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Abstract. We investigate Lagrangian submanifolds of the nearly Kahler 6-sphere. In
particular we investigate Lagrangian quasi-Einstein submanifolds of the 6-sphere. We relate
this class of submanifolds to certain tubes around almost complex curves in the 6-sphere.

1. Introduction. In this paper, we investigate 3-dimensional totally real submani-

folds M 3 of the nearly Kahler 6-sphere S6. A submanifold M 3 of S6 is called totally real if

the almost complex structure / on S6 interchanges the tangent and the normal space. It has

been proven by Ejiri ([El]) that such submanifolds are always minimal and orientable. In the

same paper, he also classified those totally real submanifolds with constant sectional curva-

ture. Note that 3-dimensional Einstein manifolds have constant sectional curvature. Here, we

will investigate the totally real submanifolds of S6 for which the Ricci tensor has an eigenvalue

with multiplicity at least 2. In general, a manifold Mn whose Ricci tensor has an eigenvalue

of multiplicity at least n — 1 is called quasi-Einstein.

The paper is organized as follows. In Section 2, we recall the basic formulas about

the vector cross product on RΊ and the almost complex structure on S6. We also relate the

standard Sasakian structure on S5 with the almost complex structure on S6. Then, in Section

3, we derive a necessary and sufficient condition for a totally real submanifold of S6 to be

quasi-Einstein. Using this condition, we deduce from [C], see also [CDVV1] and [DV], that

totally real submanifolds M with 8M = 2 are quasi-Einstein. Here, 8M is the Riemannian

invariant defined by

8M(P) = τ(p)- inf K(p),

where inf K is the function assigning to each p e M the infimum of K(π), K(π) denoting

the sectional curvature of a 2-plane π of TpM, where π runs over all 2-planes in TpM and τ

is the scalar curvature of M defined by τ = Σi<j K(ei Aej)- Totally real submanifolds of

S6 with 8M = 2 have been classified in [DV]. Essentially, these submanifolds are either local

lifts of holomorphic curves in CP2 or tubes with radius π/2 in the direction of NN2, where

N2 is a non-totally geodesic almost complex curve and NN2 denotes the vector bundle whose

fibres are planes orthogonal to the first osculating space of N2.
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In Section 4, we then construct some other examples of 3-dimensional quasi-Einstein

totally real submanifolds by considering also tubes with different radii. More specifically, we

prove

THEOREM 1. Letφ:N2^S6 be an almost complex curve in Sβ(l) without totally

geodesic points. Denote by UN2 the unit tangent bundle ofN2. Define

a(v,v)
\lrv : UN —• S : v ι-> cos γφ + sinγv x ,Y ||α(υ, υ)||

where a denotes the second fundamental form of the surface N2. Then ψ is an immersion on

an open dense subset of UN2. Moreover ψ is totally real if and only if either

(1) γ=π/2,or

(2) cos2 γ = 5/9 and N2 is a superminimal surface.

Further, in both cases the immersion defines a quasi-Einstein metric on UN2 and if (I) holds,

then with respect to this metric SUN2 = 2 and if (2) holds, then SUNi < 2.

The above theorem also generalizes results obtained by Ejiri [E2], who only considered

tubes around superminimal almost complex curves and who omitted Case (1).

Next, in Section 5, we prove the following converse:

THEOREM 2. Let F : M 3 —• S6 be a totally real immersion of a ^-dimensional quasi-

Einstein manifold. Then either δM3 =2 or there exists an open dense subset W ofM such that

each point pofW has a neighborhood W\ such that either

(1) F(W\) = ψγ(UN2), where N2 is a superminimal linearly full almost complex

curve in S6, and ψγ with cos2 γ = 5/9 is as defined in Theorem 1, or

(2) F(W\) is an open subset ofψ(S*), where ψ is as defined in Section 4.

Case (2) can be considered as a limit case of the previous one, by taking for N2 a totally

geodesic almost complex curve. Note also that Theorem 2 together with the classification

theorems of [DV] provides a complete classification of the totally real quasi-Einstein sub-

manifolds of S6.

2. The vector cross product and the almost complex structure on S6. We give a

brief exposition of how the standard nearly Kahler structure on S6 arises in a natural man-

ner from the Cayley multiplication. For further details about the Cayley numbers and their

automorphism group G2, we refer the reader to [W] and [HL].

The multiplication on the Cayley numbers O may be used to define a vector cross product

on the purely imaginary Cayley numbers RΊ using the formula

(2.1) u x v = (l/2)(uv — vu),

while the standard inner product on RΊ is given by

(2.2) (u,υ) = -(l/2)(uv + vu).

It is now elementary to show that

(2.3) u x (v x w) + (M x v) x w = 2(u, w)v - (w, v)w - (w, v)u ,
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and that the triple scalar product (uxv,w) is skew symmetric in u, υ, w, see [HL] for proofs.

Conversely, denoting by Re((9) (respectively lm(O)) the real (respectively imaginary)

Cayley numbers, the Cayley multiplication on O is given in terms of the vector cross product

and the inner product by

(r + u)(s + v) = rs - (w, V) + Π + 5M + ( M X U ) ,
} r,s GRe(O), u,velm(O).

