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ASYMPTOTICALLY SATURATED TORIC ALGEBRAS
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Abstract. We establish finite generation of certain invariant graded algebras defined on
toric log Fano fibrations. These are the toric version of FGA algebras, introduced by Shokurov
in connection with the existence of flips.

Introduction. Asymptotically saturated algebras were introduced by Shokurov in his
proof of the existence of 4-fold flips [7]. His approach is to reduce the existence of flips, by
induction on the dimension, to the finite generation of graded algebras which are asymptoti-
cally saturated with respect to log Fano fibrations. Shokurov established the finite generation
of these algebras in dimensions one and two, and conjectured this to hold in any dimension.
In this paper we verify the toric case of this conjecture.

In a recent development, Hacon and McKernan [3] reduced the existence of flips to the
existence of smaller dimensional minimal models. They simplified Shokurov’s reduction ar-
gument by studying extensions of pluricanonical forms, and so they end up with asymptot-
ically saturated algebras of a particular kind, whose finite generation follows from the ex-
istence of smaller dimensional minimal models. Though asymptotically saturated algebras
may be useful in other contexts, their finitegeneration on log Fano fibrations is no longer
interesting for the existence of flips.

THEOREM 0.1. Let π : X → S be a proper surjective toric morphism with connected
fibers, and B an invariant Q-divisor on X such that (X,B) has Kawamata log terminal sin-
gularities and −(K + B) is π-nef.

(1) Let L ⊆ ⊕∞
i=0π∗OX(iD) be an invariant graded OS-subalgebra which is asymp-

totically saturated with respect to (X/S,B), where D is an invariant divisor on X. Then L is
finitely generated.

(2) Up to isomorphism, there are only finitely many rational maps X ��� Proj(L̄),
where L is an OS-algebra as in (1) and L̄ is its integral closure in C(X).

The toric case of asymptotic saturation, the key property ensuring finite generation in
(1), can be explicitly written down as a diophantine system (see Lemma 4.2). To see this in a
special case, letS be a point and letX = TN emb(∆) be a torus embedding for some lattice
N . LetM be the lattice dual toN , and consider a compact convex set of maximal dimension
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� in MR. This defines a toric gradedC-algebra

R(�) =
∞⊕
i=0

( ⊕
m∈M∩i�

C · χm
)
,

which is finitely generated if and only if� is a rational polytope. One can easily construct a
Weil divisorD onX such thatR(�) is a subalgebra of

⊕∞
i=0H

0(X, iD). On the other hand,
the log discrepancies of the log pair(X,B) with respect to toric valuations can be encoded
in a positive functionψ : NR → R, andψ determines a rule to enlarge any convex set in
MR to an open convex neighborhood. Asymptotic saturation ofR(�) with respect to(X,B)
means that the lattice points of the neighborhood ofj� are already contained inj�, for every
sufficiently divisible positive integerj (see Definition 2.5). This diophantine property restricts
the way that� can be approximated with rational points from the outside.

The key technical tool behind Theorem 0.1 is a known result in the geometry of numbers,
the Flatness Theorem [4]: for any convex body� ⊂ M ⊗Z R, there existse ∈ N \ 0 such that
maxm∈�〈m, e〉 − minm∈�〈m, e〉 is bounded from above by a constant depending only on the
dimension ofM and the number of lattice points contained in�.

The outline of this paper is as follows. In Section 4 we explicitly describe toric asymp-
totic saturation and reduce Theorem 0.1 to the special case when the algebra is normal and
associated with a convex set, the equivalent ofR(�) above. The rest of the paper is devoted
to this special case. In Section 1 we collect someelementary results on convex sets and their
support functions, and on diophantine approximation. In Section 2 we characterize asymptotic
saturation in geometric terms (Theorem 2.6) and obtain a boundedness result (Theorem 2.7).
These are used in Section 3 to prove Theorem 0.1, by induction on the dimension.

I would like to thank Nobuaki Sugimine for useful discussions.

1. Preliminary. We collect in this section elementary results on convex sets, toric
geometry and diophantine approximation. We refer the reader to Oda [5] for basic notions
and terminology on toric varieties and convex sets.

Throughout this section,N is a lattice, with dual latticeM. We have a duality pairing
〈·, ·〉 : MR ×NR → R, defined overZ.

1.1. CONVEX SETS AND SUPPORT FUNCTIONS. Fix a convex rational polyhedral
cone σ ⊆ NR, that is,σ is spanned by finitely many elements ofN . We denote byS(σ ) the
set of all functionsh : σ → R satisfying the following properties:

1) Positive homogeneity: h(te) = t · h(e) for t ≥ 0, e ∈ σ .
2) Upper convexity: h(e1 + e2) ≥ h(e1)+ h(e2) for e1, e2 ∈ σ .

THEOREM 1.1. The following properties hold :
(i) Every function h in S(σ ) is continuous.
(ii) Let (hi)i≥1 be a sequence of functions in S(σ ) which converges pointwise, and set

h(e) = limi→∞ hi(e) for e ∈ σ . Then h ∈ S(σ ), and the sequence (hi)i converges uniformly
to h on compact subsets of σ .
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PROOF. This is a special case of [6, Theorems 10.1 and 10.8].

For a functionh : σ → R, define

�h = {m ∈ MR ; 〈m, e〉 ≥ h(e) for all e ∈ σ } .

A convex polytopeK ⊂ MR is the convex hull of a finite set inMR. A rational convex polytope
is the convex hull of a finite set inMQ. A rational convex polyhedral set is the intersection of
finitely many rational affine half spaces inMR. We denote byC(σ∨) the set of all nonempty
closed convex sets� ⊆ MR satisfying the following two properties:

1) � + σ∨ = �.
2) � ⊆ K + σ∨ for some convex polytopeK ⊂ MR.

Thesupport function h� : σ → R of � ∈ C(σ∨) is defined by

h�(e) = inf
m∈�

〈m, e〉 .
THEOREM 1.2. The maps � → h� and h → �h are inverse to each other, inducing

a bijection C(σ∨) � S(σ ). Under this correspondence, the Minkowski sum � + �′ and a
nonnegative scalar multiple t� correspond to h� + h�′ and th�, respectively.

We omit the proof of this theorem, as it is similar to that of [5, Theorem A.18]. When
σ = NR, this is the usual correspondence between compact convex sets and support functions.
Note thatK + σ∨ ∈ C(σ∨) for every compact convex setK ⊂ MR, but not all elements of
C(σ∨) are of this form. Such an example isσ∨ = {(x, y) ∈ R2 ; x, y ≥ 0} and� = {(x, y) ∈
σ∨ ; xy ≥ 1}. Nevertheless, we have

LEMMA 1.3. The following properties are equivalent for � ∈ C(σ∨):
(i) � is a rational convex polyhedral set.
(ii) � = K+σ∨ for some rational convex polytopeK such that no vertex ofK belongs

to the Minkowski sum of σ∨ and the convex hull of the other vertices of K .
Furthermore,K is uniquely determined by � if dim(σ ) = dim(N).

