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Abstract. A rigorous mathematical analysis is given for a well-known problem for a
third-order nonlinear ordinary differential equation, which arises in boundary layer theory in
fluid mechanics and was firstly deduced by Falkner and Skan in 1930. It is proved that the prob-
lem is equivalent to a singular nonlinear two-point boundary value problem of second order.
For the singular nonlinear boundary value problem, uniqueness, existence and nonexistence of
positive solutions are established by utilizing a priori estimates, comparison principles and a
modified shooting type method. These results are easily turned over to the original problem.

1. Introduction. The third-order nonlinear ordinary differential equation for f(η)

(l l) / ' " + / / " + λ(l - ffl) = 0, 0 < η < +oo ,

with boundary conditions

(1.2) /(0) = 0, / ' ( 0 ) = 0 , / '

is of great importance in the boundary layer theory in fluid mechanics. The equation (1.1)

was firstly deduced by Falkner and Skan [4] in 1930. However, the cases λ = 0 and λ = 1/2

of (1.1) are often called the Blasius and Homann differential equations, respectively. Many

authors have investigated the boundary value problem (1.1)—(1.2) by using numerical and

analytical methods. For details, see [5, pp. 519-537; 7, pp. 149-151] and the references

therein. In this paper, we present a new approach to study the problem (1.1)—(1.2) and provide

some new information about a normal solution to the problem.

A function f(η,λ) is called a normal solution of the problem (1.1)—(1.2) if / satisfies

(l.l)-(1.2)and

0 </'(?;, λ) < 1, f"(η,λ)>0 for all η > 0 .

Here and henceforth a prime denotes differentiation with respect to the variable η or the vari-

able t in case of no confusion.
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The introduction of a new independent variable t and a new unknown function w(t) as

what we do in the following can transform the problem of finding a normal solution of (1.1)-

(1.2) into a problem of finding a positive solution to a singular nonlinear boundary value

problem of second order.

Assume that f(η) is a normal solution to the boundary value problem (1.1)—(1.2). Then

η = g(t), the inverse function to t = f'{η), exists and is strictly increasing in (0, 1), #(0) = 0,

g{\ — 0) = oo, and

(1.3) t = f\g(t)) for all ί e (0, 1).

Differentiating (1.3) with respect to / yields

(1.4) w(t) := f"{g(t)) = -T^T , 0 < t < 1.

Substituting η = g{t) into (1.1), we obtain

(1.5) w\t)w(t) + f(g(t))w(t) + λ(l - t2) = 0, 0 < f < 1.

Here we have used (1.3), (1.4) and the fact that

Dividing (1.5) by w(ί) and then differentiating it with respect to ί, we get

w(t

From (1.2), (1.5) and g{\ - 0) = +oo, it follows that

(1.7) u/(0)tu(0) = - λ ,

Problem (1.6)—(1.7) is singular at / = 1 and possibly at / = 0 if w(0) = 0. The particular

case λ = 0 of the problem has been studied by many authors. For detailed analysis of the case

or a general form of the case, one is referred to [1^4, 6, 8, 9]. As far as we know, the singular

nonlinear boundary value problem (1.6)—(1.7) has not been studied yet when λ φ 0.

Problem (1.6)—(1.7) can be used as a model example to study a singular nonlinear bound-

ary value problem.

In Section 2 we will prove that there is a λ* e (—1/2, 0) such that for each fixed λ > λ*

the problem (1.6)—(1.7) has a unique positive solution w(t,λ) and it has no positive solution

for any λ < λ*. Our arguments for the existence and uniqueness of the w(t,λ) involve a

modified shooting type argument, a priori estimates and comparison principles.

The results for the normal solutions of (1.1)—(1.2) will be stated in Section 3 by using

the results in Section 2.

2. The results for the Problem with Singularities. In this section, we concentrate

our attention upon the singular nonlinear problem (1.6)—(1.7). We adopt a modified shoot-

ing type method to prove the existence of positive solution to the problem (1.6)—(1.7). The

uniqueness and nonexistence results will also be proved.
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A function w(t) is said to be a positive solution to the problem (1.6)—(1.7), if

(i) w(t) e C[0, 1] Π C2(0, 1), w(t) > 0 for all t e (0, 1),

(ii) w(t) e Cι[0, 1) when w(0) > 0, and

(iii) w(t) satisfies (1.6) and (1.7).

