Tohoku Math. J.
57 (2005), 589-595

A UNICITY THEOREM FOR MOVING TARGETS
COUNTING MULTIPLICITIES

Lu JN AND MIN Ru

(Received December 8, 2003, revised July 27, 2004)

Abstract. R. Nevanlinna showed, in 1926, that for two nonconstant meromorphic
functions on the complex plane, if they have the same inverse images counting multiplici-
ties for four distinct complex values, thenethcoincide up to a Mdbius transformation, and
if they have the same inverse images counting multiplicities for five distinct complex values,
then they are identical. H. Fujimoto, in 1975, extended Nevanlinna’s result to nondegenerate
holomorphic curves. This paper extends Fujimoto’s uniqueness theorem to the case of moving
hyperplanes in pointwise general position.

1. Introduction. In Nevanlinna theory, there is a well-known uniqueness theorem
due to R. Nevanlinna. He showed, in 1926, that any two meromorphic functions sharing four
distinct values must coincide up to a Moébius transformation, and if they share five distinct
values, then they must be identical. In 1975, H. Fujimoto (see [F]) extended this result to
holomorphic curves, and proved the following.

THEOREM A (Fujimoto [F]). Let f and g be two non-constant holomorphic curves
of the complex plane C into the complex projective n-space P (C). Suppose that there exist
3n + 1 hyperplanes H;,1 < j < 3n+ 1, in P*(C) located in general position such that
f(C) ¢ Hj, g(C) ¢ Hyand v(f, H;) = v(g, H;),1 < j < 3n + 1, where v(f, H;) and
v(g, Hj) denote the pullbacks of the divisors (H;) by f and g, respectively. Then thereis a
projective linear transformation L of P*(C) suchthat L(f) = g.

THEOREM B (Fujimoto [F]). Let f and g be two non-constant holomorphic curves
of Cinto P"(C), at least one of which is non-degenerate. Suppose that there exist 3n + 2
hyperplanes H;, 1 < j < 3n+2,in P"(C) located in general position such that /(C) ¢ H;,
g(C) ¢ Hyandv(f, Hj) =v(g, Hj),1 < j <3n+2,wherev(f, H;) and v(g, H;) denote
the pullbacks of the divisors (H;) by f and g, respectively. Then f = g.

Recently, there appeared two papers (see [Ye] and [Tu]) which extend the above results
to moving targets. However, both papers imposed additional conditions (see the condition (ii)
and the condition (iii) in Theorem C below). In particular, the conditionfoéind g being
equal onf*l(Hj), 1 < j < ¢, (see condition (iii) in Theorem C below) seems unnatural.
Furthermore, as indicated in [Tu], the paper of [Ye] contains some gaps in his key argument.
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To state the results obtained in [Tu], we first introduce some notation. Throughout this paper,
we denote by a reduced representation of a holomorphic nfapC — P"(C). By a moving
hyperplaneH in P"(C), we mean

n
H = {[xo:o~:x,,] Zaixi =O},
i=0
whereay, . . ., a, are entire functions without common zeros. Bads associated with a holo-
morphic mapu = [ag : --- : a,] : C —> P"(C). Writea = (ao, ..., a,). Given a holomor-

phic mapf : C — P"(C), we say thatf andH (or f anda) arefreeif (f,a) # 0, wheref
is a reduced representation pfand( , ) is the standard inner product @ . The moving
hyperplaneddy, ..., H, (oray, ..., a;) are said to bén general position if H1(z), ..., Hy(z)
are in general position for some (and hence for almostal)C. The main result obtained in
[Tu] reads as follows.