EXAMPLE 1.4. If σ = NR, thenK = �. If σ is the positive cone inRd and� is a
Newton polytope, thenK is the convex hull of the compact faces of�.

1.2. PROPER TORIC MORPHISMS WITH AFFINE BASE. Toric morphisms with affine
base, which are proper, surjective and with connected fibers, are in one to one correspondence
with fans having convex support.

Indeed, let∆ be a fan in a latticeN such that its support|∆| = ⋃
τ∈∆ τ is a convex

rational polyhedral cone. Let̄N = N/(N ∩ |∆| ∩ (−|∆|)) and letσ̄ ⊂ N̄R be the image of
|∆| under the natural projection. ThenTN emb(∆) → TN̄ (σ̄ ) is a toric morphism with affine
base, which is proper, surjective, with connected fibers.

Conversely, letπ : X → S be a proper toric morphism of toric varieties, withS affine.
Thus,X = TN emb(∆), S = TN ′(σ ′) andπ corresponds to a lattice homomorphismϕZ : N →
N ′ such that∆ is a finite fan inN , σ ′ is a strongly convex rational polyhedral cone inN ′ and
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|∆| = ϕ−1(σ ′), respectively. In particular,|∆| is a convex rational polyhedral cone. ThenϕZ

factors throughN̄ = N/(N ∩ |∆| ∩ (−|∆|)), and we have a commutative diagram

X

π
���

��
��

��
�

�� TN̄ (σ̄ )

j
����

��
��

��
�

S

wherej is finite on its image.
Let nowD = ∑

e∈∆(1) deV (e) be an invariantQ-divisor onX which isQ-Cartier. This
means that there exists a functionh : |∆| → R such thath is ∆-linear andh(e) = −de for
everye ∈ ∆(1). In particular,h is positively homogeneous. TheQ-divisorD is π-nef if h is
upper convex; it isπ-ample if for every maximal coneσ ∈ ∆ there existsmσ ∈ �h such that
σ = {e ∈ |∆| ; h(e) = 〈mσ , e〉}.

1.3. THE AMPLE FAN OF A CONVEX RATIONAL POLYHEDRAL SET. To each convex
rational polyhedral set� ⊆ MR we associate a fan∆� in a quotient lattice ofN as follows.
Assume first that dim(�) = dim(M). Let K be a rational polytope associated with� by
Lemma 1.3, with verticesv1, . . . , vl . The support function of� is h(e) = minlj=1〈vj , e〉, and
the cones{e ∈ |∆| ; 〈vj , e〉 = h(e)}, for 1 ≤ j ≤ l, form the maximal dimensional cones of
a fan∆� in N . The support|∆�| is the unique convex coneσ ⊆ NR such that� ∈ C(σ∨).

If dim(�) < dim(M), choose a pointm0 ∈ MQ ∩ � and defineN ′ = N/(N ∩ (� −
m0)

⊥). If M ′ is the dual lattice ofN ′, thenM ′
R can be identified with the smallest vector

subspace ofMR which contains�−m0. We have dim(�−m0) = dim(M ′). The fan∆�−m0

in N ′ defined above is independent of the choice ofm0, and we denote it again by∆�. Its
support is a convex set.

DEFINITION 1.5. ∆� is called theample fan of the rational convex polyhedral set
� ⊂ MR.

Assume now thatπ : X → S is a proper toric morphism with affine baseS. We may
write X = TN emb(∆) and S = TN̄ (σ̄ ), andπ corresponds to a lattice homomorphism
ϕZ : N → N̄ such that|∆| = ϕ−1(σ̄ ).

For a rational polyhedral convex set� ∈ C(|∆|∨), theTN -invariantOS-algebra

R(�) =
∞⊕
i=0

( ⊕
m∈M∩i�

C · χm
)

is normal and finitely generated. The induced toric rational map

X

���
��

��
��

�
Φ �� Proj(R(�))

������������

S
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is defined overS, and Proj(R(�)) is the torus embedding of the ample fan∆�. If dim(�) =
dim(M), then∆� is a fan inN with |∆�| = |∆|, and henceΦ is birational in this case. The
invariantQ-divisor

∑
e∈∆�(1)−h(e)V (e) is ample relative toS. If dim(�) < dim(M), then

∆� is a fan inN ′, whose support is the image of|∆| under the natural projection.
1.4. DIOPHANTINE APPROXIMATION. Letm ∈ MR, e ∈ NR, I a positive integer and

‖ · ‖ a norm onMR.

THEOREM 1.6 (cf. [1]). For every ε > 0, there exists a positive multiple k of I and
there exists m̄ ∈ M such that 〈m̄ − km, e〉 ∈ (−ε,0] and ‖m̄ − km‖ < ε. Furthermore,
〈m̄− km, e〉 �= 0 if e /∈ {e′ ∈ N ; 〈m, e′〉 ∈ Q} ⊗Z R.

PROOF. We may find a decompositionM = M ′ ⊕M ′′, with dual decompositionN =
N ′ ⊕N ′′, such thatm = m′ +m′′,m′ ∈ M ′

Q,m
′′ ∈ M ′′

R and{e′′ ∈ N ′′ ; 〈m′′, e′′〉 ∈ Q} = {0}.
Decomposee = e′+e′′ with e′ ∈ N ′

R ande′′ ∈ N ′′
R. Note thate /∈ {e′ ∈ N ; 〈m, e′〉 ∈ Q}⊗Z R

if and only if e′′ �= 0. Let k1 be a positive integer such thatI |k1 andk1m
′ ∈ M ′. Since

{e′′ ∈ N ′′ ; 〈k1m
′′, e′′〉 ∈ Q} = {0}, we infer by [2, Chapter III, Theorem IV] that the

subgroup generated by the class ofk1m
′′ is dense in the torusM ′′

R/M
′′. Equivalently, the set⋃

j≥1(M
′′ + jk1m

′′) is dense inM ′′
R. In particular, the following system has a solution for

somej ≥ 1: 

m′′
j ∈ M ′′ ,

〈m′′
j + jk1m

′′, e′′〉 = 〈m′′
j + jk1m

′′ , e〉 ∈ [0, ε) ,
‖m′′

j + jk1m
′′‖ < ε .

If e′′ �= 0, we may also take〈m′′
j + jk1m

′′, e′′〉 �= 0. Thenk = jk1 andm̄ = km′ −m′′
j satisfy

the desired properties.

LEMMA 1.7. If 〈m, e〉 ∈ Q, the following properties are equivalent:
(i) m ∈ {m′ ∈ M ; 〈m′, e〉 ∈ Q} ⊗Z R.
(ii) e ∈ {e′ ∈ N ; 〈m, e′〉 ∈ Q} ⊗Z R.

PROOF. Assume that (i) holds. We may find a decompositionN = N ′ ⊕N ′′, with dual
decompositionM = M ′ ⊕M ′′, such thate = e′ + e′′, e′ ∈ N ′

Q, e
′′ ∈ N ′′

R and

{m′′ ∈ M ′′ ; 〈m′′, e′′〉 ∈ Q} = {0} .
The assumption means thatm ∈ M ′

R. We may find a decompositionM ′ = M ′
1 ⊕ M ′

2, with
dual decompositionN ′ = N ′

1 ⊕N ′
2, such thatm = m′

1 +m′
2,m′

1 ∈ M ′
1,Q,m′

2 ∈ M ′
2,R and

{e′2 ∈ N ′
2 ; 〈m′

2, e
′
2〉 ∈ Q} = {0} .