In view of (2.1), (2.2) and (2.4), it is clear that the group G2 of automorphisms of O is

precisely the group of isometries ofR1 preserving the vector cross product.

An ordered orthonormal basis e\,... , eη is said to be a G2-frame if

(2.5) ^3 = ^ 1 x ^ 2 , ^ = ^ 1 X ^ 4 , ^6 = ^ x ^ 4 , eη = £3 x e\.

For example, the standard basis of/?7 is a G2-frame. Moreover, if e\, e2, e^ are mutually

orthogonal unit vectors with €4 orthogonal to e\ x ^2, then e\, β2, e^ determine a unique

G2-frame e\,... ,eη and (RΊ, x) is generated by e\, ^2, ̂ 4 subject to the relations

(2.6) βi x (e/ x ek) + (e, xej) xek= 28ikej - 8ijek - 8jkei.

Therefore, for any G2-frame, we have the following multiplication table:

X

e\

e
2

e
3

es
eβ

eη

e\

0

- έ ?
3

ei

-es
e4

eη

-eβ

e
2

e
3

0

-e\

-eβ

-eη

e
4

es

6?3

-e
2

e\
0

-eη

eβ

-es
e

4

e4

es
eβ

eη

0

-e\

-e
2

-έ?3

es

eη

-eβ

e\
0

e
3

-e2

eβ

-eη

-e
4

es
e

2

-e
3

0

e\

eη

eβ

-es
- έ ? 4

e
3

e2

-e\
0

The standard nearly Kahler structure on S6 is then obtained as follows.

Ju=x x M , u e TXS
6, x e S6 .

It is clear that J is an orthogonal almost complex structure on S6. In fact, J is a nearly Kahler

structure in the sense that the (2,l)-tensor field G on S6(\) defined by

where V is the Levi-Civita connection on S 6(l), is skew-symmetric. A straightforward com-

putation also shows that

G(X, Y) = X xY -(x xX,Y)x .

For more information on the properties of the Cayley multiplication, J and G, we refer to

[Ca2], [BVW] and [DVV].

Finally, we recall the explicit construction of a Sasakian structure on S5 (1) starting from

C3 and its relation with the nearly Kahler structure on S6. For more details about Sasakian
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structures we refer the reader to [B]. We consider S5 as the hypersphere in S6 C R1 given by

the equation X4 = 0 and define

j : S5(l) -> C3 : (x\,X2, X3, 0, X5, xβ, xη) H> (X\ + 1x5, X2 + /*6, X3 + ^7)

Then at a point /? the structure vector field is given by

ξ(p) = (* 5 , X6, XT, 0, - X i , -X2, -X3) = *4 X /? ,

and for a tangent vector v = (υ\, ι>2, ι>3, 0, t>5, ι>6, f7), orthogonal to §, we have

φ(v) = (-us, - υ 6 , -ϋ7, 0, υi, u2, υ3) = υ x 4̂

Also, φξ(p) = 0 = (̂ 4 x p) x £4 — (O4 x /?) x ^4, /?)/?, from which we deduce for any

tangent vector w to S5 that

(2.7) 0(ι^) = w x 4̂ — (w x £4, /?)/?.

3. A pointwise characterization. Let M3 be a totally real submanifold of S6. From

[El], we know that M3 is minimal and that for tangent vector fields X and Y, G(X, Y) is a

normal vector field on Mn. Moreover, {h(X, 7), JZ) is symmetric in X, Y and Z. Denote by

S the Ricci tensor of M3 defined by

, Z) = trace{X h-> /?(Z, F)Z},

and denote by Ric the associated 1-1 tensor field, i.e.,

(Ric(y), Z) = S(Y, Z) .

Let p e M and assume that p is not a totally geodesic point of M 3. Then, we know from

[V] that there exists an orthonormal basis {e\, β2, ̂ 3} at the point p such that

h(e\,e\) = λi/ei, h{ei,ei) — \iJe\ +aJe2 + bJe?>,

^(^1^2) = ^2/^2 , h(β2, e^) = bJe2 — aJe?,,
h(e\, £3) = λ37^3 , /zte, ̂ 3) = λ^Jeγ - aJe2 - bJeτ>,

where λi + λ2 + λ3 = 0, λi > 0, λi - 2λ2 > 0 and λi - 2λ3 > 0. If λ2 = λ3, we can choose

e2 and £3 such that & = 0. Then by a straightforward computation, we have the following

lemma:

LEMMA 3.1. Let [e\, ^2^3} be the basis constructed above. Then

/2-λj-λj- λ2

3 - ( λ 2 - λ3)a - ( λ 2 - λ3)b

(S(ei, ej)) = - ( λ 2 - λ3)a 2 - 2λ^ - 2a2 - 2b2 0

V ~(λ2-λ3)b 0 2 - 2λ\ - 2a2 - 2b2

}

Remark that if λ2 = λ3, it immediately follows from Lemma 3.1 that M is quasi-
Einstein.

