢9) € D and g € Lioc(pr D). Suppose that Hypotheses (H1-0)
and (H2) are satisfied and that for each (t, ) € D, 1P(T, F + g, T, ¥) has a local solution.
Then there exists a positive number y such that

[o,0 +y] Clo,1y) forall x € NS(T, F + g,0,¢).

PROOF. Since (o, ¢) € D, it follows from (H1-0) that there exists a positive numbers
a,r and H such that 2 := [0 —a,0 +a] x B(g,r) C D and |F| < H over there. Set

o+t
8(t) = Karr (t, 9(0)) + ps(t, ¢) + Ko HCyt + Kacaf lg(s)lds for t € [0, a]

o2
and yp = sup {t € [0,a] [6(t) < r} > 0. Clearly, §(¢) is continuous in ¢ € [0, a], §(¢) > 8(s)
ift >s,and §(yp) <r.
Now we shall show that the number yq is a required one. Suppose it is not true. Then
there exists a solution z € NS(T, F, g, ¢) such that tp := 7, — 0 < yp. Set

t=sup{t>o|(s,z5) € 2 forall s € [0,1]} — 0.

Then it is obvious that 0 < t < 19. Assume that t = 9. Then we have (¢, z;) € 2 for
t € [0,0 + 7). Using the same argument as in the proof of [15, Theorem 2.2], we see that
z(t) can be continued beyond o + 7, which yields a contradiction with the maximality of .
Hence 7 < 19. Since 79 < y9, we have T < yp. On the other hand, we have
lZo+7 — @IB < |zo+r — S(D)9IB + |S(T)p — ¢IB
< Kasup {lz() —¢0)| |0 <t <o+ 1} +[S()¢ —¢lB

< Kasup {|T(t — 0)p(0) —O)| |0 <t <o +1}+[S(T)p —¢lB
t
+ K, sup [ T(t—s)F(s,zs)ds
o<t<o+rt |Jo

<d()<d(yw) =<r,

o+T1
+ KaCa / \9(s)Ids

which implies that (o + 7, zo+) is an interior point of §2. From the assumption we see that
z() can be continued beyond o + 7. This is a contradiction with the definition of .  q.e.d.

LEMMA 3.6. Suppose that Hypotheses (H1-0), (H2), (C1)—(C3) and (C5)—(C6) are
satisfied. Let x" € NS(Ty,, Fy + gn, On, ¢n), n € N, and t, = t4n — 0y,. Then there exists a
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positive number y such that
[on,on +y]1 Clon,0n +1,) foralln eN.

PROOF. LetI" = {¢n} U {p}. It is obvious that I" is compact in B. From assumptions,
Lemma 3.1 and Lemma 3.2 it follows that there are positive numbers a, r, C and H such that
[c —a,0 +a] x B(p,r) C D and that for all n € N (without loss of generality)

(a,,,<p,,)e[o—%,0+%]x3(<p,%) s
r

sup sup {|[T,(t) =TI O)| |y € '} < —,

0<t<a/2 12K,
sup {IT, (|0 <t <a}<C, max{|F|,|F,} <H+1 on[o—a,o+a]lxBer),
and

op+t r
C sup / lgn(s)|ds < .
0<t<a/2 Joy " 12Ka

Set
on+t

8 (1) = Karr, (t, 9n(0)) + ps(t, ¢n) + Ko C(H + D1 + KaC/ |gn(s)lds ,

8(t) = Karr (1, '(0)) + ps(t, I') + Ko C(H + 1)t
Yn =sup {t €[0,a/2]|8,(t) <r/2} >0 and y =sup{re[0,a/2]|8(t) <r/3}>0.

By Lemma 3.5, we have [0y, 6, + y»] C [04, 04 + Tn) foralln € N.
On the other hand, we have, for all n € N and for ¢ € [0, a/2],

1, (1, ¢n(0)) = sup |[Tn(7) — T (0)]gn (0)

O<t<t
< OSUP I[Tn(7) — T(0)]en(0)| + OSUP [T (7) — T(0)]gn(0)|
<t<t <t<t
r
< 2K, +rr(t, I'0)),

and so,
op+t

8n(t) = 8(1) + % + KaC/ |gn (s)1d's

On
<3(t)+r
— 6'

This implies that §,(y) < r/2 forall n € N. From the definition of y, we see that0 < y <
foralln € N. g-e.d.

