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Abstract. This paper is concerned with a general existence and continuous dependence
of mild solutions to semilinear functional differential equations with infinite delay in Banach
spaces. In particular, our results are applicable to the equations whose Co-semigroups and
nonlinear operators, defined on an open set, are noncompact.

Introduction. Let £ be a Banach space over the real field R with norm | | and B a

phase space satisfying the fundamental axioms given in [3], [4], [15]. If x : (—oo, σ + a) ->

E, 0 < a < +oo, then for any t e (—oo, σ + a) define a mapping xt : (—oo, 0] -> E

by χt(θ) = x(t + θ), -oo < θ < 0. Denote by C([a, b], E) the space of all continuous

functions from [a, b] into E with the supremum norm. Let A be the infinitesimal generator of

a Co-semigroup T(t) on E.

In this paper we deal with the initial-value problem for the semilinear functional differ-

ential equation with infinite delay in E (for brevity, IP(σ, φ))\

d
—u(t) = Au(t) + F(t, ut), σ < t < σ + a ,
at

with uσ = φ G β, where (σ, φ) e R x B is given initial data and F is a (strongly) continuous

function mapping an open subset D in R x B into E. \ϊu : (—oo, σ -j-<z] —> £ i s a continuous

function satisfying the integral equation

I f'
T(t - σ)φ(0) + / T(t - s)F(s, us)ds for t e [σ, σ + a]

Jσ
φ(t — σ) for t e (—oo, σ ] ,

then u is called a mild solution of IP(σ, φ).

Roughly speaking, the study of the existence of mild solutions to IP(σ, φ) has been

developed in two different directions. One direction is to find conditions to guarantee the

existence and uniqueness of mild solutions for IP(σ, φ)\ for instance, refer to Iwamiya [8],

Martin [11], Schumacher [16], Shin [21], [22] and Travis and Webb [24], etc. The other is

to find conditions to ensure only the existence of mild solutions to IP(σ, φ), which is mainly
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described in terms of the measure of noncompactness (a-measure for short) introduced by

Kuratowskii; for instance, refer to [1], [7], [9], [10], [13], [14], [17], [19], [20].

In the present paper we will investigate the existence and the continuous dependence of

mild solutions to IP(σ, φ) in the latter direction.

First, we will establish a general existence theorem on mild solutions for IP(σ, φ). The

fundamental results on the existence of mild solutions for the case of non-delay were estab-

lished by Krasnoselskii, Krein and Sobolevskii [9] and Pazy [14] in which it is assumed that

T(t) is a Co-compact semigroup on E or F is a compact operator. Recently, in the work of

Henriquez [7] the above result was extended to IP(σ, φ). Thus, in the case that both T(t)

and F are noncompact operators, we will develop an existence theorem of mild solutions to

IP(σ, φ) in the present paper. In such a direction Bothe [1] showed a result on the existence of

mild solutions to the multivalued semilinear differential equation on a closed set, which is a

partial extension of the one due to Mόnch and Harten [13] for ordinary differential equations.

However, even Bothe's result cannot directly extend to IP(σ, φ), because, contrary to the case

of non-delay, it is difficult to obtain the compactness of a sequence {zn}neN C C([a, b], E)

of approximate solutions for IP(σ, φ).

To overcome this difficulty, we establish the following inequality (Theorem 1) on the

a -measure: For a bounded subset U in C([α, b], E)

a ( U Γ ( - s)f(s)ds\[a, b ] \ f e l l X \ < γ τ sup a ( I f T(t - s)f(s)ds \ f e u \ \ ,

where

T(--s)f(s)ds\[a9b] eC([a,b],E) and γτ = limsup ||Γ(5)||.L
Using this result and the integral inequality [6] (refer to [2], [13]) on the α-measure, we can

prove our existence theorem (Theorem 2) for IP(σ, φ). Of course, our result extends Monch's

and Harten's one [13] and contains Bothe's one [1] for the single valued case on an open set

as well as Henriquez's one [7] (see Remark 2.2). See [23] for an application of the above

inequality.

Secondly, based on our existence theorem, general results (Theorem 3 and Proposition

4.7) on the continuous dependence of mild solutions are formulated in semilinear functional

differential equations. Our theorem is an extension of Kamke's theorem given in functional

and ordinary differential equations in finite dimensional spaces or in infinite dimensional

spaces (refer to [4], [15], [16], [19], [25]). In the case A = 0, a similar result to Theorem 3

can be found in [19], but its proof is based on the assumption that F is uniformly continuous.

We note that the result given in [16, Theorem 3.1] is related to the local Lipschitz condition

on F.

1. Phase space B, Co-semigroup and α-measure. Let R~ = (—oo, 0], /?+ =

[0, oo) and R = (-oo, oo). Let B = B(R~, E) be a linear space, with semi-norm | |#,
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consisting of functions mapping R~ into E. Throughout this paper we assume that the fol-

lowing axioms on the phase space B are satisfied:

(Bi) If x : (—00, σ + a) -> E is continuous on [σ, σ + a) and xσ e B, then xt e B

for all t e[σ,σ +a) and xt is continuous in t e [σ, σ + a).

(B2) There exist a continuous function f̂(Y) > 0 and a locally bounded function

M(t) > 0 such that

MB < tf(f-σ)sup{|*(s)||σ < s < ί} + M(ί - σ)\xσ\B

fort e[σ,σ +a) and JC having the properties in (Bi).

(B3) There exists a constant L > 0 such that |<p(0)| < L\φ\β for all 95 G 6 .

(B4) The quotient space B = B/\ |# is a Banach space.

For examples of the phase space # refer to [3], [4], [15]. Frequently, we will use the following

notations in this paper: Ka = sup {K(t) | 0 < t < a] and B(φ, r) = [ψ e B \ \φ - ψ\β < r}.

Let Y be a linear space with a semi-norm | |y and the quotient space Y = Y/\ \γ be a

Banach space. For a bounded subset Ω in 7, the of-measure of Ω is defined as follows:

a(Ω) = inf {</ > 0 | Ω has a finite cover of diameter < d].

Hereafter, we will use the same notation a for Kuratowski's measure of noncompactness in

any linear and semi-normed space whose quotient space is a Banach space. Refer to [10],

[17], [19] for elementry properties of the α-measure.

Denote by C[α, b] for short the space C([α, b], E) and by |jc|[flj^] the supremum norm

of x in C[a, b]. Let A* be a set of functions JC from (—00, σ + a), 0 < a < 00, to E such that

xσ e B and x is continuous on [σ, σ + a). Then we will use the following notations:

X(t) = {χ(t) e E I JC e X], Xt = {xt eB\x eX) for t e [σ, σ

Af|[c, J] = {JC|[C, J] G C[c, J] I JC G A'} and X(t) = {x(t) G £ | x e X),

where σ < c < d < σ + α , JC|[C, d] stands for the restriction of JC to [c, d] and i ( ί ) denotes

the differential of JC at t. If X\[σ, t], t e [σ, σ + 0), and Λ^ are bounded, then the relation

(1.1) γa(X(t)) < a{Xt) < K(t - σ)a(X\[σ, t]) + M(t - σ)a(Xσ)
Ld

holds (see [17, Theorem 2.1] and [19, Lemma 1.5]). We denote by Cι[a, b] the space of all

integrable functions from [a, b] to R with the norm \f\c\ = fa \f(t)\dt.

The following result is found in [6, Theorem 2.1] (refer to [2], [13]).

LEMMA 1.1 Let W be a countable set of strongly measurable functions from [α, b] to

E. Assume that there exists a μ G £ι[a,b] such that \x(t)\ < μ(t)forallx G W andfora.a.

t G [a,b]. Then a(W(t)) is integrable on [α, b] and

x(t)dt I JC G W i ) < 2 / a(W(t))dt.
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If T : Y -* Y is continuous and takes bounded sets into bounded sets and if there is a

K > 0 such that a(TB) < κa(B) for all bounded sets B c Y, we define

a(T) = inf \κ G fl+ | a(TB) < κa(B) for all bounded sets B CY}.

Then we have a(TB) < a(T)a(B) for every bounded set B c Y.

Similarly,

ά(Γ) = inf [K G # + I a(TB) < κa(B) for all bounded countable sets B cY}.

REMARK 1.2. Let T : E -* £ be a bounded linear operator. Then Γ is a compact

operator if and only if ά(T) = 0.

It is well-known that if T(t) is a Co-semigroup on £, then | |Γ(ί) | | < Mωeωt for all

t G /?+, where Mω > 1 and ω e (—oo, oo) (see [14]). Hence it follows that

(1.2) a(T(t)) < a(T(t)) < \\T(t)\\ < Mωeωt for all t e R+.

If H is a bounded subset in C[β, Z?], then for 8 > 0 and ί e [α, Z?] we set a(t, 8; H) =

a(H I [t - δ, ί + δ]) and define

α(ί H) = inf {α(ί, δ; W) | δ > 0} = lim α(*, δ; W).

