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Abstract. Smooth compact complex surfaces admitting non-trivial surjective endo-
morphisms are classified up to isomorphism. The algebraic case was dealt with earlier by
the authors. The following surfaces are listed in the non-algebraic case: a complex torus, a
Kodaira surface, a Hopf surface with at least two curves, a successive blowups of an Inoue
surface with curves whose centers are nodes of curves, and an Inoue surface without curves
satisfying a rationality condition.

1. Introduction. A surjective endomorphism of a compact complex varietyX means
a surjective morphism (holomorphic map) fromX to itself. The study of surjective endo-
morphisms of a given varietyX, such as the projective spacePn, is a subject of complex
dynamics. On the other hand, in the classification theory of compact complex varieties, it
is interesting to study the varietiesX which have surjective endomorphisms other than auto-
morphisms. We call a surjective endomorphism non-trivial if it is not an automorphism. For
example, complex tori and toric varieties admit non-trivial surjective endomorphisms. More-
over, the productX × Y admits a non-trivial surjective endomorphism if so hasX. However,
any surjective endomorphism of a variety of general type is an automorphism. A compact
non-singular curve admits a non-trivial surjective endomorphism if and only if it is isomor-
phic to the projective lineP1 or an elliptic curve.

The classification of the varieties admittingnon-trivial surjective endomorphisms has
been done in the following non-trivial cases: non-singular projective surfaces (cf. [19], [3]);
non-singular projective threefolds with Kodaira dimensionκ = 0, 2 (cf. [3]).

In this article, we shall complete the classification of non-singular compact complex sur-
facesX with non-trivial surjective endomorphisms. The classification in the case of projective
surfaces is as follows:

(1) X is a toric surface;
(2) X is aP1-bundle over an elliptic curve;
(3) X is aP1-bundle over a non-singular curveC of genusg ≥ 2 such thatX×C C′ �

P1× C′ for a finite étale coveringC′ → C;

2000Mathematics Subject Classification. Primary 32J15; Secondary 14J25, 14J27.
Key words and phrases. Endomorphism, elliptic surface, non-algebraic surface, VII0 surface, Kodaira surface,

Inoue surface.
∗ Partly supported by the Sumitomo Foundation.
∗∗ Partly supported by the Grant-in-Aidfor Scientific Research (C), Japan Society for the Promotion of Science.



396 Y. FUJIMOTO AND N. NAKAYAMA

(4) X is an abelian surface or a hyperelliptic surface;
(5) X is an elliptic surface with Kodaira dimensionκ(X) = 1 and the topological Euler

numbere(X) = 0.
The cases above correspond to the following numerical invariants: (1)κ(X) = −∞ and the
irregularityq(X) = 0; (2) κ(X) = −∞ andq(X) = 1; (3) κ(X) = −∞ andq(X) ≥ 2; (4)
κ(X) = 0; (5)κ(X) = 1. The following is our main result:

THEOREM 1.1. The non-algebraic non-singular compact complex surfaces X admit-
ting non-trivial surjective endomorphisms are classified as follows:

(1) X is a complex torus;
(2) X is a primary Kodaira surface, a secondary Kodaira surface, or an elliptic Hopf

surface;
(3) X is a Hopf surface with two elliptic curves or one of the following Inoue surfaces

without curves: SM , S
(+)
N,p,q,r;t satisfying a rationality condition (cf. Theorem 8.6)with respect

to the parameter t , and S
(−)
N,p,q,r ;

(4) X is a successive blowups of one of the following surfaces whose centers are nodes
of curves: a parabolic Inoue surface, a hyperbolic Inoue surface, and a half Inoue surface.

The cases above correspond to the following numerical invariants: (1) the first Betti
numberb1(X) is even; (2)b1(X) is odd and the algebraic dimensiona(X) = 1; (3)a(X) = 0,
b1(X) = 1, andb2(X) = 0; (4) a(X) = 0, b1(X) = 1, andb2(X) > 0. In particular, ifX
is Kähler, thenX is a complex torus. The definitions of Kodaira surfaces, Hopf surfaces,
Inoue surfaces are given in [10], [5], [7] (cf. [1]). However we discuss the structures and the
properties of these non-Kähler surfaces in Sections 2, 6–9 below. The Kodaira surfacesX are
characterized by the conditions:b1(X) is odd andc1(X) = 0 in H 2(X, Q). A Hopf surface is
a compact complex surface whose universal covering space is biholomorphic toC2 \ {(0, 0)}
by definition. A compact complex surface is called a surface of class VII if the first Betti
number is one. If it is minimal, furthermore, it is called a surface of class VII0. Hopf surfaces
and Inoue surfaces are typical examples of surfaces of class VII0 with the algebraic dimension
zero.

The idea of the proof of Theorem 1.1 is as follows: In the first step, we list the possible
surfacesX admitting non-trivial surjective endomorphisms. We can show that, for such anX,
the setS(X) of curves with negative self-intersection number is finite by the same argument
as in [19]. This yields a strong condition onX. For example, it implies that ifX is a non-
algebraic elliptic surface, equivalently ifa(X) = 1, then the singular fibers are multiple of
elliptic curves (cf. Proposition 4.1). Furthermore, by investigating the variation of Hodge
structure, we infer thatX is one of the surfaces listed in (2) of Theorem 1.1 (cf. Theorem 4.5).
The finiteness ofS(X) and some known results on surfaces of class VII0 imply that if X is a
surface of class VII, then its minimal model is one of the known examples (cf. Theorem 5.2).
Thus we can make a list of the possible surfaces.

Conversely, in the second step, we examine whether a non-trivial surjective endomor-
phism exists or not individually for the cases of surfaces listed as candidates. It seems to
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be difficult to determine the existence on Kodaira surfaces, on non-elliptic Hopf surfaces,
and on Inoue surfaces without curves, because oftheir complicated construction from the
universal covering space. We consider a lift of an expected endomorphism to the universal
covering space and examine whether it really induces a non-trivial surjective endomorphism
by elementary but long calculations. In the case of Kodaira surfaces and Inoue surfaces with-
out curves, we can describe the induced endomorphism of the fundamental group explicitly
by using triangular matrices inGL(3, C) (cf. Proposition 6.4, Proposition 8.5). Our method
is delicate and powerful enough for the investigation. For example, we can find a remark-
able condition on the parametert for the existence of an endomorphism on the Inoue surface
S

(+)
N,p,q,r;t . Contrary to the above, in the case of elliptic Hopf surfaces, we look at the behavior

of multiple fibers of the elliptic fibration. If it has three multiple fibers, then it is obtained as
the quotient of an elliptic fiber bundle overP1 by a free action of a regular polyhedral group
G ⊂ PGL(2, C). A G-equivariant endomorphism on the elliptic bundle is constructed by a
method similar to that of Lemma 6 in [19].

This paper is organized as follows: After explaining the classification theory of non-
algebraic surfaces in Section 2, we recall andgeneralize the argument in [19] on the setS(X)

of curves with negative self-intersection number in Section 3. The possible surfacesX are
listed in Section 4 and Section 5, respectively, for the casesa(X) = 1 anda(X) = 0. The
existence of endomorphisms is studied individually in the cases of surfaces in Sections 6, 7, 8,
and 9 for Kodaira surfaces, Hopf surfaces, Inoue surfaces without curves, and Inoue surfaces
with curves.

NOTATION. We denote the ring of integers byZ , the filed of rational numbers byQ ,
the field of real numbers byR , and the field of complex numbers byC , as usual. The complex
projective line is denoted byP1, while the upper half plane{τ ∈ C | Im τ > 0} is denoted by
H . The ring of integral(r × r)-matrices is denoted by Mr (Z).

Throughout this paper, a surface means a compact complex analytic surface while a
curve means a compact complex analytic curve, for short, if there is no fear of confusion.

Let X be a non-singular compact complex surface. Foru ∈ Hi (X, Z), v ∈ H4−i (X, Z),
we denote byu · v the intersection number

∫
u ∪ v, where∪ is the cup-product and

∫
is

the trace mapH4(X, Z) → Z . A divisor D of X defines a homology class inH2(X, Z)

which corresponds to the first Chern classc1(D) = c1(OX(D)) associated with the line
bundleOX(D) by the Poincaré isomorphismH2(X, Z) � H2(X, Z). The intersection number
c1(D1) · c1(D2) of two divisorsD1 andD2 is denoted byD1 · D2. Note thatc1(L) · C =
degL|C for a line bundleL and for an irreducible curveC.

Let f : Y → X be a surjective morphism from another non-singular compact com-
plex surface. It induces the pull-backf ∗ : Hi (X, Z) → Hi (Y, Z) and the push-forward
f∗ : Hi (Y, Z ) → Hi (X, Z). By the Poincaré duality, the push-forward induces a homo-
morphismHi (Y, Z) → Hi (X, Z), which we also denote byf∗. Then the compositef∗ ◦
f ∗ : Hi (X, Z) → Hi (X, Z) is the multiplication map by degf : the mapping degree off .
The projection formulaf∗(f ∗x · y) = x · f∗y holds forx ∈ Hi (X, Z) andy ∈ H4−i (Y, Z).
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For a divisorD on X and a divisorE on Y , we havec1(f ∗D) = f ∗c1(D) andc1(f∗E) =
f∗c1(E), wheref ∗D andf∗E are the pull-back and the push-forward as divisors, respec-
tively.

Contrary to the case of algebraic surfaces, the canonical line bundleωX = Ω2
X may

not have a non-zero global meromorphic section. The divisor of such a meromorphic section
is called canonical and is denoted byKX . Even if the canonical divisor does not exist, we
use the same symbolKX as the canonical divisor class virtually in order to simplify some
formulas such as the canonical bundle formula of elliptic fibration, the adjunction formula,
and the ramification formula. For example, we explain that the arithmetic genuspa(D) =
dimH1(D,OD) for a connected reduced divisorD is calculated by 2pa(D) − 2 = (KX +
D) ·D, which is derived from the adjunction formulaKD ∼ (KX +D)|D .