It is easily seen that the solution of (1.6) and (1.7) with tι>(0) > 0 can be represented by

Jt

Consequently, we have

J w(s) J ()

(2.2) ^ z M L z l
w{t) Jo

It is clear that u/(0, λ) = -λ/w(0, λ) when w(0, λ) > 0, u/(r, λ) < 0 in (0, 1) when λ > 0,

and there must be one and only one point ΪM Ξ (0, 1) such that w'(t,λ) > 0 in (0, ΪM) and

w\t, λ) < 0 in (tM, 1) when λ < 0.

On the basis of (2.1) and (2.2), we can establish the following

PROPOSITION 1. Let w(t, λ) be a positive solution to the problem (1.6)—(1.7). Then

the following four statements hold.

(i) The problem (1.6)-( 1.7) has no positive solution for any λ < —1/2.

(ii) For each fixed λ > 0, we have

(iii) For each fixed λ > —1/2, we have

(2.4) w(t, λ) - V2(l - 01 log(l - t)\ι/2 fljί^l.

(iv) For some λ* e (—1/2, 0) such that w(0, λ*) = 0, we have

(2.5) w(t, λ) - y/2\λ*\tι/2 as t -• 0.

PROOF, (i) When λ < -1/2, (2.1) implies that w(0, λ) < 0 and hence the problem

(1.6)—(1.7) has no positive solution.

(ii) We know that w(t,λ) is strictly decreasing on [0, 1] for each fixed λ > 0. Then we

have by (2.2) that

λ(l — t2) 1 ft

-w\t, λ) < \ ' + — — sds, 0 < t < 1,

i.e.,

-w'(t, λ)w(t, λ) < λ(l - t2) + -t2 , 0 < t < 1.

Integrating the above from 0 to 1, we obtain

i-Λo.»<f + ί.
This proves the right hand side inequality of (2.3).
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On the other hand, we have by (2.1) that

dsn ^ ίl

0, λ) = /

l
1 fl

——- / (l-

1 4λ + 1
= w(0,λ) 6

The other part of (2.3) is thus proved,

(iii) Let

a(t) := Ay(t), β(t) := £y(0 , y(ί) := (1 - ί)l log(l -

where A = Λ/2 — ε, B = y/2 + ε, and ε G (0, 1/4) is arbitrary. Let us define a mapping

Φ : D \-> D by

for any u e D, where D := {u e C[\ — 8, 1]; there is a A; > 0 such that u(t) > ky(t) on

[ 1 — δ , l ] } , 5 i s a sufficiently small positive number which is to be determined, and Q :=

f0 ~~ (s/w(s, λ))ds is a fixed positive number for given λ > —1/2.

Then we use the L'Hospital rule to obtain

Q
lim " / v = lim — ^ — / 7 " v / + lim
ί->i y(t) t->\ y'(t) r-»i

t/β(f)

Since A = y/2 — ε < 2/V2 + ε = 2/β < \/2 + ε = B, we can choose a sufficiently small

positive number 8\ such that

(2.6) a(t) < (Φβ)(t) < β(t) for all t e [1 - δu 1)

Similarly, we obtain
(Φα)(O 2 2

hm y(t) A Λ / 2 3 ^

Since B < 2/V2 — ε < Λ/2 + 2ε, we can find a sufficiently small positive number 82 such

that

(2.7) a(t) < β(t) < (Φa)(t) < V2 + 2^y(ί) for all t e [1 - δ2, 1).

Let 8 := mm{8u 82}. Then (2.6) and (2.7) hold for all t e [1 - 5, 1).

A simple calculation shows us that the α (ί) is a strictly lower solution of (1.6) on [ 1 — 8, 1)

and the β(t) is a strictly upper solution of (1.6) on [1-8, 1). By utilizing the method of lower
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and upper solution, we know that for each ξ e [α(l - 8), β(l - 8)] there is a solution w(t) of

(1.6) such that

a(t) < w{t) < β(t) on [0, 1] and w(\ - 8) = ξ .

