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ASYMPTOTICALLY SATURATED TORIC ALGEBRAS
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Abstract. We establish finite generation of certain invariant graded algebras defined on
toric log Fano fibrations. These are the tor@sion of FGA algebras, introduced by Shokurov
in connection with the existence of flips.

Introduction. Asymptotically saturated algebras were introduced by Shokurov in his
proof of the existence of 4-fold flips [7]. His approach is to reduce the existence of flips, by
induction on the dimension, to the finite generation of graded algebras which are asymptoti-
cally saturated with respect to log Fano fibrations. Shokurov established the finite generation
of these algebras in dimensions one and two, and conjectured this to hold in any dimension.
In this paper we verify the toric case of this conjecture.

In a recent development, Hacon andHérnan [3] reduced the existence of flips to the
existence of smaller dimensional minimal models. They simplified Shokurov’s reduction ar-
gument by studying extensions of pluricanonical forms, and so they end up with asymptot-
ically saturated algebras of a particular kind, whose finite generation follows from the ex-
istence of smaller dimensional minimal models. Though asymptotically saturated algebras
may be useful in other contexts, their finggeneration on log Fano fibrations is no longer
interesting for the existence of flips.

THEOREM 0.1. Letrw: X — S bea proper surjective toric morphism with connected
fibers, and B an invariant Q-divisor on X such that (X, B) has Kawamata log terminal sin-
gularitiesand —(K + B) isz-nef.

(1) Let£ < @2, 7«Ox(iD) beaninvariant graded Os-subalgebra which is asymp-
totically saturated with respect to (X/S, B), where D isan invariant divisor on X. Then L is
finitely generated.

(2) Up to isomorphism, there are only finitely many rational maps X --» Proj(£),
where £ isan Og-algebra asin (1) and £ isitsintegral closurein C(X).

The toric case of asymptotic saturation, the key property ensuring finite generation in
(1), can be explicitly written down as a diophantine system (see Lemma 4.2). To see thisin a
special case, lef be a point and leX = Ty emh(A) be a torus embedding for some lattice
N. Let M be the lattice dual t&V, and consider a compact convex set of maximal dimension
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O in Mg. This defines a toric gradectalgebra

R(D)=€B< <> C-x'"),
i=0 “meMniO

which is finitely generated if and only il is a rational polytope. One can easily construct a
Weil divisor D on X such thatR(0)) is a subalgebra adb;2 HO(X, i D). On the other hand,
the log discrepancies of the log p&i, B) with respect to toric valuations can be encoded
in a positive functiony: Nr — R, andy determines a rule to enlarge any convex set in
MR to an open convex neighborhood. Asymptotic saturatioR @fl) with respect ta X, B)
means that the lattice points of the neighborhoogldofare already contained ijil, for every
sufficiently divisible positive integef (see Definition 2.5). This dioph&éine property restricts
the way thaf] can be approximated with rational points from the outside.

The key technical tool behind Theorem 0.1 is a known result in the geometry of numbers,
the Flatness Theorem [4]: for any convex bady- M ®z R, there existg € N \ 0 such that
max,,.1(m, e} — min,,.(m, e) is bounded from above by a constant depending only on the
dimension ofM and the number of lattice points containedin

The outline of this paper is as follows. In Section 4 we explicitly describe toric asymp-
totic saturation and reduce Theorem 0.1 to the special case when the algebra is normal and
associated with a convex set, the equivaleriRdil) above. The rest of the paper is devoted
to this special case. In Section 1 we collect s@t@nentary results on convex sets and their
support functions, and on diophantine approximation. In Section 2 we characterize asymptotic
saturation in geometric terms (Theorem 2.6) and obtain a boundedness result (Theorem 2.7).
These are used in Section 3 to prove Theorem 0.1, by induction on the dimension.

I would like to thank Nobuaki Sugimine for useful discussions.

1. Preliminary. We collect in this section elementary results on convex sets, toric
geometry and diophantine approximation. We refer the reader to Oda [5] for basic notions
and terminology on toric varieties and convex sets.

Throughout this sectiony is a lattice, with dual lattice/. We have a duality pairing
{-,-): MR x NrR — R, defined oveZ.

1.1. GONVEX SETS AND SUPPORT FUNCTIONS Fix a convex rational polyhedral
coneo C NR, thatis,o is spanned by finitely many elements@f We denote bys(o) the
set of all functionsi: 0 — R satisfying the following properties:

1) Positive homogeneity: h(te) =t - h(e) fort > 0,e € o.

2) Upper convexity: h(e1 + e2) > h(e1) + h(e2) fores, e2 € o.

THEOREM 1.1. Thefollowing propertieshold:
(i) Everyfunctionh in S(o) iscontinuous.
(ii) Let (h;)i>1 bea sequence of functionsin S(o) which converges pointwise, and set
h(e) =lim;_ hi(e) for e € o. Then h € S(o), and the sequence (4;); converges uniformly
to A on compact subsets of o.
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PrROOF. Thisis a special case of [6, Theorems 10.1 and 10.8].

For a function:: o — R, define
Op={m e MR; (m,e) > h(e)foralle € o}.

A convex polytope K C MR is the convex hull of a finite set ilg. A rational convex polytope
is the convex hull of a finite set ilfg. A rational convex polyhedral set is the intersection of
finitely many rational affine half spaces Mr. We denote by’ (o) the set of all nonempty
closed convex sefd C MR satisfying the following two properties:

1) O+oV=0.