LEMMA 3.2. Let M 3 be a 3-dimensional totally real submanifold of S6 with the sec-

ond fundamental form h. Then the Ricci tensor S has a double eigenvalue at a point p of M3
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if and only ifp is a totally geodesic point or there exists an orthonormal basis {e\,e2,e3} of

TpM such that either

(1) h(e\,e\) = λJe\, h(e2, e2) = -λJe\,

h(e\,e2) = -λJe2, h(e2,e3) = 0,

Heuei) = 0, h(e3,e3) = 0,

(2) h(e\, e\) = 2λJe\ , h(e2j e2) = -

h(e\,e2) = -λJe2 , /z(e2, e3) = - α

M^i, e3) = -λ7^3 , ^(^3, e3) = -λJe\ - aJe2 ,

where λ is a non-zero number.

PROOF. If p is a totally geodesic point of M 3, there is nothing to prove. Hence, we

may assume that p is not totally geodesic and we can use the basis {e\,e2,e?>} constructed

above. So we see that

= - ( λ 2 - λ3)aeχ + 2(1 - λ\ - a1 - b2)e2 ,

Since M3 is quasi-Einstein, we know that e2, Ric(e2) and Ric(Ric(e2)) have to be linearly

dependent. Hence the above formulas imply that

ab(λ2-λ3)
2 = 0.

If λ2 = λ3, we see that {e\, e2, e3} satisfies Case (2) of Lemma 3.2 by rechoosing e2 and e3

if necessary. Therefore, we may assume that λ2 φ λ3. Then, if necessary by interchanging e2

and e3, we may assume that b = 0.

Suppose now that a = 0. Hence e\,e2 and e3 are eigenvectors of Ric. Since we assumed

that λ2 φ λ3, we see that (if necessary after interchanging e2 and e3, which is allowed in this

case since a and b both vanish) M3 is quasi-Einstein if and only if

2 - λ\ - λ\ - λ\ = 2 - 2λ\ ,

which reduces to

- 2 λ ^ - 2 λ i λ 2 = 0.

Hence, since λi φ 0, we see that λ2 = — λi and λ3 = 0. Thus {e\, e2, e3] is a basis as

described in Case (1) of Lemma 3.2.

Finally, we consider the case that λ2 φ λ3 and a φ 0. Since a φ 0, we see that M 3 is

quasi-Einstein if and only if 2 - 2λ\ - 2a2 is a double eigenvalue of S. This is the case if and

only if

I λ^ — λj — λ2 + 2a (λ3 — λ2)a\

\ (λ.3 — λ2)a 2(λ-^ — λ^) /

Since λ 2 φ λ3 and λ3 = — λi — λ 2, this is the case if and only if

detl
2λxλ2 + 2a2 - ( λ i + 2 λ 2 ) α \

l = 0 ,
V α -2λi /
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i.e., if and only if

(3.1) 4λfλ2 = - 3 λ i a 2 + 2λ2a
2 .

Now, we consider the following change of basis

MI = , (ae\ - 2λ\e2),

Then, using (3.1), we have

h(ae\ - 2λ\e2, ae\ - 2λ\e2) = (a2λ\ + Aλ\λ2)Je\ + (-4αλiλ2 + 4aλ])Je2

= -2(λi - λ2)a(aJeι - 2λχJe2),

, e3) = (2λiλ3 - fl

h(ae\ - 2λ\e2, 2λ\e\ + ^^2) = (2αλj - 2aλ\λ2)Je\

= α(λi - λ2)(2λi/ί?i

Using now the minimality of M, together with the fact that (ft (X, Y), JZ) is totally symmetric

it follows that the basis {u\, u2, M3} satisfies Case (2) of Lemma 3.2.

REMARK 3.3. An elementary computation shows that if Case (1) of Lemma 3.2 is

satisfied, the Ricci tensor has eigenvalues 2(1 - λ 2), 2(1 - λ2) and 2, while if Case (2) is

satisfied its eigenvalues are 2 - 6λ2, 2 - 2λ2 - 2a2 and 2 - 2λ2 - 2a2.

REMARK 3.4. Submanifolds satisfying Case (1) of Lemma 3.2 are exactly those to-

tally real submanifolds of Sβ which satisfy Chen's equality (see [CDVV1], [CDVV2] and

[DV]). A complete classification of these submanifolds was obtained in [DV].

4. Examples of totally real submanifolds.

EXAMPLE 4.1. We recall from [DVV] the following example: Consider the unit sphere

S3 = {(yι, yi, y3, y4) e R4 | y2 + y2 + y3

2 + y2 = 1}

in R4. Let X\, X2 and X3 be the vector fields defined by

Xi(yi, y2, y3, V4) = (yi, -y i , y4, -y3),

X2(yi, yi, y3, yύ = (3^3»-y4, -y i , yί),

X3(yi, y2, y3, y4) = (y4, y3, -y2, -yi)

Then Xi, X2 and X3 form a basis of tangent vector fields to S3. Moreover, we have [Xi, X2] =

2X3, [X2, X3] = 2Xi and [X3, Xχ\ = 2X2. Inspired by [M], we define a metric (., .)i on

S3 such that Xi, X2 and X3 are orthogonal and such that (X2, X2>i = (X3, X3)i = 8/3 and