2. Non-algebraic surfaces. Let X be a non-singular compact complex surface. The
algebraic dimensiona(X) is the transcendence degree of the meromorphic function field of
X overC . Here,a(X) ≤ 1 if and only if X is non-algebraic. Ifa(X) = 1, then the algebraic
reductionπ : X → T is holomorphic and is an elliptic fibration. Moreover any curves onX

are contained in fibers ofπ . If a(X) = 0, then there exist at most finitely many irreducible
curves onX by Theorem 5.1 of [9, I]. We recall the following useful results:

LEMMA 2.1. Suppose that a(X) ≤ 1. Then a line bundle L of X satisfies the following
properties:

(1) c1(L)2 ≤ 0.
(2) If c1(L)2 = 0, then c1(L) · c1(L′) = 0 for any line bundle L′.
(3) If pg (X) = 0 and c1(L)2 = 0, then c1(L) is torsion in H2(X, Z).

PROOF. (1) Suppose thatc1(L)2 > 0. The Riemann-Roch formula forχ(X,L⊗m)

implies thath0(X,L⊗m) or h0(X,L⊗(−m)⊗ωX) increases of orderm2 asm→∞. However
the former case does not occur sinceκ(L, X) ≤ a(X) ≤ 1. Thus there exists a non-zero
effective divisorD such thatOX(D) � ωX ⊗ L⊗(−n) for somen > 0. The exact sequence

0→ H0(X,L⊗(−m+n))→ H0(X, ωX ⊗ L⊗(−m))→ H0(D, ωX ⊗ L⊗(−m)|D)

impliesκ(L−1, X) = 2 contradictingκ(L−1, X) ≤ a(X) ≤ 1.
(2) This is shown by (1) and by the inequalities

0 ≥ (
tc1(L)+ c1(L′))2 = 2tc1(L) · c1(L′)+ c1(L′)2

for rational numberst .
(3) follows from (2), from the surjectivity ofc1 : Pic(X) → H2(X, Z), and from the

non-degeneracy of the intersection pairing onH2(X, Q). �

NOTATION. LetC be an irreducible curve on a non-singular compact complex surface.
(1) If C2 < 0, thenC is called a negative curve.
(2) If C2 = 0, thenC is called a 0-curve.
(3) If C � P1 andC2 = −d < 0, thenC is called a(−d)-curve.
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An exceptional curve of the first kind is just a(−1)-curve. If a(X) ≤ 1, then a non-
negative irreducible curve is a 0-curve withpa = 1 and does not intersect other curves.

REMARK. A relative minimal modelY of X is, by definition, a non-singular compact
complex surface bimeromorphic toX having no(−1)-curves. IfX is non-algebraic, thenY
is unique up to isomorphism. This is shown as follows: Suppose that there exist a bimero-
morphic morphismµ : X→ Y and a(−1)-curveC ⊂ X such thatµ(C) is not a point. Then
µ(C) is a 0-curve withpa(µ(C)) = 1 by Lemma 2.1. Thusµ(C) has a node or a cusp. Let
Y ′ → Y be the blowup at the singular point ofµ(C). Then the self-intersection number of
the proper transform ofµ(C) is less than−1. Sinceµ factors throughY ′ → Y , this is a
contradiction. Thus, we callY the minimal model ofX in the non-algebraic case. Similarly,
a non-algebraic surface without(−1)-curves is called a minimal surface.

If X is a non-Kähler elliptic surface withκ(X) = 0, thenb1(X) = 3 or 1. In the case
b1(X) = 3, the minimal model is the quotient space ofC2 by an affine transformation group
and is called a primary Kodaira surface. In the caseb1(X) = 1, the minimal model has a
primary Kodaira surface as a finite étale covering space and is called a secondary Kodaira
surface.

Let X be a compact complex surface witha(X) = 0. If b1(X) is even, then the minimal
model ofX is either a complex torus or aK3 surface. Ifb1(X) is odd, thenb1(X) = 1.

In the classification theory of compact complex surfaces by Kodaira [10], the class VII is
not completely classified. A compact complex surface belongs to the class VII ifb1(X) = 1.
The class VII0 consists of all the minimal surfaces of class VII. A surfaceX of class VII has
the following invariants:

q(X)− 1= pg (X) = χ(X,OX) = h1,0(X) = 0 , b2(X) = −K2
X ≥ 0 .

Moreover the intersection pairing onH2(X, Q) is negative definite.
A Hopf surface is a surface whose universal covering space is isomorphic toW :=

C2 \ {(0, 0)}, by definition. This is a surface of class VII0 with b2 = 0 containing an elliptic
curve.

The classification of surfaces of class VII0 after Kodaira [10] was started by the discovery
of Inoue surfaces [5], [6], [7]. The Inoue surfacesSM , S

(+)
N,p,q,r;t , S

(−)
N,p,q,r contain no curves

and have the vanishing second Betti number. The surfacesSM were also found by Bombieri
and are called Bombieri-Inoue surfaces. Inoue [5] showed that if a surfaceS of class VII0
contains no curves,b2(S) = 0, and has a line bundleL with H0(S, Ω1

S ⊗ L) �= 0, thenS is
isomorphic to one of the Inoue surfaces above. The last condition on the existence ofL is not
required for the characterization. This was shown by [11], [21] in 1990’s. The other Inoue
surfaces: Parabolic Inoue surfaceXλ,n, Hyperbolic Inoue surfaceX�,N, Half Inoue surface
X̂�,N, are constructed in [7]. These surfaces contain curves and have positive second Betti
numbers. A parabolic Inoue surface is related to Hirzebruch’s cusp singularities and is called
also a Hirzebruch-Inoue surface. Another construction of these Inoue surfaces with curves is
given in [20] by the method of torus embedding theory (cf. Section 9).
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There have been many contributions to the classification of surfaces of class VII0 by
Kato [8], Enoki [2], Nakamura [13], [14], and others. The following surfaces are listed in
Table (10.3) of [13]:

FACT. The surfacesX of class VII0 with a(X) = 0 are classified as follows:
(1) A Hopf surface witha(X) = 0;
(2) A parabolic Inoue surface: It is characterized as a surface containing an elliptic

curve and a cycle of rational curves;
(3) A hyperbolic Inoue surface: It is characterized as a surface containing two cycles

of rational curves;
(4) An exceptional compactification with no elliptic curves (cf. [2]): It is characterized

as a surface containing a cycleD of rational curves withD2 = 0 and containing no elliptic
curves;

(5) A half Inoue surface: It is characterized as a surface containing a cycleD of rational
curves withD2 < 0 andb2(X) = b2(D);

(6) A surface with a cycleD of rational curves withD2 < 0 andb2(X) > b2(D);
(7) A surface with no elliptic curves and with no cycles of rational curves.

Here, a cycle of rational curves means a reduced connected divisorD =∑
Ci satisfying

one of the following conditions:
(1) D is an irreducible rational curve with exactly one node;
(2) Any irreducible componentCi is isomorphic toP1 and intersectsD − Ci trans-

versely at two points.

3. Curves of negative self-intersection number. The argument of this section is al-
most parallel to that of Section 2 of [19], where the algebraic case was discussed.

LEMMA 3.1. A surjective endomorphism f : X→ X is a finite morphism. If κ(X) ≥
0, then f is étale.

PROOF. If an irreducible curveC is contracted to a point byf , thenC2 < 0. Since
f∗ : H2(X, Q)→ H2(X, Q) is isomorphic, no irreducible curve is contracted byf . Hencef
is finite. Suppose thatκ(X) ≥ 0. ThenKX ∼ f ∗KX + R for the ramification divisorR ≥ 0.
ThusKX ∼ f ∗f ∗KX + f ∗R +R. Sincef ∗ : H0(X, mKX)→ H0(X, mKX) is isomorphic,
R + f ∗R + · · · is contained in the fixed part of|mKX|. ThusR = 0. �

LEMMA 3.2. Let f : X→ X be a surjective endomorphism. If C is a negative curve,
then f (C) is also negative and f−1(f (C)) = C.

PROOF. Assume thatf (C) = f (C′) for another irreducible curveC′. Thenaf∗C =
a′f∗C′ for somea, a′ > 0. Hencec1(aC − a′C′) = 0 in H2(X, Q). In particular,C · C′ < 0
and thusC = C′. �

Let f : X → X be a surjective endomorphism of degreed > 1. We consider the set
S(X) of all the negative curves onX. ThenS(X) is preserved byf and the mappingS(X) �
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C �→ f (C) ∈ S(X) is injective. LetR be the ramification divisor off and letS0(X) be the
set of all the negative curves contained in SuppR.

LEMMA 3.3. If C ∈ S(X) \ S0(X), then |C2| > |f (C)2|.
PROOF. There exist natural numbersa, b such thatf∗C = af (C) andf ∗f (C) = bC.

Hereb = 1 sinceC �⊂ SuppR. Thusa = d andaf (C)2 = C2. �

The proof of the following elementary lemma is left to the reader:

LEMMA 3.4. Let S be a set, S0 a finite subset, and let h : S → S be an injection. If

S =
∞⋃

m=1

(hm)−1(S0) ,

then S is finite and hk is the identity for some k > 0, where hm denotes the m-th power
h ◦ h ◦ · · · ◦ h : S → S.

By Lemma 3.3 and Lemma 3.4, we have:

PROPOSITION 3.5. S(X) is a finite set and there is a natural number k with f k(C) =
C for any C ∈ S(X).