Note that the Φ is monotonically decreasing on D, i.e., (Φu\)(t) > (ΦM2XO on [1—8, 1]

for any u\, U2 e D, u\(t) < U2(t) on [1 — <5, 1]. Hence, we conclude that each u(t), which

satisfies u{t) > β(t) on [1 — 8, 1], cannot be a fixed point of Φ on [1 — 8, 1], since

(Φu)(t) < (Φβ)(t) < β(t) < u(t) o n [1 -8,1).

On the other hand, for each u(t) satisfying u(t) < a(t) on [1 - 8, 1] and u e D, we have

(Φu)(t) > ( Φ α ) ( ί ) > a(t) > u(t) o n [1 -8,1),

and hence deduce that such a w(ί) cannot be a fixed point of Φ on [1 — 8, 1]. This implies that

(2.8) a(t) <w(t,λ) <β(t) on [1-5,1],

since w(t,λ) is certainly a fixed point of Φ on [1 — 8, 1]. It can be easily concluded from

(2.8) that l i m ^ i w(t, λ)/y(t) — \fϊ, since ε is arbitrary.

(iv) Statements (i) and (ii) imply that λ* e (-1/2, 0) when w(0, λ*) = 0. Let u(t) :=

w2(t,λ*). Then we have by (2.2) that

9 Γί sds
u(t) = 2|λ*|(l — t ) — 2κ;(ί, λ*) / , 0 < f < 1.

Jo w(s, λ*)
Letting ί -> 0 in the above gives w'(0) = 2|λ*|, which implies (2.5).

To demonstrate the uniqueness and existence of the w(t,λ), we need to consider the

following initial value problem

(2.9)
w(t) = : , ( ( , . w .

w(0)=x

It is obvious that F e C°°(R x R+ x R) with R = (-σo, +oo) and R+ = (0, +oo).

A standard theorem in ordinary differential equation theory shows that the initial value

problem (2.9) has locally a unique positive solution, denoted by w(t,x,λ). Furthermore,

there exists a γ = γ(x, λ) > 0 such that [0, γ) is a right maximal interval of existence for the

w(t, x, λ). From now on, we denote p = p(x, λ) =: min{y, 1}.

A simple calculation proves that the solution of (2.9) can be represented as a solution of

the initial value problem

- λ ( l - ί 2 ) Cl sds
- / -TT °Jo w(ί)(2.10) \ ~ v ' - w{t)

I u , ( 0 ) = * .
Here x is allowed to be zero.

Concerning the initial value problem (2.10), we can prove the following three lemmas.
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LEMMA 1 Let w(t, JC, λ) be the unique positive solution of the problem (2.10). Then

(i) ifx\ > JC2 > 0, then w(t, x\,λ) > w(t, X2, λ) for all t G [0, p(xι, λ)) and hence

p(x\,λ) > p(*2,λ);
(ii) ί/λi > λ2, x > 0, then w(t,x,λ\) < w(t,x,λi) for all t e (0, p(x, λ\)) and

hence p(jc, λi) < p(x, λ2).

LEMMA 2. Lei JC G /?+ tf«d -σo < a < β < +oo swc/ι ί/zαί y(jt, β) < 1 < χ(;t, a).

Then for each fixed y G [0, M;(1, JC, a)), then must be one and only one λ G (α, β) such that

w(l,x,λ) = y.

LEMMA 3. Let λ > λ* and 0 < a < b < +σo such that γ(a, λ) < 1 < γ(b, λ). Here

λ* G (—1/2, 0) swc/z ί t o u;(0, λ*) = 0 and it will be defined by Proposition 5. Then there

must be one and only one x G (α, b) such that w(l, x, λ) = 0.

PROOF OF LEMMA 1. (i) If w{t, JCI, λ) < w(t, X2, λ) for some t e (0, p(x2, λ)),

then there must exist a £ G (0, p{xi, λ)) such that w(t, x\,λ) > w(t, X2, λ) for ί G [0, b),

w(b,x\,λ) = w(b,X2,λ) and hence w'(b,x\,λ) < w'{b,X2,λ). Therefore, by (2.10), it

leads to

0 > w ' φ , x ι , λ ) - w ' ( b , x 2 , λ ) = ~ λ } l b ^ λ { l b )

i,λ) w(b,x2,λ)

+ 1 s[ , ~ - , ' \ds>0,/ s ( )

JO \w(s,X2,λ) W(S,X\,X)J

which is a contradiction. Hence (i) is proven.