We have〈m′
2, e

′〉 = 〈m, e′〉 − 〈m′
1, e

′〉 = 〈m, e〉 − 〈m′
1, e

′〉 ∈ Q. Thereforee′ ∈ N ′
1,Q. Let

e′′ = ∑
i rie

′′
i , whereri ∈ R and{e′′i }i is a basis ofN ′′. Thene′, e′′i ∈ NQ, 〈m, e′〉 ∈ Q and

〈m, e′′i 〉 = 0. Thereforee = e′ + e′′ ∈ {e′ ∈ N ; 〈m, e′〉 ∈ Q} ⊗Z R, and so (i) holds. The
statement is symmetric inm ande, and hence the converse holds as well.
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2. Asymptotic saturation. Throughout this section, we fix a latticeN and a convex
rational polyhedral coneσ ⊆ NR.

DEFINITION 2.1. A log discrepancy function is a functionψ : σ → R satisfying the
following properties:

(i) ψ is positively homogeneous.
(ii) ψ(e) > 0 for e �= 0.
(iii) ψ is continuous.

EXAMPLE 2.2. Let∆ be a fan inN with |∆| = σ . Let B = ∑
e∈∆(1) beV (e) be an

invariantR-divisor onX = TN emb(∆) such thatK + B is R-Cartier and the log pair(X,B)
has Kawamata log terminal singularities. Equivalently, there exists a functionψ : σ → R
such thatψ(e) = 1 − be > 0 for everye ∈ ∆(1), andψ is ∆-linear. Thenψ is a log
discrepancy function.

The terminology comes from the following property: lete ∈ Nprim ∩ σ be a primitive
lattice point, corresponding to a toric valuationve of X. Thenψ(e) is the log discrepancy of
the log pair(X,B) at the valuationve.

LEMMA 2.3. Let ψ : σ → R be a log discrepancy function. Then {e ∈ σ ; ψ(e) ≤ 1}
is a compact set.

PROOF. Choose a norm‖·‖ onNR. Sinceψ is a log discrepancy function, the infimum
c0 = inf{ψ(e) ; e ∈ σ, ‖e‖ = 1} is a well defined positive real number. We haveψ(e) ≥
c0‖e‖, for e ∈ σ . In particular ,

{e ∈ σ ; ψ(e) ≤ 1} ⊆ {e ∈ σ ; ‖e‖ ≤ c−1
0 } .

The left hand side is a closed set, sinceψ is continuous, and the right hand side is a bounded
set. Therefore the claim holds.

DEFINITION 2.4. For an arbitrary functionh : σ → R, define

◦
�h= {m ∈ MR ; 〈m, e〉 > h(e) for all e ∈ σ \ 0} .

DEFINITION 2.5. Let� ∈ C(σ∨) andψ : σ → R a log discrepancy function. We say
that

(i) � isψ-saturated if M∩ ◦
�h�−ψ⊂ �, whereh� ∈ S(σ ) is the support function of

�. Note that� = �h�
.

(ii) � is asymptotically ψ-saturated if there exists a positive integerI such thatj� is
ψ-saturated, for everyI |j .

Note that saturation (asymptotic saturation) is invariant under lattice (rational) transla-
tions of the convex set.

THEOREM 2.6 (Characterization of asymptotic saturation).Let � ∈ C(σ∨) be a ra-
tional polyhedral set and ψ : σ → R a log discrepancy function. Let N ′′ = {e ∈ N ; � �
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m → 〈m, e〉 ∈ R constant}, with dual lattice M ′′, and define ψ ′′ : N ′′
R → R by

ψ ′′(e) = ψ(e) .

The ample fan ∆� is a fan in N ′ = N/N ′′ with support σ ′ = π(σ), where π : NR → N ′
R is

the natural projection. Define ψ ′ : σ ′ → R by

ψ ′(e′) = inf
e∈π−1(e′)

ψ(e) .

Then � is asymptotically ψ-saturated if and only if the following hold :
(1) M ′′∩ ◦

�−ψ ′′= {0}.
(2) ψ ′(e′) ≤ 1 for all e′ ∈ ∆�(1). Recall that ∆�(1) denotes the set of primitive

lattice points of the one-dimensional cones of ∆�.

PROOF. After a rational translation, we may assume that 0∈ �. In particular,N ′′ =
N ∩ �⊥ andh(e) = h′(π(e)), whereh ∈ S(σ ) andh′ ∈ S(σ ′) are the support functions of
� ⊂ MR and� ⊂ M ′

R = M ′ ⊗Z R, respectively.
Assume that (1) and (2) hold. Fix a positive integerj such thatI |j andjh(N) ⊆ Z and

assume thatm ∈ M satisfies

〈m, e〉 > (jh− ψ)(e) for all e ∈ σ \ 0 .

Choose a decompositionM = M ′ ⊕M ′′, and decomposem = m′ +m′′. Sinceh|N ′′ = 0, we
obtainm′′ ∈ M ′′ ∩Q′′, and hencem′′ = 0 by (1). In particular, we have

〈m, e′〉 > jh′(e′)− ψ ′(e′) for all e′ ∈ σ ′ \ 0 .

For everye′ ∈ ∆�(1), we have〈m, e′〉 ∈ Z, and hence (2) gives〈m, e′〉 ≥ jh′(e′). Sinceh′
is∆�-linear, we obtain〈m, e′〉 ≥ jh′(e′) for all e′ ∈ |∆�|, hencem ∈ �jh′ . Thereforejh
isψ-saturated.

For the converse, assume thatjh is ψ-saturated for everyI |j . We first check (1). Fix
m′′ ∈ M ′′ ∩ Q′′. Let ‖ · ‖ be a norm onMR, which is compatible with the decomposition
M = M ′ ⊕M ′′. Sinceψ is continuous, there existsε > 0 such that

〈m′′, e〉 + ψ(e) > 0 for all e ∈ S(σ), ‖e′‖ < ε .
The rational convex polyhedral set� has the same dimension asM ′

R. Therefore there exists
m′ ∈ M ′ ∩ relint(k�), for some positive integerk. We have

〈m′, e′〉 > kh′(e′) for all e′ ∈ σ ′ \ 0 .

The continuity ofψ implies that the following number is well defined:

t = − inf

{ 〈m′′, e〉 + ψ(e)

〈m′, e′〉 − kh′(e′)
; e ∈ S(σ), ‖e′‖ ≥ ε

}
.

Let j be a positive multiple ofI such thatj > t. The identity

〈jm′ +m′′, e〉 − (jkh− ψ)(e) = j (〈m′, e′〉 − kh′(e′))+ 〈m′′, e〉 + ψ(e)
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implies that〈jm′ +m′′, e〉 > (jkh−ψ)(e) for everye ∈ S(σ). Sincejkh isψ-saturated, we
infer thatjm′ + m′′ ∈ �jkh. In particular,jm′ +m′′ ∈ M ′, and hencem′′ = 0. This proves
(1).