The following result is found in [12, Lemma 1].

LEMMA 1.3. LetH C C[a,b]anda(t;H)be as above. Thena(H) = supa<t<ba(t; H).

For a bounded set7ίcC[α, b] and for t e [a, b] we use the following notations:

ω ( δ ; f, W ) = s u p {\g(τ) - g(s)\ \ τ , s € [ t - δ , t + δ ] , g € H ) ,

ω(t,H) = inf{ω(δ;ί,W)|δ > 0} = lim ω{δ\t,H)

and

ω(H) = sup ω(t, 7ί).

Clearly, Tί is uniformly equicontinuous on [a, b] if and only if ω(7ί) = 0.

For a continuous function M : [a, b] —> £" we put

Γ * M(0 = / T(t - s)u(s)ds for t e [a, b],

Ja

and for a s u b s e t s c C[a, b] we put Γ * Z Y = { Γ * M | M G Z^}.

We are now in a position to prove the main theorem in this section.

THEOREM 1. Let U be a bounded set in C[a, b] and T(t) a Co-semigroup on E. Then

(1.3) ^—ω(t,T^U)< sup α(Γ*W(τ)) < α(Γ*W| [α,f]) < γτ sup α(Γ *Z^(τ))
a<τ<t a<τ<t

for all t G [β, Z?], where yr = limsup δ^ 0+
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In particular, if T(t) is a Co-contraction semigroup on E, then the above relation (1.3) is

reduced to

(1.4) -ω(ί, T*U)<a(T*U\ [a, t]) = sup a(T *U(τ)).
2 a<τ<t

PROOF. Since U is a bounded subset in C[a, b], there is an L > 0 such that | /1 [a^ < L

for all f e U. Set /C = T *U. For any t e (α, Z?] and for any ε, 0 < ε < t — a, there exist

/C, (ί - ε) C /C(ί - ε), ί = 1, 2 , . . . , m, such that

(1.5) diaK;/(ί-ε) < a(JC(t - ε)) + | (ί = 1,2,... ,m), /C(ί - ε) = Q /C/(ί - ε ) .

Set

Ki \[t - ε , ί + ε] = {Γ*A | [ ί - ε, t + ε] G /C|[ί - ε, f H-ε] | T *h(t -ε) G /C, (ί - ε ) } .

Then we have

Now we will prove the first inequality in (1.3). For any T * / e K there is a j e

{1, 2 , . . . , m] such that T * / | [t - ε, t + ε] e Kj \ [t - ε, ί + ε]. Select then a Γ * g e /C

such that Γ * ̂  | [/ — ε, t + ε] e JCj• \ [t — ε, t + ε]. Since Γ * ̂  is uniformly continuous on

[a, b], there is a 8 (ε > 8 > 0) such that \T * g(τ) - T * #(s)| < ε/3 if |τ - s\ < 8. Thus we

have, for τ,s e [t -8,t + <5],

(1.6) * / ( τ ) - T * - Γ * - T *

The first term in the right hand side of (1.6) is estimated as follows. Let C = supo < 5<^_α || T(s) ||.

Then

| Γ * < K τ ) - Γ * / ( τ ) |

ί T(τ - s)g(s)ds

(1.7)
L T{τ - s)g(s)ds

Ja

T
Ja

-f
Jt-ε

T(τ - s)f(s)ds

T(τ - s)f(s)ds

T(t-ε- s)g(s)ds -Γ
Ja

< I I Π τ - ί + £

+ 2 C L | r - ί + ε|

< sup | | Γ ( y ) | | | Γ * ( K ί - ε ) - Γ * / ( ί - ε ) | + 2 C L ε i ,

T(t-ε- s)f(s)ds

where ε\ = ε + 8. Since the second term in the right hand side in (1.6) is similarly estimated

as (1.7), the inequality (1.6) becomes

| Γ * / ( τ ) - Γ * / ( j ) | < 2 sup * g{t - ε) - T * f(t - ε)\ +4CLεx + | .
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Using (1.5), we have

\T*f(τ)-T*f(s)\ <2 sup ||Γ(y)||dia/C, (ί - ε)+4CLεi + -
0<γ<ε\ 3

< 2 sup \\T(γ)\\ sup α(/C(τ)) + (4CL + O i ,
0<γ<ε\ a<τ<t

and hence

ω(5;ί,/C)<2 sup ||Γ(y)|| sup α(£(τ)) + (4CL + C)εi.
0<γ<ε\ a<τ<t

Therefore, letting ε -> 0+ in both sides of the above inequality, we have ω(ί,/C) <
2γτ supα<τ<ί a(JC(τ)) as required.

Next, we will prove the third inequality in (1.3). In view of (1.7) we have that for any
T * / I [t - ε, t + ε], T * h \ [t - ε, t + ε] e /C, | [t - ε, t + ε]

sup{\T*f(s)-T*h(s)\ \t -ε <s <t + ε)

= \T * /(τ) - T * /ι(τ)| for some τ e [ί - ε, t + ε]

< sup

and hence,

α(ί, ε; /C) < dia/C/ | [ί - ε, ί + ε]

< sup ||Γ(τ)|| sup
a<s<t

from which it follows that α(ί, /C) < y^ supα < J < ί a(JC(s)). Using Lemma 1.3 we can obtain

of(/C I [α, t]) = sup α(τ, /C) < γγ sup α(/C(τ))
a<τ<t a<τ<t

as required.
If Γ(ί) is a Co-contraction semigroup on E, then ||Γ(ί)|| < 1 on /?+. Hence we have

YT < I and so, γγ = 1, because of (1.3). q.e.d.

COROLLARY 1.4. LetT *U be as in Theorem 1. Γ/zen α(Γ * W) = 0 if and only if
a(T * U(t)) = Ofor all t e [a, b].

REMARK 1.5. In general, if H c C[a, b] is a bounded set, then it follows that

max I -ω(W), sup α(W(ί)) [ < α(W) < 2ω(H) H- sup α

I ̂  J(see [12, Theorem 1]). Also refer to [5]. Theorem 1 refines on the above result for a special
case.

Combining Theorem 1 with the relation (1.1) we can easily obtain the following result.
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PROPOSITION 1.6. LetUbea bounded set in C[a, b] and T(t) a Co-semigroup on E.

PutK= {Gf : (-00, b] -> E | / e «}, where

r «\ \ ί T{t-s)f{s)ds for ί €[* ,*] ,Gf(t) = I J

[ for t e (-oo, a].

Then

-α(/C(ί)) < α(/Cί) < yr^(ί - α) sup
L a<s<t

Define linear operators S(t) : β -> B91 > 0, by

\ ί
= I Ja

[ 0

Furthermore, according to [19], we here assume that βμ e R, where

β μ = l imsup-{α(S(ί))- 1}.

In general, the following result holds, which refines on Theorem 1.12 in [19] for a special

case. Denote by C 1 [a, b] the set of all continuously differentiable functions from [a, b] to E

and denote by N the set of all positive integers.

PROPOSITION 1.7. Let a < bandU = [un : (-oo,fe] -• £ | un \ [a,b] e Cι[a,b],

un

a e B, n G iV}. Suppose that U \[a,b] is bounded and equicontinuous and that there exists

a lie £ι[a,b] such that \ύn(t)\ < μ(t)foralln eNandfora.a. t e [a,b]. Then

(1.8) £+α(W,) < 2Λ:(0)α(W(0) + ββaφίt),

(1.9) ^-α(W|[β,ί])<2α(W(ί)) and ^-a(U(t)) < 2a(U(t))
dt dt

for a.a. t e [a,b], where D+ denotes the right-hand upper derivative.

PROOF. First, we shall show that the inequality (1.8) holds. Combining the relation

(1.1) and Lemma 1.1, we have, for t e [a, b) and for h > 0,

a({un

t+h-S{h)un

t\neN))<K(h) sup a({un(s) - un(t) \ n e N})
t<s<t+h

<K(h) sup a(\ f ύn(τ)dτ\neN\]
t<s<t+h \[Jt )/

sup f a(U
t<s<t+h Jt

<2K(h) sup f a(U(τ))dτ
J

/

t+h

a(U(τ))dτ.
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Hence we get

aQAt+h) - otU)

< oί(\u"h - S(h)un

t I n e N\) + a(\S(h)un

t \ n e N\) - a(Ut)
(1.10)

rt+h

< 2K(h) / a(U(τ))dτ + {a(S(h)) - l}a(Ut).

Moreover, we have that for a.a. t e [a,b),

l rt+h

-Kih) / a(U(τ))dτ -> K(0)a(U(t)) as A -• 0 + .
A Jt

Thus, dividing the both sides by A and letting A —* 0+ in the above inequality (1.10), we can

easily obtain the inequality (1.8).

Next, we shall prove that the inequality (1.9) holds. For t e [a,b) and for A > 0 we have
α(W I [a, t + A]) - aφί \ [a, t]) = sup a(U(s)) - sup a(U(s))

a<s<t+h a<s<t

< a(U(t + τ)) - a(U(t)) for some τ e [0, A]

/

ί+τ

from which we can easily obtain the relation (1.9). q.e.d.