(ii) Suppose that for some t e (0, p(x, λ\)), w(t, JC, λi) > w(t,x,λ2). Then there

must be a point b e (0,p(x,λ\)) such that u>(ί,jc,λ2) > tι>(/,jc,λi) for / G (0, Z?),

w(b,x,λ\) = w(b,x,λ2) and hence u/(fe, jti,λ) > w'(b,X2, λ), since w;(0, jc,λi) =

ιt;(0, x, λ2> and u/(0, x, λi) = — λi/jt < —λ2/x = wf(0,x,λ2). A similar argument as

above shows us a contradiction, and hence the conclusion follows.

PROOF OF LEMMA 2. We prove this lemma by employing a modified shooting type

argument. We first consider the case v = 0. Let x, a and β satisfy the assumption in Lemma

2 and let

λs =: sup{λ; γ(x, λ) > 1} and λ/ =: inf{λ; y(x, λ) < 1}.

The assumption in Lemma 2 and the results in Lemma 1 show us that both λ/ and λs are well

defined and a < λs < λj < β. Then the lower semicontinuity of γ(x, λ) in [5, p. 94] implies

thatχ(x,λ 7 ) < 1 < γ(x,λs).

If y(jc, λ/) < y(jc, λs), Lemma 1 would imply that λs < λ/. Hence, for any λo G

(λs, λ/), we must have γ(x, λo) < 1 since λo > λs, and y(x, λo) > 1 since λo < λ/ by

the definition of λ/ and λ^. Therefore, y(jc, λo) = 1, which contradicts to the assumption

λo < λ/. Hence, we must have γ(x, λ/) = γ(x, λs) = 1. The same argument proves that

λs = λj. Therefore, w(t, JC, λs) is a solution of Problem (1.6)—(1.7).
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It remains to prove that such a λ is unique. Assume that w(l,x, λ\) = w(l, x, λ2) = 0

for some λi φ λ2. Without loss of generality, we may assume λi > λ2. Lemma 1 tells us that

w(t,x,\\) =: w\(t) < W2(t) := w(t,x,λ2) for all t e (0, 1).

Since Wj(t), j = 1, 2, is a positive solution to the problem (1.6)—(1.7) with λ = λj, we have

by (2.1) that

0 >u>i(f) - w2(t) = (1 - t) I s[ —^ - - i - Λ ds

Jt
+ f (l-jKί + λu + λof—ί- - - ί — )ds

fι(l-s)
+ I (5 +λl5'4~λ.i — 5" — λ2S — λ2)ds > 0

Jt
for all t e [t, 1) where t := max{0, — λ\/(l + λi)}. Since the second term is positive for

λi > 0 or for λi e (—1/2, 0) and |λi |/(l — |λi|) < t < 1, we obtain a contraction. This

shows that the λ is uniquely determined by x > 0.

We now consider the case y e (0, w(\, JC, a)). In this case, a standard shooting type

argument proves that there must be a unique λ = λ(x, y) e (α, λs) such that w(l, JC, λ) = y.

We claim that such a λ = λ(x, y) is unique. In fact, if λi > λ2 and tϋ(l, JC, λi) =

w(l,Λ;,λ2) = y > 0, then Lemma 1 implies that y = w(l,jc,λi) < w(l,jc,λ2) = y, a

contradiction. The Lemma is thus proved.

PROOF OF LEMMA 3. The proof is similar to that of Lemma 2 and hence is omitted

here.

We are now ready to prove the uniqueness of positive solutions to the problem (1.6)-

(1.7).

PROPOSITION 2. The problem (1.6)—(1.7) has at most one positive solution for any

λ > -1/2.

PROOF. Let w\ (t) and W2(t) be two positive solutions to the problem (1.6)—(1.7).