QUASI-EINSTEIN TOTALLY REAL SUBMANIFOLDS 467

(Xi, Xi) i = 4/9. Then Ex = (3/2)Xu E2 = ( Λ / 3 / 2 Λ / 2 ) X 2 and E3 = - ( V 3 / 2 V 2 ) X 3 form

an orthonormal basis on S 3 . We denote the Levi-Civita connection of (., .)i by V. We recall

from [DVV] that there exists an isometric totally real immersion ψ from ( S 3 , (., .)i) given by

where

Its connection is given

Eλ--

E2--

= 0,

- •

'x

X3

X4

X5

X6

xη

by

S6(l):(yuy2,y3,

= (\/9)(5yϊ + 5yl

= (v 3v 5/9v 2)(2
= (v 3 v 5/9^2) (2

= (V3/9V2)(10yi

V £ 2 £ 2 =

= -( l l /4)£ 3 , V£.£
ί3 =

- 5 y 3

2 - 5 }

\-y\-y\

v3yi - 2y 3 -

yiy4-2y4-

yiy 3 - 2 y 3 -

y4 + 2y4 -

0,

: (ll/4)£2,

X2,X3,X4,X5,X6,

^ + 4yi),

- y i ) ,

- 10y2y4),

- 2y 2y 3),

f 2y 2y 4),

10y2y3).

V£ 3£ 3=0,

VElE3 = -ι

and its second fundamental form satisfies

i, Ex) = (V5/2)J£i,

3 , E2) = 0,

3 , £3) = - (

Hence τ/r is quasi-Einstein.

EXAMPLE 4.2. Here, we will consider tubes in the direction of the orthogonal com-

plement of the first osculating space on an almost complex curve. In [E2], N. Ejiri already

showed that a tube with radius cos2 γ = 5/9 on a superminimal almost complex curve defines

a totally real submanifold of S6, and in [DV] it was shown that a tube with radius π/2 on any

almost complex curve defines a totally real submanifold M with 8M = 2.

An immersion φ : N -> S6(l) is called almost complex if J preserves the tangent space,

i.e., Jpφ+iTpN) = φ+iTpN). It is well-known that such immersions are always minimal, and

as indicated in [BVW] there are essentially 4 types of almost complex immersions in S 6(l),

namely, those which are

(I) linearly full in 5"6(1) and superminimal,

(II) linearly full in 56(1) but not superminimal,

(III) linearly full in some totally geodesic S 5(l) in S 6(l) (and thus by [Cal] necessarily

not superminimal),

(IV) totally geodesic.
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Now, let φ : N -+ S6(l) be an almost complex curve. We denote its position vector in

R1 also by φ. For the proof of elementary properties of such surfaces, we refer to [S]. Here,

we simply recall that for tangent vector fields X and Y to N and for a normal vector field η,

we have

(4.1) a(X,JY) = Ja(X,Y),

(4.2) AJη = JAη = -AηJ,

(4.3) V^Jη ^

(4.4) (Vα)(X, Y, JZ) = /(Vα)(X, 7, Z)+G(0*X, α(F, Z)),

where a denotes the second fundamental form of the immersion and the pull-back of J to N

is also denoted by J.

Next, if necessary, by restricting ourselves to an open dense subset of N, we may assume

that TV does not contain any totally geodesic points. Let p e N and V be an arbitrary unit

tangent vector field defined on a neighborhood W of p. We define a local non vanishing

function μ = \\a(V, V)\\ and an orthogonal tangent vector field U such that φ+U = Jφ+V =

φ xφ+V. Then, using the properties of the vector cross product, it is easy to see that F\ = 0,

F2 = φ+V, F3 = Jφ+V, FA = α(V, V)/μ, F5 = α(V, JV)/μ = Jα(V, V)/μ = Fλ x F 4 ,

Fβ = F2 x a(V, V)/μ and Fj = F3 x a(V, V)/μ form a G2-frame and hence satisfy the

multiplication table as defined in Section 2.

Since F4, . . . , F7 form a basis for the normal space along N, it is clear that we can write

any normal vector field as a linear combination of these basis vector fields. Thus there exist

functions a\,... ,04 such that

(4.5) (Vα)(V, V, V) = μ(aχF4 + a 2 F 5 + a3F6 + aAFΊ).

Then using (4.4) and the multiplication table, we get that

(4.6) (Vα)(V, V, £/) = ̂ (-02^4 + fliF5 + (1 + a4)F6 - a3FΊ).

From (4.5) and (4.6), it is immediately clear that

(1) Λf is an almost complex curve of Type (I) if and only if a3 = 0 and #4 = —1/2.

(2) N is an almost complex curve of Type (III) if and only if 04 + α | + α | = 0.

Introducing local functions μ\ and μ2 on N by

VVV = μ\U , VVU = μ2V , VVU =-μ\V , VVV =-μ2U ,

it follows from (4.5) and (4.6) that a\ = V(μ)/μ and 02 = —U(μ)/μ.