We can replacef by the powerf k. Hence we assume in what follows thatf (C) = C

for anyC ∈ S(X). Thenf ∗C = aC andf∗C = aC for a natural numbera > 1 with a2 = d.
Let NX denote the reduced divisor

∑
C∈S(X) C. ThenR = (a − 1)NX + ∆ for an effective

divisor∆ whose irreducible components are not negative curves. In particular

KX +NX = f ∗(KX +NX)+∆ .(3.1)

For any connected reduced curveD ≤ NX , we have

KD + (NX −D)|D = (f |D)∗ (KD + (NX −D)|D)+∆|D .

In particular,pa(D) = h1(D,OD) ≤ 1. If pa(D) = 1, then∆ ∩D = (NX − D) ∩D = ∅.
If pa(D) = 0, then(NX −D) ·D ≤ 2, and if further(NX −D) ·D = 2, then∆ ∩D = ∅.

The induced morphismf |D : D → D is an endomorphism of degreea. Moreover it is
étale outside SingD∪∆|D by the well-known Lemma 3.6 below. In particular,f (SingD) ⊂
SingD ∪∆|D, and∆|D gives the ramification divisor off |D overD \ SingD.

LEMMA 3.6. Let τ : U → V be a finite morphism between non-singular complex
manifolds and let C ⊂ V be a non-singular divisor such that τ is étale outside τ−1C. Then
τ−1C → C is étale.

PROOF. We may assume thatV is ad-dimensional polydisc andC is a hyperplane by
considering the local situation. ThenV \C is isomorphic to the product of the punctured disc
and a(d−1)-dimensional polydisc. In particular, the finite étale coveringU \τ−1C → V \C
is cyclic andU → V is the cyclic covering branched alongC. Henceτ−1C � C. �

A reduced connected divisorD is called a straight chain of rational curves ifD =∑l
i=1 Ci for irreducible curvesCi � P1 such that
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(1) Ci · Cj = 0 for |i − j | ≥ 2,
(2) Ci · Cj = 1 for |i − j | = 1.

LEMMA 3.7. A negative curve C is either an elliptic curve, a rational curve with ex-
actly one node, or a smooth rational curve. A reducible connected component of NX is a
straight chain of rational curves or a cycle of rational curves.

PROOF. If pa(D) = 1 for a connected reduced curveD ≤ NX, thenKD = (f |D)∗KD

andf |D : D→ D is étale outside SingD. Thus no rational curves with cusps are negative. If
a negative curveC1 intersects another negativeC2 at one point not transversely, thenpa(C1+
C2) = 1. This contradicts the property: no étale covering exists overC1 \ C2 � C . If three
negative curvesC1, C2, C3 intersect transversely asC1∩C2 = C2∩C3 = C3∩C1 = {P } for
a pointP , thenpa(C1 + C2 + C3) = 1. This contradicts the same property as above. These
observations tell us that a reducible connected componentD is a straight chain of rational
curves or a cycle of rational curves. �

Suppose thatX contains a(−1)-curveC. Let X→ X1 be the blowing down ofC. Then
an endomorphism ofX1 is induced sincef−1C = C. Therefore, an endomorphism is induced
on a relative minimal model ofX.

4. The case of elliptic surfaces. Let X be a non-singular compact complex surface
admitting a non-trivial surjective endomorphism. Assume thata(X) = 1. Letπ : X→ T be
the algebraic reduction which is an elliptic fibration onto a non-singular projective curve. A
non-trivial surjective endomorphismf induces a surjective endomorphismh of T such that
h ◦ π = π ◦ f .

PROPOSITION 4.1. In this situation, X is a minimal elliptic surface with e(X) = 0.

PROOF. The set of all the irreducible components of the reducible fibers coincides with
S(X). A 0-curve is the support of an irreducible fiber. We may assume thatf−1C = C for
negative curvesC for the endomorphismf .

Step 1. We may assume thatf−1C = C for any rational curveC.
We have to consider only rational 0-curvesC. If C′ is an irreducible component of

f−1C, thenC′ is not negative andC′ → C is étale outside SingC by Lemma 3.6. IfC is a
rational curve with a cusp, thenC′ � C. If C is a rational curve with a node, thenC′ also has
a node sincef is branched along the normal crossing divisor around the node. The number
of rational 0-curves is finite. Hencef−1C is irreducible and(f k)−1C = C for somek > 0.

Step 2. X contains no curves with cusps.
Suppose that there exist an irreducible curveC with a cusp and setP = π(C). Note that

C = π∗P is a singular fiber of type II. By the argument of Step 1, we infer thatf ∗C = dC

for d = degf . Henceh∗P = dP . In particular, degh = d. If D is a connected component of
NX, thenD = π−1P ′′ andh∗P ′′ = dP ′′ = aP ′′ for a2 = d. ThusNX = 0. In particular,π
is a minimal elliptic fibration with only irreducible fibers. IfC′ = π−1(P ′) is another rational
0-curve, thenh∗P ′ = dP ′ sincef−1C′ = C′. Considering the ramification formula forh,
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we infer thatT � P1 and there exist at most two rational curves onX. If C is the unique
rational curve, thenπ is smooth outsideP and the locally constant sheafR1π∗ZX|C\P is
trivial. The local monodromy corresponding to a singular fiber of type II is of order 6 in
SL(2, Z). This is a contradiction. Hence there is another rational 0-curveC′ = π−1(P ′). If
C′ has a node, thenJ (P ′) = ∞ for theJ -function associated withπ . However,π is smooth
overT \ {P, P ′} � C \ {0}. Thus the period function is constant, a contradiction. Hence there
remains the case in whichC′ has a cusp. LetU andU ′ respectively be open discs with centers
P andP ′. A positive generator ofπ1(U \ {P }) � Z corresponds to a negative generator of
π1(U ′ \ {P ′}) by the isomorphisms

π1(U \ {P })→ π1(T \ {P, P ′})← π1(U ′ \ {P ′}) .

Thus the condition thatC is of type II implies thatC′ is of type II∗, a contradiction.
Step 3. X contains no rational curves.
Assume the contrary. By Step 1,f ∗C = (degh)C for any rational curveC on X. If

degh = 1, thenNX = 0 andf is étale alongf−1C for a rational 0-curveC. Here, the
mapping degree off−1C → C is degf . However, there exists only one point inf−1C over
the node ofC. This is a contradiction. Consequently, degh ≥ 2. By the same argument as in
Step 2, we infer thatT � P1 and that the number of singular fibers supported on a union of
rational curves is at most 2. Then the period map ofπ is constant. Hence no singular fibers of
typemIb with b > 0 appear on the relative minimal model ofπ : X → T . Therefore,X has
no rational curves.

As a result,π is minimal and a singular fiber is a multiple of an elliptic curve. �

The elliptic fibrationπ : X → T above defines a variation of Hodge structureH of
weight one onT since the local monodromies around the image of singular fibers are trivial.
Here, we haveR1π∗QX � H ⊗ Q (cf. Lemma 5.4.4 of [18]). Here,H0(T , H) �= 0 implies
H � Z⊕2

T by Corollary 4.2.5 of [18] (cf. Theorem 11.7 of [9, III]). From Leray’s exact
sequence

0→ H1(T , Q)→ H1(X, Q)→ H0(T , H ⊗ Q)→ H2(T , Q)→ H2(X, Q) ,

we infer thatb1(X) is odd if and only ifH is trivial andH2(T , Q) → H2(X, Q) is zero.
If b1(X) is even, thenX is Kähler by Miyaoka [12]. LetL be the invertible sheafR1π∗OX.
ThenL is isomorphic to the graded piece Gr0 for the Hodge filtration onH⊗OT andπ∗ωX �
ωT ⊗ L−1. Moreover,L⊗12 � OX. Theng(T ) ≤ q(X) = g(T )+ h0(T ,L) ≤ g(T ) + 1 by
the exact sequence

0→ H1(T ,OT )→ H1(X,OX)→ H0(T ,L)→ 0 .

Hencepg (X) = g(T )−1+h0(T ,L) by χ(X,OX) = 0. If h0(T ,L) = 0, thenh0(T , H) = 0,
b1(X) = 2g(T ), andX is Kähler. If h0(T ,L) �= 0, or equivalently,L � OT , then the
Weierstrass model [15] associated withH is isomorphic to the product of an elliptic curve
andT , and henceH is trivial.

LEMMA 4.2. The induced endomorphism h : T → T is not the identity.
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PROOF. Assume the contrary. Thenf is an endomorphism overT . Let Σ be the set
of pointsP ∈ T such thatπ∗P is a multiple fiber. LetmP be the multiplicity ofπ∗P . Then
we have a finite ramified coveringτ : Z → T such thatτ ∗P = mP (τ ∗P)red for P ∈ Σ and
g(Z) ≥ 2. Then the normalization ofX ×T Z is smooth overZ and admits a non-trivial
surjective endomorphism. Thus we may assume from the beginning thatπ is smooth and
g(T ) ≥ 2. By considering the étale cyclic covering given byL⊗k � OT , we may also assume
thatL � OT and hence the variation of Hodge structureH is trivial. Let E be the elliptic
curve isomorphic to a fiber ofπ . We fix a point 0∈ E and give a group structure onE whose
zero is 0. LetOT (E) be the sheaf of germs of holomorphic mappings fromT to E. Then we
have an exact sequence

0→ H � Z⊕2
T → OT → OT (E)→ 0 .

There is an elementη ∈ H 1(T ,OT (E)) such thatπ is obtained as the torsor ofE × T over
T defined byη. The endomorphismf induces an endomorphismf∗ : H → H of variation of
Hodge structures which corresponds to

H 1(π−1(P ), Z) � H1(π
−1(P ), Z)

f∗−→ H1(π
−1(P ), Z) � H 1(π−1(P ), Z) ,

where the edge isomorphisms are the Poincaré duals. The induced endomorphismf∗ : E →
E fixing 0 is the multiplication by a complex numberλ. If we identify E to be the quotient
of C by the latticeLθ = Zθ + Z for someθ ∈ H , thenλLθ ⊂ Lθ . Hence 1�= λ ∈ Z , or
Q(λ) is an imaginary quadratic field. In the latter case,t = λ + λ̄ andd = |λ|2 are integers
with 1− t + d �= 0. The cohomology classη satisfiesλ∗η = η. Hence(λ − 1)η = 0 or
(1 − t + d)η = 0. Thusη is torsion, which implies thatπ is projective. This contradicts
a(X) = 1. �

COROLLARY 4.3. g(T ) ≤ 1. If g(T ) = 1, then π is smooth.