For (2), fix e′ ∈ ∆�(1) and assume by contradiction thatψ ′(e′) > 1. We may find a
basise1, . . . , ed of N with e1 = e′. Let ‖ · ‖ be the absolute value norm onNR with respect
to this basis and denote

S(σ) = {e ∈ σ ; ‖e‖ = 1} .
The face{m ∈ � ; 〈m, e1〉 = h(e1)} of � is a positive dimensional convex polyhedral set,
and hence there exists a 1-dimensional rational compact convex set�1 with

�1 ⊂ relint({m ∈ � ; 〈m, e1〉 = h(e1)}) .
It is easy to see that there exists a positive real numbert1 such thatM ∩ t�1 �= ∅ for t > t1.

Consider the following set

C = {e ∈ S(σ) ; ψ(e) ≤ 〈e∗1, e〉} .
Sinceψ is continuous, the (possibly empty) setC is closed. Furthermore,e1 /∈ C and�1 is
included in the relative interior of the face of� corresponding toe1, and hence〈m, e〉−h(e) >
0 for e ∈ C andm ∈ �1. We infer that the following number is well defined

t2 = sup
m∈�1,e∈C

(e∗1 − ψ)(e)

〈m, e〉 − h(e)
.

Let j be a positive multiple ofI such thatj > max(t1, t2). Sincej > t1, there existsmj ∈ M
such thatmj + e∗1 ∈ j�1. We have

〈mj, e〉 − (jh− ψ)(e) = j (〈(mj + e∗1)/j, e〉 − h(e))− (e∗1 − ψ)(e) .

Sincej > t2, we obtainmj ∈ ◦
�jh−ψ . Sincej� isψ-saturated, we obtainmj ∈ �jh. This is

a contradiction, since〈mj, e1〉 = jh(e1)− 1< jh(e1). This proves (2).

THEOREM 2.7. Let ψ : NR → R be a log discrepancy function such that −ψ is upper

convex andM∩ ◦
�−ψ= {0}. Then there exists e ∈ N \ 0 such that ψ(e)+ψ(−e) ≤ C, where

C is a positive constant depending only on dim(N).

PROOF. Let � = �−ψ/2. Sinceψ is positive, we have 0∈ � ⊂ ◦
�−ψ . Then� is

a compact convex set, of dimension dim(N) = d, with support function−ψ/2, such that
M ∩ � = {0}. By [4, Theorem 4.1], there existse ∈ N \ 0 such that

max
m∈�

〈m, e〉 − min
m∈�

〈m, e〉 ≤ c0d
2� d

√
1 + #(M ∩ �)� ,

wherec0 is a positive universal constant and #(M ∩ �) is the number of lattice points of�.
In our case, this means thatψ(e)+ ψ(−e) ≤ C = 2c0d

2� d
√

2�.
THEOREM 2.8 (Toric Asymptotic CCS). Let ψ : σ → R be a log discrepancy func-

tion. Let M(ψ) be the set of rational polyhedral sets � ∈ C(σ∨) such that � is asymptotically
ψ-saturated and h� − ψ is upper convex. Then the set of ample fans {∆�}�∈M(ψ) is finite.
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PROOF. Let � ∈ M(ψ), with support functionh. After a rational translation, we may
assume 0∈ �. LetN ′′ = N ∩ �⊥ andd = dim(N ′′). If d = 0, that is, dim(�) = dim(M),
then the ample fan∆� is a fan inN with |∆�| = σ , and by Theorem 2.6 we have

∆�(1) ⊆ Nprim ∩ {e ∈ NR ; ψ(e) ≤ 1} .
The right hand side is a finite set, and hence the number of fans∆� is finite.

Assume nowd > 0. We claim thatN ′′ belongs to a finite set of sublattices ofN . Since

h|N ′′ = 0,−ψ|N ′′
R

= (h−ψ)|N ′′
R

is an upper convex function. By assumption,M ′′∩ ◦
�−ψ |

N ′′
R
=

{0}. By Theorem 2.7, there existse1 ∈ N ′′ \0 such thatψ(e1)+ψ(−e1) ≤ C.We may assume
thate1 is a primitive element ofN . Consider the latticeN ′ = N/(Z · e1) and letπZ : N → N ′
be the induced projection map. There existsh′ : σ ′ → R such thath = h′ ◦π . Defineψ ′(e′) =
infe∈π−1(e′) ψ(e). Thenψ ′ is a log discrepancy function onN ′

R and� = �h′ ∈ M(ψ ′), by
Lemma 2.9. We repeat this argumentd times, until we obtain a basise1, . . . , ed of N ′′ with
the following properties:

(i) ψ(e1)+ ψ(−e1) ≤ C.
(ii) inf (ψ|

ek+∑k−1
i=1 Rei

)+ inf(ψ|−ek+∑k−1
i=1 Rei

) ≤ C for 2 ≤ k ≤ d.

By Lemma 2.3,e1 belongs to a finite set. By Lemmas 2.9 and 2.3,ek belongs to a finite set
modulo

∑k−1
i=1 Zei , for everyk. ThereforeN ′′, the subspace ofN generated bye1, . . . , ed ,

belongs to a finite set of sublattices ofN .
ForN ′′ as above, letN ′ = N/N ′′. There existsh′ : σ ′ → R such thath = h′ ◦π . Define

the log discrepancy functionψ ′ : σ ′ → R by ψ ′(e′) = infe∈π−1(e′) ψ(e). By Theorem 2.6

again, we have∆�(1) ⊆ N ′prim ∩ {e′ ∈ N ′
R ; ψ ′(e′) ≤ 1}. Therefore there are finitely many

ample fans∆�.
We have obtained the finiteness of ample fans whend is fixed. Since 1≤ d ≤ dim(σ ),

there are only finitely many ample fans.

LEMMA 2.9 (Restriction of saturation).Letψ : σ → R be a log discrepancy function,
let � ∈ C(σ∨) and let πZ : N → N ′ be a quotient lattice. We identity the dual lattice M ′ with
M ∩ Ker(π)⊥ ⊂ M . The image σ ′ = π(σ) is a rational convex polyhedral cone in N ′

R.
Assume that m0 ∈ M ∩ �. The convex set �′ = (� −m0) ∩M ′

R belongs to C(σ ′∨) and
its support function h′ ∈ S(σ ′) is computed as follows

h′(e′) = sup{h(e)− 〈m0, e〉 ; e ∈ σ ∩ π−1(e′)} .
Define a positively homogeneous function ψ ′ : σ ′ → R by

ψ ′(e′) = h′(e′)− sup{h(e)− 〈m0, e〉 − ψ(e) ; e ∈ σ ∩ π−1(e′)} .
The following properties hold:

(i) If � is ψ-saturated, then �′ is ψ ′-saturated.
(ii) For a positive integer k, define ψ ′

k : σ ′ → R by

ψ ′
k(e

′) = kh′(e′)− sup{kh(e)− 〈m0, e〉 − ψ(e) ; e ∈ σ ∩ π−1(e′)} .
If � is asymptotically ψ-saturated, then �′ is asymptotically ψ ′

k-saturated.
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(iii) If h−ψ is upper convex, then h′ −ψ ′ is upper convex and ψ ′ is a log discrepancy
function.