Now, in order to construct explicitly the totally real immersion from the unit tangent

bundle, we recall a technical lemma from [DV].
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LEMMA 4.1. Denote by D the standard connection on R1. Then, we have

Dy(μF4) = μ(-μF2 + aλFA + (a2 + 2μλ)F5 + a3F6 + a4Fη),

Du(μF4) = μ(μF3 - a2F4 + (βi - 2μ2)F5

Dv(μF5) = μ(-μF3 - (a2 + 2μi)F 4

Du(μF5) = μ(-μF2 - (a\ - 2μ2)F4 - a2F5 - a3F6 - a4Fη) ,

Dv(μFβ) = μ(-a3F4 - {a4 + 1)F5 + « iF 6 + (a2 + 3μi)F 7 ) ,

Du(μF6) = μ(-(a4 + 1)F4 + 03^5 - a2F6 + (a\ - 3μ2)FΊ),

Dγ(μFη) = μ(-a4F4 + a3F5 - (a2

Du(μFη) = μ(a3F4

PROOF OF THEOREM 1. We define a map

ψ:UN -+ S 6(l) : υ^ H> COS γφ(p) + s iny^(υ) x

Using the above vector fields, we can write vp = cos(ί/3)V + sin(ί/3)[/; and an easy com-

putation shows that the map ψ can be locally parameterized by

(4.7) ψ(q, t) = cos γF\(q) -f siny(cosίF6(^) + sinίF 7 (^)),

where q e W and t e R. Since the case with γ = π/2 was already treated in [DV], we restrict

ourselves here to the case that cos γ φ 0. We immediately see that

(4.8) Ψ*\dt) = ύny(- ήntF<>

Using Lemma 4.1, we then obtain that

siny(-cosί(V(μ)/μ)F6)

( 4 9 ) +cosί(-03F4 - (a4 + 1)F5 + a i F 6 + (a2 + 3μι)F7) - sint(V\μ)/μ)Fη

+ sinί(-α4F4 + fl3F5 - (a2 + 3μ\)Fβ +a\FΊ)

= cosγF2 + sin γ((—a3 cost — α 4 s inί)F 4

+ (a3 sinί - (O4 + 1) cos ί)*5) + (3μi - (U(μ)/μ))ψ* ( — ) .

Using similar computations, we also get that

ψ+(U) =QθsγF3 + siny((α3 sinί — (1 + α 4)cosί)^4

(4-10)
+ (α3cosί +a4 sin t)F5) + (-3μ 2

/ 9 x
* ( — j .

From (4.8), (4.9) and (4.10), we see that ψ is an immersion at every point (q, t).
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Now, we put

X = V-(3μi-(£/(μ)/μ))£,
ot

Y = U- (-3

A straightforward computation, using the multiplication table of Section 2, then shows that

ψ x ψ+l — I = — s i n 2 γF\+ cos y sin y (cos tFβ + sin tFη),

ψ x ψ+iX) = sin2 y (a3 cos 2ί + 04 sin2ί + (1/2) sin2t)F2

+ (cos2 y + sin2 y (03 sin 2ί — 04 cos 2ί — cos2

+ cos γ sin y (—«3 sin t + (04 + 2) cos 0^4

+ cos y sin y (—«3 cos t — (a^ — 1) sin f)Fs.

Consequently, τ/τ is a totally real immersion if and only if

i.e., if and only if

cos y (cos2 y + sin2 y (3^3 sin It — 04 cos 2ί — cos2 ί — α 2

- («4 + 2)(1 + #4) cos2 ί - 04(04 - 1) sin21)) = 0.

Hence, since we assumed cos y φ 0, we find that

3α3 sin2 y sin2ί - 3(α4 + 1/2) sin2 y cos It + cos2 y - sin2 y (α4 + α 2 + α | + 3/2) = 0.

Since the above formula has to be satisfied for every value of /, we deduce that 03 = 0,

04 = —1/2 and cos2 y = 5/9. Hence Λf2 is a superminimal almost complex curve in S6 and

the radius of the tube satisfies cos2 y = 5/9. Using the above values for 03 and 04, we then

obtain that

ΨΛX) = cosyF 2 + (1/2) siny(sinίF 4 - cosίF 5 ),

ψ+ίY) = c o s y F 3 - (l/2)siny(cosίF 4

\otj
-sin γF\ + cosy siny(cosί7*6 + sin/Fv),

Jψ*{X) = (1/3)F3 + (3/2)cosy siny(cosfF4 + sinίF5),

Jψ*(Y) = -(1/3)F2 + (3/2) cos y siny(sin/F4 - costF5).

Therefore, by a straightforward computation, we obtain that

D^ψ+iX) = (l/2)siny(cosίF4

Dd_ψ+(Y) = —(l/2)siny(—sinίF4 + cosίF5) = (1/2)((1/3)^(X) +cosyJτK
dt

- / d\D * V f * U J = "sinκ(cosίF6' = - f (4/9)ψ +cosy/tK ^^7JΛ .
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So, if we put Eι = (3/2)(d/dt), E2 = (V3/V2)X and E3 = (VΪ/V2)Y we see that Eu E2

and E3 form an orthonormal basis of the tangent space to UN and

h(Eu EX) = -

£ 2) = (3/4)cosy/

Since ί/iV is totally real (and thus minimal) and (h(X, Y), JZ) is totally symmetric in X,

Y and Z, the above formulas and Lemma 3.1 imply that ψ is quasi-Einstein. Since the first

normal space is 3-dimensional, with respect to the induced metric we have SUN < 2 (see [C]).

Hence UN satisfies Case (2) of Lemma 3.2.

5. Proof of Theorem 2. Throughout this section we will assume that F : M3 -* S6 is

a totally real immersion which is quasi-Einstein. Unless otherwise indicated, we will identify

M 3 with its image in S6.