2. Existence of mild solutions for IP(σ, φ). In this section we will prove existence

theorems for IP(σ, φ). For a compact set Γ in B, we set

and

psit, Γ) = sup sup {|(S(τ) - 5 (0))^IH | ψ e Γ}
0<τ<t

ί, Γ(0)) = sup sup (|(Γ(τ) - Γ(O))Vr(O)|
0<τ<ί

In particular, if Γ = {φ}, then we denote p^(ί, Γ)andr7(/, Γ(0))by p^(ί, <̂ J) andr^(ί,

respectively. It is obvious that

(2.1) ps(t, Γ) -> 0 and rT(t, Γ(0)) ^ 0 as t -+ 0 + .

We make the following hypotheses for IP(σ, φ):

(HI) F : [σ, σ + a] x #(<p, r) -> £, 0 < α < oo, is a continuous function such that

\F(t,ψ)\ < H over there.

(H2) A is the infinitesimal generator of a Co-semigroup T(t) on £ .

Throughout this paper we put Ca = sup {||Γ(ί)|| | 0 < t < a] in (H2).

LEMMA 2.1. Suppose that the hypotheses (HI) and (H2) are satisfied for IP(σ, φ).

Let

(2.2) γ = sup [t G [0, a] I ps(t, φ) + ΛΓβrΓ(ί, ^(0)) + KaHCat < r}.
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Then for each εn e (0, min{r, y}), εn —> 0 monotone as n —> oo, there exists a function

zn : (-oo, σ + y] -> £ swc/z ίmzί z£ = <p, zπ | [σ, σ + y] e C[σ, σ + y] am/

(2.3)

for all t e [σ,σ + y].

For the proof refer to [22, Lemma 5.3].

A function ω : (α, b) x [0, c) —> R is said to be a Kamke-type function if the following

conditions hold:

(ω\) ω := ω(t, s) is Lebesgue measurable in t for each s e [0, c) and is continuous in

s for a.a. t e (a,b).

(&>2) For each r e (0, c) there exists a function rar, defined on (a, b) and locally inte-

grable on (α, b), such that |ω(ί, s)| < mr(t) for a.a. ί e (α, /?) and all s £ [0, r].

Sometimes, the following condition is needed for a Kamke-type function ω.

(ωi) ω(t, s) is nondecreasing in s for a.a. t e (a,b).

We are now in a position to state the main result in this paper.

THEOREM 2. Suppose that the hypotheses (HI) and (H2) are satisfied for IP(σ, φ).

Then IP(σ, φ) has a mild solution existing on [σ, σ + y], where γ is as in Lemma 2.1, under

the assumption that either T(t) is a Co-compact semigroup on E or the following conditions

are satisfied: There exists a Kamke-type function ω : (σ, σ + a] x [0, 2r] —> /?+ vWί/i

(1) ω(t, K{t-σ)u(t)) -> Oasί -> σ-\-,where K(t) is as in(B2)andu : [σ, σ + a ] ->

w fl«j continuous function satisfying the condition

(2.4) lim - ^ - =κ(or) = 0 ;
ί^σ+ ί — σ

(2) ί/ie inequality a(F(t, B)) < ω(t, a(B)) holds for each bounded set B C B{φ, r)

and for a.a. t e (σ, σ + a)\ and

(3) w(ί) = 0 is the unique absolutely continuous function satisfying the equation

d
(2.5) —u(t) = 2γτ sup ά(Γ(τ))ω(ί, K(t -σ)u(t)) for a.a. t e (σ, σ +a)

«ί 0<τ<a

w/ί/i ίΛe condition (2.4), where γj is as in Theorem 1.

PROOF. Set Z* = {zπ : (-oo, σ + y] -> £ | n > £}, it € iV, and Xk = {xw :

(—00, σ + y] -> £ I n > k}, where zn is as in Lemma 2.1 and

jcΛ(ί)=J T(t-σ)φ(0) +j T(t-s)F(s,zn

s)ds for ί G [σ, σ + y],

p(ί — σ) for t e (—00, σ ] .
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Also put Z = Zι and X = X1. Using (2.3) we have that for t e [σ, σ + γ] and for k e N,

\a(Z I [σ, t]) - a(X | [σ, ί])| < a({(zn - xn) I [σ, t] \ n > k})

<2sup\zn-xn\[σ,t]<6Caεk(t-σ).
n>k

Letting k —• σo in both sides of the above inequality, we get

(2.7) a(Z\[σ,t])=a(X\[σ,t]).

On the other hand, by Theorem 1 and Lemma 1.1 we have

OL(X I [σ, t]) < a (If Γ( - s)F(s, zn

s)ds \ [σ, t] \n e

(\ Γ
< W sup α T(τ-s)F(s

σ<τ<t \[Jσ
(2.8)

,zΐ)ds\neN\λ

<2γτ sup f a({T(τ -s)F(s,zn

s)\neN})ds
σ<τ<tJσ

<2γT sup ά(Γ(τ)) ί a({F(s, zn

s) \ n e N})ds .
0<τ<a Jσ

If {T(t)}t>o is a Co-compact semigroup on E, then it follows from Remark 1.2 that ά{T(t)) =

0 for all t e (0, a]. Hence, from (2.7) and (2.8) it follows that the set Z\[σ,σ+γ] is relatively

compact in C[σ, σ + γ].

Let us consider the case where sup 0 < τ < f l ά(Γ(τ)) > 0. If we put

v(t) = 2γτ sup α(Γ(τ)) ί a([F(s, zn

s) \ n e N})ds ,
0<τ<a Jσ

then υ(ί) is continuous on [σ, σ + γ], v(σ) = 0 and a(X \ [σ, ί]) < v(t). We claim that

limί_>σ+ v(t)/(t — σ) = 0. Using Lemma 2.1 we have

< \zn

t - S(t - σ)φ\B + \S(t - σ)φ - φ\B

<K(t-σ) sup \zn(s)-φ(0)\ + \S(t-σ)φ-φ\B

σ<s<t
< KaCa(H + 3)(ί - σ) + KarT(t - σ, ^(0)) + ps(t - σ, <̂)

-^0 as t -> σ + .

Hence, from the continuity of F we have that for any ε > 0 there exists a <5 > 0 such that

\F(t,z?)-F(σ,φ)\ < ε/2foralln eNif\t-σ\ < 8. From this we have, for t e (σ, σ+<5),

— | — ί α({F(j, zj) I π G N])ds = — — ί α({F(j, z,π) - F(σ, ̂ ) | n e N})ds

εds = ε ,

which implies that 1^^^+ v(t)/(t — σ) = 0.
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Furthermore, using (1.1), (2.7) and (2.8) we see that a(Zs) < K(s - σ)a(Z | [σ, s]) <

K(s — σ)v(s) for s e (σ, σ + γ]. Therefore we get, together with the assumption (2),

Jσ

If we set

I a({F(s, zn

s)\ne N})ds < ί ω(s, K(s - σ)v(s))d,
J σ J σ-\-

is < oo.

u(t) = 2γτ sup ά(T(τ)) J ω(s, K(s - σ)v(s))ds ,
0<τ<a Jσ+

then v(t) < u(t) and u{t) is absolutely continuous. Hence we find

d
—u{t)<2γT sup ά(T(τ))ω(t, K(t - σ)u{t)) a.a. ί e (σ, σ + y).

Using the assumption (1), we can easily see that u(t) satisfies the condition (2.4). Combining

a comparison theorem ([18, Lemma 4.1]) with the assumption (3) we have u(t) = 0 and

hence, a(Z | [σ, t]) = 0 for all t e [σ, σ + γ]. Therefore, Z \ [σ, σ + γ] is relatively compact

in C[σ, σ + γ]. By Ascoli-Arzela's theorem, we see that there are a sequence {«(/)} CN and

a function z : (—oo, σ + y] —• ̂  such that zσ = φ and |zw ( ί ) — z|[σ,σ+κ] -> 0 as i -> oo.

Hence it follows from the axiom (B2) that z"^ -+ Zt uniformly on [σ, σ + γ] as / -> 00. By

Lebesgue's dominated convergence theorem, we see that the function z is a mild solution of

IP(σ, φ). q.e.d.

REMARK 2.2. Recently, Henriquez [7] showed the existence of mild solutions to

IP(σ, ψ) under the condition that a(T(t)F([σ, σ + a] x β(<p, r))) = 0 for each t e (0, a].

This condition is satisfied whenever T(t) is a Co-compact semigroup on £ or F : [σ, σ +

α] x B(φ, r) -> E is a compact operator. Our condition states a sufficient condition on the

existence of mild solutions to IP(σ, φ) for the case where both T(t) and F are noncompact

operators.