2) O C K + oV for some convex polytop& C MRg.
Thesupport function h: 0 — Rof 0 € C(c") is defined by

h = inf (m,e).
o(e) ;leD(m e)

THEOREM 1.2. Themaps(] +— hand i — [, areinverse to each other, inducing
a bijection C(c¥) >~ S(o). Under this correspondence, the Minkowski sum [0 + [0 and a
nonnegative scalar multiple t[] correspond to A + hy and thrg, respectively.

We omit the proof of this theorem, as it is similar to that of [5, Theorem A.18]. When
o = NR, thisis the usual correspondence between compact convex sets and support functions.
Note thatk + o € C(c) for every compact convex sé& C MR, but not all elements of
C(c) are of this form. Such an exampled§ = {(x, y) € R?; x, y > 0}andd = {(x, y) €
oV ; xy > 1}. Nevertheless, we have

LEMMA 1.3. Thefollowing properties are equivalent for 0 € C(a¥):

() DOisarational convex polyhedral set.

(i) O = K+o" for somerational convex polytope K such that no vertex of K belongs
to the Minkowski sum of o~ and the convex hull of the other vertices of K.

Furthermore, K is uniquely determined by (1 if dim(o') = dim(N).

ExamMPLE 1.4. Ifo = Ng, thenK = [0. If o is the positive cone iRY and is a
Newton polytope, thelX is the convex hull of the compact facesof

1.2. PROPER TORIC MORPHISMS WITH AFFINE BASE Toric morphisms with affine
base, which are proper, surjective and with connected fibers, are in one to one correspondence
with fans having convex support.
Indeed, letA be a fan in a latticeV such that its suppoitA| = |, 7 is a convex
rational polyhedral cone. Lé¥ = N/(N N |A| N (—|A[)) and letc C Ng be the image of
|A| under the natural projection. Th@iy emi(A) — Ty (o) is a toric morphism with affine
base, which is proper, surjective, with connected fibers.
Conversely, letr: X — S be a proper toric morphism of toric varieties, wihaffine.
Thus,X = Ty emh(A), S = Ty/ (o) andr corresponds to a lattice homomorphiggn N —
N’ such thata is a finite fan inN, o’ is a strongly convex rational polyhedral coneNhand
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|Al = ¢~ 1(0”), respectively. In particulafA| is a convex rational polyhedral cone. Thegn
factors throughV = N /(N N |A| N (—|A))), and we have a commutative diagram

X ———Tx(0)

S
wherej is finite on its image.

LetnowD =}, ) deV (e) be an invarianQ-divisor onX which is Q-Cartier. This
means that there exists a functibn |A| — R such that: is A-linear andh(e) = —d, for
everye € A(1). In particular i is positively homogeneous. Tlgdivisor D is w-nef if & is
upper convex; it ist-ample if for every maximal cone € A there existsn, € 0; such that
o ={e € |A]; h(e) = (mg, e)}.

1.3. THE AMPLE FAN OF A CONVEX RATIONAL POLYHEDRAL SET. To each convex
rational polyhedral séfl C Mg we associate a fan in a quotient lattice oV as follows.
Assume first that dirfi) = dim(M). Let K be a rational polytope associated withby
Lemma 1.3, with verticesy, .. ., v;. The support function dfl is i (e) = mml] 1{vj, e), and
the conede € |A[; (vj,e) = h(e)}, for 1 < j <, form the maximal dimensional cones of
afanApq in N. The supportApq| is the unique convex conre € Ng such thatd € C(oV).

If dim(0) < dim(M), choose a pointig € Mg N O and defineV' = N/(N N (O —
mo)1). If M’ is the dual lattice ofV’, then Mg, can be identified with the smallest vector
subspace a#/r which containg] — mo. We have dindd —mo) = dim(M"). The fanA_,,,
in N’ defined above is independent of the choicengf and we denote it again b¢. Its
support is a convex set.

DEFINITION 1.5. Ap is called theample fan of the rational convex polyhedral set
U C Mg.

Assume now thatr: X — S is a proper toric morphism with affine base We may
write X = Ty eml(A) andS = Ty(6), andx corresponds to a lattice homomorphism
@z: N — N suchthaiA| = ¢~ 1(5).

For a rational polyhedral convex d6tc C(|A]Y), the Ty-invariantOs-algebra

R(D):é( b c.xm>

i=0 “memnil]

is normal and finitely generated. The induced toric rational map

................... ? > ProjR(@))

\/
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is defined overS, and ProjR(0J)) is the torus embedding of the ample fan;. If dim(O) =
dim(M), thenA is a fan inN with |Ag| = |A|, and hence is birational in this case. The
invariantQ—divisorZeeAD(l) —h(e)V(e) is ample relative tes. If dim(d) < dim(M), then
A is afaninN’, whose support is the image of| under the natural projection.

1.4. DIOPHANTINE APPROXIMATION. Letm € MR, e € NR, I apositive integer and
|l - || @ norm onMRg.

THEOREM 1.6 (cf.[1]). For every ¢ > 0, there exists a positive multiple k£ of I and
there exists m € M such that (m — km, e) € (—¢,0] and ||m — km| < e. Furthermore,
(m —km,e) #0ifed (¢ e N; (m,e') € Q} ®z R.

PROOF.  We may find a decompositiad = M’ & M”, with dual decompositiolV =
N'@®N”,suchthatn = m'+m",m" € M, m" € M} and{e” € N"; (m",¢") € Q} = {0}.
Decompose = ¢'+¢” with ¢’ € N ande” € Ni. Notethat ¢ {¢' € N ; (m,e') € Q}®zR
if and only if ¢” # 0. Letk; be a positive integer such thatk; andkim’ € M’. Since
{e” € N"; (kam",e") € Q} = {0}, we infer by [2, Chapter Ill, Theorem V] that the
subgroup generated by the classkoh” is dense in the torus/;;/M". Equivalently, the set
U;j=1(M" + jkim”) is dense inMg. In particular, the following system has a solution for
somej > 1:

m/{ c M//,
(m'l + jkam". ") = (m'] + jkam” . e) € [0, €),
I + jkam”| < e

If ¢” £ 0, we may also taken/j’ + jkam”,e")y #£ 0. Thenk = jki andm = km’ — m’]/ satisfy
the desired properties.