First, we remark that if 8M = 2, there is nothing to prove. Next, we assume that M3 is

Einstein. Since a 3-dimensional Einstein manifold has constant sectional curvatures, it follows

from [El] that a neighborhood of p is G2-congruent with an open part of the image of the

totally real immersion of 53(1/16) in S6(\) as described in [El] (see also [DVV]). From [E2],

we also know that we can consider this image as the tube with radius γ, with cos2 γ = 5/9

on the almost complex curve with constant Gaussian curvature 1/6. This completes the proof

in this case.

Next assume that p e M such that Ric has an eigenvalue with multiplicity 2 and 8 M (p) φ

2. Since in a neighborhood of /?, M is quasi-Einstein, but not Einstein, there exist local

orthonormal vector fields {E\, E2, E3} such that E\ spans the 1-dimensional eigenspace and

{#2, £3} span the 2-dimensional eigenspace. Hence, applying Lemma 3.2, we see that there

exist local functions λ, a and b such that

h(Eu Eι) = 2λJEι, h(E2, E2) = -λJEλ + aJE2 ,

h(Eu E2) = -λJE2 , /ι(£2, £3) = -aJE3 ,

h(Eu E3) = -λJE3 , A(£3, £3) = -λJEi - aJE2 .

If necessary by changing the sign of £3, we may assume that G{E\, E2) = JE3, G(E2, E3) =

JE\ and G(E3i E\) = JE2. We now introduce local functions a\, a2, a3, b\9 b2, £3, c\, c2,

c 3 by

X VEXE2 = -a\E\ +a3E3 , V ^ ^ = -02^1 -a3E2,

VElEx =bχE2 + b2E3 , VE2E2 = -biEi + b3E3 , VElE3 = -b2Eχ - b3E2 ,

VEZE\ =cχE2 + c2E3 , VE3E2 = ~cχEχ +c3E3, VE3E3 = -c2Eχ -c3E2.

LEMMA 5.1. The function λ satisfies λ = V5/4. Moreover, ax = a2 = c2 = bx = 0

andb2 = ~cχ = 1/4.
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PROOF. A straightforward computation shows that

(VA)(E2, Eu Eι) = 2E2(λ)JEι - 2λJE3 + 4λ{bxJE2 + b2JE3),

(VA)(Ei, £ 2 , Eι) = -Eι(λ)JE2 - λJE3 - λ(-a\JE\)

+ 2λa\JE\ - aχ(-λJEι + aJE2) - a2(-aJE3).

Hence, it follows from the Codazzi equation (VA)(£2, E\, E\) = (VA)(#i, E2, E\) that

(5.1) E2(λ) = 2λaι,

(5.2) Eι(λ) = -4λbχ-aa\,

(5.3) 4b2 = \+(a/λ)a2.

Similarly, we obtain from the Codazzi equation (Vh)(E3, £Ί, £Ί) = (VA)(£i, E3, Eι) that

(5.4)

(5.5)

(5.6) 4ci = - l

Comparing (5.5) and (5.2), we get that

(5.7) c2-bι = (α/2λ)αi.

A straightforward computation, using (5.1) and (5.4), then shows that

(5.8) (VA)(£i, E2, E3) = aa2JEι+(3aa3+a-a2λ)JE2-(aιλ+Eι(a))JE3 ,

(5.9) (VA)(E2, El, #3) =

(5.10) (VA)(£3, Ei, £ 2 ) =

Therefore, using the Codazzi equations and (5.3), (5.6) and (5.7), we get that

((a2/2λ) + 2λ)a2 = 0, ((a2/2λ) + 2λ)a\ = 0.

Hence aι = a2 = 0 and we deduce from the previous equations that

C2 = fci, ci = - l / 4 , b2 = l/4.

This implies that the function λ is a solution of the following system of differential equations:

Eι(λ) = -4λbι, E2(λ) = 0, E3(λ) = 0 ,

Since [E2, E3] = — (l/2)#i — b3E2 — c3E3, it immediately follows from the integrability

conditions that bι = 0 and hence λ is a constant.

To compute the actual value of λ we use the Gauss equation. We have

R(EU E2)Eι = -E2 + λ2E2 + 2 λ 2 £ 2 = (3λ2 - \)E2 .

On the other hand, we have

R(EU E2)Eι = V

= V £ l (( l/4)£ 3 ) -

= - ( l / 4 ) β 3 E 2 + (l/4)(fl3 - 1/4)E2 = -
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Hence

λ2 = 5/16.

Since λ is positive, this completes the proof of the lemma.

Now, in order to complete the proof of the theorem, we have to make a distinction be-

tween M and its image under F in Sβ. First, we consider the case that a is identically zero in

a neighborhood of the point p. Then, we have the following lemma:

LEMMA 5.2. There exists an orthonormal basis [E\, E2, E3] with G(E\, E2) = JE3,

G(E2, E3) = J E\ and G(E3, E\) = JE2, defined on a neighborhood of the point p such

that
h(Eu Ex) = (V5/2)/£i, h(E2, E2) = -(^5/4) JEX,

h(Eu E2) = -(Λ/5/4) JE2 , h(E2, £3) = 0,

h(Eu £3) = -(V5/4)JE3 , h(E3, E3) = -(y/5/4) JEX.