If w\(0) = W2(0) = 0, we, in the proof of Theorem 3, will see that there is a unique

λ* G (—1/2, 0) such that (1.6)—(1.7) has a solution with initial value 0. Hence, w\(t) and

W2(t) are two solutions of (1.6)—(1.7) with the same initial value and the same λ = λ*. It

suffices to discuss only the following three cases.

Case (i). w\(t) > w2(t) for all t e [0, 1]. Then

0<u;i(0-u>2(0= ί (l-s)(s-\λ*\-\λ*\s)(-ϊ— l—

+ (1 - 0 f s (—L- - -Lλ ds<0
Jo \w\(s) w2(s)J

if |λ* 1/(1 — |λ*|) < t < 1. It is clear that at least one of the two terms should be negative if

w\(t) φ w2(t). Therefore, wi = w2.
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Case (ii). There is a b e (0, 1) such that w\ (t) > w2(t) for t e [0, b] but w\(t) < w2(t)

for t in (&, b + 8) with 5 > 0 sufficiently small. Then w[(b) < w2(b). The uniqueness result

to the initial value problem would result w\(t) = W2(t) on [0, 1) if w[(b) = wr

2(b). We now

assume w[(b) < wf

2(b). Then, by (2.2),

0 >

w\(b) w2(b)

which is a contradiction.

Case (iii). There exists a sequence of points tj e (0, 1) such that

ίi > t2 > > η > tj+ι >

with tj -> 0 as j ->• oo and (—ly'ituiif/) — w2(tj)) > 0. Then, by the continuity of

wiO) — W2(0> there would be positive local maximum points near t = 0. Let t* e (0, 1) be

one such point, i.e., w\(t*) — w2(t*) > 0, w[(t*) = wf

2{t*) > 0 and

0 > w'((t*) - w!ft*)
f*(2|λ»| + l) | r*(2|λ,| + l)

(*) w2(f*)

+ |λ*|(l - (t*)2)w'(t*) (-^— - -^—) > 0,

which is again a contradiction.

If w\(0) — w2(0) > 0, the uniqueness of the initial value problem (2.9) or (2.10) shows

that w\(t) = w2(t) for all t e [0, 1). Without loss of generality, we may assume w\φ) >

w2(0) > 0. Then an argument similar to that in proving the case (ii) as above shows that

w\(t) > w2(t) for all t e [0, 1). Then, an inequality similar to that in proving case (i) will

give us a contradiction. The proposition is thus proved.

We are now in a position to prove the existence of a positive solution to (1.6)—(1.7).

PROPOSITION 3. For each fixed x > 0, there must be a unique λ = λ(x) e

(—1/2, +oo) such that the problem (1.6)—(1.7) has a positive solution w(t, λ) with w(0, λ) =

x.

PROOF. We first claim that for each fixed x > 0,

(i) p(jc,-l/2) = land

(ii) P(JC,3JC2) < 1.
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Claim (i) follows from the fact that

' s(t-s)ds

1 Γ* (l-s2)ds Γ<

2J0 w(s,x,-1/2) Jo

5(1 — s)ds

w(s,x,-1/2)

1 Γ* (l-s)2ds.if
2 Jo

> 0
W(S ,JC, - 1 / 2 )

holds for all t e [0, 1], where we used the equation in (2.10).

As for claim (ii), noticing that w(t, x, 3x2) is strictly decreasing with respect to ί, we

have
rt 3x2(\-r2^^"-^°

w(s, JC, 3JC2)

{3JC2(1 - s2) + (t - s)s}ds

w(t, JC, 3JC2) = JC - Γ ^ ^ / 7 ; v ; ~'"ds
Jo

- - f {
X JO

for 0 < t < p(x, 3x2). Hence if p(x, 3x2) = 1, we would have

Ί 1

lim iϋ(ί, JC, 3xι) < -x < 0,
r->l 6x

which contradicts the fact that w(t, JC, λ) is a positive solution to (2.9).

Then the results in Lemma 2 implies that there exists a unique λ = λ(x) e (—1/2, 3x2)

such that w(t, λ) := w(t, x, λ(x)) is a positive solution to the problem (1.6)—(1.7).

Concerning the function w(t, λ) := w(t, JC, λ( c)), the following comparison principle

holds.