LEMMA 1.7. If (m,e) € Q, thefollowing properties are equivalent:

() me{m eM; (m' e eQ®zR

(i) eef{eeN; (me)eQ®@zR.

PROOF.  Assume that (i) holds. We may find a decompositdoe= N’ & N”, with dual
decomposition = M" @ M", suchthat = ¢’ +¢”, ¢ € Ni, ¢” € Ng and

{m// c M//; <m//’ e//) c Q} — {O} .

The assumption means thate M[. We may find a decompositioll” = M; @ M, with
dual decompositiolN’ = N; @ N, such thain = m} + m), m} € MLQ, my € My and

{6‘/2 € Né; (m’z, 6‘/2) e Q} ={0}.

We have(m), ¢’) = (m,e') — (m7,¢’) = (m,e) — (my,€¢’) € Q. Thereforee’ € Ni,Q' Let
e =) rie!, wherer; € Rand{e/'}; is a basis oiV”. Thene', e/ € Ng, (m, ') € Qand
(m,e]) = 0. Thereforee = ¢’ +¢” € {¢' € N; (m,¢’) € Q} ®z R, and so (i) holds. The
statement is symmetric im ande, and hence the converse holds as well.
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2. Asymptotic saturation. Throughout this section, we fix a latticé and a convex
rational polyhedral cone C Ng.

DEFINITION 2.1. Alog discrepancy function is a functiony: ¢ — R satisfying the
following properties:
(i) v is positively homogeneous.
(i) w(e) > 0fore # 0.

(iii) ¢ is continuous.

EXAMPLE 2.2. LetA be afaninN with |[A] = o. LetB = ZeeA(l) b,V (e) be an
invariantR-divisor onX = Ty emh(A) such thatk + B is R-Cartier and the log paitX, B)
has Kawamata log terminal singularities. Equivalently, there exists a fungtiomn — R
such thatyr(e) = 1 — b, > 0 for everye € A(1), andy is A-linear. Theny is alog
discrepancy function.

The terminology comes from the following property: et NP™ N & be a primitive
lattice point, corresponding to a toric valuationof X. Thenvs (e) is the log discrepancy of
the log pair(X, B) at the valuation,.

LEMMA 2.3. Lety: 0 — Rbealog discrepancy function. Then{e € o ; ¥(e) <1}
isa compact set.

PROOF. Choose a normj- || on Nr. Sinceys is a log discrepancy function, the infimum
co = inf{yr(e); e € o, |le] = 1} is a well defined positive real number. We hawée) >
colle]|, for e € o. In particular,

feco;ye) <l Cleca; Jlell <cpl).

The left hand side is a closed set, singés continuous, and the right hand side is a bounded
set. Therefore the claim holds.

DEFINITION 2.4. Foran arbitrary functioh: o — R, define
Clh= {m € MR; (m, ) > h(e) foralle € o \ 0}.

DEFINITION 2.5. LetO e C(cY) andy : 0 — R alog discrepancy function. We say
that

(i) Ois y-saturated if MN ﬁhm,,,,c O, whereh € S(o) is the support function of
0. Note thatd = Oy .

(i) O is asymptotically v -saturated if there exists a positive integérsuch thatjJ is
Y-saturated, for every| ;.

Note that saturation (asympito saturation) is invariant under lattice (rational) transla-
tions of the convex set.

THEOREM 2.6 (Characterization of asymptotic saturationl.et (1 € C(c") be a ra-
tional polyhedral set and v/: 0 — R alog discrepancy function. Let N/ = {e € N; O >
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m +— (m, e) € R constant}, with dual lattice M”, and define " : N5 — R by
v'(e) = (e).

Theamplefan Agisafanin N' = N/N" with support o’ = 7 (o), where r: Nr — Ny is
the natural projection. Definev’: ¢’ — R by
Y= inf y(e).
ect—1(e)

Then O isasymptotically vr-saturated if and only if the following hold :

1) M'N0_y0={0}.

(2) ¥'(e) < 1lforall ¢ € An(1). Recall that A5 (1) denotes the set of primitive
lattice points of the one-dimensional cones of Ar.

PROOF. After a rational translation, we may assume that Q1. In particular,N” =
N NO+ andh(e) = b/ (w(e)), whereh € S(o) andh’ € S(o”’) are the support functions of
O c Mg and c M, = M’ ®z R, respectively.

Assume that (1) and (2) hold. Fix a positive integesuch that/|j and j2(N) € Z and
assume that € M satisfies

(m,e) > (jh—y)(e) forall eco\O.

Choose a decompositiod = M’ & M”, and decompose = m’ +m”. Sinceh|y» = 0, we
obtainm” € M” N Q”, and hencen” = 0 by (1). In particular, we have

(m, e’y > jh'(e)—y'(e) forall ¢ o’ \0.
For everye’ € A(1), we have(m, ¢’) € Z, and hence (2) givegn, ¢’y > jh'(¢’). Sinceh’
is Ag-linear, we obtair(m, ') > jh'(e’) forall ¢ € |Anl, hencen € O;;. Thereforejh
is ¥-saturated.
For the converse, assume that is v -saturated for every|j. We first check (1). Fix

m” € M" N Q". Let| - || be a norm onMg, which is compatible with the decomposition
M = M ® M". Sincey is continuous, there exists> 0 such that

(m”,e)+vy(e) >0 forall e e S(o), || <e.