(iv) ψ ′(e′) ≥ infe∈σ∩π−1(e′) ψ(e).

PROOF. We may assumem0 = 0 after a translation of�.

(i) The inclusion
◦
�h′−ψ ′⊆ ◦

� is easy to see. Since� is ψ-saturated,M ′∩ ◦
�h−ψ⊂ �.

ThereforeM ′∩ ◦
�h′−ψ ′⊆ M ′ ∩ � = �′.

(ii) Note first the identity

(ψ ′
j − ψ ′

k)(e
′) = (j − k) sup

π(e)=e′
h(e)+ sup

π(e)=e′
(kh− ψ)(e)− sup

π(e)=e′
(jh− ψ)(e) ,

which impliesψ ′
k ≤ ψ ′

j for k ≤ j . By assumption, there exists a positive integerI such that
jh isψ-saturated for everyI |j . Fix k ≥ 1 and letj be a common multiple ofI andk. By (i),
jh′ isψ ′

j -saturated. Sinceψ ′
j ≥ ψ ′

k , we infer thatjh′ is alsoψ ′
k-saturated.

(iii) The upper convexity ofh′ −ψ ′ follows from the upper convexity ofh−ψ and the
formula

(h′ − ψ ′)(e′) = sup
π(e)=e′

(h− ψ)(e) .

In particular,ψ ′ is a continuous function, being the diference of the continuous functionsh′
andh′ − ψ ′. Furthermore,ψ ′ is positively homogenous by its definition. Let 0�= e′ ∈ σ ′.
The restrictionψ|π−1(e′) is strictly positive, continuous and at least 1 outside some bounded
subset, by Lemma 2.3. Therefore infπ(e)=e′ ψ(e) > 0.We conclude from (iv) thatψ ′(e′) > 0.

(iv) This is a direct consequence of the definitions ofh′ andψ ′.

3. Rational polyhedral criterion.

THEOREM 3.1. Let σ ⊆ NR be a rational convex polyhedral cone, � ∈ C(σ∨) and
ψ : σ → R a log discrepancy function such that � is asymptotically ψ-saturated.

Then for every e1 ∈ σ \ 0, there exist m ∈ MQ ∩ � and a rational convex polyhedral
cone σ1 ⊂ σ , with the following properties:

(i) e1 ∈ relint(σ1).
(ii) h�(e) = 〈m, e〉 for e ∈ σ1.

PROOF. Choose norms‖ · ‖ onNR andMR, defined as the maximum of the absolute
values of the components with respect to some basis ofN and its dual basis inM, respectively.
Let S(σ) = {e ∈ σ ; ‖e‖ = 1} and define the positive real numberε(ψ) by the formula

−ε(ψ)−1 = min{〈m, e〉/ψ(e) ; ‖m‖ = 1, e ∈ S(σ)} .
The restriction ofψ toS(σ) is a positive, continuous function, and henceε(ψ) is well defined.
In particular,

〈m, e〉 + ψ(e) > 0 for 0 �= e ∈ σ, ‖m‖ < ε(ψ) .

Denote byh ∈ S(σ ) the support function of�. We will prove the theorem in two steps.
(1) There existsm ∈ MQ ∩ �h such that〈m, e1〉 = h(e1).
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Indeed, letτ be the unique face ofσ which containse1 in its relative interior. We may
find orthogonal decompositions

N = N ′ ⊕N ′′ , M = M ′ ⊕M ′′ ,

whereN ′ = N∩(τ−τ ),M ′ = M∩τ⊥ andM ′, N ′ andM ′′, N ′′ are dual lattices, respectively.
If N ′′ �= 0, letσ ′′ be the image ofσ under the projection mapNR → N ′′

R. Sinceτ ⊇ σ∩(−σ),
we infer thatσ ′′ is a strongly rational convex polyhedral cone.

Sinceh is the support function of the non-empty convex set�h, there exists a sequence
of pointspk ∈ �h such that limk→∞〈pk, e1〉 = h(e1). If we decomposepk = p′

k + p′′
k ,

we claim thatp′
k belongs to a bounded set ofM ′

R. Indeed, assume by contradiction that
limk→∞ ‖p′

k‖ = +∞. By the usual compactness argument, we may assume that there exists
p′ ∈ M ′

R such that limk→∞ p′
k/‖p′

k‖ = p′. For everye ∈ τ , we have

〈p′
k/‖p′

k‖, e〉 = 〈pk/‖p′
k‖, e〉 ≥ h(e)/‖p′

k‖ .
Lettingk tend to infinity, we obtain〈p′, e〉 ≥ 0. Furthermore,

lim
k→∞〈p′

k, e1〉 = lim
k→∞〈pk, e1〉 = h(e1) ,

so a similar argument gives〈p′, e1〉 = 0. Therefore 0�= p′ ∈ τ∨∩e⊥1 . Sincee1 belongs to the
relative interior ofτ , we infer thatp′ ∈ τ⊥. This impliesp′ = 0, a contradiction. Therefore
the claim holds.

We may replace(pk)k by a subsequence so that there existsp′ ∈ M ′
R with limk→∞ p′

k =
p′ and 〈p′, e1〉 = h(e1). By Theorem 1.6, there exists a positive multiplej of I such the
following system has a solution:


p′
j ∈ M ′ ,

〈jp′, e1〉 − ψ(e1) < 〈p′
j , e1〉 ≤ 〈jp′, e1〉 ,

‖p′
j − jp′‖ < ε(ψ)/2 .

Choosek large enough so thatj‖p′ − p′
k‖ < ε(ψ)/2 . Sinceσ ′′ is a strongly rational convex

polyhedral cone, the following system has a solution{
p′′
j ∈ M ′′,

p′′
j ∈ jp′′

k + σ ′′∨ .

Setpj = p′
j + p′′

j ∈ M. The following holds fore ∈ S(σ):
〈pj , e〉 − jh(e)+ ψ(e) = 〈pj − jpk, e〉 + ψ(e)+ j (〈pk, e〉 − h(e))

≥ 〈pj − jpk, e〉 + ψ(e)

≥ 〈p′
j − jp′

k, e〉 + ψ(e) > 0 ,

where the last inequality follows from

‖p′
j − jp′

k‖ ≤ ‖p′
j − jp′‖ + ‖jp′ − jp′

k‖ < ε(ψ) .
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Sincejh isψ-saturated, we obtainpj ∈ �jh. In particular,〈pj , e1〉 ≥ jh(e1). The opposite
inequality holds from construction, and hence〈pj , e1〉 = jh(e1). We obtainm := pj/j ∈
MQ ∩ �h with 〈m, e1〉 = h(e1).