4. Continuous dependence of mild solutions for IP(c, ¢). In this section we will
discuss a continuous dependence of mild solutions for IP(c, ¢). For a function x : [a, b] —
E, define a function x : (—o00, b] — E as follows:

x(t) fort € la,b]
x(a) fort € (—o0,a].

x(@) = {
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The following result is a modification of Ascoli-Arzela’s theorem. Since the proof is not
difficult, it is omitted.

LEMMA 4.1. Leta, — a,a < b,asn — 00. Take a bounded sequence of continuous
functions x" : [a,, b] — E, n € N, such that {x" (a,)} converges. Assume that

) {)2” | [a, b] |n eN } is uniformly equicontinuous;

2 a({x"(®)|n € N}) =0 foreacht € (a,b]; and

(3) sup{|&"(t) — x"(a)| | minfan,a} <t <a} —> Oasn — oo.
Then there exist a continuous function x | [a, b] and a subsequence {n(i)} C N such that
1x"® — X|is(n(iy).p) = 0 asi — oo, where s(n) = max{ay, a}.

To state the main result in the present paper, we will make use of the following hypothe-
sis:

(B) T(t) is a Cp-compact semigroup on E or F satisfies the hypothesis (H1-0) and
the following condition: For every point (z,{¥) € D there exist positive numbers a, r and
a Kamke-type function  : (r, 7 + a] x [0,2r] — R™ with (w3) satisfying the following
properties:

(1) [t—a,t+a]l xB@,r)CD.

(2) «(F(t, B)) < w(t,a(B)) holds for each bounded set B C B(y, r) and for a.a.
te(r,t+al

B) w(,K(t—1)u(t)) > 0ast > v+, where K(¢)isasin(By)and u : [t, T +a] —
R is any continuous function such that

.u(@)
4.1) lim =
t>t+f—1T

u(r) =0.

(4) u(t) = 0 is the unique absolutely continuous function with the condition (4.1),
which satisfies the equation

d
4.2) —u(t) =2yr sup a(T(s)w(t, K(t — t)u(t)) foraa. te(r,7+a).
dt O<s<a

We are now in a positive to show the main theorem in the present paper.

THEOREM 3. Let Hypotheses (H1-0) and (H2) be satisfied and let x" € NS(T,, F, +
Gns Ons @Pn), 1 € N, and B, = ton — 0y. Assume that

(1) Hpypotheses (C1), (C3)—(C6) and (B) are satisfied,

(2) T,(@),n €N, is a Cy-semigroup on E, and for each closed bounded subset A C E
and for each a € (0, 00)

sup sup |T,(t)x —T(@#)x] >0 asn— oo0; and
x€A te[0,a]

(3) for each closed bounded set 2 of D
a({Fat,m) = F@t,m) |(t,m) e R,n>k}) >0 ask— oo.

Then there exist a subsequence {x"V} of {x"} and an x° € NS(T, F, o, @) such that the
following conditions hold:
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(i) Bo < liminf By, where By = T,0 — 0; and
1—>00

(i) X" — xsmiy.a; = 0asi — oo for everyd € (0,0 + o), where s(n) =
max{o, 0,}.

PROOF. Let {(z,, x;’n)},,eN be any sequence such that (z,, x;'n) — (r,¥)€e Dasn —
oo. Put ¢, = x;’n and I' = {Y, }uen U {¢}. Then from (H1-0), (C3) and Lemma 3.1 it follows
that there are positive numbers a, r, C and H such that 2 := [t —a, T +a] x B(y,r) C D,
sup {[ITx(®)||0 <t <a} < Cforalln € N and max{|F|, |Fn|} < H+1o0n £ foralln € N.
Moreover, using Lemma 3.6 we see that there is a positive number y, T < y < 7 + a, such
that (s, x)') € 2 forall s € [1,, ¥]. Put fr(s) = Fu(s, x}) and f,?(s) = F(s, x}) for all
t €[t V]

t
/ Tn(t —s) fu(s)ds for t € [1,, Y]

yie) =
0 for t € (—o0, 7],
t
n / To(t — s)gn(s)ds for t € [14, ¥]
() = Ty
0 for t € (—o0, 14]
and
n Ty (t — t)Yn(0) for ¢ € [t4, ¥]
w'(t) =

Yn(t — 1) for t € (—o00, 1,].

Then x"(¢) = y"(¢) + 2" (t) + w"(¢) for t € (—o0, y]. For the function w”" |[z,, y],n € N,
we define a function @" : (—oo, y] — E, as before; that is, w"(¢) = w"(¢) fort € [z,, y],
while @"(¢) = w"(1,) for t € (—o0, 1,]. Set x" | [7, y] = (" + 2" + ") | [z, y]. Clearly,
{2" [z, y]1| n € N} is uniformly bounded.