The rational convex polyhedral sethas the same dimension &&,. Therefore there exists
m' € M’ Nrelint(k(J), for some positive integdr. We have

(m', e’y > kh'(¢y forall ¢ eo’\O.

The continuity ofyr implies that the following number is well defined:

t = —inf {M; eec S), €] = 8} .
(m’, e’y — kh'(e)

Let j be a positive multiple of such thatj > r. The identity
(jm' +m", e) — (jkh —y)(e) = j((m', ) — kh'(e") 4 (m", e) + ¥ (e)
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implies that(jm’ +m", e) > (jkh —v)(e) for everye € S(o). Sincejkh is y-saturated, we
infer thatjm’ + m” € Ojy,. In particular,jm’ +m” € M’, and hencen” = 0. This proves
(1).

For (2), fixe’ € Ag(1) and assume by contradiction that(e’) > 1. We may find a
basises, ..., eq of N with e1 = ¢’. Let | - || be the absolute value norm @k with respect
to this basis and denote

S(o) ={eco; el =1}.
The face{m € O; (m, e1) = h(e1)} of Ol is a positive dimensional convex polyhedral set,
and hence there exists a 1-dimensional rational compact convek séth

01 C relint({m € O; (m, e1) = h(e1)}).

It is easy to see that there exists a positive real numbsuch that N ¢y # @ fort > 11.
Consider the following set

C={eeS); ¥ <(e],e)}.
Sinceyr is continuous, the (possibly empty) s@tis closed. Furthermore; ¢ C and(1 is

included in the relative interior of the faceldfcorresponding te1, and hencém, e) —h(e) >
0 fore € C andm € ;. We infer that the following number is well defined

(e7 —V¥)(e)
meldy,eeC (m,e) —h(e)
Let j be a positive multiple of such thatj > max(1, t2). Sincej > 1, there exista; € M
suchthatn ; + ej € jl1. We have

(mj,e) = (jh —¥)(e) = j({((mj + €7)/j, e) — h(e)) — (e] —¥)(e).

Sincej > 1, we obtairm eﬁjh,v,. Since;j is -saturated, we obtain ; € O;;. Thisis
a contradiction, sincén ;, e1) = jh(e1) — 1 < jh(e1). This proves (2).

to =

THEOREM 2.7. Lety: Nr — Rbealog discrepancy function such that —v isupper

convex and MN ﬁ,v,z {0}. Thenthereexistse € N \ O suchthat vy (e) + ¢ (—e) < C, where
C isa positive constant depending only on dim(N).

ProOF Letd = O_y,». Sincey is positive, we have G O cﬁ,w. ThenO is
a compact convex set, of dimension diM) = d, with support function—v/2, such that
M NO = {0}. By [4, Theorem 4.1], there existse N \ 0 such that
max(m, e) — min{m, e} < cod?[/1+#M ND)],
mel mell
wherecy is a positive universal constant and# N [OJ) is the number of lattice points af.
In our case, this means théle) + ¥ (—e) < C = 2cod?[V2].

THEOREM 2.8 (Toric Asymptotic CCS). Let v: 0 — R be a log discrepancy func-
tion. Let M (y) bethe set of rational polyhedral setsd € C (o) such that (J isasymptotically
y-saturated and iy — v is upper convex. Then the set of ample fans { A} e vy isfinite.
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PrROOF. Let[d € M(y), with support functiork. After a rational translation, we may
assume G 0. Let N’ = N N0+ andd = dim(N”). If d = 0, that is, dini0) = dim(M),
then the ample far; is a fan inN with |Ag| = o, and by Theorem 2.6 we have

An(D) S NP fe e Nr: ¥(e) < 1}.

The right hand side is a finite set, and hence the number of4anss finite.
Assume now! > 0. We claim thatN” belongs to a finite set of sublattices8f Since

h|y» =0, —‘NNg = (/’l—l//)|Ng is an upper convex function. By assumptidfiN ﬁ_w%:

{0}. By Theorem 2.7, there exists € N\ 0 such thaiy(e1)+ (—e1) < C. We may assume
thates is a primitive element oV. Consider the lattic&’ = N/(Z-¢1) and letrz: N — N’
be the induced projection map. There exigtso’ — R suchthat = h'ox. Definey’(¢') =
inf ;-1 ¥(e). Theny' is a log discrepancy function aNg and = Oy € M(y"), by
Lemma 2.9. We repeat this argumehtimes, until we obtain a basig, ..., e¢; of N with
the following properties:
(i) (e +y(—e1) <C.

(i) inf (””'eﬁzf;ll Re)) T inf(w|7ek+2?r:_ll Re) = C for2 <k <d.
By Lemma 2.3¢1 belongs to a finite set. By Lemmas 2.9 and 23belongs to a finite set
modulo Zf.‘;ll Ze;, for everyk. ThereforeN”, the subspace a¥ generated by, ..., eq4,
belongs to a finite set of sublattices@f

ForN” as above, leN' = N/N”. There exist&’: 0’ — Rsuch thati = i’/ o 7. Define
the log discrepancy functiott’: o’ — R by y/'(¢') = inf,c,-1, ¥ (e). By Theorem 2.6
again, we have\n(1) € NP {¢' € Nj; ¥/(¢') < 1}. Therefore there are finitely many
ample fansAp.

We have obtained the finiteness of ample fans whénfixed. Since 1< d < dim(o),
there are only finitely many ample fans.