THEOREM C (Tu[Tu]). Let f and ¢g be two non-constant holomorphic curves of C
into P*(C). Let G = {H.,-}?:l (or {a.,-}?:l) be a finite set of moving hyperplanesin P"(C),
located in general position. Leta; = (a;,0,...,a},). Let Rg bethesmallest field containing
Candall aj,/aj, witha;, # 0, andlet Rg be the smallest field containing all meromorphic
functions  such that 2% e Rg. Assumethat maxi<j<q Ta; (r) = o(Ty(r)) and f islinearly
nondegenerate over Rg. Assume further that

() (f,aj)/(9,a;),1<j < g,arenowhere zero entire functions on C,

(i) {z1{f@), () =0N{z|({f(z),a;(2) =0 =0forl<i<j=<gq,

(i) f=gonUi_ilz € Cl(f(2),a;(2) =0}

Then the following hold:

(@) Ifg =3n+1,thenthereexistsan (n + 1) x (n + 1) matrix L with entriesin Rg
and det(L) # Osuchthatf = L - g, wheref (resp. g) isa reduced representation of f (resp.
9)-

(b) 1fg =3n+2,and,inaddition, if f islinearly nondegenerate over Rg, then f = g.

The purpose of this paper is to extend Fujimoto’s results (Theorem A and Theorem B)
to moving hyperplanes without conditions (ii) and (iii) assumed in Theorem C. Also, we do
not assume that the hyperplanes are slowly moving with respect to the growthid.,
we do not assume that max <, 74, (r) = o(Ty(r)). Instead, we assume that the given
moving hyperplanes are locatediaintwise general position.dall that moving hyperplanes
H;,1 < j < q, are said to be ipointwise general position (vs. in general position) if the
hyperplanedi;(z), 1 < j < g, are in general position (as a set of fixed hyperplanes) at every
pointz € C (vs. some pointg € C). With this assumption, we prove the following result.

MAIN THEOREM. LetG = {Hj}j=l (or {aj}?zl) be a finite set of moving hyperplanes
in P*(C), located in pointwise general position. Let f and g be two non-constant holomor-
phic mappings of C into P"(C), such that (f, a;) # Oand (g, a;) # Ofor 1 < j < ¢. Assume
that (f, a;)/(g,a;),1 < j < ¢, are nowhere zero entire functions on C. Then the following
hold:
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(@ Ifg = 3n+1,thenthereexistsan (n + 1) x (n + 1) invertible matrix L with
entire functions as entries, such that f = L - g, wheref (resp. g) is a reduced representation
of f (resp. g). In addition, the entries of L depend only on the given hyperplanes and can be
determined effectively.

(b) If ¢ = 3n + 2, and, in addition, if f is linearly nondegenerate over ﬁg, then
f = g. Here Rg isthe smallest field containing C and all a;,, /a, witha;, # 0,and Rg is
the smallest field containing all meromor phic functions i such that 7% € Rg.

Note that the main theorem can be extended easily to holomorphic fhapd g from
C™ to P".

The second author wishes to thank the Department of Mathematics, Fudan University,
P.R. China for kind hospitality and support, thg which part of the work on this paper took
place.

2. Proof of the main theorem. To prove the main theorem, we recall the following
Borel's lemma (see [Ru] or [L]).

BORELUSLEMMA. Let fo,..., fu+1 benowhere zero entire functions such that

Jot -+ far1=0.

Let{0,1,...,n+1} =11 UIl>---UI; bethepartition suchthat i and j arein the same class
I ifandonly if f; = ¢;; f; for some nonzero constant ¢;;. Then

2 fi=0
iel]
for any /.

Consider the moving hyperplanes

H,-:{[xo:---:x,,]|a.,'0x0+---+ajnxn=0}, 1515(]’
wherea;;, 1 < j < ¢q,0 < i < n, are entire functions without common zeros. Write
a; = (ajo, ..., aj,), and letf be a reduced representation faf We first prove the part (a) in
the main theorem. We assume that 3» + 1 in this case. Define functions
(2.1) hj={f.a;)/g.8;), 1=<j=gq.

Then, by the assumption,; are nowhere zero entire functions. We need the following two
claims. We note that, although the situation is different, the proofs of Claim 1, Claim 2 and
the Combinatorial Lemma below follow the argument given by Fujimoto (see [F], or [F2]).
We enclose the proofs in this paper for the sake of reader’s convenience.