The proof will be divided into three parts as follows.

Step 1. We will prove that there exist a subsequence {n(i)};en of N and a solution x°
of IP(T, F, 7, ) such that |x"@ — x%|;5,y).,7 = 0asi — 00, where §(n) = max{z, z,}.

To show Step 1, we will check all conditions in Lemma 4.1.

First of all, we shall show that the condition (3) in Lemma 4.1 is satisfied. It is sufficient
to see the case where 7, < t. Then we have

sup |x"(t) — ¥ (0)|

W <t<t
T
< sup |Tn(t — t)¥n(0) — ¥ (0)| + C(H + Dt — 70| + C/ |gn(s)|ds .
W<t<t Tn
Since (t,, ¥n) — (r,¥) € D asn — oo, in view of Corollary 3.3, we can easily see
that the condition (3) in Lemma 4.1 is satisfied. Since (t,, ¥,) — (r,¥) € Dasn —
oo, {d"|[r,¥]|n € N} is uniformly equicontinuous by using Lemma 3.2. From this,
{i” [ [z, v] ( neN } is also uniformly equicontinuous, and hence the condition (1) in Lemma
4.1 is satisfied.
Next, we will check the condition (2) in Lemma 4.1. Without loss of generality, we may
assume that T < t, for all n € N. We here assume that
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(©) {y"I[r, ¥1|n € N} is relatively compact in C[z, y]
(for the proof, see Step 2).

To check the condition (2), we shall show that a({£" | [z, ¥]|n € N}) = 0; that is,
a({z"I[r,y]|n € N}) = 0and «({@%" | [z, ¥]|n € N}) = 0. We note that this result is used
in Step 2. Since {@" |[t, ¥]|n € N} is uniformly equicontinuous, we have

sup a({w"(®)[neN})< sup a({®"()—D"(t)|n € N})+a(l(0)
T<t<t+6 T<t<t+$

<2 sup {I®"@)—d"(x)||n e N}

T<t<t+6

-0 asd—0

and

sup a({w"@)|neN}) < sup a({Tn(t — T)¥n(0) — T(t — DY (0) | n > k})
T+8<t<y T+8<t<y

+ sup a(T(t —r1))a(I'(0)
T+6<t<y

< 2sufk) [Tn(- — ) ¥n(0) — T(- — T)Yn(0)|[r+5.y]

—0 ask— o0,

from which it follows that
a({@"|[t,y]|n e N}) = sup a({d"(t)|neN})=0.
TISY

Furthermore, we have, together with the condition (C5),

a({"[r,y]|neN}) < 2sup[

/ T = $)gn(s)ds

Tn

l n> k}
[Tn.¥]

Y
§2Csup{/ |g,,(s)|ds|nzk] — 0 as k— o0,
T

from which we see that «({z" | [z, ]| n € N}) = 0.

In view of Condition (C), we have a({2" | [z, ¥]|n € N}) = 0, and so a({x"(r) |n e
N }) = O fort € (1, y]. Therefore, all conditions in Lemma 4.1 are satisfied. Using Lemma
4.1 and taking a subsequence if necessary, we may assume that there is a continuous function
x| [z, 1 such that |x" — x0)(3s) ) > Oas n — oo,

Finally, we prove that the limit function x° | [, ¥1, x? =y, isasolution of IP(T, F, t, ¥).
Put f(s) = F(s, x?) forall s € [7, y] and let any ¢ > O be fixed. Then it follows from (C4)
that f,(s) = f(s) asn — oo foreach s € [t + ¢, t]. Hence, using Lebesgue’s convergence
theorem and the condition (CS5), we get

t t
/ Tt —s)fu(s)ds —> / T —s)f(s)ds asn— o0,
T T+¢€

+e
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so that
t t
nl_ip;o/ T(t = s)[fn(s) + gn(s)lds =[ T(t—s)f(s)ds.

Therefore x° | [z, ], x? = v, is a solution of IP(T, F, 7, ¥).

Step 2. We shall show that Condition (C) is verified. Let any ¢ be fixed in (z, y]. Then
for any ¢ > 0 there exists a§ > 0 and k; € N such that if n > k., then

) T+d<tandt <71, <T+6;and

(i) sup{|F(s,x") — F(t,¥)||ta <s <t +8} <eandsup{|x! — ¢|g|tn < s <
T+ 8} < ¢g/2.