PROPOSITION 4. Ifx > x > 0, then λ(x) > λ{x) and w(t,λ(x)) > w(t,λ(x))for

t e [0,1].

PROOF. Set yn = w(l, x, - l / 2 ) / 2 π , where n = 1, 2 , . . . . By Lemma 2, there exists a

sequence of numbers

λo = —- < λ\ < λ2 < " ' < λn < " < λ(x)

such that w(l,x, λn) = yn. Since x > x > 0, we know that w(1, Jc, —1/2) > ιy(l, JC, —1/2).

Therefore, we may find λo > λo such that w(l, JC, λo) = yo It is obvious that

w(t, JC, λo) > w(ί, JC, λo) for 0 < t < 1.

The same argument can be applied to find λn > λn for each n such that w(l, JC, λn) = yn and

w(t, JC, λπ) > w(t, JC, λπ) for all 0 < t < 1.
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Since {λn} and {λn} are all strictly increasing sequences and hence the limits exist, we have

X := χ(χ) =: limλrt > limλπ =: λ(jc) =: λ,

and

w(t, λ) = lim w(t, x, λn) > lim w(t, JC, λn) = w(t, λ) on [0, 1].

If λ = λ, then by the uniqueness result, we get w{t, λ) = w(t, λ) on [0, 1]. But w(0, λ) =

x > x = w(0, λ) which is impossible and hence λ > λ. The proof is thus complete.

PROPOSITION 5. There exists a λ* e (-1/2, 0) such that the problem (1.6)—(1.7) has

a unique positive solution w(t, λ*) with w(0, λ*) = 0.

PROOF. Let {xn} be a strictly decreasing sequence and

0 < x\ < —= , lim xn = 0.

Proposition 3, Proposition 4 and (2.3) imply that there exists a unique λn e (—1/2, 0) such

that the problem (1.6)—(1.7) has a positive solution w(t, λn) := w(t, xn, λn) with λn > λn+\

and w(t, λn) > w(t, λrt+\) on [0, 1].

Notice that

w(s,λn)

Then we have by (2.11) that

sds C* sds
( l 0 /w(t,λn) >(l-t)

Jo
From the proof of (2.4), we know that

v(t) ~ V2(l - ί) | log(l - 0 l 1 / 2 as

Also, we know that there exists a ̂  e (0, 1) such that u/(ί, λn) > 0 in [0, tn),w'(t,λn) <

0 in (tn, 1) and u/fe, λπ) = 0. Since w(ί, λπ) is concave on [0, tn], we have

) - on

From (2.12) and the fact that w'(tn, λn) = 0, we know that

\λn\(l —1%) ίtn sds ίtn tnsds t%

w(tn,λn) Jo w(s,λn) Jo sw(tn,λn) w(tn,λn)'

which implies that

tn >



A PROBLEM IN BOUNDARY LAYER THEORY 549

Let un(t) := w2(t, λn). Then we have by (2.11) that uf

n(0) = 2\λn\ > 2|λi|, which implies

that there exists a 8 e (0, y/\λ\\/2) such that

w(t, λn) > y/\λ\\t for all t e [0, 8].

Therefore, we have

w(t, λn) > wo(t) for all t e [0, 1],

where

wo(t):=\ and / — — <+oo./

Set λ* := lim^^ooλ^ > —1/2. Then the sequence {w(t, λn)} converges uniformly in

any closed subinterval of (0, 1) and w(t, λ*) := lim^-^oo w(t, λn) > u>o(t). Letting n —• oo

in (2.11) and then applying the Dominated Convergence Theorem, we get

Λ
f ( l * ) ( s | λ * l * | λ * | ) ^

w(t,λ*)= — — • + ( 1 - 0
(2.13) Λ u ; ( j λ )

for 0 < t < 1. Since wo(t) < w(t, λ*) < w(ί, λi) on [0, 1], w(t, λ*) is continuous near

ί = 1 and hence κ;(l, λ*) = 0.

On the other hand, we have by (2.12) that

w'(t,λn)<\λn\/w(t,λn) forallίG[0, 1],

i.e.,

w(t,λn) <yj2\Xn\t+x%, 0<t<\.

Hence, we get by letting n —• σo

w(t, λ*) < y/2\λ*\t, 0 < / < 1.

