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Abstract. R. Nevanlinna showed, in 1926, that for two nonconstant meromorphic
functions on the complex plane, if they have the same inverse images counting multiplici-
ties for four distinct complex values, then they coincide up to a Möbius transformation, and
if they have the same inverse images counting multiplicities for five distinct complex values,
then they are identical. H. Fujimoto, in 1975, extended Nevanlinna’s result to nondegenerate
holomorphic curves. This paper extends Fujimoto’s uniqueness theorem to the case of moving
hyperplanes in pointwise general position.

1. Introduction. In Nevanlinna theory, there is a well-known uniqueness theorem
due to R. Nevanlinna. He showed, in 1926, that any two meromorphic functions sharing four
distinct values must coincide up to a Möbius transformation, and if they share five distinct
values, then they must be identical. In 1975, H. Fujimoto (see [F]) extended this result to
holomorphic curves, and proved the following.

THEOREM A (Fujimoto [F]). Let f and g be two non-constant holomorphic curves
of the complex plane C into the complex projective n-space Pn(C). Suppose that there exist
3n + 1 hyperplanes Hj, 1 ≤ j ≤ 3n + 1, in Pn(C) located in general position such that
f (C) �⊂ Hj , g(C) �⊂ Hj and ν(f,Hj ) = ν(g,Hj ), 1 ≤ j ≤ 3n + 1, where ν(f,Hj ) and
ν(g,Hj ) denote the pullbacks of the divisors (Hj ) by f and g, respectively. Then there is a
projective linear transformation L of Pn(C) such that L(f ) = g .

THEOREM B (Fujimoto [F]). Let f and g be two non-constant holomorphic curves
of C into Pn(C), at least one of which is non-degenerate. Suppose that there exist 3n + 2
hyperplanes Hj, 1 ≤ j ≤ 3n+2, in Pn(C) located in general position such that f (C) �⊂ Hj ,
g(C) �⊂ Hj and ν(f,Hj ) = ν(g,Hj ), 1 ≤ j ≤ 3n + 2, where ν(f,Hj ) and ν(g,Hj ) denote
the pullbacks of the divisors (Hj) by f and g, respectively. Then f = g .

Recently, there appeared two papers (see [Ye] and [Tu]) which extend the above results
to moving targets. However, both papers imposed additional conditions (see the condition (ii)
and the condition (iii) in Theorem C below). In particular, the condition off andg being
equal onf −1(Hj ), 1 ≤ j ≤ q, (see condition (iii) in Theorem C below) seems unnatural.
Furthermore, as indicated in [Tu], the paper of [Ye] contains some gaps in his key argument.
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To state the results obtained in [Tu], we first introduce some notation. Throughout this paper,
we denote byf a reduced representation of a holomorphic mapf : C → Pn(C). By a moving
hyperplaneH in Pn(C), we mean

H =
{
[x0 : · · · : xn]

∣∣∣∣
n∑

i=0

aixi = 0

}
,

wherea0, . . . , an are entire functions without common zeros. SoH is associated with a holo-
morphic mapa = [a0 : · · · : an] : C → Pn(C). Write a = (a0, . . . , an). Given a holomor-
phic mapf : C → Pn(C), we say thatf andH (or f anda) arefree if 〈f, a〉 �≡ 0, wheref
is a reduced representation off and〈 , 〉 is the standard inner product onCn+1. The moving
hyperplanesH1, . . . , Hq (or a1, . . . , aq ) are said to bein general position if H1(z), . . . , Hq(z)

are in general position for some (and hence for almost all)z ∈ C. The main result obtained in
[Tu] reads as follows.

THEOREM C (Tu [Tu]). Let f and g be two non-constant holomorphic curves of C
into Pn(C). Let G = {Hj }qj=1 (or {aj }qj=1) be a finite set of moving hyperplanes in Pn(C),
located in general position. Let aj = (aj,0, . . . , aj,n). Let RG be the smallest field containing
C and all ajµ/ajν with ajν �≡ 0, and let R̃G be the smallest field containing all meromorphic
functions h such that hk ∈ RG . Assume that max1≤j≤q Taj (r) = o(Tf (r)) and f is linearly
nondegenerate over RG . Assume further that

(i) 〈f, aj 〉/〈g, aj 〉, 1 ≤ j ≤ q, are nowhere zero entire functions on C,
(ii) {z | 〈f(z), ai (z)〉 = 0} ∩ {z | 〈f(z), aj (z)〉 = 0} = ∅ for 1 ≤ i < j ≤ q,
(iii) f = g on

⋃q

j=1{z ∈ C | 〈f(z), aj (z)〉 = 0}.
Then the following hold :
(a) If q = 3n + 1, then there exists an (n + 1) × (n + 1) matrix L with entries in R̃G

and det(L) �≡ 0 such that f = L · g, where f (resp. g) is a reduced representation of f (resp.
g).