For any k > k. we have

a({y" [r,1]|n € N})
=a({y"|[r.1]|n = k})
=max {a({y" [[r, 7+ 8] |n > k}),a({y" | [t +8,]|n > k})}

T+8
4.3) < max {2C(H +1)8, @ ({/ To(- = 5) fa(s)ds | [t + 8,1 |n > k})

+a ([/ Ta(- — $) fa(s)ds | [t + 8,11 |n > k])}
44

§2C(H+l)8+a<{f. Tu(- =) fa(s)ds | [t + 8,11 |n zk}) :
T+8
We here note that

Tu(6 = 5) fu(s) = T(6 =) £(5) + T(0 = ) fu(s) — £ ()] +[Tn(® — 5) = T (0 — )1 fu(s) .

First, we shall show the following assertions:

(i) « ({/ T( = $)[fa(s) = £O(5))ds | [t + 8,11 | n > k}) =0; and
T+6

iv) o ({f [Th(- =) =T —98)]fa(s)ds | [t +6,1] ]n > k}) =0.
T+8
We have, together with the assumption (3),

a({T®O — ) fuls) — f2()]]|n > k})
< sup @(T@)a({fuls) — f1(s)|n > k})

0<6<a
< suwp a(T@)a({Fu(s,n) — F(s,n) | (s,n) € 2,n > k})
<f<a

— 0 as k— 00.
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Therefore, using Theorem 1, Lemma 1.1 and Lebesgue’s convergence theorem, we obtain

a ({/ s T( =) fa(s) = £())ds | [t +8,1]|n € N})
T+

6
<yr sup « ([f T©® — ) fals) — £())ds [n > k})
T+4

T+5<0<t +

[4
<2yr sup / a({T© = ) fals) = f7()]|n = k})ds

T4+8<6<t J1+$
—0 ask— o0,

which implies the assertion (iii).
Put A = cl{ fu(s)| T+8 < s < t,n € N}. Then, it follows from the assumption (2) that

a({[Tn(0 —5) — T (6 — )1 fuls) | n > k})
<a({[Tw(60 —5) —TO —9z|z € A,n>k})
<2supsup|[T,(0 —s) —T(@O —s5)]z| > 0 as k — co.
n>k ze A

Hence we have, by Lamma 1.1 and Lebesgue’s convergence theorem,

6
a({/ [T,,(O—s)—T(G—s)]fn(s)dslneN])=0 for 6 € [t + 8, 1].
T44

+
Put 0
v"(0) = / [T, —s) — T©O — s)1fu(s)ds
T+6

+
for 6 € [t + 4, t]. Then we have

t
[v"(0)| < / sup sup|[T,(t —s) — T(t — s5)lzlds
T+8 T+O<s<t z€A

-0 asn— o0,

and hence {v"(0)} is equicontinuous on [t + §, t]. These facts imply the assertion (iv).
Furthermore, by assertions (iii) and (iv), Theorem 1 and Lemma 1.1, we get

o ([/ T (- — ) fu(s)ds | [t + 68,11 |n > k})
T+8

= <{/ T(-—s$)f2(s)ds | [t + 8,11 |n > k})
T+48

6
4.4) <yr sup «o ({/ T —s)f2(s)ds |n > k})
T+48

T+3<0<t +

6
<2yr sup / a({T(G—s)f,?(s)\nzk})ds
T+8<6<t Jt+§

t
<2yr sup @(T() | a({F(s,x})|n>k})ds,
8

O<s<a T+
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provided & (T (s)) > O for all s € (0, a].
Next, we will prove that Condition (C) is satisfied. From (4.3) and (4.4) we get
t

a({y"[r,11|n e N}) <2C(H 4+ 1)s +2yr sup &(T(s)) | o({F(s,x})|n>k})ds.