LEMMA 2.9 (Restriction of saturation).Let: o — R bealog discrepancy function,
leted e C(oY)andlet rz: N — N’ beaquotient lattice. We identity the dual lattice M’ with
M NKer(mr)+ c M. Theimageo’ = (o) isarational convex polyhedral conein Ng.

Assumethat mo € M N 0. The convex set ' = (O — mo) N Mp, belongsto C(o"") and
its support function 2’ € S(o”) is computed as follows

W' (¢') = suplh(e) — (mo, e); e € o N7 ().
Define a positively homogeneous function v’ : o’ — R by
¥'(€) = h'(e) — suph(e) — (mo, e) — Y(e); e € o N (e}

The following properties hold:
() IfOisvy-saturated, then [0’ is v/ -saturated.
(i) For apositiveinteger k, define v : o’ — Rby

i) = kh'(e) — supkh(e) — (mo. e) — Y(e): e € o N ().
If OJ is asymptotically v -saturated, then (0" is asymptotically v, -saturated.
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(i)  1f h — isupper convex, then i’ — v’ isupper convex and v’ is a log discrepancy
function.
(|V) wl(e/) Z infeeo.mj.[—l(e/) I/f(e)
PrROOF. We may assumeg = O after a translation dfl.
(i) The inclusionﬁh/_wzgﬁ is easy to see. Sindaé is y-saturatedM’n ﬁh_wc 0.
ThereforeM’'N ﬁh/_wfg M nO=0.
(i) Note first the identity

W =€) = (j —k) sup h(e)+ sup (kh—y)(e) — sup (jh—y)(e).
7 (e)=e 7 (e)=e 7 (e)=e

which impliesy; < 1//;. for k < j. By assumption, there exists a positive intefjsuch that
jhis¥-saturated for every|j. Fix k > 1 and letj be a common multiple of andk. By (i),
jh'is w}-saturated. Sinc&%} > Y, we infer thatj ' is alsoy, -saturated.

(i) The upper convexity ofi" — v follows from the upper convexity of — ¢y and the
formula

(h' =) = sup (h—y)(e).
7 (e)=e

In particular,y’ is a continuous function, being the diference of the continuous funckions
andh’ — /. Furthermorey/’ is positively homogenous by its definition. Let:0 ¢’ € o’.
The restrictiony/| . -1, is strictly positive, continuous and at least 1 outside some bounded
subset, by Lemma 2.3. Thereforeipf—. ¥ (e) > 0. We conclude from (iv) thay'(e) > 0.

(iv) Thisis a direct consequence of the definition&oand’.

3. Rational polyhedral criterion.

THEOREM 3.1. Let o € Ng bearational convex polyhedral cone, 10 € C(s") and
¥ : o — Ralog discrepancy function such that [ is asymptotically v-saturated.

Then for every e; € o \ O, there exist m € Mg N O and a rational convex polyhedral
coneoi C o, with the following properties:

(i) e1 € relint(oy).

(i) hgle) = (m,e) for e € o1.

PROOF. Choose normg - || on Nr and MR, defined as the maximum of the absolute
values of the components with respect to some bagisarid its dual basis i, respectively.
LetS(oc) ={e € o ; |le|| = 1} and define the positive real numb«i)) by the formula

—e(y) "t =min{(m, e)/Y(e) ; lIm| =1,¢ € S(0)}.

The restriction ofjr to S(o) is a positive, continuous function, and hemr¢é ) is well defined.
In particular,
(m,e)+v(e)>0 for 0£eco, |m|<e).
Denote byk € S(o) the support function dfl. We will prove the theorem in two steps.
(1) There existan € Mg N O, such thatim, e1) = h(ey).
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Indeed, letr be the unique face af which containg in its relative interior. We may
find orthogonal decompositions

N=N&N', M=MaoM',

whereN’ = NN(t —1), M’ = MNt+ andM’, N’ andM”, N” are dual lattices, respectively.
If N # 0, leto” be the image of under the projection mafr — Nj. Sincer 2 o N(—o0),
we infer thato” is a strongly rational convex polyhedral cone.
Sincen is the support function of the non-empty convex[Sgt there exists a sequence
of points pr € O, such that lim_(px, e1) = h(e1). If we decomposey = p; + p{,
we claim thatp; belongs to a bounded set M. Indeed, assume by contradiction that
lim;_ o || p; Il = +o00. By the usual compactness argument, we may assume that there exists
p' € Mg suchthatlim_ p;/llp;ll = p'. For everye € 7, we have

(pr/ Pkl €) = (pic/Ipills €) = h(e) /Il pill -

Letting k tend to infinity, we obtair{p’, ¢) > 0. Furthermore,

lim (py.e1) = lim (pi, e1) = h(er),
k—o00 k—o00

so a similar argument giveg’, e1) = 0. Therefore 0% p’ € rvnef. Sincee; belongs to the
relative interior ofr, we infer thatp’ € . This impliesp’ = 0, a contradiction. Therefore
the claim holds.

We may replacép; ), by a subsequence so that there exists Mf, with limy .« p; =

p  and{p’, e1) = h(e1). By Theorem 1.6, there exists a positive multiglef I such the
following system has a solution:

p;. eM,
(Jp'.e1) = ¥(er) < (pj, e1) = (jp' e1),
I —ip'l < e()/2.

Chooseék large enough so that| p’ — p; |l < e(¥)/2. Sinces” is a strongly rational convex
polyhedral cone, the following system has a solution

p;.’ eM’,
pjejpl+a".
Setp; = p} + p;’ € M. The following holds fore € S(o):
(pj.e) — jh(e) +y(e) = (pj — jpk.e) + ¥ (e) + j(pk, e) — h(e))
> (pj — jpk.e) + ¥ (e)
> (p} = jpr-e) +¥(e) >0,

where the last inequality follows from

P} — jpill < 1P — jP' I+ 11jp" = jpill < e(¥).