(2) Sincem is rational, we may replace� by � − m. Equivalently, we replaceh by
h − m. Thus we may assume that 0∈ �h ande1 ∈ σ0 := {e ∈ σ ; h(e) = 0}. We may
decomposeN = N ′ ⊕N ′′, with dual decompositionM = M ′ ⊕M ′′, such thate1 = e′1 + e′′1,
e′1 ∈ N ′

Q, e
′′
1 ∈ N ′′

R and{m′′ ∈ M ′′ ; 〈m′′, e′′1〉 ∈ Q} = {0} . If e′′1 = 0, thene1 ∈ NQ and the
theorem holds forσ1 = R≥0 · e1 andm = 0.

(2a) Assume thate′′1 �= 0. We claim that the following equality holds

σ∨
0 ∩ e⊥1 = σ∨

0 ∩M ′
R ∩ e′1⊥

.

We only have to prove the direct inclusion. Fixm ∈ σ∨
0 ∩ e⊥1 . We have to show thatm′′ = 0,

wherem = m′+m′′ is the decomposition inM ′
R ⊕M ′′

R. Assume by contradiction thatm′′ �= 0.
Since〈m, e1〉 ∈ Q, we infer by Lemma 1.7 and Theorem 1.6 that there exist a positive integer
k andm1 ∈ M such that−ψ(e1) < 〈m1 − km, e1〉 < 0 and‖m1 − km‖ < ε(ψ). Since
〈m, e1〉 = 0, we obtain

−ψ(e1) < 〈m1, e1〉 < 0 , ‖m1 − km‖ < ε(ψ) .

We consider the setC = {e ∈ S(σ) ; 〈m1, e〉 + ψ(e) ≤ 0}. Since 0∈ �h, we haveh ≤ 0. If
the setC is empty, then

〈m1, e〉 − jh(e)+ ψ(e) ≥ 〈m1, e〉 + ψ(e) > 0 for all e ∈ S(σ) .
Thereforem1 ∈ M∩ ◦

�jh−ψ , and hencem1 ∈ �jh by saturation. In particular,〈m1, e1〉 ≥ 0,
which contradicts the choice ofm1. Therefore the setC is non-empty. Sinceψ is continuous,
C is also compact. IfC ∩ σ0 = ∅, then there exists a positive integerj with

j > sup
e∈C

〈m1, e〉 + ψ(e)

h(e)
.

Thenm1 ∈ M∩ ◦
�jh−ψ , and saturation implies thatm1 ∈ �jh. Hence〈m1, e1〉 ≥ 0, which

contradicts the choice ofm1. Therefore there existse ∈ C ∩ σ0. In particular,

〈m, e〉 < 〈m1, e〉 + ψ(e)

k
≤ 0 .

Therefore〈m, e〉 < 0, contradicting the assumptione ∈ σ0,m ∈ σ∨
0 .

(2b) The functionh is continuous, being upper convex [6, Theorem 10.1]. Therefore
σ0 is a closed convex cone inNR. By duality (cf. [5, Theorem A.1]), (2a) is equivalent to

σ0 + R · e′1 +N ′′
R = σ0 + R · e1 .

In particular, there exists an open neighborhoodU ′′ of e′′1 in N ′′
R such thate′1 + U ′′ ⊂ σ0.

Since dim(U ′′) = dim(N ′′), there exist̄e1, . . . , ēn+1 ∈ U ′′ ∩ N ′′
Q, wheren = dim(N ′′), and

there existsλi ∈ (0,1) such that
∑n+1
i=1 λi = 1 ande′′1 = ∑n+1

i=1 λi ēi . Let σ1 be the rational
polyhedral cone spanned bye′1 + ē1, . . . , e

′
1 + ēn+1. It is clear thatσ1 ⊂ σ , e1 ∈ relint(σ1)

andh|σ1 = 0.
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THEOREM 3.2. Let σ ⊆ NR be a rational convex polyhedral cone and let � ∈ C(σ∨),
with support function h ∈ S(σ ). Assume that there exists a log discrepancy function ψ : σ →
R such that � is asymptotically ψ-saturated, and h−ψ is upper convex. Then � is a rational
convex polyhedral set.

PROOF. We use induction on dim(N). If dim(N) = 1, then� is either a point or an
interval of the form[a, b], (−∞, a] or [a,+∞). Its endpoints are rational by Theorem 3.1,
and so� is a rational convex polyhedral set.

Assume now that dim(N) > 1 and the theorem holds for smaller dimensional latticesN .
We prove the theorem in three steps.

(1) Assume 0∈ � andσ1 ⊂ σ is a rational convex polyhedral cone such thath|σ1 = 0.
Then there exists a rational polyhedral coneσ2 ⊂ σ such that relint(σ1) ⊂ relint(σ2), and one
of the following two properties holds:

(a) dim(σ2) = dim(σ1)+ 1, andh|σ2 = 0.
(b) dim(σ2) = dim(σ ) and there exist finitely many rational pointsm1, . . . ,mn ∈

MQ ∩ � such that for everye ∈ σ2 there exists somei with 〈mi, e〉 = h(e).

PROOF. LetN ′ = N/(N ∩ (σ1 − σ1)), with dual latticeM ′ = M ∩ σ⊥
1 . If dim(σ1) =

dim(N), we are in Case (1b). Assume now dim(σ1) < dim(N), so that 0< dim(N ′) <
dim(N). With the notation in Lemma 2.9, we have a projection homomorphism

πZ : N → N ′ , σ ′ = π(σ) ,

the support functionh′ : σ ′ → R of � ∩M ′
R and the log discrepancy functionsψ ′

k : σ ′ → R
for k ≥ 1. By Lemma 2.9,�h′ is asymptoticallyψ ′

k-saturated andkh′ − ψ ′
k is upper convex.

The inductive assumption implies that there exists a finite set{m′
i}i∈I ⊂ M ′

Q ∩ � such that
for everye′ ∈ σ ′, h′(e′) = 〈m′

i , e
′〉 for somei ∈ I . We distinguish two cases, depending on

whether the convex set�h′ ⊆ M ′
R is maximal dimensional or not.

(a) Assume dim(�h′) < dim(M ′). Equivalently, the latticeN ′′ = N ′ ∩ �h′⊥ is non-

zero. Letψ ′′
k = ψ ′

k|N ′′ andM ′′ the dual lattice ofN ′′. By Theorem 2.6,M ′′∩ ◦
�−ψ ′′

k
= {0}.

Furthermore,kh − ψk is upper convex andh|N ′′
R

is linear. Hence−ψ ′′
k is upper convex.

Therefore Theorem 2.7 applies, and hence there exists 0�= e′k ∈ N ′′ such that

ψ ′′
k (e

′
k)+ ψ ′′

k (−e′k) ≤ C ,

whereC is a positive constant depending only on dim(N ′′). By Lemma 2.3, thee′k ’s belong
to a compact set, and hence we may assume thate′k = e′ for infinitely manyk’s. Then there
existe+k , e

−
k ∈ σ such thatπ(e+k ) = e′, π(e−k ) = −e′ and

k[h′(e′)− h(e+k )+ h′(−e′)− h(e−k )] + ψ(e+k )+ ψ(e−k ) ≤ C + 1 .

In particular,

ψ(e+k )+ ψ(e−k ) ≤ C + 1 .