O<s<a T+6

Since ¢ is arbitrary, we obtain the following relation:
t

a({y" [z, 1]|n € N}) <2yr sup a(T(s))

O<s<a

a({F(s,x!) |n > ke})ds

lim
e=>0+Jr4s

=v().
If we set v(tr) = 0, then v(¢) is continuous on [z, y]. Hence, in view of the continuity of F
together with (ii) in Step 2, we can easily see that lim,—, ;4 v(¢)/(t — ) = v(r) = 0. Using
(1.1) and (ii) in Step 2 again, we have

a({xr | n e NY) =a({ar [ n 2 k)
<K@t—t—8a({x" [t +8,1]|n>k})
+ M@t —1—8a({xls —¥|n >k}
<K@t—t-8a({2"|[r.1]|n = k}) + M@t — 7 —8)e
<K@t—t-8a({y"|[r.t]|n e N}) + M@t — 7 — )¢,

from which we get
a({x!'|neN}) <K@ —1)v(@).
Hence, we obtain, together with (2) in Hypothesis (B),

a({F@t,x7) |n e N}) <o(t,a({x] |n € N})) <w@, K@ —1)v() ae.

and therefore,
t

v(t) <2yr sup a(T(s)) w(s, K(s — t)v(s))ds,

O<s<a T+
because of the condition (3) in Hypothesis (B). Repeating the same argument as in the proof
of Theorem 2 and using Hypothesis (B), we have a({y" | [z, ¥] In € N]) = 0, and hence
Condition (C) is satisfied.

Step 3. We will prove the conclusion of the theorem. Let F be the collection of all
solutions x of IP(T, F, o, ¢) such that the conditions (i) and (ii) in Theorem 3 hold for some
subsequence of N. Clearly, F is nonempty. Using the standard order relation in F, we see
that F is an inductively ordered set. Therefore there exists a maximal element x : [0, 8) — E
in F by Zorn’s lemma. It is not difficult to show that X is in NS(7, F, o, ¢). This proves the
theorem (for detail, refer to [19]). g.ed.

REMARK 4.2. We note that the conditions (C3) and (C4) and the assumption (3) in
Theorem 3 hold if the following conditions are satisfied:

(H1-1) F : D — E is continuous and takes closed bounded sets into bounded sets.

(C-7) F,, n € N, is continuous and F,, — F uniformly on £2 as n — oo for each
closed bounded set §2 of D.
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REMARK 4.3. Theorem 3 is based on Theorem 2. However, if A = 0, then we can
prove the theorem based on Proposition 2.6 instead of Theorem 2. We note that a similar
result can be found in [19] if A = 0, g, = 0 and F is uniformly continuous.

REMARK 4.4. If F(t,¥) = F(t,¥(0)) and F,(t, ¥) = F,(t, ¥(0)), n € N, then the
condition 2) in Theorem 3 can be replaced by the following condition:

(2') T,(t),n € N, is a Cyp-semigroup on E, and for each closed bounded set A C E
and foreachr € R,

a({[Tn() —TW)z|z€ A,n>k}) > 0 ask — oco.

Set (0, ¢) = inf {1y | y € NS(T, F, 0, 9)}. Then the following result is easily proved
by using Theorem 3.

LEMMA 4.5. Let Hypotheses (H1-0), (H2) and (B) be satisfied. Then
(1) o < 1(0, @) < 00 and there exists an xg € NS(T, F, o, ¢) such that ty, = 1(0, ¢).
(2) (o, @) is lower semicontinuous on D.

We will make use of the following hypothesis in place of Hypothesis (B):
(B-I) The equation (4.2) in Hypothesis (B) is replaced by the equation

d
Eu(t) =2yr sup a@(T(s)lw(, K@ —t)u(t)) +I1K({t — 1)u@)]

O<s<a

fora.a.t € (t, t + a).

Clearly, Hypothesis (B) is derived from Hypothesis (B-1).

Set M(k) = {G D —> E | G is a continuous function on D C R x B such that
a({G(t, n) — F(t,n) |n € B}) < ka(B) for each (t, B) C D, where B is a bounded subset
of B}, where k > 0 is constant.

LEMMA 4.6. Suppose that Hypotheses (H1-0), (H2) and (B-I) are satisfied. If G €
M() and g}oc(pr D), then for any (t, ) € D,NS(T, G + g, T, ¥) is nonempty.

PROOF. Letany (z, ) be fixed in D. Then there are positive numbers a and r such that
[t —a,t+a]l x B(y,r) C D and that G and F are bounded over there. Since G € M(l), we
have a(G(t, B)) < a(F(t, B)) + a({G(t,n) = F(t,n) |n € B}) < w(t,a(B)) + la(B) for
all B C B(y, r) and for a.a. t € [, T + a]. On the other hand, using the same argument as in
the proof of [22, Lemma 5.3], we can construct approximate solutions for IP(T, G + g, 7, ¥).
In view of Hypothesis (B-I), it is not difficult to show that IP(T, G + ¢, 7, ¥) has a local
solution. Hence, it follows from Zorn’s lemma that NS(7', G + g, 7, ) is nonempty. q.e.d.