50 F. AMBRO

Sincejh is y-saturated, we obtaip; € O;;,. In particular,(p;, e1) > jh(e1). The opposite
inequality holds from construction, and hengg, e1) = jh(e1). We obtainm := p;/j €
Mg Ny with (m, e1) = h(e1).

(2) Sincem is rational, we may repladéel by 0 — m. Equivalently, we replacé by
h — m. Thus we may assume thatd [, ande; € og := {e € o; h(e) = 0}. We may
decompose&V = N’ @ N”, with dual decomposition = M’ @ M", such thae; = ¢] + ¢,
e € Né, e] € Ngand{m” e M"; (m",e]) € Q} = {0} . If ] = O, theney € Ng and the
theorem holds fos1 = R-g - e; andm = 0.

(2a) Assume that] # 0. We claim that the following equality holds

o) Net =0y NMNe;™.
We only have to prove the direct inclusion. Fixe oy N ei. We have to show that” = 0,
wherem = m’+m" is the decomposition iM, ® M. Assume by contradiction that” # 0.
Since(m, e1) € Q, we infer by Lemma 1.7 and Theorem 1.6 that there exist a positive integer

k andmy € M such that—lﬂ(el) < {m1—km,e1) < 0 and||m1 — km| < (). Since
(m, e1) = 0, we obtain

—¥(e1) < (mg,e1) <0, |lm1—km| <e(y).

We consider the s&f = {e € S(o); (m1,e) + ¥ (e) < 0}. Since Oe Oy, we haveh < 0. If
the setC is empty, then

(m1,e) — jh(e) + Y(e) > (m1,e) + ¥(e) >0 forall e € S(o).

Thereforem; € MN ﬁjh,w, and henceny € O;;, by saturation. In particulakmy, e1) > 0,
which contradicts the choice of;. Therefore the saf is non-empty. Since is continuous,
C is also compact. I€ N og = @, then there exists a positive integewith

. (m1.e) + Y (e)
U T S

Thenmy € MN ﬁ.jh_w, and saturation implies that; € [;,. Hence(my, e1) > 0, which
contradicts the choice a@f;. Therefore there existse C N og. In particular,
(mie) + (@) _
X <
Therefore(m, e) < 0, contradicting the assumptiene oo, m € oy’ .
(2b) The functiom: is continuous, being upper convex [6, Theorem 10.1]. Therefore
op is a closed convex cone iNr. By duality (cf. [5, Theorem A.1]), (2a) is equivalent to

0.

(m,e) <

o0+R-€j]+ Ny =00+R-e1.
In particular, there exists an open neighborh@dtiof ¢] in N such thate} + U” C oo.
Since dil{U"”) = dim(N"), there existy, ..., e,+1 € U N Ng, wheren = dim(~N”), and
there exists\; € (0, 1) such thaty "1 4; = 1 andej = Y7} 1;¢;. Let oy be the rational
polyhedral cone spanned by + e1, ..., ¢} + &,41. Itis clear thatry C o, e1 € relint(oy)
andhls, = 0.
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THEOREM 3.2. Leto C Ng bearational convex polyhedral coneandlet 0 € C(aY),
with support function 2 € S(o). Assume that there exists a log discrepancy function v : ¢ —
R such that [J isasymptotically v-saturated, and i — v is upper convex. Then (] isarational
convex polyhedral set.

PROOF  We use induction on ditwv). If dim(N) = 1, thenJ is either a point or an
interval of the form[a, b], (—o0, a] or [a, +00). Its endpoints are rational by Theorem 3.1,
and sa is a rational convex polyhedral set.

Assume now that diigdV) > 1 and the theorem holds for smaller dimensional latti€es
We prove the theorem in three steps.

(1) Assume 0= Oandoy C o is arational convex polyhedral cone such thigi = 0.
Then there exists a rational polyhedral cenec o such that relinioy) C relint(o?), and one
of the following two properties holds:

(a) dim(o2) =dim(o1) + 1, andhl,, = 0.

(b) dim(o2) = dim(o) and there exist finitely many rational poinis, ..., m, €

Mg N[O such that for every € o, there exists somewith (m;, e) = h(e).

PROOF. LetN’' = N/(N N (o1 — o1)), with dual latticeM’ = M N crf‘. If dim(o1) =
dim(N), we are in Case (1b). Assume now dim) < dim(N), so that 0< dim(N’') <
dim(N). With the notation in Lemma 2.9, we have a projection homomorphism

7z: N—- N, o =n(0),

the support functio®’: ¢’ — R of O N M}, and the log discrepancy functiogig : o’ — R

for k > 1. By Lemma 2.9(J,, is asymptoticallyy, -saturated anéh’ — v, is upper convex.
The inductive assumption implies that there exists a finitgisgf;c; C M(’g N O such that
for everye’ € o', h'(¢') = (m], ¢’) for somei € I. We distinguish two cases, depending on
whether the convex séi;,, € M, is maximal dimensional or not.