By Lemma 2.3, the sequences(e+k )k and(e−k )k belong to a compact set, so we may assume
that the limitse− = limk→∞ e−k , e+ = limk→∞ e+k exist. It is clear thate+, e− ∈ σ and
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π(e+) = e′, π(e−) = −e′. The above inequality and the positivity ofψ implies

h′(e′)− h(e+k )+ h′(−e′)− h(e−k ) ≤ (C + 1)/k .

Letting k tend to infinity, we obtainh′(e′) = h(e+), h′(−e′) = h(e−). Sincee′ ∈ N ′′, we
haveh′(e′) = h′(−e′) = 0.

We claim that we may assume thate+, e− ∈ NQ. Indeed, sinceπ(e+) ∈ N ′
Q andσ1 is

rational, there existsf ∈ σ1 such thate++f ∈ σ1∩N . Thenh(e++f ) ≥ h(e+)+h(f ) = 0,
and henceh(e+ + f ) = 0. Also,π(e+ + f ) = e′, so that we may replacee+ by e+ + f . A
similar argument applies toe−.

The rational convex polyhedral coneσ2 = σ1 + R≥0e
+ + R≥0e

− satisfies (1a).
(b) Assume dim(�h′) = dim(M ′). In this case, the ample fan∆h′ of h′ is a fan inN ′

with |∆h′ | = σ ′.
(b1) For everye′ ∈ ∆h′(1), there existse ∈ σ ∩ N such thatπ(e) = e′ andh(e) =

h′(e′).
Indeed, sinceh′ is rational piecewise linear and asymptoticallyψ ′

k-saturated, we obtain
by Theorem 2.6 thatψ ′

k(e
′) ≤ 1 for all k ≥ 1. Therefore there existsek ∈ σ such that

π(ek) = e′ and

kh′(e′)− (kh− ψ)(ek) ≤ 2 .

In particular, we obtainψ(ek) ≤ 2. By Lemma 2.3, the sequence(ek)k belongs to a bounded
set, so that we may assume that the limite = limk→∞ ek exists. We clearly haveπ(e) = e′.
The positivity ofψ implies that

h′(e′)− h(ek) ≤ 2/k .

Letting k tend to infinity, we obtainh′(e′) − h(e) ≤ 0, and henceh′(e′) − h(e) = 0. The
rationality ofe is obtained the same way as in the proof of (a) above.

(b2) Let τ be a maximal dimensional cone ofσ ′, spanned bye′1, . . . , e′r ∈ ∆h′(1).
There existsi ∈ I such thath′(e′) = 〈mi, e′〉 for everye′ ∈ σ ′. By (b1), there existej ∈
σ ∩ NQ such thatπ(ej ) = e′j andh(ej ) = h′(e′j ) for 1 ≤ j ≤ r. Thereforeh(e) = 〈mi, e′〉
for everye ∈ σ1 + ∑p

j=1 R≥0ei. The coneσ1 + ∑p

j=1 R≥0ei ⊂ σ has the same dimension
asσ . The union of all these cones, taken after all maximal conesτ in ∆, contains a coneσ2

satisfying (b1) with respect to{m′
i}i∈I .

(2) Every non-zero pointe ∈ σ has an open polyhedral neighborhood on whichh is
rational, piecewise linear.

Indeed, fixe as above. By Theorem 3.1, there existsm0 ∈ MQ ∩ �h and there exists a
rational convex polyhedral coneσ0 ⊂ σ such thate ∈ relint(σ0) andh(e) = 〈m0, e〉 for every
e ∈ σ0.

We may replace�h by its rational translate�h −m0, so that we may assume thatm0 =
0. In particular, 0∈ �h andh|σ0 = 0. By (1), either the claim holds, or there exists a
(dim(σ0)+ 1)-dimensional rational polyhedral coneσ1 ⊆ σ such that relint(σ0) ⊂ relint(σ1)

andh|σ1 = 0. By (1) again, either the claim holds, or there exists a(dim(σ1)+2)-dimensional
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coneσ2 ⊆ σ such that relint(σ1) ⊂ relint(σ2) andh|σ2 = 0. We repeat this procedure forσ2

and so on. This procedure clearly stops in a finite number of steps, hence the claim holds.
(3) Fix a norm‖ · ‖ onNR and setS(σ) = {e ∈ σ ; ‖e‖ = 1}. For each pointe ∈ S(σ),

we consider the pair(σ (e) ; {mi(e)}i∈I (e)) constructed in (2). We obtain an open covering

S(σ) =
⋃

e∈S(σ )
S(σ ) ∩ relint(σ (e)) .

SinceS(σ) is compact, it may be covered by the relative interiors of the cones corresponding
to finitely many pointse1, . . . , ek. Let K be the convex hull of the finitely many rational
points{mi(e1)}i∈I (e1) ∪ · · · ∪ {mi(ek)}i∈I (ek). Then� = K + σ∨. Therefore� is a rational
convex polyhedral set.

4. Toric FGA algebras. We will prove Theorem 0.1 in this section. First, we recall
the definition of asymptotic saturation of an algebra with respect to a log variety, due to
Shokurov [7, Section 4.32]. Let(X,B) be a log pair with Kawamata log terminal singularities,
andπ : X → S a proper surjective morphism with connected fibers, whereS is affine. Let
D be anR-divisor onX andL ⊆ ⊕∞

i=0π∗OX(iD) a gradedOS-subalgebra withL0 = OS

andLi �= 0 for somei > 0. For i ≥ 0, let L̄i be the integral closure ofLi in C(X).
TheOS-algebraL̄ = ⊕∞

i=0 L̄i is called the integral closure ofL in C(X) [7, Example 4.8
and Proposition 4.15]. ForLi �= 0, there exists a birational morphismµi : Xi → X and a
π ◦µi-free divisorMi such thatL̄i = (π ◦µi)∗OXi (Mi),Xi is nonsingular and Supp(KXi −
µ∗
i (KX+B))∪Supp(Mi) is a simple normal crossings divisor. ThenL is calledasymptotically

saturated with respect to (X/S,B) if there exists a positive integerI such that the following
inclusions hold:

(π ◦ µi)∗OXi (�KXi − µ∗
i (KX + B)+ (j/i)Mi�) ⊆ (π ◦ µj)∗OXj (Mj ) for all I |i, j .

EXAMPLE 4.1. Assume thatB is effective andD is Q-Cartier. Then theOS-algebra⊕∞
i=0π∗OX(iD) is asymptotically saturated with respect to(X/S,B).