This shows that w(t, λ*) is also continuous near ί = 0 and hence w(0, λ*) = 0 .

Therefore, we conclude by (2.13) that the w(t, λ*) is a positive solution to the problem

(1.6M1.7).

Proposition 1 implies that λ* > —1/2 and Proposition 2 tells us that w(t, λ*) is unique.

REMARK. Numerical analysis shows us that λ*= — 0.199 (see [7, p. 150]).

With all the above propositions and lemmas, we can now establish the following three

main theorems.

THEOREM 1. There exists a λ* e (-1/2, 0) such that the problem (1.6)—(1.7) has a

unique positive solution wit, λ) for each fixed λ > λ*.

THEOREM 2. Let w(t,λ) be the unique positive solution to the problem (1.6)—(1.7)

with λ > λ*. Then the following two statements hold.

i) Ifλ\ >λ2,thenw(t,λι) > w(t,λ2)forallt e [0, 1].

ii) 7/λi > λ2, then w(0, λ\) > w(0, λ 2).

THEOREM 3. The problem (1.6)-( 1.7) has no positive solution for any λ < λ*.
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PROOF OF THEOREM 1. Let λ* be defined by Proposition 5.

Proposition 3, Proposition 4 and Proposition 5 show us that for each fixed x > 0 there

exists a unique λ = λ(jc) such that the problem (1.6)—(1.7) has a unique positive solution

w(t, λ) with w(0, λ) = x and that the λ(x), as a function of x, is strictly increasing on

[0, +σo) and

(2.14) lim λ(jc) = λ* lim λ(jc) = +oo,

since by (2.3), if x >

4λ(jt) + 1 4λ(x)
< X <

But it has not been pointed out yet that whether the problem (1.6)-( 1.7) has a positive solution

for each fixed λ > λ*. Therefore, we need only to prove that the problem (1.6)—(1.7) has a

positive solution for each fixed λ > λ*, since the solution w(t, λ*) has been proved to exist.

Here we will employ a modified shooting type argument again.

Let λ > λ* be fixed. By (2.14), we can choose a sufficiently small positive number a

such that λ{a) e (λ*,λ). We claim that p(a, λ) < 1. In fact, 1 = ρ(a,λ(a)) > p(α,λ),

by Lemma 1, and if p(a, λ) = 1 then w(t,λ) = w(t,a,λ) is also a positive solution to

(1.6)—(1.7). This is impossible by the uniqueness result.

By (2.14) again, we can choose a sufficiently large positive number b such that λ(b) > λ

and hence by Lemma 1 p(b, λ) > p(b, λ(b)) = 1. Lemma 3 shows us that there must be

a unique x = x(λ) e (a,b) such that w(t,λ) — w(t, x(λ), λ) is a positive solution to the

problem (1.6)—(1.7). Theorem 1 is thus proved.

PROOF OF THEOREM 2. Theorem 2 follows from the results in Proposition 4 and

Proposition 2.

PROOF OF THEOREM 3. Proposition 1 shows us that the problem (1.6)—(1.7) has no

positive solution for λ < —1/2 and hence we have only to prove that for any λ e (—1/2, λ*),

the problem (1.6)—(1.7) has no positive solution. Proposition 2 and Proposition 3 imply that if

w(t, λ) is a positive solution to the problem (1.6)—(1.7) with λ e (—1/2, λ*), then ιu(0, λ) =

0. By (2.2), we get

1
v~ vί, λ) - w2(t, λ*))' =( |λ | - |λ*|)(l - t2)

ft scιs rt

-w(t,λ) / +w(t,λ*) /
Jo w(s,λ) Jo

sds

for 0 < t < 1. Therefore,

l i m - ( u ; 2 α , λ ) - u ; 2 ( ί , λ * ) ) ' = |λ| - |λ*| > 0 .
t^o 2

Hence, there is a 8 e (0, 1) such that w(t, λ) > w(t, λ*) in (0, 8). Assume that there exists

a b e (0, 1) such that w(t, λ) > w(t, λ*) for t e (0, b), w(b, λ) = w(b, λ*), and hence
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w'(b, λ) < wf(b, λ*). Then, we are lead to

0 >w (b, λ) - w\b, λ*) =

-/V-ί j_γ
Jo \w(s,λ) w(s,λ*)J

w(b,λ) w(b,λ*)

I ds > 0,

which is a contradiction. Hence, w(t,λ) > w(t,λ*) for all t e (0, 1). Then,

0 < w(t, λ) — w(t, λ*)

•-|λ*|-|λ*|j)<fa
= r1

ι^(^,λ) J r &>($,,

+ (1 _ ί) f s 1 — : : — ) ds < 0

for ί e (|λ|/(l — |λ | ) , l ) , which is again a contradiction. This proves Theorem 3.