(b) If q = 3n+2,and, in addition, if f is linearly nondegenerate over R̃G , then f = g .

The purpose of this paper is to extend Fujimoto’s results (Theorem A and Theorem B)
to moving hyperplanes without conditions (ii) and (iii) assumed in Theorem C. Also, we do
not assume that the hyperplanes are slowly moving with respect to the growth off , i.e.,
we do not assume that max1≤j≤q Taj (r) = o(Tf (r)). Instead, we assume that the given
moving hyperplanes are located inpointwise general position. Recall that moving hyperplanes
Hj, 1 ≤ j ≤ q, are said to be inpointwise general position (vs. in general position) if the
hyperplanesHj(z), 1 ≤ j ≤ q, are in general position (as a set of fixed hyperplanes) at every
pointz ∈ C (vs. some pointz0 ∈ C). With this assumption, we prove the following result.

MAIN THEOREM. Let G = {Hj }qj=1 (or {aj }qj=1) be a finite set of moving hyperplanes
in Pn(C), located in pointwise general position. Let f and g be two non-constant holomor-
phic mappings of C into Pn(C), such that 〈f, aj 〉 �≡ 0 and 〈g, aj 〉 �≡ 0 for 1 ≤ j ≤ q . Assume
that 〈f, aj 〉/〈g, aj 〉, 1 ≤ j ≤ q, are nowhere zero entire functions on C. Then the following
hold:
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(a) If q = 3n + 1, then there exists an (n + 1) × (n + 1) invertible matrix L with
entire functions as entries, such that f = L · g, where f (resp. g) is a reduced representation
of f (resp. g). In addition, the entries of L depend only on the given hyperplanes and can be
determined effectively.

(b) If q = 3n + 2, and, in addition, if f is linearly nondegenerate over R̃G , then
f = g . Here RG is the smallest field containing C and all ajµ/ajν with ajν �≡ 0, and R̃G is
the smallest field containing all meromorphic functions h such that hk ∈ RG .

Note that the main theorem can be extended easily to holomorphic mapsf andg from
Cm to Pn.

The second author wishes to thank the Department of Mathematics, Fudan University,
P.R. China for kind hospitality and support, during which part of the work on this paper took
place.

2. Proof of the main theorem. To prove the main theorem, we recall the following
Borel’s lemma (see [Ru] or [L]).

BOREL’ S LEMMA. Let f0, . . . , fn+1 be nowhere zero entire functions such that

f0 + · · · + fn+1 = 0 .

Let {0, 1, . . . , n+ 1} = I1 ∪ I2 · · · ∪ Ik be the partition such that i and j are in the same class
Il if and only if fi = cij fj for some nonzero constant cij . Then∑

i∈Il

fi = 0

for any l.

Consider the moving hyperplanes

Hj = {[x0 : · · · : xn] | aj0x0 + · · · + ajnxn = 0} , 1 ≤ j ≤ q ,

whereaji , 1 ≤ j ≤ q, 0 ≤ i ≤ n, are entire functions without common zeros. Write
aj = (aj0, . . . , ajn), and letf be a reduced representation off . We first prove the part (a) in
the main theorem. We assume thatq ≥ 3n + 1 in this case. Define functions

hj := 〈f, aj 〉/〈g, aj 〉 , 1 ≤ j ≤ q .(2.1)

Then, by the assumption,hj are nowhere zero entire functions. We need the following two
claims. We note that, although the situation is different, the proofs of Claim 1, Claim 2 and
the Combinatorial Lemma below follow the argument given by Fujimoto (see [F], or [F2]).
We enclose the proofs in this paper for the sake of reader’s convenience.