PROOF. If g(T ) ≥ 2, thenhk = idT for somek > 0. If g(T ) = 1 and if there
exists a multiple fiberF = π−1(P ), thenπ−1(Q) is also multiple for anyQ ∈ h−1(P ),
sinceh : T → T is étale. Thush is isomorphic andhk fixes P for somek > 0 since the
set of multiple fibers is finite. Hencehkl is the identity for somel > 0, since the group of
automorphisms ofT fixing P is finite. �

LEMMA 4.4. Let π : X → T be an elliptic surface of class VII 0. Then T � P1 and
singular fibers are multiple of elliptic curves. In particular, KX ∼Q π∗(KT + Θ) for an
effective Q-divisor Θ =∑

(1−m−1
i )Pi on T , where mi is the multiplicity of the fiber π∗Pi .

Furthermore the following assertions hold:
(1) If degΘ > 2, then any surjective endomorphism of X is isomorphic.
(2) If degΘ = 2, then X is a secondary Kodaira surface.
(3) If degΘ < 2, then X is an elliptic Hopf surface.

PROOF. T is rational byb1(T ) ≤ b1(X) = 1. The variation of Hodge structure is trivial
sincee(X) = 0 andπ1(T ) = {1}. LetΣ = {P1, P2, . . . } be the set of pointsP such thatπ∗P
is a multiple fiber. Thenπ∗Pi = miCi for an elliptic curveCi andmi ≥ 2. We assume that
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m1 ≤ m2 ≤ · · ·. Then

KX ∼ π∗KT +
∑

(mi − 1)Ci ∼Q π∗(KT +Θ) , for Θ =
∑ (

1− 1

mi

)
Pi .

In particular,κ(X) = 1, 0,−∞ according as degΘ > 2,= 2, < 2.
Suppose thatκ(X) = 1. Let f be a surjective endomorphism ofX andh the induced

endomorphism ofT with π ◦ f = h ◦ π . Thenf is étale by Lemma 3.1. ThusKX ∼ f ∗KX

implies thatKT +Θ ∼Q h∗(KT +Θ). Thush is an automorphism keeping the setΣ which
consists of at least three points. Hence some powerhk is the identity andf is isomorphic by
Lemma 4.2.

Suppose thatκ(X) = 0. Then(m1, m2, . . . ) is one of the following:

(2, 2, 2, 2) , (2, 3, 6) , (2, 4, 4) , (3, 3, 3) .

In each case, there is a cyclic coveringτ : A → T from an elliptic curve such thatτ ∗Pi =
mi(τ

∗Pi)red for anyi and thatτ is étale outsideΣ. Moreover, for a suitable choice of group
structure ofA, a generator of the Galois group ofτ is given as the multiplication mapz �→ αz

by a primitive rootα of unity of order 2, 6, 4, 3 according as(2, 2, 2, 2), (2, 3, 6), (2, 4, 4),
(3, 3, 3) above. The normalizationY of the fiber productX ×T A is smooth overA and étale
overX. HenceY is a primary Kodaira surface andX is secondary.

Finally suppose that degΘ < 2. If Σ �= ∅, then(m1, m2, . . . ) is one of the following:

(m1) , (m1, m2) , (2, 2, m3) , (2, 3, 3) , (2, 3, 4) , (2, 3, 5) .

If �Σ ≤ 2, thenX is a Hopf surface by Lemma 8 of [10] (cf. Fact 7.2 below). If�Σ = 3, then
there is a finite Galois coveringτ : Γ → T from a non-singular rational curveΓ such that
τ ∗Pi = mi(τ

∗Pi)red for anyi and thatτ is étale outsideΣ. Moreover,τ is isomorphic to the
quotient morphism by the standard action of the following regular polyhedral group contained
in Aut(Γ ) according to(2, 2, n), (2, 3, 3), (2, 3, 4), (2, 3, 5): the dihedral groupDn of order
2n, the tetrahedral groupA4, the octahedral groupS4, and the icosahedral groupA5. The
normalizationY of the fiber productX ×T Γ is smooth overΓ and étale overX. HenceX is
also a Hopf surface since so isY . �

THEOREM 4.5. Let X be a non-singular compact complex surface admitting a non-
trivial surjective endomorphism. If a(X) = 1, then X is a complex torus, a primary Kodaira
surface, a secondary Kodaira surface or an elliptic Hopf surface.

PROOF. Assume thatg(T ) = 1. If H is not trivial, thenX is Kähler andpg(X) = 0.
This implies thatX is projective, a contradiction. HenceH is trivial. ThusωX � OX and
3 ≤ b1(X) ≤ 4. If b1(X) = 4, thenX is a complex torus. Ifb1(X) = 3, thenX is a primary
Kodaira surface.

Next assume thatg(T ) = 0. ThenL � OT andH is trivial. In particular,pg (X) = 0
andq(X) = 1. ThusX is a surface of class VII0. It is a Hopf surface or a secondary Kodaira
surface by Lemma 4.4. �
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Appendix to Section 4. The existence of non-trivial surjective endomorphisms on an
algebraic surfaceX with κ(X) = 1, e(X) = 0 is proved in Proposition 3.3 of [3] by using the
∂-étale cohomology theory developed in [18]. Here, we shall give a more geometric proof.

Let π : X → T be the elliptic fibration obtained as the Iitaka fibration. LetΣ be the
set of pointsP ∈ T such thatπ∗P is a multiple fiber of multiplicitymP ≥ 2. ThenKX ∼Q

π∗(KT +Θ) for theQ -divisorΘ =∑
P∈Σ(1−m−1

P )P as in Lemma 4.4. Note that deg(KT +
Θ) > 0 by κ(X) = 1. By applying Theorem 4.2 of [16], we have a finite Galois covering
Z → T such that the normalizationY of X ×T Z is isomorphic to the productC × Z over
Z for an elliptic curveC and is étale overX. We considerC as the torusC/L for the lattice
L = Zτ + Z with Im τ > 0. We denote by[x] the image ofx ∈ C underC → C. Let G be
the Galois group. Then the induced action ofg ∈ G onY � C × Z is written as

([x], z) �→ ([agx] + bg(z), g · z)

for someag ∈ C� and some holomorphic mappingbg : Z → C. Here,{ag} gives rise to a
homomorphismG→ C� andL is aG-submodule ofC . In particular, the complex torusC is
aG-module. The set Hom(Z, C) of holomorphic mapsϕ : Z→ C also has a rightG-module
structure byϕg(z) = a−1

g ϕ(g · z). By the relationagbh(z)+ bg(h · z) = bgh(z) for g, h ∈ G,

we infer that{a−1
g bg } defines an element ofH 1(G, Hom(Z, C)). Since the cohomology group

is torsion, there exist a positive integern and a holomorphic mappingc : Z→ C such that

na−1
g bg(z) = c(z)− a−1

g c(g · z)

for anyg ∈ G. The endomorphismC × Z→ C × Z given by

([x], z) �→ ((n+ 1)[x] + c(z), z)

commutes with the action ofG on C × Z. Thus it induces a non-trivial surjective endomor-
phism onX.

5. The case of algebraic dimension zero. Let X be a non-singular compact complex
surface ofa(X) = 0 admitting a non-trivial surjective endomorphism. Suppose thatX is
Kähler. Thenκ(X) = 0. Thus the endomorphism is étale and henceX admits no negative
curves. HenceX is minimal and is a complex torus. A complex torus admits a non-trivial
surjective endomorphism as the multiplication map by an integer greater than 1.

Thus we assume thatX is non-Kähler. ThenX belongs to the class VII. We have(KX +
NX)2 = 0 by (3.1). Thuspa(D) = 1 for any connected componentD of NX. Moreover,
K2

X = N2
X =

∑
D2

λ for the decompositionNX =∑
Dλ into the connected components.

LEMMA 5.1. If D is a reduced divisor with (KX + D) · D = 0, then D has at most
two connected components.

PROOF. Sincea(X) = 0, we haveh0(X,OX(KX + D)) = h2(X,OX(−D)) ≤ 1.
Henceh1(X,OX(−D)) ≤ 1 by (KX +D) ·D = 0. The exact sequence

0→ H0(X,OX)→ H0(X,OD)→ H1(X,OX(−D))

impliesh0(D,OD) ≤ 2. �
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THEOREM 5.2. Let X be a non-Kähler surface of a(X) = 0 admitting a non-trivial
surjective endomorphism. Then the minimal model of X is one of the following surfaces: a
parabolic Inoue surface; a hyperbolic Inoue surface; a half Inoue surface; a Hopf surface;
an Inoue surface with no curves. Moreover, X is obtained from the minimal model by a
succession of blowups whose centers are nodes of curves.

PROOF. One of the following cases occurs by Lemma 5.1:
Case 1. NX has two connected components;
Case 2. NX is connected;
Case 3. X contains a 0-curve but no negative curves;
Case 4. X contains no curves.
Let Y be the minimal model ofX and letµ : X→ Y be the contraction morphism. Then the
endomorphism ofX descends toY andNY ≤ µ∗NX .

Case 1. Any curve onX is contained inNX by Lemma 5.1. Thusf ∗(KX + NX) ∼
KX + NX. We haveh2(X,OX(−NX)) = 1 by the exact sequence

H1(X,OX)→ H1(NX,ONX )→ H2(X,OX(−NX))→ H2(X,OX) = 0 .