For the rest of this section, we consider the toric case of the above set-up. We have
X = TN emb(∆), S = TN̄ (σ̄ ), andπ corresponds to a map of fansϕZ : (N,∆) → (N̄, σ̄ )

such that|∆| = ϕ−1(σ̄ ) is a rational convex set. LetB = ∑
e∈∆(1) beV (e), where∆(1) is

the set of primitive vectors of the one dimensional cones of∆. The log canonical divisor
KX + B is represented by a functionψ : |∆| → R such thatψ is ∆-linear andψ(e) =
1 − be for everye ∈ ∆(1). Since(X,B) has Kawamata log terminal singularities,ψ is a
log discrepancy function. Leti be a positive multiple ofI . SinceL is torus invariant, there
existmi,1, . . . ,mi,ni ∈ M such thatχmi,1, . . . , χmi,ni generate theOS-moduleLi . Define
hi : |∆| → R by hi(e) = min1≤j≤n〈mi,j , e〉. The support functionhi is independent of the
choice of generators, and̄Li = ⊕

m∈M∩�hi C · χm.
LEMMA 4.2. The asymptotic saturation of L with respect to (X/S,B) means that

M∩ ◦
�(j/i)hi−ψ⊂ �hj for all I |i, j .
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PROOF. Choose a refinement∆i of the fan∆ so that∆i is a simple fan andhi is∆i-
linear. This corresponds to a toric resolution of singularitiesµi : Xi = TN emb(∆i) → X

such thatMi = ∑
e∈∆i(1)−hi(e)V (e) is aπ ◦ µi-free divisor. SinceXi is nonsingular, the

union of its invariant prime divisors
∑
e∈∆i(1) V (e) has simple normal crosssings. In this

set-up, the asymptotic saturation property ofL with respect to(X/S,B) means that

H 0(Xi, �KXi − µ∗
i (K + B)+ (j/i)Mi�) ⊆ H 0(Xj ,Mj ) for I |i, j .

Let m ∈ M. Thenχm ∈ H 0(Xi, �KXi − µ∗
i (K + B) + (j/i)Mi�) if and only if 〈m, e〉 +

�−1 + ψ(e) − (j/i)hi(e)� ≥ 0 for everye ∈ ∆i(1). Since〈m, e〉 ∈ Z, this is equivalent to
〈m, e〉 > (j/i)hi(e) − ψ(e) for everye ∈ ∆i(1). Sinceψ andhi are∆i-linear, the latter is
equivalent to〈m, e〉 > (j/i)hi(e)− ψ(e) for everye ∈ |∆| \ 0.

On the other hand,χm ∈ H 0(Xj ,Mj ) if and only ifm ∈ �hj . This proves the claim.

LEMMA 4.3. The function h = limi→∞ hi/i : |∆| → R is a well-defined positively
homogeneous, upper convex function.

PROOF. We can writeD = ∑
e∈∆(1) deV (e). Let h̃ : |∆| → R be the support function

of the convex set{m ∈ MR ; 〈m, e〉 ≥ −de for all e ∈ ∆(1)}. SinceLi ⊆ H 0(X, iD), we
obtainhi ≥ ih̃. On the other hand, the propertyLi ·Lj ⊆ Li+j implieshi+hj ≥ hi+j . Then
it is easy to see that for everye ∈ |∆|, the sequence(1/i)hi(e) is bounded from below and
converges to its infimum. Being a limit of positively homogeneous upper convex functions,h

satisfies these two properties too. Note thathi ≥ ih for everyi.

LEMMA 4.4. The asymptotic saturation of L with respect to (X/S,B) is equivalent to

M∩ ◦
�jh−ψ⊂ �hj for I |j .

PROOF. Fix I |j , choose a norm‖ · ‖ onNR and setS(|∆|) = {e ∈ |∆| ; ‖e‖ = 1}. Let
m ∈ M∩ ◦

�jh−ψ . This means that the functionf : S(|∆|) → R, f (e) = 〈m, e〉−jh(e)+ψ(e)
takes only positive values. The functions(1/i)hi are upper convex, so that they converge
uniformly to h on the compact setS(|∆|), by Theorem 1.1. Therefore there exists somei

such that the functionf − ((j/i)hi − jh)|S(|∆|) takes only positive values. This means that
m ∈ M∩ ◦

�(j/i)hi−ψ . By Lemma 4.2, we obtainm ∈ �hj .
The converse is clear by Lemma 4.2, sincehi ≥ ih.

PROOF OFTHEOREM 0.1. The statement is local over the base, so we may assume
thatS is affine. We use the above notation.

The function−ψ is upper convex since−(KX + B) is nef. Thereforeh − ψ is upper
convex. By Lemma 4.4 and the inclusions�hj ⊂ �jh, we infer that�h is asymptotically
saturated with respect toψ.

(1) The hypothesis of Theorem 3.2 is satisfied, and so�h is a rational polyhedral set.
In particular, there exists a positive integerI |n such that�nh is the convex hull of its lattice
points. We haveM ∩�nh ⊆ M ∩ ◦

�nh−ψ⊂ �hn, and hence�nh, the convex hull ofM ∩�nh,
is included in�hn . Thereforehn ≥ nh. The opposite inclusion holds by construction, and
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hencenh = hn. Sincekhn ≥ hkn ≥ knh for k ≥ 1, we obtainhkn = khn for everyk ≥ 1.
This means that ∞⊕

k=0

L̄kn =
∞⊕
k=0

(π ◦ µn)∗OXn(kMn) .

The right hand side is finitely generated, sinceMn is aπ◦µn-free divisor. Therefore
⊕∞

k=0 L̄kn
is finitely generated, and sōL is finitely generated. The extensionL ⊆ L̄ is integral, so we
conclude thatL is finitely generated.

(2) By (1), �h ∈ C(|∆|∨) is a rational convex polyhedral set and we have anS-
isomorphism

Proj(L̄) � Proj

( ∞⊕
i=0

⊕
m∈M∩i�h

C · χm
)
.

The right hand side is the torus embedding of the ample fan∆�h . Since�h is asymptotically
ψ-saturated andh − ψ is upper convex, Theorem 2.8 applies. Therefore∆�h belongs to a
finite set of fans associated to(X/S,B). This proves (2).

REFERENCES

[ 1 ] A. A. B ORISOV AND V. V. SHOKUROV, Directional rational approximations with some applications to alge-
braic geometry, Proc. Steklov Inst. Math. 2003 (240), 66–74.

[ 2 ] J. W. S. CASSELS, An introduction to Diophantine approximation, Cambridge Tracks in Mathematics and
Mathematical Physics 45, Cambridge University Press, New York, 1957.

[ 3 ] C. HACON AND J. MCKERNAN, On the existence of flips, arXiv.math.AG/0507597.
[ 4 ] R. KANNAN AND L. L OVÁSZ, Covering minima and lattice-point-free convex bodies, Ann. of Math. (2) 128

(1988), 577–602.
[ 5 ] T. ODA, Convex bodies and algebraic geometry, An introduction to the theory of toric varieties, Ergeb. Math.

Grenzgeb. (3)15, Springer-Verlag, Berlin, 1988.
[ 6 ] R. T. ROCKAFELLAR, Convex analysis, Princeton Mathematics Series 28, Princeton University Press, Prince-

ton, N.J., 1970.
[ 7 ] V. V. SHOKUROV, Prelimiting flips, Proc. Steklov Inst. Math. 2003 (240), 75–213.

RESEARCHINSTITUTE FORMATHEMATICAL SCIENCES

KYOTO UNIVERSITY

KYOTO 606–8502
JAPAN

E-mail address: ambro@kurims.kyoto-u.ac.jp