CLAIM 1. Let T be any subset of {1, 2, . . . , q} with #T = 2n + 2, where q ≥ 3n + 1.
Then, for each I ⊂ T with #I = n + 1, there exists a set J ⊂ T with #J = n + 1, I �= J ,
such that hI /hJ is a nowhere zero entire function depending only on the given hyperplanes
and can be determined effectively, where hI := hi0 · · · hin for I = {i0, . . . , in}.
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To prove this claim, we assume without loss of generality thatT = {1, 2, . . . , 2n + 2}.
Write (2.1) as

aj0f0 + · · · + ajnfn = hj (aj0g0 + · · · + ajngn) , j ∈ T .

By Cramer’s rule for solving a system of linear equations, we obtain

det(aj0, . . . , ajn, aj0hj , . . . , ajnhj ; j = 1, 2, . . . , 2n + 2) = 0 .

Then, by the Laplace expansion theorem,∑
J⊂T ,#J=n+1

αJ AJ hJ = 0 ,(2.2)

whereJ = {i0, . . . , in}, αJ = (−1)n(n+1)/2+i0+···+in , and

AJ = det(air ,j )0≤r≤n, 0≤j≤n det(ai′s ,j )0≤s≤n, 0≤j≤n

for i ′0, . . . , i ′n ∈ T −J . SinceH1, . . . , Hq are in pointwise general position, anyn+1 vectors
in {(aj0, . . . , ajn) | 1 ≤ j ≤ 2n+ 2} are linearly independent at each pointz ∈ C. Therefore,
AJ is nowhere zero for allJ ′s. Hence, by applying Borel’s lemma, there exists constantcIJ

andJ ⊂ T , J �= I such thatAIhI = cIJ AJ hJ , and hencehI /hJ = cIJ AJ /AI . So we obtain
Claim 1.

Our next step is to prove the following claim.

CLAIM 2. Let q ≥ 3n + 1. There is a subset I0 of {1, 2, . . . , q} with #I0 = q − 2n

such that hi/hj , for every i, j ∈ I0, is a nowhere zero entire function depending only on the
given hyperplanes and can be determined effectively.

To prove Claim 2, consider the multiplicative groupH∗ of all nowhere zero entire func-
tions. Denote byT the smallest subgroup ofH∗ which contains allh ∈ H∗ with hk ∈ RG
for some positive integerk. So we haveH∗ ∩RG ⊂ T ⊂ R̃G . Then the multiplication group
H∗/T is a torsion free abelian group. We denote by[h] the class inH∗/T containingh ∈ H∗.
Consider the subgroup̃G of H∗/T generated by[h1], . . . , [hq ] and choose suitable functions
b1, . . . , bt ∈ H∗ such that[b1], . . . , [bt ] ∈ H∗/T give a basis of̃G. Then eachhj can be
uniquely represented as

hj = gj b
rj1
1 · · · brjt

t , 1 ≤ j ≤ q,(2.6)

with somegj ∈ T and integersrjτ , 1 ≤ τ ≤ t .
To proceed, we need the following combinatorial lemma.

COMBINATORIAL LEMMA. Given integers rjτ , 1 ≤ j ≤ q, 1 ≤ τ ≤ t , we can choose
integers β1, . . . , βt such that among the integers

rj := rj1β1 + · · · + rjtβt , 1 ≤ j ≤ q ,(2.7)

any two numbers, say, ri and rj are equal only if the corresponding vectors (ri1, . . . , rit ) and
(rj1, . . . , rj t ) are equal.
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The Combinatorial Lemma is the same as that in [F] page 2, (2.2), or [F2] page 118,
(3.4.13). We enclose the proof here again forthe sake of reader’s convenience. The proof is
given by induction. In fact, the lemma is trivial for the caset = 1. Assume that there exist
β1, . . . , βt−1 with the property that ifr∗

i = r∗
j for integersr∗

i := ri1β1+· · ·+ ri,t−1βt−1, then
(ri1, . . . , ri,t−1) = (rj1, . . . , rj,t−1). Then it is easy to show that there are only finitely many
integersβt such thatβ1, β2, . . . , βt do not satisfy the desired condition. Thus the lemma is
proved.