ThusKX + NX ∼ E for an effective divisorE. Heref ∗E = E. Therefore,E = 0, equiva-
lently, KX + NX ∼ 0. LetD1 andD2 be the two connected components ofµ∗NX ∼ −KY .
Thenpa(Di) = 1 for i = 1, 2. By Lemma (2.11) of [13],D1 is an elliptic curve if and only
if D2

2 = 0. Hence, ifD2
2 = 0, thenD2

1 < 0. Otherwise,D1 andD2 are both elliptic curves
andµ∗NX has no nodes, which implies thatµ is isomorphic andNX = 0, a contradiction.
Therefore ifD2

1 = 0 orD2
2 = 0, thenY is a parabolic Inoue surface by Theorem (7.1) of [13]

(cf. (7.12) of [13], [2]). IfD2
1 < 0 andD2

2 < 0, thenNY = µ∗NX andY is a hyperbolic Inoue
surface by Theorem (8.1) of [13]. In both cases,µ : X → Y is a successive blowups whose
centers are nodes.

Case 2. Suppose that there is a curveC not contained inNX. Then any curve onX
is contained inC ∪ NX. The contractionµ : X → Y is isomorphic alongC. SinceC2 = 0,
we see thatµ∗NX is an elliptic curve andC is a rational curve with a node by Lemma (2.11)
of [13]. Thenµ is isomorphic andX is a parabolic Inoue surface ofb2 = 1 by [2] or by
Theorem (7.1) of [13].

Next suppose that any curve onX is contained inNX . Thenf ∗(KX+NX) ∼ KX+NX.
Moreover,f induces a finite étale endomorphism on the complementU = X\NX . Therefore,
e(U) = 0. Thuse(X) = e(NX). If NX is an elliptic curve, then−N2

X = −K2
X = e(X) = 0,

a contradiction. ThusNX is a cycle of rational curves. Here,e(X) = e(NX) is equivalent to
b2(X) = b2(NX). Thusb2(Y ) = b2(µ∗NX). If NY �= 0, thenNY = µ∗NX andY is a half
Inoue surface by [13]. IfNY = 0, thenµ∗NX is a rational curve with a node. This case does
not occur by the argument in Case 3 below. Therefore,X is obtained as a successive blowups
of a half Inoue surface whose centers are nodes.

Case 3. We haveb2(X) = e(X) = −K2
X = −(KX +NX)2 = 0. By Lemma (2.11) of

[13], one of the following three possibilities remains:
(1) X contains two elliptic curves;
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(2) X contains an elliptic curve as a unique curve;
(3) X contains a rational curve with a node as a unique curve;

For the complementU of the union of all the curves onX, we havee(U) = 0 sincef induces
a finite étale endomorphism onU . Hence the case (3) does not occur bye(X \U) = 0. In the
cases (1), (2),X is a Hopf surface by Lemma 8 of [10].

Case 4. Sinceb2(X) = −K2
X = 0, X is one of the Inoue surfaces without curves by

[5], [11], [21]. �

6. Kodaira surfaces. A primary Kodaira surfaceX is defined as a surface withKX ∼
0, b1(X) = 3. The algebraic reductionπ : X → T is an elliptic fibration over an elliptic
curveT . This is smooth bye(X) = 0 andKX ∼ 0. Moreover the associated variation of
Hodge structureH is trivial sinceπ∗ωX/T � L−1 � OT . For a fiberE, we fix a point 0
and give an abelian group structure onE with 0 being the identity. Then as in the proof of
Lemma 4.2,X � (E × T )η as a torsor corresponding to someη ∈ H1(T ,OT (E)), where
OT (E) is the sheaf of germs of holomorphic mappings fromT to E. The image ofη under
H1(T ,OT (E))→ H2(T , H) = H2(T , Z2) is not zero, sinceX is non-Kähler.

Let Lτ denote the latticeZτ + Z ⊂ C for τ ∈ H . We fix τ , θ ∈ H and isomorphisms
T � C/Lτ , E � C/Lθ . Forc ∈ Lθ andδ ∈ C , let us consider the following automorphisms
of C × E:

g1 : (z, [ζ ]) �→ (z+ τ, [ζ + cz+ δ]) , and g2 : (z, [ζ ]) �→ (z+ 1, [ζ ]) ,

where[ζ ] denotesζ mod Lθ . The quotient space ofC × E with respect tog1 and g2 is
denoted byXc,δ. Let π : Xc,δ → T denote the induced smooth elliptic fibration from the first
projectionC × E→ C .

LEMMA 6.1. A primary Kodaira surface is isomorphic to Xc,δ for some c �= 0 and δ.

PROOF. We have an isomorphism

H1(T ,OT (E)) � H1(Lτ , H0(C,O(E)))

by the Hochschild-Serre spectral sequence for the universal covering mapC → T . Thus the
cohomology classη is represented by a cocycle{xu = xu(z)} of holomorphic functions onC
for u ∈ Lτ such thatxu+v(z) ≡ xv(z) + xu(z + v) mod Lθ . Here,X is isomorphic to the
quotient space ofC × E with respect to the following action ofu ∈ Lτ :

(z, [ζ ]) �→ (z+ u, [ζ + xu(z)]) .

Thus we shall find a simple form ofxu(z) up to coboundary. Note that{xu} is determined only
by x1 andxτ which satisfy

xτ (z+ 1)− xτ (z) ≡ x1(z+ τ )− x1(z) mod Lθ .(6.1)

We know that dimH1(T ,OT ) = 1 andH1(T , C) → H1(T ,OT ) is surjective. The
homomorphism is isomorphic toH1(Lτ , C) → H1(Lτ , H0(C ,O)). Hence, for a cocycle
{yu(z)} of holomorphic functions onC satisfyingyu+v(z) = yv(z) + yu(z + v), there exist
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constantsc1, c2, and a holomorphic functionh(z) such thaty1(z) = c2 + h(z + 1) − h(z),
yτ (z) = c1+ h(z + τ )− h(z). Sincec2(z+ 1)− c2z = c2, we may assumec2 = 0.

Applying the observation above to(d/dz)xu, we have constantsc, δ and a holomorphic
functionφ(z) such thatxτ (z) = cz+δ+φ(z+τ )−φ(z) andx1(z) = φ(z+1)−φ(z). The con-
dition (6.1) is equivalent toc ∈ Lθ . HenceX � Xc,δ. The homomorphismH1(T ,O(E))→
H2(T , H) is isomorphic to

H1(Lτ , H0(C,O(E)))→ H2(Lτ , Lθ ) � Lθ ,

which sendsη to c. Hencec �= 0. �

DEFINITION 6.2. (1) For three complex numbersx1, x2, x3, letT (x1, x2, x3) denote
the matrix 

 1 0 0
x1 1 0
x3 x2 1


 .

The matrices of this form form a subgroup ofGL(3, C), which is denoted byT3(C).
(2) LetD : C2× C2→ C be the skew symmetric form defined by

D((x1, x2), (x ′1, x ′2)) = x1x
′
2− x ′1x2 .

(3) Let∆3(C) be the following group structure on(ξ, y) ∈ C2× C:

(ξ, y) ∗ (ξ ′, y ′) := (ξ + ξ ′, y + y ′ − (1/2)D(ξ, ξ ′)) .

Note that thel-th power(ξ, y)l is equal to(lξ, ly) for l ∈ Z , (ξ, y) ∈ ∆3(C). There is
an isomorphismT3(C)→ ∆3(C) given by

T (x1, x2, x3) �→ ((x1, x2), x3− (1/2)x1x2) .(6.2)

We have a homomorphismπ1(Xc,δ)→ T3(C) by

g1 �→ T (τ, c, δ) , g2 �→ T (1, 0, 0) , g3 �→ T (0, 0, θ) , g4 �→ T (0, 0, 1) ,

whereg3 andg4 come fromπ1(E) and correspond to the following automorphisms ofC:

g3 : ζ �→ ζ + θ , and g4 : ζ �→ ζ + 1 .

Therefore the compositeπ1(Xc,δ)→ ∆3(C) is written as

g l1
1 g l2

2 g l3
3 g l4

4 �→ ((l1τ + l2, l1c), l1ε + (1/2)l1l2c + l3θ + l4), where ε := δ − (1/2)cτ .

DEFINITION 6.3. (1) For a free abelian groupL of finite rank and forc ∈ L, let
L[c/2] denotes the abelian groupL+ Z(c/2) ⊂ L⊗ Q .

(2) LetDτ : Lτ × Lτ → Z be the skew symmetric form defined by

Dτ (m1τ +m2, m′1τ +m′2) = m1m
′
2−m′1m2 ,

that is,

Dτ (x, y) = 1

τ − τ̄
(xȳ − x̄y) = Im(xȳ)

Im τ
.



410 Y. FUJIMOTO AND N. NAKAYAMA

(3) Forc ∈ Lθ , let Πc be the following group defined onLτ × Lθ [c/2]:
(x, y) ∗ (x ′, y ′) := (x + x ′, y + y ′ + (c/2)Dτ (x, x ′)) .

Note thatDτ (x, 1) = Im x/ Im τ andx = Dτ (x, 1)τ −Dτ (x, τ ) for x ∈ Lτ .
We have homomorphismsΠc → ∆3(C) andπ1(Xc,δ)→ Πc, respectively, by

(x, y) �→ ((x, Dτ (x, 1)c), y +Dτ (x, 1)ε) , and

g l1
1 g l2

2 g l3
3 g l4

4 �→ (l1τ + l2, l3θ + l4+ (1/2)l1l2c) .

Then we have a commutative diagram

π1(Xc,δ) −−→ Πc�
�

T3(C)
�−−→ ∆3(C) .