CLAM 1. LetT beanysubsetof{1,2,...,q}wWith#T = 2n + 2,whereq > 3n + 1.
Then, foreach I ¢ T with#I = n + 1, thereexistsaset J C T with#J =n+ 1,1 # J,
such that /27 /hy is a nowhere zero entire function depending only on the given hyperplanes
and can be determined effectively, where iy := hy - - - hy, for I = {io, ..., i,}.
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To prove this claim, we assume without loss of generality that {1, 2,...,2n + 2}.
Write (2.1) as

ajofo+---+ajnfn=nhjlajogo+---+ajugn), JjeET.
By Cramer’s rule for solving a system of linear equations, we obtain
de’l(ajo,...,aj,,,ajohj,...,aj,,hj;j =12 ...,2n+2)=0.

Then, by the Laplace expansion theorem,

(22) Z O[]AJh]:O’
JCT #l=n+1
whereJ = {iq, ..., i}, ay = (=1)n(tD/2Hiot+in gnd

Ay = de'(ai,,j)0§r§n, 0<j<n de'f(aié,j)0§s§n, 0<j<n

forig,....i, € T—J.SinceHy, ..., H, are in pointwise general position, amy- 1 vectors
in{(ajo,...,ajn) | 1< j < 2n+ 2} arelinearly independent at each paint C. Therefore,
Ay is nowhere zero for all’s. Hence, by applying Borel's lemma, there exists constgnt
andJ Cc T,J # IsuchthatA;h; = c;yAyhy,andhencé;/hy = cjyAy/A;. SO we obtain
Claim 1.

Our next step is to prove the following claim.

CLAIM 2. Letqg > 3n+ 1. Thereisasubset Ip of {1,2,...,q} with#lp = g — 2n
such that i; / h ;, for every i, j € Io, is a nowhere zero entire function depending only on the
given hyperplanes and can be determined effectively.

To prove Claim 2, consider the multiplicative grotifd of all nowhere zero entire func-
tions. Denote by7” the smallest subgroup 6{* which contains alk € H* with i* € Rg
for some positive integer. So we havé{* N"Rg C 7 C 7~€g. Then the multiplication group
‘H*/T is a torsion free abelian group. We denotdhjthe class irf{*/7 containingh € H*.
Consider the subgro@i of H*/T generated byhi], ..., [h,] and choose suitable functions
b1, ...,b; € H* such thatb1],...,[b;] € H*/T give a basis of;. Then eachr; can be
uniquely represented as

(2.6) hj=gib* b, 1<j<gq,

with someg; € T and integers;., 1 <t <1.
To proceed, we need the follomg combinatorial lemma.

COMBINATORIAL LEMMA. Givenintegersrj,, 1 < j <g,1 <t <1, wecan choose

integers B1, . . ., By such that among the integers
(2.7 ri=rjppr+---+ripf, 1<j=gq,
any two numbers, say, ; and r; are equal only if the corresponding vectors (r;1, . . ., ri;) and

(rj1,...,rj;) areequal.
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The Combinatorial Lemma is the same as that in [F] page 2, (2.2), or [F2] page 118,
(3.4.13). We enclose the proof here againtfer sake of reader’s convenience. The proof is
given by induction. In fact, the lemma is trivial for the case- 1. Assume that there exist
B1, ..., Br—1 with the property that if* = r;.‘ forintegers :=rj1f1+- - -+ri—1B—1, then

(riz, ..., ris—1) = (rj1,...,rj:—1). Thenitis easy to show that there are only finitely many
integersp; such thatgy, B2, ..., B; do not satisfy the desired condition. Thus the lemma is
proved.

We now prove Claim 2. Let;;, 1 < j < ¢,1 < t <t, be the integers given by (2.6),
and choosgy, . .., B; as in the Combinatorial Lemma. Defing 1 < j < ¢, by (2.7). After
a suitable change of indices, we may assume that

(2.8) rn<---<rg.