COROLLARY 2.3. IfT(t)isa Co-contraction semigroup on E in Theorem 2, then the

equation (2.5) is reduced to the equation

d
— u(t) = 2ω(t, K{t - σ)u(t)) for a.a. t e (σ, σ + a].
dt

We note that if σ = 0 and Γ(ί) is a Co-contraction semigroup on E, then the function

ω(t, s) = (1 + ε(t))s/2K(t)t satisfies the assumption (1) and (3) in Theorem 2, where ε :

(0, a] -> /?+ is continuous and / 0 + £(ί)Λ ^ί < oo.

COROLLARY 2.4. //F(ί, ψ) = F(ί, V(0)) in Theorem 2, ί/zen ί/ιe equation (2.5) w

reduced to the equation

d
—u(t) = 2 sup ά(Γ(τ))ω(ί,iέ(0) for a.a. t e[σ,σ + a].
dt o<τ<α
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PROOF. Using the same argument as in the proof of Theorem 2, a(X(t)) is easily

estimated as follows:

a(X(t))<2 sup ά(T(τ)) I ω(s,a(X(s)))ds.
0<τ<a Jσ

Hence, we can easily prove the corollary. q.e.d.

REMARK 2.5. Corollary 2.4 generalizes Bothe's result in the single valued case with

non-delay on an open set, in which it is assumed that

lim a(F{Jth x B)) < k(t)a(B)
A->O+

on [σ, σ + a] and for all bounded set B C E, where Jtth = [t — h, t] Π [σ, σ + a] and

k e Cι[σ,σ + a].

PROPOSITION 2.6. Suppose that A = 0 in IP(σ, φ) and Hypothesis (HI) is satisfied.

Then IP(σ, φ) has a solution existing on [σ, σ + y] for some γ > 0, under the following

assumptions'.

(1) There exists a Kamke-type function ω : (σ, σ + a] x [0, 2r] -> /?+ swc/i ί/z«ί

the inequality a(F(t, B)) < ω(t,a(B)) holds for a bounded set B c B(φ,r) and for a. a.

t e [σ, σ +α].

(2) M(0 = 0 w ί/ι̂  unique absolutely continuous function with (2.4), which satisfies the

equation

(2.9) — M ( 0 = 2ω(t, K(t-σ)u(t)) for a.a. t G [σ, σ + a],
dt

provided that ω satisfies the condition (ωi), or

d
(2.10) —u(t) = 2K(0)ω(t,u(t))+βμu(t) for a.a. te[σ,σ+a].

at

PROOF. Since A = 0, we have T(t) = I (the identity operator). Let Z and X be as in

the proof of Theorem 2 with T(t) = I and W = [wn : (-oo, σ + y] -> E | n G Λ }̂, where

3 for t G (—00, σ ] .

Then we have that jtf = S(t — σ)φ + w" fort e [σ, σ + y]. We can easily obtain the following

properties:

( i ) \w? - u Jljg < £ α // | ί - s | forί,5 G [σ, σ + y] and for all n G iV;

(ii) | α ( W f ) - α ( W s ) | < 2KaH\t - s\ for all r, 5 G [σ, σ + y]; and

(iii) α(W/) = a(Λi) for ί G [σ, σ + y]

(see [19, Lemma 2.1]).
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Now, we will show that a(Zt) = a(Xt) for t e [σ, σ + y]. Using (2.6) and the relation

(1.1), we have

< Kaa({(zn - xn) I [σ, /] | n > k}) < 6Kaεk(t - σ),

which implies the assertion.

To complete the proof, it is sufficient to show that a(Zt) = 0 for all ί e [σ, σ + y].

Using Proposition 1.7, we get

( 2 Π ) < 2K(0)a({F(t, zn

t)\ne N)) + βμa(Wt)

for a.a. t e [σ, σ + y]. Since a(Zt) = ct{Xt) = α(>Vί) for t e [σ, σ + y], we have, together

with the assumption (1),

d
—Qί(Xt) < 2K(0)ω(t, a(Xt)) + βμa(Xt) for a.a. ί e [σ, σ + y ] ,
at

because of the property (ii). We note that lim ί_> σ + a(Xt)/{t — σ) = 0 by using (2.11). Put

v(t) = a(Xt)fort € [σ,σ + y]. Then v(t) is absolutely continuous on [σ, σ + y] and satisfies

the differential inequality

d
— v(t) < 2K(0)ω(t, v(t)) + βμv(t) for a.a. t e [σ, σ + y ] .

Hence, from a comparison theorem ([18, Lemma 4.1]) and the assumption (2) it follows that

v(t) = 0 for all t e [σ, σ + y]. The rest of the proof is easily proved by using Proposition

1.7. q.e.d.

REMARK 2.7. (1) If F is uniformly continuous, then the equations (2.9) and (2.10)

in Proposition 2.6 can be replaced by the equations

d
—II(0 = ω(ί, K(t - σ)u(t)) for a.a. t e [σ, σ + y]
dt

and
d
—u(t) = K(0)ω(t, u(t)) + βμu(t) for a.a. t e [σ, σ + y],
dt

respectively (refer to [17], [19], [20]).

(2) Proposition 2.6 is an extension of the result due to Mόnch and Harten [13].

EXAMPLE. Let us consider the initial value problem of the integro-partial differential

equation:

du(t,x) ld2u(t,x) -ί
2/-c

+ - / A(s-t,x)f(t,u(s,x))ds

(2 12) ^ ^ ^χ ^ J~°°
1 f°°
-B(t, x)u{t - r, x) + / G(ί, x, y)g(t, u(t - r,
£ J —QO
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for (ί, JC) G [0, oo) x R, with the initial condition

u(t, x) = φ(t, JC) for (ί, JC) G (-00, 0] x R ,

l i m u(t,x) = φ(0,x) a n d φeC.

Here we take

C = { / : / ? - » / ? | / i s a continuous function such that

lim /(JC) and lim /(JC) exist}
Jt—>+OO Jt—>-— OO

and

£ = {<p : (—00, 0] —• C I <ρ is measurable on (—00, — r], r > 0,

continuous on [—r, 0] and |<p|£ < 00},

where

\φ\c= sup | ^ ( 0 ) | c + / ^ | ^ ( 0 ) | c ^ .
-r<θ<0 J-00

Then C is a Banach space with the supremum norm | \c and the phase space C satisfies the

axioms (Bi)-(B4) with K(t) = 2~ e'1.

Further, we define a Co-semigroup T(t) on C with | |Γ(ί) | | = 1, as

1 ί°° 2
[T(t)u](x) = r-j / e~{χ-y) /tu(y)dy for t > 0 a n d M G C ,

T(0) = I. Then the infinitesimal generator A of the Co-semigroup Γ(ί) is given by

1 ^
for u €

I J d2

V(Λ) = {u e C —M(JC) G C, — ^

Assume that

(1) A : (—00,0] x /?—•/?,/?: [0, 00) x R -+ R are continuous functions such that

\A(Θ, x)\ < eθ, \B(t, JC)I < 1, A(0, •) G C and B(t, •) G C;

(2) G : [0, 00) x / ? x i ? - > / ? i s a continuous function with compact support with

respect to (JC, y) e R x R for each t e [0, 00) and g : [0, 00) x R -> R is a continuous

function; and

(3) / : [0, 00) x R -> R is a bounded continuous function and satisfies the inequality

|/( ί , JC) — fit, y)\ < for t > 0.
t

As such a function, we can take the function /(ί , x) = t sin(jc/ί2).

Now, we define functions as follows: For (ί, ψ) e [0, 00) x £,

1 f°
= - /

z J-oo

1 f 1
Fx (ί, VOW = - / A(0, *)/(*, ^r(0, JC))J0 + -5(ί, x)ψ(-r, x),
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F2(t, ψ)(x) = ί G(t, x, y)g(t, ψ(-r, y))dy
J—OO

and

T(t, ψ)(x) = F{(t, ψ)(χ) + F2(ί, ψ){x).

Then the existence of mild solutions to the initial value problem (2.12)—(2.13) is reduced to

the existence of mild solutions to the abstract initial value problem given as

dw
(2.14) — = Λw + F(t,wt), ί > 0 , and w0 = φ e C.

at

Applying Theorem 2 to the above problem, we shall show the local existence of mild solutions

to the initial value problem (2.14). Hence, we may assume that V{T) = [0, 1] x C(φ, 1),

where C(φ, 1) = [η e C | \η — φ\c < l} Then it is easy to see that T is bounded and

continuous.