(@) Assume diniJ;,) < dim(M’). Equivalently, the latticeV” = N’ N [,/ is non-
zero. Lety;” = y;|y» andM"” the dual lattice ofV”. By Theorem 2.6"N ﬁ,wkuz {0}.
Furthermore kh — v is upper convex and|N£ is linear. Hence—vy;' is upper convex.
Therefore Theorem 2.7 applies, and hence there exigtg/De N” such that

Vi (ep) + ¥ (=) < C,
whereC is a positive constant depending only on divfY). By Lemma 2.3, the;’s belong
to a compact set, and hence we may assumerfhat ¢’ for infinitely manyk’s. Then there
existe;", e, € o suchthatr(e;) = ¢/, m(e; ) = —¢’ and
k[h'(e') — h(ef) 4+ h' (=€) — h(e)] + ¥ (ef) + ¥(ep) < C+ 1.
In particular,
Yed) +¥(e) < C+1.

By Lemma 2.3, the sequenc&gf)k and (e, )x belong to a compact set, so we may assume
that the limitse™ = liMyo00€; . et = iMoo ¢ exist. It is clear that*, e~ € o and
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m(et) = ¢/, m(e”) = —e'. The above inequality and the positivity gfimplies
h'(€') = h(ef) + ' (=€) —h(eg) < (C+D/k.

Letting & tend to infinity, we obtairk’(¢’) = h(e™), h'(—¢’) = h(e™). Sincee’ € N”, we
haveh'(¢') = h'(—¢') = 0.

We claim that we may assume that, e~ € Nq. Indeed, sincer(e™) N(’? andos is
rational, there existg € o1 suchthae™ + f € o1NN. Thenh(et + f) > h(eT)+h(f) =0,
and hencéi (et + f) = 0. Also,n(e™ + f) = ¢, so that we may replaee™ by e™ + f. A
similar argument applies o .

The rational convex polyhedral cong = o1 + R>pe™ + R>pe ™ satisfies (1a).

(b) Assume dinid,) = dim(M’). In this case, the ample fat, of #’ is a fan inN’
with |Ay | = o’.

(bl) For everye’ € A,(1), there existe € o N N such thatr(e) = ¢ andh(e) =
h(e).

Indeed, sincé’ is rational piecewise linear and asymptotically-saturated, we obtain
by Theorem 2.6 thaty;(¢’) < lforallk > 1. Therefore there exists;, € o such that
w(ex) = e and

kh'(e") — (kh — ) (ex) < 2.

In particular, we obtainy (e;) < 2. By Lemma 2.3, the sequence, ), belongs to a bounded
set, so that we may assume that the limit lim;_, o e, exists. We clearly have(e) = ¢'.
The positivity ofy implies that

W (e — hex) < 2/k.

Letting k tend to infinity, we obtairk’(e’) — h(e) < 0, and hencé'(¢') — h(e) = 0. The
rationality ofe is obtained the same way as in the proof of (a) above.

(b2) Letr be a maximal dimensional cone of, spanned by}, ...,e, € Ap(D).
There exists € I such thath'(e’) = (m;, ') for everye’ € o’. By (bl), there exist; €
o N Ng such thatr(e) = ¢ andh(e;j) = h'(e}) for 1 < j < r. Thereforei(e) = (mi, ¢')
for everye € o1 + Zj.’zl R-oe;. The coneoy + Zle Rsoe; C o has the same dimension
aso. The union of all these cones, taken after all maximal canisA, contains a cone;
satisfying (b1) with respect ton’};c;.

(2) Every non-zero poing € o has an open polyhedral neighborhood on whicis
rational, piecewise linear.

Indeed, fixe as above. By Theorem 3.1, there exigls € Mg N, and there exists a
rational convex polyhedral corg C o such that € relint(og) andh(e) = (mo, e) for every
e € 0Q.

We may replacél, by its rational translatgl;, — mg, so that we may assume thag =
0. In particular, 0e O, andhl|,, = 0. By (1), either the claim holds, or there exists a
(dim(op) + 1)-dimensional rational polyhedral copg C o such that relintog) C relint(o1)
andh|,, = 0. By (1) again, either the claim holds, or there existdien(o1) + 2)-dimensional
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coneoy C o such that relintoy) C relint(o2) andi|oz = 0. We repeat this procedure fes

and so on. This procedure clearly stops in a finite number of steps, hence the claim holds.
(3) Fixanorm|-|onNrandsetS(c) ={e € o; |le|]| = 1}. For each point € S(o),

we consider the pailw (e) ; {m;(e)}ici()) constructed in (2). We obtain an open covering

S(@)= [ S()Nrelinto(e)).

eeS(o)

SinceS(o) is compact, it may be covered by the relative interiors of the cones corresponding
to finitely many pointses, ..., ex. Let K be the convex hull of the finitely many rational
points{m;(e1)}icr(e;) Y - -+ U {mi(er)}icre)- Thend = K + . Thereforell is a rational
convex polyhedral set.

4. Toric FGA algebras. We will prove Theorem 0.1 in this section. First, we recall
the definition of asymptotic saturation of an algebra with respect to a log variety, due to
Shokurov [7, Section 4.32]. L&K, B) be a log pair with Kawamata log terminal singularities,
andz: X — S a proper surjective morphism with connected fibers, wifeig affine. Let
D be anR-divisor onX and£ < @fﬁo 7.Ox (i D) a graded)s-subalgebra withiCo = Oy
and£; # O for somei > 0. Fori > 0, let £; be the integral closure of; in C(X).
The Os-algebral = @2, L; is called the integral closure &f in C(X) [7, Example 4.8
and Proposition 4.15]. Fof; # O, there exists a birational morphism: X; — X and a
7 o i-free divisorM; such thatC; = (r o 1i)«Ox,; (M;), X; is nonsingular and Supfx; —
wi (Kx+B))USuppM;) is a simple normal crossings divisor. Théims calledasymptotically
saturated with respect to (X/S, B) if there exists a positive integdrsuch that the following
inclusions hold:

(7w 0 1)+ Ox,; ([Kx;, — nj (Kx + B) + (j/i)M;1) € (7w o uj)«Ox; (M) forall I]i, j.