Ifrpp1 =~ =rgp, thenrp1, = =rg_pforl <t <t Soby(2.6)h;/h; =
gi/gj €T fori,je{n+1,..., 9 —n}. Hence the proof of Claim 2 would be finished if we
can showthat, 1 = --- =r4_,. Toprove this, tak@ = {1,...,n+1,¢g—n, ..., g} which
contains 2 + 2 elements. Applying Claim 1 with = {1, 2, ..., n + 1}, we see that there is
a subset/ = {io, ..., i,} of T such thafip,...,i,} #{1,2,...,n+ 1} and

highiy -+ - hi, T

hihz---hy4a
From (2.6) this implies thalbll1 .- -bﬁ’ = gbll1 . --bf’/, wherel; = rigr + -+ riyr, I =
rr+---+r+1:,1 <t <t,andg € 7. Sinceby, ..., b; are multiplicatively independent,
we have, =1 fort =1,2,...,¢, thatis,

rior+"‘+rinr =rir+ -+ Fpyie -

Thus we obtain

n n t n+l t n+1
PIUID 3p SIS 3) S 318
s=0 s=071=1 i=1t=1 i=1

which simply means that

(rig—ry) +---+ (i, —rpy1) =0.

Sincer;, > r1,...,r, > rpt1, this is possible only when;,, = r,41. However, since
in > q —n, by (2.8) we have;, > r,_,. Thusr,11 > ry—,. Noticing thatr, 1 < rq—,,
we haver,1 = ry—,. Using (2.8) again, we obtain that;1 = --- = ry—,. This concludes
Claim 2.

We now prove the part (a). Again we follow Fujimoto’s argument (see [F] or [F2]). By
Claim 2 withg = 3n + 1 together with a suitable change of the reduced representation,
we may assume, without loss of generality, that. . ., h,+1 are the entire functions which
depend only on the given hyperplanes, and can be determined effectively. We glefine
(aji)1<j<n+1,0<i<n @and H to be a diagonal matrix with diagonal entries/as. .., h,41.
Then, by (2.1),Af = HAg. Hencef = A~1H Ag, and the entries of the matrix—1H A
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depend only on the given hyperplanes and can be determined effectively. Hence the part (a)

in the Main Theorem is proved.

To prove the part (b), sincg = 3n + 2, by Claim 2 together with a suitable change

of the reduced representation, we may assume, without loss of generality that, 4,2

are the entire functions which depend only on the given hyperplanes, and can be determined

effectively. Again, letA := (aj;)1<j<nt+1,0<i<n. Then, by (2.1)Af = HAg, whereH is a
diagonal matrix with diagonal entries &s, .. ., h,+1, and

fo 90
g1
(@n+2,0, .-, An2,n) . = hn+2(an+2,07 ce, ni2,n)
S 9n
Hence
fo fo
1 I I
(an+2,0’ ey an+2,n) . = hn+2(an+2,0’ ey an+2,n)A H A .
Jn Jn
Since f is linearly nondegenerate oveRg, we deduce thala, 20, ...,ani2,) =
hn+2(@ns2.05 - - - » Gny2.n) A~ TH™LA. Therefore,
h1— hyy2 0 e 0
1 0 hy —hpyo -+ 0
(an+2,0’ ey an+2,n)A_ . . . : =0.
0 0 o hpg1 —hpg2
Let
(@n+2,05 - - - » Ant2.n) = (bo, ..., by)A.

Since{H;}jzl (Or{aj}j=l) are in pointwise general position, we havez0 (j =0, 1, ..., n),
and

h1 — hny2 0 0
0 hy —hpy2 -+ 0

(b071bl’l) : : .. : :01
0 0 o hppr — hpyo

which implies thath; = h,42 (j = 1,...,n + 1). Hence fromAf = HAg = AHg, we
deducd = Hg, which implies thatf = ¢g. The proof of the Main Theorem is completed.
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