We give a result on the continuous dependence of solutions for IP(7, F, o, ¢).

PROPOSITION 4.7. Suppose that Hypotheses (H1-1), (H2) and (B-l) are satisfied. Let
d be a number in (o, T (0, ¢)). Then for any ¢ > 0 there exists a 5(¢) > 0 suchthatif | —o| <
8, v —9lp <6, (a,¥) € D, |G(t,n) — F(t,n)| <6, (t,n) € D, and fJ lg(®)|dt < §6,
where J = [min{e,0},d], G € M(l) and g € E}oc(pr D) then every y(t,a, ¥, G + g) in
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NS(T, G + ¢, a, ¥) is always continued beyond t = d and satisfies
(45) Iyl(as 1//’ G + g) - xt(aa ¢)|B <é& for te [max{a, (X}, d] )
for some x(t; 0, ) in NS(T, F, o, ¢) which may depend on y(t; a, ¥, G + g).

PROOF. First of all, we shall show that for any d in (o, 7(0, ¢)) there existsa § > 0
such that if jo — 0| < 4, [ — ¢l <6, (@, ¢¥) € D, |G(t,n) — F(t,n)| <4, (t,n) € D,
and fj lg®)ldt < 8, J = [min{e, 0},d], thenty, > d forall y € NS(T,G + g,a, ¥). It
follows from Lemma 4.6 that NS(7T', G+ g, o, ¥) is nonempty. For a contradiction, we assume
that there exist some dj in (o, T(0, ¢)) and sequences {(o,, ¢n)}, {Gn}, {gn} and {y"}, y" €
NS(T, Gn+ gn, On, ¢n), such that (o, 9,) = (0, ¢) € D, sup {|G,,(t, n) — F(t, n)| | (t,n) e
D} — Oand f‘ff |gn(2)|dt — 0 as n — oo, where ¢, = min{o,, 0}, and that o,, < 1, < dp,
where 1, = Tyn. Since 0, — o as n — 00, we may assume that 7, — 19, 0 < 19 < dp, as
n — oo. Thus it follows easily from Theorem 3 that there exists a z € NS(T, F, o, ¢) such
that o < 1, < 19. Hence 7, < dy < 7(0, ¢), which contradicts the definition of 7 (o, ¢).

Next, we shall show that the inequality (4.5) holds. For a contradiction, suppose that
the conclusion is false. Then there exist some ¢y > O and sequences {(oy,, ¢n)}, {Gn}, {gn}
and {y"}, y" € NS(T, Gy, + gn, On, @n). such that (0, on) — (0, ¢) € D, sup {|G,(t,n) —
F(t, n)| ' (t,m) € D} - O and f‘i |gn(t)|dt — 0 as n — oo, where a,, = min{o,, o}, and
that for all x € NS(T, F, o, ¢),

|7 Ons @ns G + 9n) — X1, (0, @)|5 = €0 for some 1y € [sn, ],

where s, = max{oy,, o}, t, may depend on x (¢, o, ¢) and y" € NS(T, G, + gn, On, ¢n). From
Theorem 3 we may assume that |y" — z|(5,.4) = 0 asn — oo for some z € NS(T, F, 0, ¢).
Hence we have, together with the axiom (B5),

&0 < lyp — 2,18
< K(tn = s)|Y" = 2lisy.a) + Mtn — s){lys, — ¢l + |25, — ¢IB)
— 0 asn— oo,
which is a contradiction. q.e.d.

Using Theorem 3, we have the following result, which is proved by using the same
argument as in the proof of Proposition 4.7.

COROLLARY 4.8. Suppose that Hypotheses (H1-1), (H2) and (B) are satisfied. Let
d be a number in (o, 1(0, ¢)). Then for any ¢ > 0 there exists a §(¢) > 0 such that if
lo —o| <6, ¥ —olp <, (o, ¥) € D, andfj |g(t)|dt < &, where J = [min{c, o}, d], and
ge L} (prD),thenevery y(t,a, ¥, F + g) in NS(T, F + g, a, V) satisfies

loc
|)’t(0h W9 F + g) - xt(aa ‘P)IB <€ fOI' te [max{a9 a}1 d] )
for some x(t; o, ¢) in NS(T, F, o, ¢) which may depend on y(t; o, ¥, F + g).

The above fact extends a well-known result in ordinary differential equations in finite
dimensional spaces (refer to [25]).
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