ExamMpPLE 4.1. Assume thaB is effective andD is Q-Cartier. Then the&s-algebra
P27 Ox (i D) is asymptotically saturated with respect(/S, B).

For the rest of this section, we consider the toric case of the above set-up. We have

X = Tveml(4), S = Ty(o), andr corresponds to a map of fags: (N, A) — (N, &)

such thafA| = ¢~1(5) is a rational convex set. Let = ZeeA(l) b.V(e), whereA() is

the set of primitive vectors of the one dimensional cone&\ofThe log canonical divisor

Kx + B is represented by a function: |A| — R such thaty is A-linear andy (e) =

1-— b, for everye € A(1). Since(X, B) has Kawamata log terminal singularitigg,is a

log discrepancy function. Letbe a positive multiple of . Since£ is torus invariant, there
existm; 1, ...,m;,, € M such thaty™1, ... x™ni generate th&s-module ;. Define

hi: |Al = Rby hi(e) = mini<j<,(m; j, e). The support functiork; is independent of the
choice of generators, ant} = @meMmDh’_ C.x™

LEMMA 4.2. The asymptotic saturation of £ with respect to (X/S, B) means that
MO Oyiyn—y C Op; forall I, .
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PROOF. Choose a refinement; of the fanA so thatA; is a simple fan and; is A;-
linear. This corresponds to a toric resolution of singularitigs X; = Ty eml(4;) — X
such thatM; = ZeeA,(l) —hi(e)V(e) is am o u;-free divisor. SinceX; is nonsingular, the
union of its invariant prime divisor$ . 4.1y V() has simple normal crosssings. In this
set-up, the asymptotic saturation propertylofvith respect ta X /S, B) means that

H(X;, [Kx, — ni(K + B) + (j/i)yM;1) € HO(X;, M;) for Ii, .

Letm € M. Theny™ € HO(X;, [Kx, — wi (K + B) + (j/i)M;7) if and only if (m, e) +
[=1+ ¢(e) — (j/i)hi(e)] = O for everye € A;(1). Since(m, e) € Z, this is equivalent to
(m,e) > (j/i)hi(e) — Y(e) for everye € A;(1). Sincey andh; are A;-linear, the latter is
equivalent toim, e) > (j/i)hi(e) — ¥ (e) for everye € |A|\ O.

On the other handy™ < HO(Xj, M;)ifandonly ifm e Un; - This proves the claim.

LEMMA 4.3. Thefunction = lim;_. hi/i: |A| — R isa well-defined positively
homogeneous, upper convex function.

PrROOF. We can writeD = ZeeA(l) d,V(e). Leth: |A| — Rbe the support function
of the convex setm € Mg ; (m,e) > —d, forall e € A(1)}. Sincel; <€ H9(X,iD), we
obtaink; > ih. On the other hand, the propedy- £; C L;; impliesh; +h; > hi4;. Then
it is easy to see that for eveeye |A|, the sequencél/i)h;(e) is bounded from below and
converges to its infimum. Being a limit of positively homogeneous upper convex fundiions,
satisfies these two properties too. Note that i/ for everyi.

LEMMA 4.4. Theasymptotic saturation of £ with respect to (X/S, B) isequivalent to

MO Ojp—y C Up; forI]j.

PROOF. Fix I|j, choose anornij- || on Ng and setS(|A]) = {e € |A]| ; |le]| = 1}. Let
me MnN ﬁjh,w. This means that the functigf: S(JA|) — R, f(e) = (m, e)—jh(e)+v(e)
takes only positive values. The functiofis/i)h; are upper convex, so that they converge
uniformly to 2 on the compact sef(]A|), by Theorem 1.1. Therefore there exists same
such that the functiorf — ((j/i)h; — jh)|sa)) takes only positive values. This means that
me MnN &(.//i)h,-—w- By Lemma 4.2, we obtaim € [Jj,;.

The converse is clear by Lemma 4.2, sihge> ih.

ProOOF OFTHEOREM 0.1. The statement is local over the base, so we may assume
thatS$ is affine. We use the above notation.

The function—v is upper convex since-(Kx + B) is nef. Thereforé: —  is upper
convex. By Lemma 4.4 and the inclusiotﬁlsa]. C Ojx, we infer that[], is asymptotically
saturated with respect ib.

(1) The hypothesis of Theorem 3.2 is satisfied, an@lgas a rational polyhedral set.

In particular, there exists a positive integen such that],, is the convex hull of its lattice
points. We have/Nd,,, € M N ﬁnhﬂpc O, , and hencé&l,;, the convex hull o N0,
is included in(J;,. Thereforeh, > nh. The opposite inclusion holds by construction, and
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hencenh = h,. Sincekh,, > hy, > knh for k > 1, we obtaini, = kh, for everyk > 1.
This means that

oo o
@Ekn = @(75 o 1n)«Ox, (kMy) .
k=0 k=0
The right hand side is finitely generated, sindgis ar oy, -free divisor. ThereforéD;e o Lix
is finitely generated, and s6 is finitely generated. The extensighC £ is integral, so we
conclude that is finitely generated.
(2) By (1),0, € C(lA]Y) is a rational convex polyhedral set and we haveSan

isomorphism
oo
Proj(£) ~ Proj(@ P c X’") .
i=0 meMniOy,
The right hand side is the torus embedding of the ampletfap. Sincell, is asymptotically
y-saturated and — v is upper convex, Theorem 2.8 applies. Therefdrg, belongs to a
finite set of fans associated (& /S, B). This proves (2).
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