First, we consider the function F\. For (ί, φ\), (ί, φi) e V{T), t φ 0, we have, by the

assumptions (1) and (3),
\Fχ{t,φι){x)-Fλ{t,φ2)(x)\

:))-f(t,φ2(θ,x))\dθ-

J
tθ\φi(θ,x) -φ2(θ,x)\dθ + \φ\(-r,x) -φi{-r,x)\ \ ,

J-OQ J

from which we get

\F\(t,φ\) - Fι(t,φ2)\c < —\<Pi -ψl\c-

Next, we show that α(F 2(ί, C(φ, 1))) = 0 for every t e [0, 1]. Take any t e [0, 1]

and any sequence {hn(t)} C F2(ί, C(φ, 1)). Then there exists a φn e C(φ9 1) such that

hn(t) = F2(t,φn). From the assumption (2) we have that there exists a positive number M

such that G(ί, JC, y) = 0 for (JC, y) € R x # \ { [ - M , Λf ] x [-M, M]} and that G(ί, JC, y) is

uniformly continuous in (JC, y) e Rx R. Put G(t) = max {|G(ί, JC, y)\ \(x,y) e Rx R] and

g(t) = m a x { | ^ ( ί , i ι ) | | \u\ < \φ\c + l}. S ince \φn(-r, y)\ < \φn(-r)\c < \ψn\c < l ^ l £ + l ,

n e Λf, we have

|AπWW|< / \G(t,x,y)\\g(t,φn(-r,y))\dy
J-M

< 2MG(t)g(t),

which implies that {hn(t)(x)} is uniformly bounded.

Furthermore, we have, for w, υ e R,

\hn(t)(u) - hn(t)(v)\ < / |G(ί, «, y) - G(ί, υ, y)| |^(ί, ^ (

\G(t,u,y)-G(t,υ,y)\dy.
, M

/

J-M
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From this and the uniform continuity of G(t, JC, y) it follows that {hn(t)(x)} is uniformly

equicontinuous. Therefore, using Ascoli-Arzela's theorem, we see that a(F2(t, £(φ, 1))) = 0

for every t e [0, 1].

From the above results, we have the following: For B C C(φ, 1),

t, B)) + a(F2(t, B))

= a(Fλ(t,B))

Hence we can take ω(t, s) = s/2t as a Kamke-type function in Theorem 2. So, the equation

(2.5) becomes

because ||Γ(OII = 1 for all t > 0. Therefore all conditions in Theorem 2 are satisfied (cf. [17,

Corollary 3.1]) and hence, there exists a mild solution to the initial value problem (2.14).

We note that, as shown in the above, Theorem 2 is applicable to the above initial value

problem, but in general, Henriquez's result is not.

3. Hypotheses and some lemmas. In this section we shall give some lemmas to show

the continuous dependence of mild solutions for IP(σ, φ). If u is a mild solution of IP(σ, φ),

then we say that u is a solution of IP(Γ, F, σ, φ).

Hereafter, in IP(Γ, F, σ, φ) we will use the following hypothesis instead of (HI):

(Hl-0) F is continuous on D, whee D is an open set of R x B.

Put pr D = [t e R | (ί, ψ) e D for some ψ e B) for a D c R x B and £ / o c (pr D) =

{<?: pr D —• F | g is locally integrable}.

First, we list the following hypotheses to discuss a continuous dependence of mild solu-

tions for IP(σ, φ) in Section 4.

(Cl) (σπ, ^ ) -^ (σ, φ) e D as n -+ oo.

(C2) Γ«(ί), n e iV, is a Co-semigroup on F and for each x e F, Γrt(ί)^ -> Γ(ί)^c as

/i —>• oo uniformly on every compact interval [0, a] in R+.

(C3) Fn : D -^ F, rc G ̂ V, is continuous and {Fw}rteiv is uniformly bounded on every

closed bounded subset of D.

(C4) Fn{t, ψ) -> F(ί, ^ ) as n —• oo uniformly on every compact subset of Zλ

(C5) fj \gn(t)\dt -+ 0 as n -> oo for every compact interval 7 c prZ), where gn e

Cιoc(prD),n eN.
(C6) For every (τ, ψ) e D and n e N, IP(Γ«, Fn+ gn, τ, T/Γ) has a local solution.

LEMMA 3.1. Let a > 0 and suppose that Hypotheses (H2) ant/ (C2) are satisfied.
Then

sup {||Γπ(ί)ll I / ! € # , * e[0,fl]} <oo.
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PROOF. It follows from (C2) that for any x e E there exists an Nx e N such that
suPίe[0,a] \Tn(t)x - T(t)x\ < 1 for all n > Nx. Thus we have

sup |Γπ(f)*|< sup |Γ(O*I + sup \Tn(t)x - T(t)x\
te[0,a] te[0,a] te[0,a]

< sup | | Γ ( O I I | J C | + 1 for all n > Λ^ ,
te[0,a]

and hence sup,e[0 a] \Tn(t)x\ < Cx for all n e N and for some Cx > 0. This implies that
suPneN suPte[0,a] \Tn(t)x\ < oo for all x G E. Hence the assertion of the lemma follows from

the uniform boundedness theorem. q.e.d.

LEMMA 3.2. Let a > 0 and Ω be a compact subset in E. Suppose that Hypotheses

(H2) and (C2) are satisfied. Then for any ε > 0 there exist a positive integer No and a positive

number 8 such that

(3.1) \Tn(t)x-T(s)y\ <ε

if\t -s\ <δ,t,s e [0, a], and \x - y\ < 8, x, y e Ω.

PROOF. Assume that the conclusion is not true. Then we may assume that there exist

some £o > 0, {n(k)} c N, n(k) > k, {ί/J, {^}, [xk] and {y^} such that tk -^ τo, Sk —• τo,

Xk -+ zo and yk -+ zo as k -> oo, where τo e [0, a] and zo e Ω, and that ô < \Tn(k)(tk)xk —

T(sk)yk\ for all k e N. From (C2) we have

\Tn(k)(tk)zo -

< \Tn(k)(tk)zo - T(tk)zo\ + \T(tk)zo - T(τo)zo\

< sup
0<t<a

-> 0 as k -> o o .

Put C = sup {||Γπ(f)|| I n e N, t e [0, a]}. Then 1 < C < oo by Lemma 3.1. Hence we

have, by (3.2),

-T(s
k
)y

k
\

< \T
n{k)
(t

k
)x

k
 - T

n(k)
(t

k
)zo\ + \T

n
(
k
)(t

k
)zo - Γ(τ

o
)zol

+ \T(τ
o
)zo - T(s

k
)zo\ + \T(s

k
)zo - T(s

k
)y

k
\

< \\Tn{k)(tk)\\ \Xk ~ ZOI + \Tn(k)(f
k
)Z0 ~ T(τ

O
)zo\

+ \T(τ
o
)zo - T(s

k
)zo\ + \\T(s

k
)\\ \y

k
 - zol

< C\x
k
 - zol + C

a
\y

k
 - zo\ + \T

n(k)
(t

k
)zo - T(τ

o
)zo\

+ \T(τ
o
)zo-T(s

k
)zo\

-• 0 as /: ->• oo ,

which yields a contradiction. q.e.d.

The following results are directly obtained from Lemma 3.2.
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COROLLARY 3.3. Suppose that Hypotheses (H2) and (C2) are satisfied. Then

\Tn(tn)xn - T(to)x°\ ^ 0 as n -> oo,

ίftn -> to e R+ andxn -> x° e E as n -> oo.

COROLLARY 3.4. Let the same assumptions as in Lemma 3.2 be satisfied. Then for

any ε > 0 there exists a 8 > 0 such that \Tn(t)x - Tn(s)y\ < ε for all n e N,if\t - s\ < δ,

5, t e [0, a], and \x - y\ < δ, x, y e Ω.

Denote by NS(Γ, F, σ, φ) the set of all noncontinuable solutions for IP(Γ, F, σ, φ) and

by τx the final time of the existence-interval of x in NS(Γ, F, σ, <p).

LEMMA 3.5. Let (σ, φ) e D and g e £/oc(pr D). Suppose that Hypotheses (Hl-0)

am/ (H2) are satisfied and that for each (τ, V0 € D, IP(Γ, F + g, τ, ψ) has a local solution.

Then there exists a positive number γ such that

[σ, σ + γ] C [σ, τΛ) for all x e NS(Γ, F + g,σ,φ).

PROOF. Since (σ, <p) G D, it follows from (Hl-0) that there exists a positive numbers

α, r and // such that Ω := [σ - a, σ + α] x #(<p, r) c D and | F | < // over there. Set

/
Jσ

= KarT(t, φ(0)) -h p s (ί , ^) + KaHCat + ^ α C α / |#(s)|ds for ί e [0, a]
Jσ

and yo = sup [t e [0, α] | δ(t) < r} > 0. Clearly, 5(ί) is continuous in t e [0, α], δ(t) > δ(s)

iίt>s, and5(yo) < r.

Now we shall show that the number yo is a required one. Suppose it is not true. Then

there exists a solution z G NS(Γ, F, σ, </?) such that τo := τz — σ < yo Set

τ = sup [t > σ I 0, z5) G Ω for all ί 6 [ α , ί ] ) - σ .

Then it is obvious that 0 < τ < τo. Assume that τ = τo Then we have (7, z f) G Ω for

ί G [σ, σ + τ). Using the same argument as in the proof of [15, Theorem 2.2], we see that

z(t) can be continued beyond σ + τ, which yields a contradiction with the maximality of τo.