The image of the injectionπ1(Xc,δ) ↪→ Πc consists of all the elements(x, y) such that
y + (c/2)Dτ (x, 1)Dτ (x, τ ) ∈ Lθ . In particular,Πc is generated byπ1(Xc,δ) and(0, c/2).
The groupΠc acts onC × C by

(z, ζ ) �→ (z+ x, ζ +Dτ (x, 1)cz+ y +Dτ (x, 1)(ε + (1/2)cx))

for (x, y) ∈ Πc.

PROPOSITION 6.4. Let f : Xc,δ → Xc,δ be a surjective endomorphism and let h : T →
T be the induced endomorphism with π ◦ f = h ◦ π . Suppose that

h∗ : H0(T , ΘT )→ H0(T , ΘT )

is the multiplication by α ∈ C with αLτ ⊂ Lτ . Then f is induced from the automorphism

Φα,v : (z, ζ ) �→ (αz + (1/c)(α − 1)ε, |α|2ζ + ϕα,v(z))

of C × C for a holomorphic function

ϕα,v(z) = αDτ (α, 1)

(
c

2
z2+ εz

)
+ v ,

for v ∈ C .

PROOF. A lift Φ of f to C × C is written as(z, ζ ) �→ (αz + β, F (z, ζ )) for a holo-
morphic functionF(z, ζ ) and for a constantβ. Here,F(z, ζ ) = ρζ +ϕ(z) for a holomorphic
functionϕ(z) and a constantρ sinceF(z, ζ ) mod Lθ depends only onζ mod Lθ . The en-
domorphismf∗ : π1(Xc,δ) → π1(Xc,δ) is induced fromg �→ Φ ◦ g ◦ Φ−1 and lifts to an
endomorphism ofΠc. The image of(x, y) ∈ Πc is (αx, y1) for somey1 ∈ Lθ [c/2] in which
the following equality holds:

ρ(Dτ (x, 1)cz+ y +Dτ (x, 1)(ε + (1/2)cx))+ ϕ(z+ x)

= ϕ(z)+Dτ (αx, 1)c(αz+ β)+ y1+Dτ (αx, 1)(ε + (1/2)cαx) .
(6.3)



COMPACT COMPLEX SURFACES ADMITTING ENDOMORPHISMS 411

By using Im(αx) = x Im α + ᾱ Im x, we haveDτ (αx, 1) = xDτ (α, 1)+ ᾱDτ (x, 1), and

ϕ(z+ x)− ϕ(z) =(Dτ (α, 1)αx +Dτ (x, 1)(|α|2− ρ))cz+ y1− ρy

+ (c/2)Dτ (α, 1)αx2 +Dτ (α, 1)(cβ + ε)x

+Dτ (x, 1)(ᾱcβ + (ᾱ − ρ)ε)+ (cx/2)Dτ (x, 1)(|α|2− ρ) .

Hence ϕ′′(z) is a constant equal toDτ (α, 1)cα and ρ = |α|2. If we write ϕ(z) =
(cα/2)Dτ (α, 1)z2+ uz+ v for constantsu, v, then

ux = Dτ (α, 1)(cβ + ε)x +Dτ (x, 1)ᾱ(cβ + (1− α)ε)+ y1− |α|2y .

Therefore,cβ = (α − 1)ε andu = Dτ (α, 1)αε. �

THEOREM 6.5. Any primary Kodaira surface and any secondary Kodaira surface ad-
mit a non-trivial surjective endomorphism.

PROOF. For the primary Kodaira surfaceXc,δ, the morphismΦl,0 for l > 1 induces a
non-trivial surjective endomorphism of degreel6. LetY be a secondary Kodaira surface. Then
by Lemma 4.4, there is a cyclic étale coveringXc,δ → Y for somec, δ. Then a generator of
the cyclic group acts onXc,δ asΦα,v for a rootα of unity and for somev ∈ C . We may
assumeα = exp(2π

√−1/k), wherek = 2, 3, 4, or 6. The order ofΦα,v is justk. If k > 2,
thenτ ∈ SL(2, Z)α for the fractionally linear action onH . Hence, we may assumeα = τ if
k > 2. Forl ∈ Z , we definev[l] by Φl

α,v = Φαl,v[l]. Then

v[l] = lv + αDτ (α, 1)
ε2

2c

(
− l +

l−1∑
i=0

α2i

)

for l ≥ 0. In fact, the termv3 in the formulaΦα1,v1 ◦Φα2,v2 = Φα1α2,v3 is calculated as

v3 = v1 + |α1|2v2 + α1Dτ (α1, 1)
α2

2 − 1

2c
ε2 .

If k = 2, thenv[2] = 2v ∈ Lθ . If k > 2, thenτ = α impliesDτ (α, 1) = 1 and

v[k] = k

(
v − αε2

2c

)
∈ Lθ .

Let l be an integer withl > 1 andl2 ≡ 1 modk. Then, forw1 andw2 defined byΦl,0 ◦
Φα,v = Φlα,w1 andΦα,v ◦Φl,0 = Φlα,w2, we have

w2−w1 =
(

v + αDτ (α, 1)
l2 − 1

2c
ε2

)
− l2v = − l2− 1

k
v[k] ∈ Lθ .

HenceΦl,0 induces a non-trivial surjective endomorphism on the quotient spaceY . �

7. Hopf surfaces. In this section, we shall prove the following:

THEOREM 7.1. A Hopf surface admits a non-trivial surjective endomorphism if and
only if it has at least two elliptic curves.
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We setW to be the open setC2 \ {(0, 0)} and(z1, z2) to be a coordinate system ofC2. A
Hopf surface is a compact complex surface whose universal covering space is biholomorphic
to W by definition. We write the function exp(2π

√−1z) as e(z).
First, we treat the case of elliptic Hopf surfaces with at most two singular fibers.
Let m1, m2, n be positive integers such that gcd(m1, m2) = gcd(n, m1) = gcd(n, m2) =

1 and letτ be a complex number inH . Let Y = Y (τ, m1, m2, n) be the quotient space ofW

with respect to the following two actions:

A : (z1, z2) �→ (α1z1, α2z2) , B : (z1, z2) �→ (ε1z1, ε2z2) ,

whereαi = e(miτ ), εi = e(mi/n), for i = 1, 2. ThenY is an elliptic Hopf surface overP1

and smooth overP1 \ {0,∞} by the morphism(z1, z2) �→ (z
m2
1 : zm1

2 ). The multiplicities of
the fibers over 0= (1 : 0) and∞ = (0 : 1) arem1 andm2, respectively. Conversely, we
know the following result due to Kodaira (cf. Lemma 8 of [10, II]):

FACT 7.2. LetY → P1 be an elliptic Hopf surface smooth outside{0,∞}. Letm1 and
m2 be the multiplicities of the fibers over 0 and∞, respectively. Suppose that gcd(m1, m2) =
1. ThenY � Y (τ, m1, m2, n) for someτ andn.

In particular, ifY → P1 is smooth, thenY � Y (τ, 1, 1, n), which is obtained by the
actions

A : (z1, z2) �→ ρ(z1, z2) = (ρz1, ρz2) , B : (z1, z2) �→ e(1/n)(z1, z2) ,

for ρ = e(τ ). We writeY (τ, 1, 1, n) by Y (ρ, n).

PROPOSITION 7.3. Let π : X → T be an elliptic Hopf surface with at most two sin-
gular fibers. Then X admits a non-trivial surjective endomorphism.

PROOF. We may assume thatπ is smooth outside{0,∞} ⊂ P1 = T . Let m1 andm2

be the multiplicities of the fibers over 0 and∞, respectively. LetΓ = P1 → T = P1 be
the cyclic covering of degreek = gcd(m1, m2) branched at{0,∞}. Then the normalization
Y of X ×T Γ is an elliptic Hopf surface étale overX. Moreover,Y � Y (τ, m1/k, m2/k, n)

for someτ andn by Fact 7.2. A generator of the cyclic Galois group acts onΓ = P1 by
(t1 : t2) �→ (t1 : e(1/k)t2). This lifts to an automorphism ofW written as

C : (z1, z2) �→ (u(z1, z2)m1z1, u(z1, z2)m2 e(l/m1) e(1/km1)z2)

for a unit functionu : C2→ C� and for an integerl. We shall show thatu is constant. Since
it induces an automorphism ofY , there is an integerq such that

u(αz1, αz2)m1α1 = e(m1/n)qα±1 u(z1, z2)m1 ,

u(αz1, αz2)m2α2 = e(m2/n)qα±2 u(z1, z2)m2 ,

for any(z1, z2) ∈ W . Substituting(z1, z2) = (0, 0), we have

u(αz1, αz2) = e(q/n)u(z1, z2) .
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Thenu is constant by

|u(z)| = lim
p→∞ |u(αpz1, αpz2)| = |u(0, 0)| .

Let Φ : (z1, z2) �→ (zd
1, zd

2) be an endomorphism ofW for d > 1. ThenΦ ◦ A = Ad ◦ Φ,
Φ◦B = Bd ◦Φ, andΦ◦C = Cd ◦Φ. HenceΦ induces non-trivial surjective endomorphisms
onY and onX. �

Secondly, we treat the case of elliptic Hopf surfaces with at least three multiple fibers.
Let G ⊂ PGL(2, C) � Aut(P1) be a finite subgroup and let̃G ⊂ SL(2, C) be the pull-back
by SL(2, C) → PGL(2, C). We denote byA(g) the matrix inSL(2, C) corresponding to
g ∈ G̃. We also denote by 1 the unit element ofG̃ and by−1 the element corresponding to
the minus of the unit matrix. Note thatG is a cyclic group or one of the regular polyhedral
groups. We chooseτ ∈ H such thatρ = e(τ ). Let χi : G̃ → C� be group homomorphisms
(characters) fori = 0, 1. Let us chooseψi(g) ∈ Q satisfying e(ψi(g)) = χi(g). We define

ϕ(g) := e(ψ1(g)τ + ψ0(g)(1/m)) .