Moreover, they satisfy

VElEγ = (l/4)E3 , VElE2 = 0, VElE3 = -(

VE3El = -(l/4)E2, V£3£2 = (l/4)£i, VE3E3=0.

PROOF. We take the local orthonormal basis {E\, E2.E3] constructed in the previous

lemma. Clearly, this basis already satisfies the first condition. Since a\ = a2 = c2 = b\ — 0

and b2 = -c\ = 1/4, the Gauss equations {R(E\, E2)E2, E3) = 0, {R(E\, E3)E3, E2) = 0

and (R(E2, E3)E3, E2) = 21/16 reduce to

(5.11) Eχ{b3)-E2(a3)-c3{a3-\/4) = 0,

(5.12) _£ l ( C3)+£ 3 (03 )_fc3 (03_i /4 ) = 0,

(5.13) E3{b3)-E2{c3)-{\l2)a3-b]-cl = 11/8.

Now, we use the following transformation of the local frame [E\, E2, E3}\

Uι = Eu

U2 = cosθE2 + sinΘE3 ,

U3 = - sin ΘE2 + cos ΘE3 .

where θ is an arbitrary locally defined function on M. It is immediately clear that {U\, U2, U3}

satisfies the conditions of the lemma if and only if the function θ satisfies the following system

of differential equations:

dθ{Eλ)+a3 + 11/4 = 0,

dθ(E2)+b3=0,

dθ(E3) + c3 = 0 ,

i.e., dθ = -(a3 + 1 \/4)θ\ - b3θ2 - c3θ3, where [θ\ ,θ2,θ3}is that dual basis of [E\ ,E2,E3).

Now, this system locally has a solution if and only if the 1-form ω = (a3 + 1 l/4)#i + b3θ2+
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c3θ3 is closed. One can easily verify that dω = 0 is equivalent with (5.11), (5.12) and (5.13).
D

The proof now follows from the Cartan-Ambrose-Hicks Theorem and the uniqueness
theorem for totally real immersions.

Finally, we deal with the case that a(p) φ 0. Then, we have the following lemma:

LEMMA 5.3. Let {£1, £ 2 , £3} be the local orthonormal frame constructed before.
Then we have

£i(α) = 0 and 03 = -1/4.

PROOF. We look again at the proof of Lemma 5.2. From (5.8), (5.9), (5.10) and the
Codazzi equation, we get E\(a) = 0 and 3α (1/4 + a3) = 0. Since a(p) φ 0, this completes
the proof.

From now on we will make a distinction between M and its image under F in S6. We
will also write explicitly Jpv as p x υ, since we will be using the almost complex structure at
different points of S6. Let us recall that we have a local basis [E\, £ 2 , £3} on U such that

V£l Eι = 0, V£l E2 = -(1/4)£3 , VEl £3 = (1/4)£2 ,

VElEλ = (l/4)£3 , V£2£2 = b3E3 , Vs2£3 = -(l/4)£i - b3E2 ,

VE3EX = -( l/4)£ 2 , V£ 3£ 2 = (l/4)£! + c 3 £ 3 , Vs3£3 = - c 3 £ 2

h(Eu £1) = (\/5/2)F x F*£i, h(E2, E2) = - (Λ/5/4)F X F * £ I + aF x F^£2,

h(Eu E2) = - (Λ/5/4)F x F^£2, h(E2, £3) = -aF x £*£3 ,

h(Eu E3) = -(V5/4)F x F^£3 , /ι(£3, £3) = - (Λ/5/4)F X F * £ I - aF X FifE2

F^£i x F*£2 = F x F*£3 ,

F*£2 x £^£3 = F x £*£i,

£*£3 x £^£1 = F x F*£ 2 .

We now define a mapping G : U -> S6, where U is a neighborhood of p, by

GO?) = (yββ)F(q) + (2/3)F x £.(£i(^))

Then, using the above formulas, we find that

DEιG = (V5/3)£*(£i) + (2/3)F x /z(£i, £1) = 0,

DE2G = (V5/3)£*(£2) + (2/3)(F^(£2) x £.(£1) + F x F^V^Ei) + £ x /z(£2, £1))

= (V5/2)£,(£2) - (1/2)F x £.(£3),

D£ 3G = (V5/3)£,(£3) + (2/3)(£.(£3) x £.(£1) + F x F^V^Ei) + F x A(£3, ̂ 1))

= (yβ/DF^Ei) + (1/2)F x F.(£ 2),

from which it follows that G is not an immersion.

Using [Sp, Vol. 1, p. 204], we can identify a neighborhood of p with a neighborhood
/ x W\ of the origin in R3 (with coordinates (ί, u, v)) such that p = (0, 0,0) and E\ = d/dt.
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Then there exist functions a\ and α 2 on W\ such that E2+u\E\ and £3 + OLΊE\ form a basis

for the tangent space to W\ C U at the point q = (0,u,v).