Hence τ < τo. Since τo < γo, we have τ < yo O n the other hand, we have

- φ\B < |zσ+τ - S(τ)φ\β + |S(τ)<p - ^|β

< Ka sup {|z(ί) - φ(0)\ I σ < ί < σ + τ} + |5(τ)^ - <ρ|#

σ < ί < σ + τ} + \S(τ)φ - φ\B

i SUp
σ<t<σ+τ

pt rσ+τ
I T(t - s)F(s, zs)ds + KaCa /

Jσ Jσ

\g{s)\ds

<δ(τ) <δ(γo)<r,

which implies that (σ + τ, zσ+τ) is an interior point of Ω. From the assumption we see that

z(t) can be continued beyond σ + τ. This is a contradiction with the definition of τ. q.e.d.

LEMMA 3.6. Suppose that Hypotheses (Hl-0), (H2), (C1)-(C3) and (C5)-(C6) are

satisfied. Let xn e NS(ΓΠ, Fn + gn, σn, φn), n e N, and τn = τxn - σn. Then there exists a
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positive number γ such that

[σπ, σn + γ] c [σn, σn + τπ) for all n e N.

PROOF. Let Γ = {φn} U {</?}. It is obvious that Γ is compact in B. From assumptions,

Lemma 3.1 and Lemma 3.2 it follows that there are positive numbers α, r, C and // such that

[σ — α, σ + α] x #(<p, r) C D and that for all n e N (without loss of generality)

[ a ai _ / r\

σ ~ 2 ' σ + 2J X V ' 2/ '
sup sup {|[Γπ(ί) - Γ(ί)]Vr(O)| I ψ e Γ]

0<t<a/2

sup {11^(0 II |0 < t < a} < C, max{|F|, |Fn |} <H

and
rσn+t

C sup / \gn(
0<t<a/2 Jσn

Set

on [σ -a,σ+a] x B(φ,r),

l2Ka

ί, Γ(0)) + p s (ί , Γ) +

< r/2) > 0 and y = sup [t e [0, α/2]

By Lemma 3.5, we have [σn, σn + yn] c [σπ, σn + τn) for all n e N.

On the other hand, we have, for all n e N and for t e [0, a/2],

γn = sup {ί G [0, a/2] < r/3} > 0.

rτn(t><PnΦ))= sup
0<τ<ί

< sup \[Tn(τ)-T(τ)]φn(0)\+ sup |[Γ(τ) -
τ

l2Ka

rT(t,Γ(0)),

and so,

Sπ(t) < δ(t) ^- + KaC ί "
1^ Jσn

\gn(s)\ds

< S(t) + r- .
Ό

This implies that 8n(γ) < r/2 for all n £ N. From the definition of γn we see that 0 < γ < γn

for all n e N. q.e.d.

4. Continuous dependence of mild solutions for IP(σ, φ). In this section we will

discuss a continuous dependence of mild solutions for IP(σ, φ). For a function x : [α, b] -^

E, define a function x : (-oo, 7̂] -• £" as follows:

jc(ί) for t e [a,b]
χ(tΛ =

χ(a) for ί e ( - σ o , a].
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The following result is a modification of Ascoli-Arzela's theorem. Since the proof is not

difficult, it is omitted.

LEMMA 4.1. Let an -> a, a < b,as n —> oo. Take a bounded sequence of continuous

functions xn : [an, b] -> E,n e N, such that {xn(an)} converges. Assume that

(1) {xn I [a, b] I n e N} is uniformly equicontinuous;

(2) a({xn(t) I n e N)) = 0 for each t e (a, b\\ and

(3) sup{|.i"0) —xn(an)\ I min{an,a} < t < a] -> 0 as n -> oo.

Then there exist a continuous function x \ [a, b] and a subsequence {n(i)} C N such that

|χ«(0 — χ\[s(n(fytb] -^ 0 as i -> oo, where s(n) = max{αrt, a}.

To state the main result in the present paper, we will make use of the following hypothe-

sis:

(B) T(t) is a Co-compact semigroup on E or F satisfies the hypothesis (Hl-O) and

the following condition: For every point (τ, ψ) e D there exist positive numbers α, r and

a Kamke-type function ω : (τ, τ + a] x [0, 2r] —• R+ with (ω^) satisfying the following

properties:

(1) [τ-fl,r+α]x%r)cί).

(2) α(F(ί, B)) < ω(t, a(B)) holds for each bounded set B c B(ψ, r) and for a.a.

t e (τ, τ + f l ] .

(3) ω(t, K(t - τ)iι(ί)) -• 0 as t -> τ + , where K(t) is as in (B2) and u : [τ, τ +a] -+

R is any continuous function such that

(4.1) lim ^ - = u(τ) = 0.
ί ^ τ + t — T

(4) u(t) = 0 is the unique absolutely continuous function with the condition (4.1),

which satisfies the equation

d
(4.2) y " ^ ) = 2yτ S UP &(T(s))ω(t, K(t - τ)u(t)) for a.a. t e (τ, τ + a).

dt o<s<a

We are now in a positive to show the main theorem in the present paper.

THEOREM 3. Let Hypotheses (Hl-O) and (H2) be satisfied and let xn e NS(ΓΠ, Fn +

9m &n, <Pn), n € N, and βn = τxn — σn. Assume that

(1) Hypotheses (C1), (C3)-(C6) and (B) are satisfied',

(2) Tn(t), n e N, is a Co-semigroup on E, and for each closed bounded subset A C E

and for each a G (0, 00)

sup sup \Tn(t)x — T(t)x\ ->• 0 as n —• oo and
xeΛ te[0,a]

(3) for each closed bounded set Ω ofD

ct({Fn(t, η) - F(t, η) \ (t, η) e Ω, n > k}) -> 0 as k -> 00.

Then there exist a subsequence {xn^} of {xn} and an x° e NS(Γ, F, σ, φ) such that the

following conditions hold:
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(i) ft < liminf βn(i), where ft = τ̂ o — σ; and
/-•oo

(ii) \xn^ — x°\[s(n(i)),d] -> 0 as i —• σo/or every d e (σ, σ + ft), vv/zere s(n) =

max{σ, σn}.

PROOF. Let {(τn, xXn)}neN be any sequence such that (τn, JCJΠ) - > ( τ , ψ ) e D a s n - >

oo. Put V̂π = *?n and Γ = {ψn}neN^ {ψ}- Then from (Hl-0), (C3) and Lemma 3.1 it follows

that there are positive numbers a, r, C and H such that Ω := [τ — a, τ + a] x (̂V ,̂ r) c D,

sup {||7^(011 |0 < t < a) < C for all n e Nandmax{|F|, \Fn\] < H + 1 on Ω for all n e N.

Moreover, using Lemma 3.6 we see that there is a positive number y , τ < y < τ + α , such

that (j, jt?) € ί2 for all s e [τπ, y]. Put /„(*) = F Π (J,A:J) and /n

0(,s) = F(.s, JC5

Π) for all

t e [τ n ,y],

_ ί ί Γn(ί - s)fn(s)ds for ί e [τn, y]

for t e (-oo, τ π ] ,

„ i , Tn(t - s)gn(s)ds for t € [τΛ,

I 0 for t e (—oo,

and

I ψ /i(ί - τn) for ί € (-oo, τn].

Then jcn(ί) = yn(t) + zn(ί) + wn(t) for ί G (-oo, γ]. For the function u;π | [τn, γ], n e N,

we define a function wn : (—oo, y] -> E, as before; that is, ώπ(ί) = u;π(ί) for t e [τπ, y],

while ώπ(ί) = u;"(τn) for ί e (-oo, τ n ] . Set jcπ | [τ, y] = (3?π + zn 4- ώπ) I [τ, y]. Clearly,

{JC" I [τ, y] I n e N} is uniformly bounded.

The proof will be divided into three parts as follows.

Step 1. We will prove that there exist a subsequence {n(i')}iew of iV and a solution jc°

of IP(Γ, F, r, ψ) such that \xn^ — x°\[s(n(i)),γ] -> 0 as Ϊ ->• oo, where 5(n) = max{τ, τπ}.

To show Step 1, we will check all conditions in Lemma 4.1.

First of all, we shall show that the condition (3) in Lemma 4.1 is satisfied. It is sufficient

to see the case where τn < τ. Then we have

SUp \xn(t)-ψnφ)\
τn<t<τ

< sup \Tn(t-τn)ψn(O)-ψnΦ)\ + C(H + l)\τ-τn\ + C f \gn(s)\ds.
τn<t<τ Jτn

Since (τ Λ , ψn) -> (τ, ψ) G I> as n ->• oo, in view of Corollary 3.3, we can easily see

that the condition (3) in Lemma 4.1 is satisfied. Since (τ π , VΆΪ) -> ( r , f ) E D a s n ->

oo, [wn I [τ, y] I n e Λ̂ } is uniformly equicontinuous by using Lemma 3.2. From this,

[xn I [τ, y] I n e N] is also uniformly equicontinuous, and hence the condition (1) in Lemma

4.1 is satisfied.