3. The results to the original problem. In this section, we will state and prove the

uniqueness, existence and nonexistence results to the problem (1.1)—(1.2) by utilizing the

unique positive solution w(t, λ) to the problem (1.6)—(1.7). In fact, we have

THEOREM 4. Let λ* e (-1/2,0) be the number defined by Proposition 5. Then,

the boundary value problem (1.1)—(1.2) has a unique normal solution f(η, λ) for each fixed

λ > λ * .

THEOREM 5. Let f(η,λ) be the normal solution, where λ > λ*. Then

f\η, λi) > f'(η, λ2) for all η > 0, whenever λ\ > λ2 .

THEOREM 6. The problem (1.1)—(1.2) has no normal solution for λ < λ*.

Some analogous results to the problem (1.1)—(1.2) have been achieved by many other

authors. One may find them in [1-7] and the references therein. But most of the results were

obtained by numerical analysis. To our knowledge, the uniqueness result for λ e [λ*, 0) has

not been seen and the comparison principle in Theorem 5 has not been proved theoretically

in other references, although the numerical results in [7] provided us some hints. Also, the

result of nonexistence to normal solutions has not been proved by others yet.

PROOF OF THEOREM 4. Let w(t, λ) be the unique positive solution to the problem

(1.6)-(1.7) with λ > λ*. We define

ds:= Γ
Jo

0 w(s,λ) '
f o r ί > 0 .

From (2.4) and (2.5), it follows that the integral converges at / = 0 in the case of λ = λ* (i.e.,

, λ*) = 0) and that

- 0, λ) = ί
Jo w(s,λ)
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Therefore, η — g(t, λ) is a strictly increasing function defined on [0, 1] and hence has an

inverse function. We denote the inverse function as t = f'(η, λ) and

f(η, λ) = / f'(s, λ)ds for all η > 0.

Then (1.2) is automatically satisfied by f(η).

Plugging t = / ' to, λ) into the definition of g(t, λ), we get

/•/'O/.λ) d s

(3.1) η = 9if(η,λ),λ)= ——— forallι/>0.
Jo w(s,λ)

Differentiating (3.1) with respect to η yields

(3.2) f"(η, λ) = w(f'(η, λ), λ) > 0 for all η > 0,

and hence 0 < / ' to, λ) < 1 for all η > 0. Notice that

d ( ff'toM sds \ /'(i .λ) w / / ;

dη\Jo w(s,λ)J w(f'(η,λ),λ)

Combining the fact that / r(0, λ) = 0, we get

rf(η,λ) s d s

f{η,λ)= / —— forallr7>0.

Differentiating (3.2) with respect to η, we get

/'"(?;, λ) = u/(/'to, λ), λ)/"to, λ) for all η > 0.

Plugging t = f'(η,λ) into (2.2), we get

u; (/ to, λ),λ)
) tu(/'to,λ),λ)

That is,

This shows that such a function / to, λ), defined by using w(t, λ), is a solution of (1.1) which

satisfies the conditions to a normal solution. The proof is complete.

PROOF OF THEOREM 5. Let λi > λ2 > λ*. We know by (3.1) that

η= - ^ - = ( - A - forall,>0.

We rewrite the above equality in the form

rf'iηM) d s rf\r)M) / i i \
(3.3) / —??—= ί )ds>0

Jf'iηte) W(S'λl) JO \W(S,X2) W(s,λ\)j

whenever η > 0. Here we have used Theorem 2. The conclusion of Theorem 5 follows from

(3.3).

PROOF OF THEOREM 6. Theorem 3 implies Theorem 6.
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