Now since WEχ Eγ = 0 and h(Eu Eγ) = (\/5/2)F x F*£i, it follows that the integral

curve of E\ through the point F(q) is a circle with radius 2/3, tangent vector F+E\(q) and

normal vector (>/5/3)F x FirE\(q) - (2/3) F(q). From this it is clear that F(U) can be

reconstructed from W\ by

F(ί, K, υ) = (V5/3)((V5/3)F(0, K, υ) + (2/3)/F*Fi(0,11, υ))

(5.14) +(2/3)(sin(3ί/2)£i(0, K, υ) - cos(3f/2)((2/3)F(0, u, v)

Now, we look at the restriction of the map GtoW\. Since

= (V5/2)F*(£2) - (1/2)F x

, = (V5/2)F*(E3) + (1/2)F x

we see that G is an immersion from W\ into S6. Moreover, since

((V5/3)F + (2/3)F x F ^ i ) x ( (V5/2)F^ 2 -(1/2)F x F*£ 3)

= (V5/DF+E3 + (1/2)F x F , F 2 ,

we see that G is an almost complex immersion (and hence minimal). A straightforward

computation now shows that

/2)F x F*E3)

x F+E2) - (3/2)G + fl((V5/2)F x F , F 2 - (1/2)F*E3),

where / is some function whose precise value is not essential. So, if we put X = £"2 + a\ E\

and Y = £3 + α 2 £ i , we see that X and 7 are orthogonal with respect to the induced metric

and have the same constant length V3/2. We also see that

, X) = fl(

Since G is an almost complex immersion, it follows that

A(X, F) = A(X, G x X) = G x A(X, X).

Hence

A(X, F) = £i(-( l/2)F^2 - ( ( Λ / 5 / 2 ) F X

So, we see that the image of the tangent space and the first normal space to the almost com-

plex immersion are spanned by F*£2(g), F+E^iq), F x F*(£2)(g) and F x F+E^ίq). There-

fore, we get that its orthogonal complement in Sβ is spanned by F^(Fi)(^) and (2/3)F —

(y/5/3)F x Fit(E\). Hence, the tube on the almost complex immersion G with radius γ, with

cos γ — V5/3 in the direction of the orthogonal complement of the first osculating space

is given by (5.14) and corresponds therefore to the original totally real immersion F. This

completes the proof of Theorem 2.
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REMARK 5.4. The above construction can also be applied to the totally real immer-

sion of S3 into S6 constructed in Example 4.1. However, in that case, the resulting almost

complex curve is totally geodesic, and hence it is impossible to define the first normal bundle.

Taking coordinates

vi = cos(3ί/2)zi,

y2 = - sin(3ί/2)zi,

y3 = cos(3ί/2)z3 + sin(3ί/2)z4 ,

y4 = - sin(3ί/2)z3 + cos(3ί/2)z4 ,

we notice that d/dt corresponds with the vector field E\. Since

(2/3)y2 \

y\

-(V5β)y2

a straightforward computation shows that the resulting totally geodesic almost complex curve

has components (u\,... ,uη) given by

u5 = (2V3/3V2)(yiy4 -

uη = -(2χ/Ϊ5/3V2)(yiy4 -

Therefore, ψ(S3) can still be considered as some tube, given by (5.14), on a totally geodesic

almost complex curve.

REMARK 5.5. It is clear that the examples satisfying Case (1) and (2) of Theorem 2 do

not contain any totally geodesic points (the length of the second fundamental form is strictly

greater then a positive constant) and that the eigenvalues of Ric are bounded by a constant

strictly smaller than 2. Therefore, it follows from Lemma 3.2 that these examples can not be

put together differentiably with examples M satisfying 8M = 2.

REMARK 5.6. We recall that a Riemannian manifold Λf, of any dimension n, is locally

symmetric when its Riemann-Christoffel curvature tensor R is parallel, i.e., VR = 0, where

V is the Levi Civita connection of its metric (.,.), and that M is said to be semi-symmetric
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when more generally, R R = 0, meaning that (R(X, Y) R)(X\, X2, X3, XA) = 0 for all

tangent X, Y, Xu Xi, X3, XA, where R(X, Y) = VχVγ - VFVX - V [ X , n is the curvature

operator of M. By pseudo-symmetric manifolds, we mean here the further generalisation of

locally symmetric manifolds, namely those manifolds M for which R R = / β ( ( . , . ) , R),

where / : M -> R is a differentiable function and β((., .), R) is defined by

), R)(X, Y,
3 , X4) = (X Λ F) , X 2, X3, X 4 ) ,

where (X Λ Y)Z = (X, Z)F — (Y, Z)X, for all vector fields Z. From the extrinsic as well

as from the intrinsic point of view, this notion turns out to be natural generalisation of local-

and semi-symmetry; for a survey on this see [Ver], It is known that a 3-dimensional manifold

is pseudo-symmetric if and only if it is quasi-Einstein. Therefore, Theorem 2 also provides

a classification of all pseudo-symmetric 3-dimensional totally real submanifolds of S6. The

examples M with <5M = 2 satisfy R R = β((., .), R), while the examples of Case (1) and

(2) of Theorem 2 satisfy R R = (l/16)β((.,.), R). So the pseudo-symmetry conditions

for these submanifolds are realised with constant functions / , being respectively / = 1 and

/ — 1/16 (the values of which we observe to be precisely the only possibilities for K for

totally real immersions of M 3 into S6(\) with constant sectional curvatures K [El]).
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