Next, we will check the condition (2) in Lemma 4.1. Without loss of generality, we may

assume that τ < τn for all n e N. We here assume that
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( Q {yn I [τ, γ] | n e N] is relatively compact in C[τ, y]

(for the proof, see Step 2).

To check the condition (2), we shall show that a({xn | [τ, γ] | n e N}) = 0; that is,

α({zπ I [T, y] 11 € #}) = 0 and a ({wn \[τ,γ]\n€ N}) = 0. We note that this result is used
in Step 2. Since [wn | [τ, γ] | n E Λf} is uniformly equicontinuous, we have

sup a({wn(t)\n e N}) < sup a({wn(t) - wn(τ) \ n e N}) +α(Γ(0))
τ<ί<τ+5 τ<ί<τ+<5

< 2 sup { | ώ / I ( ί ) - ώ / I ( τ ) | | n e i V }
τ<ί<r+<5

-> 0 as 8 -> 0

and

sup α({^(0 |«e^V})< sup α({Γπ(ί - τn)ψn(0) - T(t - τ)ψn(0) \ n > k})
τ+δ<t<γ τ+δ<t<γ

+ sup a(T(t - τ))α(Γ(0))
τ+δ<t<γ

< 2 sup |ΓΠ(. - τn)ψnφ) - Γ( - τ)i

- > • 0 a s Λ: - > • σ o ,

from which it follows that

a{{wn\[τ, y]\n e N}) = sup a([wn(t) \ n e N}) = 0.

τ<t<γ

Furthermore, we have, together with the condition (C5),
<*([zr\[τ,γ]\neN})<2sup\ / Tn(- - s)gn{s)ds11/. n>k\

1/ \gn(s)\ds \n>k\-+0 as /: -> σo ,

from which we see that α({z" | [τ, γ] | « G Λf}) = 0.

In view of Condition (C), we have a({xn \[τ,γ]\n e N}) = 0, and so a({xn(t) | n e

N}) = 0 for ί G (τ, y]. Therefore, all conditions in Lemma 4.1 are satisfied. Using Lemma

4.1 and taking a subsequence if necessary, we may assume that there is a continuous function

x° I [τ, y] such that \xn — x°\[s(n),γ] ~> 0 a s n ~^ °°

Finally, we prove that the limit function x° | [τ, γ], x® = ψ, is a solution of IP(7\ T7, r, ̂ r).

Put /( j) = F(5, JC^) for all 5 e [τ, y] and let any ε > 0 be fixed. Then it follows from (C4)

that fn(s) -+ f(s) as n —• σo for each ί G [ τ + £ , ί]. Hence, using Lebesgue's convergence

theorem and the condition (C5), we get

/ T(t - s)fn(s)ds -• ί T(t- s)f(s)ds as n -> σo,



SEMILINEAR FUNCTIONAL DIFFERENΉAL EQUAΠONS 577

SO that

/ T(t-s)[fn(s) + gn(s)]ds = J T(t - s)f(s)ds .

Therefore x° | [r, γ], x® = ψ, is a solution of IP(7\ F, r, ψ).
Step 2. We shall show that Condition (C) is verified. Let any t be fixed in (τ, γ]. Then

for any ε > 0 there exists a S > 0 and kε e N such that if n > &ε, then
(i) τ + S < t and τ < τn < τ + <5; and
(ii) s u p { | F ( s , ^ ) - F ( τ , ^ ) l | τ n <s < τ + S) < ε and sup {\xn

s - ir\B\τn < s <
τ+S} <ε/2.

For any k > kε we have

α({/Ί[τ,f]|#!€Λr})

= a({y"\[τ,t]\n>k})

= max {a({yn | [T, T + ί] | π > *}),«({/ | [τ + ί, ί] | n > k})}

( 4 3> <maxJ2C(// + l ) δ , α Π ί Tn( -s)fn{s)ds \ [τ + S, t] \ n > k\ J

+α Π ί Tn(- - s)fn(s)ds I [τ + 5, r] | n > k\λ 1

Π /"

We here note that

Tn(θ - S)fn(s) = T(θ - S)f°(s) + T(θ - S)[fn(s) - /°(ί)] + [Tn{θ - S) - T(θ - S)]fn(s) .

First, we shall show the following assertions:

(iii) a ( I f T( - s)[fn(s) - f°(s)]ds \[τ + δ , t ] \ n > k \ \ = 0; a n d

(iv) a ( \ ί [ T n ( - - s ) - T ( - s ) ] f n ( s ) d s \ [ τ + δ,t]\n>kV\=O.

We have, together with the assumption (3),

a({T(θ - s)[fn(s) - /Λ°(5)] I n > k})

< sup a(T(θ))a({fn(s) - /B°(i) I n > k})
0<θ<a

< sup ά(T(θ))a({Fn(s,η) - F(s,η)\(s,η) e Ω,n >k\)
0<θ<a

0 as k ->• o o .



578 J. S. SHIN AND T. NAITO

Therefore, using Theorem 1, Lemma 1.1 and Lebesgue's convergence theorem, we obtain

a (\j T( - s)[fn(s) - f°(s)]ds I [τ + δ, t] | n e N\\

<γτ sup a(\f T(θ-s)[fn(s)-f°(s)]ds \n>k\)
τ+S<θ<t MΛ+ί J/

<2γT sup / a({T(θ-s)[fn(s)-f°(S)]\n>k})ds
τ+δ<θ<tJτ+δ

-> 0 as k -> oo,

which implies the assertion (iii).

Put A = cl{fn(s) I τ + 8 < s < t, n e N}. Then, it follows from the assumption (2) that

a({[Tn(θ -s)- T(θ - s)]fn(s) \n>k})

< a({[Tn(θ -s)- T(θ - s)]z I z e A , n > k})

< 2 s u p s u p I[T n (θ -s)- T(θ -s)]z\ ^ 0 as k - > o o .
n>kzeΛ

Hence we have, by Lamma 1.1 and Lebesgue's convergence theorem,

for θ € [τ + δ, t].
\ U τ + ί ' J/

Put

a (if [Tn(β -s)- T(θ - s)]fn(s)ds \n e NΪ\ = 0

vn(θ) = / [Tn(θ -s)- T{θ - s)]fn(s)ds
Jτ+δ

Γhen we have

vn(θ)\ < f s u p s u p \[Tn(t -s)- T(t - s)]z\ds
Jτ+δ τ+δ<s<t zeΛ

Jτ+δ
for θ e [τ + <5, ί]. Then we have

f
τ+δ τ+δ<s<t zeΛ

->• 0 a s n - > o o ,

and hence {υn(θ)} is equicontinuous on [τ + δ, t]. These facts imply the assertion (iv).

Furthermore, by assertions (iii) and (iv), Theorem 1 and Lemma 1.1, we get

a (If Tn{. - s)fn{s)ds I [τ + δ, t] I n > k\\

= a (\J Γ( - s)fH(s)ds I [T + ί, ί] I π > k\\

( 4 4 ) <Yτ sup a (If T(θ-s)f°(s)ds\n>k\)

τ+δ<θ<t \\Jτ+δ J/
ίθ

< 2γT sup / a({T(θ - s)f°(s) \ n > k))ds
τ+δ<θ<t Jτ+δ

<2γT sup ά(T(s)) I a({F(s,x?) \ n > k))ds ,
0<s<a Jτ+δ
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provided ά(T(s)) > 0 for all s e (0, a].

Next, we will prove that Condition (C) is satisfied. From (4.3) and (4.4) we get

a([yn I [τ, t] \ n e N}) < 2C(H + 1)5 + 2γτ sup ά(T(s)) f a([F(s, x?) \ n > k))ds .
0<s<a Jτ+δ

Since ε is arbitrary, we obtain the following relation:

<x({yn\[τ,t]\neN}) <2γτ sup ά(T(s)) lim / a({F(s,x?)\n > kε})ds
0<s<a ε^O+Jτ+δ

: = υ ( ί ) .

If we set ι>(τ) = 0, then v(t) is continuous on [τ, γ]. Hence, in view of the continuity of F

together with (ii) in Step 2, we can easily see that lim ί_> τ+ v(t)/(t — τ) = v(τ) = 0. Using

(1.1) and (ii) in Step 2 again, we have

a({x?\neN])=a([x?\n>ke})

<K(t-τ- δ)a({xn I [τ + i, ί] | n > kε})

- τ - «)α({^+ β - ^ I π > *e})

- τ - 5)α({jcπ | [τ, ί] | n > kε}) + M(ί - τ - <5)ε

- τ - δ)α({/ I [τ, t] \ n e N}) + M(t-τ - δ)ε ,

from which we get

a{{x?\n eN}) < K(t-τ)v{t).