An action ofG̃ onY (ρ, m) is well-defined by the maps

(z1, z2) �→ ϕ(g)(z1, z2) tA(g)

for g ∈ G̃. Thus, an extensioñGm,χ of the finite groupG̃ by Z ⊕ Z/mZ acts onW . The
action ofg ∈ G̃ on Y (ρ, m) has a fixed point if and only ifϕ(g)ρk e(i/m) is an eigenvalue
of A(g) for somek andi. Equivalently,χ1(g) = 1 andχ0(g) is an eigenvalue ofA(g)m. In
particular,g = −1 acts trivially onY (ρ, m) if and only if

(χ1(−1), χ0(−1)) = (1, (−1)m) .(7.1)

We assume this equality to hold forχ1 andχ0. ThenG acts onY (ρ, m) and the imageGm,χ

of the homomorphism̃Gm,χ → GL(2, C) given by the action onW is an extension ofG by
Z ⊕ Z/mZ . We also assume that the action ofG onY (ρ, m) is free. This is equivalent to:

χ1(g) �= 1 or χ0(g) is not an eigenvalue ofA(gm)(7.2)

for g ∈ G̃ \ {±1}. Then the quotient spaceX(ρ, m, G, χ) := G\Y (ρ, m) = Gm,χ\W is an
elliptic Hopf surface overG\P1.

LEMMA 7.4. Let X be a Hopf surface with an elliptic fibration X → T that has at
least three singular fibers. Then X is obtained as the free quotient X(ρ, m, G, χ) above for
some ρ, m, G, χ .

PROOF. Let π : X → T be the elliptic fibration. By the argument in the proof of
Lemma 4.4, there is a Galois coveringτ : P1 � Γ → T such that the normalizationY of
X ×T Γ is smooth overΓ and étale overX. ThenY � Y (ρ, m) for someρ andm by
Fact 7.2. The universal covering mapW → X is the composite ofW → Y andY → X. The
action ofG onΓ lifts to that onY . Forg ∈ G̃, a lift of the action ofg onY to W is written as

z = (z1, z2) �→ u(z, g) · (z1, z2) tA(g)
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for a holomorphic functionu : W × G̃ → C�. The description of the universal covering
mapW → Y = Y (ρ, m) implies that, forg, there existk, i ∈ Z such thatu(ρz, g) =
ρk e(i/m)u(z, g). Sinceu extends asC2× G̃→ C�, we haveρk e(i/m) = 1 by substituting
z = (0, 0). Therefore,u descends toW/〈ρ〉×G̃→ C�, which is constant by the compactness
of the quotientW/〈ρ〉. Hence we may writeu(g) = u(z, g) ∈ C�. Therefore, for anyg1, g2,
there existk andi with u(g1g2) = ρk e(i/m)u(g1)u(g2). Henceu(g) = ϕ(g) above for some
charactersχ1 andχ0. ThusX is isomorphic to the quotient space ofW by Gm,χ , and the
action ofGm,χ is free since so is the action ofG onY . �

LEMMA 7.5. X(ρ, m, G, χ) admits a non-trivial surjective endomorphism if there ex-
ists a G̃-semi-invariant homogeneous polynomial H(z1, z2) of degree d > 2 such that

(1) H(z1, z2) has only simple zeros over P1,
(2) χ1(g)d−2 = δ(g)mχ0(g)d−2 = 1 for the character δ determined by

H((z1, z2) tA(g)) = δ(g)H(z1, z2) .

PROOF. (cf. [19]) We setF1(z1, z2) := −∂H(z1, z2)/∂z2 andF2(z1, z2) := ∂H(z1, z2)/

∂z1. Then the morphismΦ : W � (z1, z2) �→ (F1(z1, z2), F2(z1, z2)) ∈ W is well-defined
and

(F1((z1, z2) tA(g)), F2((z1, z2) tA(g))) = δ(g) (F1(z1, z2), F2(z1, z2)) tA(g)

for anyg. ThusΦ is Gm,χ -equivariant by the condition (2). HenceΦ induces a non-trivial
surjective endomorphism ofX(ρ, m, G, χ), sinceΦ induces an endomorphism ofP1 of de-
greed − 1 > 1. �

PROPOSITION 7.6. The elliptic Hopf surface X(ρ, m, G, χ) admits non-trivial sur-
jective endomorphisms.

PROOF. If G is a cyclic group of ordern, thenG̃ is conjugate to the cyclic group gen-
erated by

A =
(

e(1/2n) 0
0 e(−1/2n)

)

in SL(2, C). Then the elliptic surfaceX(ρ, m, G, χ)→ G\P1 has at most two singular fibers.
Hence the existence of non-trivial surjective endomorphisms onX(ρ, m, G, χ) for a cyclic
groupG follows from Proposition 7.3.

Thus we assume thatG is not cyclic. It is enough to constructH satisfying the condition
of Lemma 7.5 in the following cases:(2, 2, n), (2, 3, 3), (2, 3, 4), (2, 3, 5).

Case (2, 2, n): G is the dihedral groupDn of order 2n ≥ 4. We may assume that̃G is
generated by

Q := √−1

(
0 1
1 0

)
and A :=

(
e(1/2n) 0

0 e(−1/2n)

)

in SL(2, C). ThenQ2 = An = −1 andQAQ−1 = A−1. In particular,A2 ∈ [G̃, G̃]. Thus
G̃/[G̃, G̃] is isomorphic toZ/4Z for n odd and toZ/2Z ⊕ Z/2Z for n even.
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If n is even, thenm is even by (7.1) sinceQ2 = −1.
Let us consider the homogeneous polynomial

H(z1, z2) = z2n
1 − z2n

2

of degreed = 2n. This has only simple zeros overP1 and isG̃-invariant forn odd andG̃-
semi-invariant forn even. Note thatd−2 is even and moreoverd−2= 2(n−1) ≡ 0 mod 4
for n odd. ThusH satisfies the condition of Lemma 7.5, sinceχd−2

1 = χd−2
0 = δm = 1.

Case (2, 3, 3): G is the tetrahedral group isomorphic to the alternating groupA4. We
may assume that̃G is generated by

A =
(√−1 0

0 −√−1

)
and B = 1√

2
e(1/8)

(
1
√−1

1 −√−1

)
,

where we regard
√−1 as e(1/4). ThenA2 = B3 = −1 and(AB)3 = 1. Here,G̃/[G̃, G̃] �

Z/3Z . In particular,χ3
1 = χ3

0 = 1. Let us consider the homogeneous polynomial

H(z1, z2) = z8
1 + z8

2+ 14z4
1z

4
2

of degreed = 8. Then this has only simple zeros overP1 and isG̃-invariant. ThusH satisfies
the condition of Lemma 7.5, sinced − 2≡ 0 mod 3.

Case (2, 3, 4): G is the octahedral group isomorphic to the symmetric groupS4. We
may assume that̃G is generated by

A =
(

e(1/8) 0
0 e(−1/8)

)
and B = 1√

2
e(1/8)

(
1
√−1

1 −√−1

)
.

ThenA4 = B3 = (AB)2 = −1. Here,G̃/[G̃, G̃] � Z/2Z . In particular, the square of any
character is trivial. Herem is even by (7.1) sinceA4 = −1. Let us consider the homogeneous
polynomial

H(z1, z2) = z1z2(z4
1 − z4

2)

of degreed = 6. Then this has only simple zeros overP1 and isG̃-semi-invariant. ThusH
satisfies the condition of Lemma 7.5, sincem andd − 2 are even.

Case (2, 3, 5): G is the icosahedral group isomorphic to the alternating groupA5. We
may assume that̃G is generated by

A = −
(

β−2 0
0 β2

)
and B = 1√

5

(−(β − β−1) β2− β−2

β2− β−2 β − β−1

)
,

whereβ = e(1/5). ThenA5 = B2 = −1 and(AB)3 = 1. Here,G̃ has no non-trivial
characters. Hence thẽG-invariant polynomial

H(z1, z2) = z1z2(z
10
1 + 11z1z2− z10

2 )

satisfies the condition of Lemma 7.5. �



416 Y. FUJIMOTO AND N. NAKAYAMA

Finally, we treat the case of non-elliptic Hopf surfaces. By Theorem 32 of [10, II], a
non-elliptic Hopf surfaceX is obtained as the quotient ofW with respect to the following
action ofZ ⊕ Z/lZ : A generator ofZ acts as

(z1, z2) �→ (α1z1+ λzm
2 , α2z2) ,

wherem is a positive integer,α1, α2, λ are complex numbers with 0< |α1| ≤ |α2| < 1 and
(α1 − αm

2 )λ = 0. If λ = 0, thenα
p

1 �= α
q

2 for any positive integersp, q; A generatorZ/lZ
acts as

(z1, z2) �→ (ε1z1, ε2z2)

for primitive l-th rootsε1, ε2 of unity with (ε1− εm
2 )λ = 0.

The equationz2 = 0 defines an elliptic curve onX. If λ �= 0, then it is a unique curve
of X. If λ = 0, then the equationz1 = 0 defines another elliptic curve and there are no other
curves contained inX.

If λ = 0, then(z1, z2) �→ (zd
1, zd

2) for d > 1 gives a non-trivial surjective endomorphism
of X. Therefore, the proof of Theorem 7.1 is reduced to the following:

PROPOSITION 7.7. If λ �= 0, then X admits no non-trivial surjective endomorphisms.

PROOF. We writeα = α2 andε = ε2. Thenα1 = αm, ε1 = εm, and(k, j) ∈ Z⊕Z/lZ
acts onW by

ϕk,j : (z1, z2) �→ (εjm(αkmz1+ kλα(k−1)mzm
2 ), εj αkz2) .