We now prove Claim 2. Letrjτ , 1 ≤ j ≤ q, 1 ≤ τ ≤ t , be the integers given by (2.6),
and chooseβ1, . . . , βt as in the Combinatorial Lemma. Definerj , 1 ≤ j ≤ q, by (2.7). After
a suitable change of indices, we may assume that

r1 ≤ · · · ≤ rq .(2.8)

If rn+1 = · · · = rq−n, thenrn+1,τ = · · · = rq−n,τ for 1 ≤ τ ≤ t . So by (2.6),hi/hj =
gi/gj ∈ T for i, j ∈ {n + 1, . . . , q − n}. Hence the proof of Claim 2 would be finished if we
can show thatrn+1 = · · · = rq−n. To prove this, takeT = {1, . . . , n+1, q −n, . . . , q} which
contains 2n + 2 elements. Applying Claim 1 withI = {1, 2, . . . , n + 1}, we see that there is
a subsetJ = {i0, . . . , in} of T such that{i0, . . . , in} �= {1, 2, . . . , n + 1} and

hi0hi1 · · · hin

h1h2 · · · hn+1
∈ T .

From (2.6) this implies thatbl1
1 · · · blt

t = gb
l′1
1 · · · bl′t

t , wherelτ = ri0τ + · · · + rinτ , l′τ =
r1τ + · · · + rn+1,τ , 1 ≤ τ ≤ t, andg ∈ T . Sinceb1, . . . , bt are multiplicatively independent,
we havelτ = l′τ for τ = 1, 2, . . . , t, that is,

ri0τ + · · · + rinτ = r1τ + · · · + rn+1τ .

Thus we obtain
n∑

s=0

ris =
n∑

s=0

t∑
τ=1

ris τ βτ =
n+1∑
i=1

t∑
τ=1

riτ βτ =
n+1∑
i=1

ri ,

which simply means that

(ri0 − r1) + · · · + (rin − rn+1) = 0 .

Sinceri0 ≥ r1, . . . , rin ≥ rn+1, this is possible only whenrin = rn+1. However, since
in ≥ q − n, by (2.8) we haverin ≥ rq−n. Thusrn+1 ≥ rq−n. Noticing thatrn+1 ≤ rq−n,
we havern+1 = rq−n. Using (2.8) again, we obtain thatrn+1 = · · · = rq−n. This concludes
Claim 2.

We now prove the part (a). Again we follow Fujimoto’s argument (see [F] or [F2]). By
Claim 2 with q = 3n + 1 together with a suitable change of the reduced representation,
we may assume, without loss of generality, thath1, . . . , hn+1 are the entire functions which
depend only on the given hyperplanes, and can be determined effectively. We defineA :=
(aji)1≤j≤n+1,0≤i≤n andH to be a diagonal matrix with diagonal entries ash1, . . . , hn+1.
Then, by (2.1),Af = HAg. Hencef = A−1HAg, and the entries of the matrixA−1HA
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depend only on the given hyperplanes and can be determined effectively. Hence the part (a)
in the Main Theorem is proved.

To prove the part (b), sinceq = 3n + 2, by Claim 2 together with a suitable change
of the reduced representation, we may assume, without loss of generality, thath1, . . . , hn+2

are the entire functions which depend only on the given hyperplanes, and can be determined
effectively. Again, letA := (aji)1≤j≤n+1,0≤i≤n. Then, by (2.1),Af = HAg, whereH is a
diagonal matrix with diagonal entries ash1, . . . , hn+1, and

(an+2,0, . . . , an+2,n)




f0
f1
...

fn


 = hn+2(an+2,0, . . . , an+2,n)




g0
g1
...

gn


 .

Hence

(an+2,0, . . . , an+2,n)




f0
f1
...

fn


 = hn+2(an+2,0, . . . , an+2,n)A

−1H−1A




f0
f1
...

fn


 .

Since f is linearly nondegenerate over̃RG , we deduce that(an+2,0, . . . , an+2,n) =
hn+2(an+2,0, . . . , an+2,n)A

−1H−1A. Therefore,

(an+2,0, . . . , an+2,n)A
−1




h1 − hn+2 0 · · · 0
0 h2 − hn+2 · · · 0
...

...
. . .

...

0 0 · · · hn+1 − hn+2


 = 0 .

Let

(an+2,0, . . . , an+2,n) = (b0, . . . , bn)A .

Since{Hj }qj=1 (or {aj }qj=1) are in pointwise general position, we havebj �≡0 (j =0, 1, . . . , n),
and

(b0, . . . , bn)




h1 − hn+2 0 · · · 0
0 h2 − hn+2 · · · 0
...

...
. . .

...

0 0 · · · hn+1 − hn+2


 = 0 ,

which implies thathj = hn+2 (j = 1, . . . , n + 1). Hence fromAf = HAg = AHg, we
deducef = Hg, which implies thatf = g. The proof of the Main Theorem is completed.
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