Hence, we obtain, together with (2) in Hypothesis (B),

a({F(t9 xn

t) I n e N}) < ω(t, α({jcf | n e N})) < ω(t, K(t - τ)υ(t)) a.e.

and therefore,

υ(t) < 2γT sup ά(T(s)) / ω(j , K(s - τ)v(s))ds ,

0<s<a Jτ+

because of the condition (3) in Hypothesis (B). Repeating the same argument as in the proof

of Theorem 2 and using Hypothesis (B), we have a({yn | [τ, γ] | n e N}) = 0, and hence

Condition (C) is satisfied.

Step 3. We will prove the conclusion of the theorem. Let T be the collection of all

solutions x of IP(Γ, F, σ, φ) such that the conditions (i) and (ii) in Theorem 3 hold for some

subsequence of N. Clearly, T is nonempty. Using the standard order relation in T, we see

that T is an inductively ordered set. Therefore there exists a maximal element x : [σ, β) —• E

in T by Zorn's lemma. It is not difficult to show that x is in NS(Γ, F, σ, φ). This proves the

theorem (for detail, refer to [19]). q.e.d.

REMARK 4.2. We note that the conditions (C3) and (C4) and the assumption (3) in

Theorem 3 hold if the following conditions are satisfied:

(Hl-1) F : D -> E is continuous and takes closed bounded sets into bounded sets.

(C-7) Fn, n e N, is continuous and Fn -> F uniformly on Ω as n -> oo for each

closed bounded set Ω of D.
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REMARK 4.3. Theorem 3 is based on Theorem 2. However, if A = 0, then we can

prove the theorem based on Proposition 2.6 instead of Theorem 2. We note that a similar

result can be found in [19] if A = 0, gn = 0 and F is uniformly continuous.

REMARK 4.4. If F(t, ψ) = F(t, ψ(0)) and Fn(t, ψ) = Fn(t, ψ(0))9 n e N, then the

condition 2) in Theorem 3 can be replaced by the following condition:

(2r) Tn(t), n e N, is a Co-semigroup on £, and for each closed bounded set A c F

and for each ί G ^?+,

α({UΛ(ί) - T(t)]z \ze A,n>k}) -^0 as ife -» oo .

Set τ(σ, <p) = inf [τy | y e NS(Γ, F, σ, <p)}. Then the following result is easily proved

by using Theorem 3.

LEMMA 4.5. Let Hypotheses (Hl-0), (H2) and (B) be satisfied. Then

(1) σ < τ(σ, φ) < oo and there exists an x$ e NS(Γ, F, σ, <p) swc/i ί/ίαί τXQ — τ(σ, φ).

(2) τ (σ, <p) Ϊ51 /ow^r semicontinuous on D.

We will make use of the following hypothesis in place of Hypothesis (B):

(B-/) The equation (4.2) in Hypothesis (B) is replaced by the equation

^-u(t) = 2γT sup ά(T(s))[ω(t, K(t - τ)iι(ί)) + lK(t -
dt 0<s<a

for a.a. t e (τ, τ
Clearly, Hypothesis (B) is derived from Hypothesis (B-/).

Set M(k) = {G : D -> F | G is a continuous function on D c R x B such that

α({G(ί, η) - F(ί, 77) | η e B}) < ka(B) for each 0, £) C D, where θ is a bounded subset

of #}, where Λ: > 0 is constant.

LEMMA 4.6. Suppose that Hypotheses (Hl-0), (H2) and (B-/) are satisfied. If G e

M{1) and g)oc(\>* D), then for any (τ, ψ) € D, NS(Γ, G + g, τ, i/0 w nonempty.

PROOF. Let any (τ, T/̂ ) be fixed in D. Then there are positive numbers a and r such that

[τ — α, τ + α] x B(ψ, r) c D and that G and F are bounded over there. Since G e Λ4(/), we

have α(G(ί, 5)) < α(F(f, 5)) + α({G(ί, ??) - F(ί, ^) 177 G 5}) < ω(ί, α(β)) + la(B) for

all β C B{ψ, r) and for a.a. t e [τ, τ + a]. On the other hand, using the same argument as in

the proof of [22, Lemma 5.3], we can construct approximate solutions for IP(7\ G + g, τ, ψ).

In view of Hypothesis (B-/), it is not difficult to show that IP(7\ G + g, τ, ψ) has a local

solution. Hence, it follows from Zorn's lemma that NS(7\ G + g, τ, ψ) is nonempty, q.e.d.

We give a result on the continuous dependence of solutions for IP(Γ, F, σ, φ).

PROPOSITION 4.7. Suppose that Hypotheses (Hl-1), (H2) and (B-/) are satisfied. Let

dbe a number in (σ, τ (σ, φ)). Then for any ε > 0 there exists a8(ε) > 0 such that if\a—σ\ <

8, \Ψ ~ Ψ\B < δ, («, Ψ) G D, |G(ί, 17) - F(ί, ι;)| < 5, (ί, 77) e D, αnJ / y \g(t)\dt < δ,

where J = [min{α, σ}, d], G e M(l) and g e Cjoc(pr D) then every y(t, a, ψ, G + g) in
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NS(7\ G + g, α, ψ) is always continued beyond t = d and satisfies

(4.5) \yt(a, ψ,G + g)- xt(σ, φ)\β < ε for t e [max{σ, α}, d],

for some x(t\ σ, φ) in NS(Γ, F, σ, φ) which may depend on y(t; α, ψ, G + g).

PROOF. First of all, we shall show that for any d in (σ, τ(σ, φ)) there exists a 8 > 0

such that if \a - σ\ < 8, \ψ - φ\β < 8, (α, ψ) e D, |G(f, η) - F(t, η)\ < 5, (ί, 77) G D,

and fj \g(t)\dt < 8, J = [min{α, σ}, d], then τ^ > d for all y e NS(7\ G + #, α, τ/r). It

follows from Lemma 4.6 that NS(7\ G+g, a, ψ) is nonempty. For a contradiction, we assume

that there exist some do in (σ, τ(σ, <p)) and sequences {(σπ, <£„)}, {Gn}, {^} and {yn}, yn e

NS(Γ, Gπ + pπ,σ n, ^ ) , such that ( σ π , ^ π ) ^ (σ, ^) G Z), sup {\Gn(t, η) - F(t, η)\ \ (ί, r/) G

D ) - ) Ό and fa° \gn(t)\dt -> 0 as n ->- 00, where «„ = min{σπ, σ}, and that σn < τn < do,

where τn = τyn. Since σn —> σ as n —> 00, we may assume that τrt —>• τo, σ < τo < do> ^s

w —>• ex). Thus it follows easily from Theorem 3 that there exists a z G NS(Γ, F, σ, ^) such

that σ < τz < τo Hence τz < do < τ(σ, φ), which contradicts the definition of τ(σ, φ).

Next, we shall show that the inequality (4.5) holds. For a contradiction, suppose that

the conclusion is false. Then there exist some εo > 0 and sequences {(σn, φn)}, {Gn}, {gn}

and {/*}, yn e NS(7\ GΛ + 9n, σn, φn\ such that (σπ, ^ ) -^ (σ, ^) G D, sup {|Grt(ί, 17) -

F(ί, ?/)| I (ί, η) G D} -^ 0 and /α |pn(ί)l^ί -^ 0 as n —• 00, where an = min{σn, σ}, and

that for all x e NS(7\ F, σ, ̂ ) ,

1̂ " (σΛ, ίPπ, Gπ + gn) - xtn (σ, <p)|β > 0̂ for some tn e [sn, d],

where ^ = max{σn, σ}, tn may depend on x(t, σ, φ) and yn G NS(Γ, Gn + gn, σn, φn). From

Theorem 3 we may assume that \yn — z\[Sn,d] -> 0 as π -> 00 for some z G NS(Γ, F, σ, <̂ ?).

Hence we have, together with the axiom (B2),

εo < \y?n - ztjβ

< K(tn - sn)\yn - z\[Sn,d] + M(fn - sn){\yl - φ\B + \zSfl - φ\β)

—>• 0 as n —> 00,

which is a contradiction. q.e.d.

Using Theorem 3, we have the following result, which is proved by using the same

argument as in the proof of Proposition 4.7.

COROLLARY 4.8. Suppose that Hypotheses (Hl-1), (H2) and (B) are satisfied. Let

d be a number in (σ, τ(σ, φ)). Then for any ε > 0 there exists a 8(ε) > 0 such that if

\a — σ\ < 8, \ψ — φ\β < 8, (a, ψ) G D, and fj \g(t)\dt < 8, where J = [min{of, σ}, d], and

g G Cjoc(pr D), then every y(t, α, ψ, F + g) in NS(Γ, F + g, a, ψ) satisfies

\yt(a, ψ,F + g)- xt(σ, φ)\β < ε for t G [max{σ, a], d],

for some x(t; σ, <p) m NS(Γ, F, σ, φ) which may depend ony{t\cι,ψ,F + g).

The above fact extends a well-known result in ordinary differential equations in finite

dimensional spaces (refer to [25]).
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