Note thatϕk,j for k > 0 is acontraction (cf. Section 10 of [10, II]) in the sense thatϕn
k,j (B)

converges to(0, 0) for n→+∞ for the ballB = {|z1|2+ |z2|2 ≤ 1}. Suppose that there is a
surjective endomorphismf : X→ X. Let Φ : W → W be a lift, which is written as

Φ : (z1, z2) �→ (F (z1, z2), G(z1, z2))

for holomorphic functionsF , G defined onC2. Here,Φ ◦ ϕ1,0 = ϕp,q ◦Φ for some integers
p andq. Hence the following functional equations hold:

F(αmz1+ λzm
2 , αz2) = εqm(αpmF(z1, z2)+ pλα(p−1)mG(z1, z2)m) ,(7.3)

G(αmz1+ λzm
2 , αz2) = εqαpG(z1, z2) .(7.4)

Here, we havep > 0 by (7.4); otherwise,

|G(z1, z2)| = |α−pkG(ϕk,0(z1, z2))| → 0 as k→ +∞
for p < 0 andG(z1, z2) is constant forp = 0. Moreover,F(0, 0) = G(0, 0) = 0 by

Φ ◦ ϕk,0(z1, z2) = ϕk
p,q ◦Φ(z1, z2)→ Φ(0, 0) = (0, 0) as k→+∞ .

We insert here the following:

LEMMA 7.8. Let G(z1, z2) be an entire holomorphic function satisfying (7.4). Then
G(z1, z2) = cz

p

2 for a constant c. If c �= 0, then εq = 1.
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PROOF. We follow the argument of Kodaira in the proof of Theorem 31 of [10, II]. We
may assume thatG is not identically zero. We setG(ν)(z1, z2) := ∂νG(z1, z2)/∂zν

1 for ν ≥ 1.
Then

αmν−pε−qG(ν)(ϕ1,0(z1, z2)) = G(ν)(z1, z2)

by (7.4). Ifmν > p, thenG(ν)(z1, z2) ≡ 0 by

G(ν)(z1, z2) = αk(mν−p)ε−qkG(ν)(ϕk,0(z1, z2))→ 0 for k→ +∞ .

Hence we can write

G(z1, z2) =
N∑

i=0

Gi(z2)zi
1

for entire holomorphic functionsGi(z2) and for an integer 0≤ N ≤ p/m such thatGN is
not identically zero. Comparing the coefficients ofzi

1 on both sides of (7.4), we have

εqαpGi(z2) = αmi

N∑
l=i

(
l

i

)
Gl(αz2)λl−i z

m(l−i)
2 ,(7.5)

for 0 ≤ i ≤ N . In particular,GN(αz2) = εqαp−mN GN(z2). Henceεq = 1, andGN(z2) =
cz

p−mN
2 for a constantc �= 0. Suppose thatN �= 0. By (7.5) in the casei = N − 1, we have:

αpGN−1(z2) = αm(N−1)GN−1(αz2)+ cNλαp−mz
p−mN+m

2 .(7.6)

Comparing the coefficients ofzk−mN+m
2 on both sides of equation (7.6), we derive a contra-

diction toN �= 0. Therefore,N = 0 andG(z1, z2) = cz
p
2 for somec �= 0. �

PROOF OFPROPOSITION7.7 (continued). We haveεq = 1 andG(z1, z2) = cz
p

2 for a
constantc �= 0 by Lemma 7.8. Thus the equation (7.3) is written as

F(αmz1+ λzm
2 , αz2) = αpmF(z1, z2)+ pλα(p−1)mcmz

pm
2 .(7.7)

Hence,F(1) := ∂F/∂z1 satisfies a functional equation

F(1)(α
mz1+ λzm

2 , αz2) = α(p−1)mF(1)(z1, z2)

similar to (7.4). ThusF(1)(z1, z2) = c1z
(p−1)m

2 for a constantc1 by Lemma 7.8. Then

F(z1, z2) = c1z1z
(p−1)m

2 +H(z2) for a holomorphic functionH(z2). By (7.7), we have

c1λα(p−1)mz
pm

2 +H(αz2) = αpmH(z2)+ pλα(p−1)mcmz
pm

2

and henceH(z2) = δz
pm

2 for a constantδ andc1 = pcm. Thus we obtain:

F(z1, z2) = pcmz1z
(p−1)m

2 + δz
pm

2 , G(z1, z2) = cz
p

2 .

If p ≥ 2, thenF(z1, 0) ≡ G(z1, 0) ≡ 0, which contradicts the assumption thatF andG have
no common zeros except(z1, z2) = (0, 0). Hencep = 1 and

F(z1, z2) = cmz1 + δzm
2 , G(z1, z2) = cz2

for constantsc �= 0 andδ. Thus the endomorphismf : X→ X is an isomorphism. �
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8. Inoue surfaces without curves. In the paper [5], Inoue constructed examples of
compact complex surfaces of class VII0 with b2 = 0 having no curves. These are called Inoue
surfaces and are denoted bySM , S

(+)
N,p,q,r;t , andS

(−)
N,p,q,r . Moreover Inoue showed in the same

paper that if there is an invertible sheafL satisfying

H0(S, Ω1
S ⊗ L) �= 0

on a surfaceS with b1(S) − 1 = b2(S) = 0 having no curves, thenS is one of the surfaces
above. By the works [11], [21], we can remove the assumption on the existence ofL above;
These Inoue surfaces are characterized as the surfaces withb1 = 1, b2 = 0 having no curves.

LEMMA 8.1. Let f : X → X be an étale endomorphism of a surface of class VII 0

with κ(X) = −∞. Then f ∗ : H1(X, Z)→ H1(X, Z) is the identity.

PROOF. Assume the contrary. Thenf ∗ is the multiplication map by an integerd �= 1.
We have the isomorphismH1(X, C�) � H1(X,O�

X) from the exponential sequence onX.
ThusKX ∼ f ∗KX implies thatOX((d − 1)mKX) � OX for the orderm of the torsion part
of H1(X, Z). In particular,κ(X) = 0, a contradiction. �

The Inoue surfaceSM is defined as follows: LetM be a matrix inSL(3, Z) with eigenval-
uesα, β, β̄ such thatα > 1 andβ �∈ R . Here,α �∈ Q . Let t(a1, a2, a3) be a real eigenvector
with α as the eigenvalue and lett(b1, b2, b3) be an eigenvector withβ as the eigenvalue. Then
three vectors(a1, b1), (a2, b2), (a3, b3) areR -linearly independent and satisfy

(αai, βbi) =
3∑

j=1

mij (aj , bj ) , where M = (mij ) ∈ SL(3, Z) .

Let GM be the group of automorphisms ofH × C generated by

g0 : (w, z) �→ (αw, βz) ,

gi : (w, z) �→ (w + ai, z + bi) for i = 1, 2, 3 .

The action ofGM onH ×C is properly discontinuous and free. The surfaceSM is defined as
the quotient surfaceGM\(H × C). The generatorsgi satisfy the following relations:

gigj = gjgi , g0gig−1
0 = gmi1

1 gmi2
2 gmi3

3 , for 1≤ i, j ≤ 3.

PROPOSITION 8.2. The Inoue surface SM admits a non-trivial surjective endomor-
phism.

PROOF. Let Φ be the automorphism ofH × C given by (w, z) �→ (nw, nz) for an
integern > 1. ThenΦ ◦ g0 = g0 ◦ Φ andΦ ◦ gi = gn

i ◦ Φ for 1 ≤ i ≤ 3. Thus an
endomorphismf : SM → SM is defined byΦ. Heref∗ : π1(SM)→ π1(SM) is isomorphic to
the homomorphismGM → GM given byGM � g �→ Φ ◦ g ◦Φ−1. Thusf is non-trivial. �

The Inoue surfaceS(+)
N,p,q,r;t is defined for a matrixN in SL(2, Z) with n := tr N > 2, for

integersp, q, r with r �= 0, and for a complex numbert as follows: Letα be an eigenvalue
with α > 1. Let a = t(a1, a2) andb = t(b1, b2) be non-zero real column vectors such
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thatNa = αa andNb = α−1b. Note thatai andbi are non-zero anda2/a1 andb2/b1 are
irrational. We setθ := det(a, b) = a1b2− a2b1. For a pair(l1, l2) of integers, we set

e(l1, l2) := l1(l1− 1)

2
b1a1+ l2(l2− 1)

2
b2a2+ l1l2b1a2 .

We definee1 := e(n11, n12) ande2 := e(n21, n22) for the matrixN = (nij ). We also define a
real column vectorc = t(c1, c2) by

(N − I)c + t(e1, e2)− (θ/r) t(p, q) = 0 ,(8.1)

whereI denotes the unit matrix. LetG(+) = G
(+)
N,p,q,r;t be the group of automorphisms of

H × C generated by

g0 : (w, z) �→ (αw, z + t) ,

gi : (w, z) �→ (w + ai, z+ biw + ci) for i = 1, 2 ,

g3 : (w, z) �→ (w, z − θ/r) .

Theng3 commutes withgi for 0≤ i ≤ 2. Moreover, we have:

g1g2 = g2g1gr
3 , g0g1g−1

0 = gn11
1 gn12

2 gp

3 , g0g2g−1
0 = gn21

1 gn22
2 gq

3 .(8.2)

These relations determine the group structure ofG(+). The subgroupΓ = Γ
(+)
r ⊂ G(+)

generated byg1, g2, andg3 is normal and the quotientG(+)/Γ is a free abelian group of
rank one generated by the class ofg0. The center ofG(+) is generated byg3 and contains
[Γ, Γ ]. The quotient group ofΓ by the center is a free abelian group of rank two generated
by the classes ofg1 andg2. The action ofG(+) on H × C is properly discontinuous and
free. The surfaceS(+)

N,p,q,r;t is defined as the quotient space. More precisely, we denote it by

S
(+)
N,p,q,r;t (a, b).

DEFINITION 8.3. (1) LetT3 denote the subgroup ofT3(C) consisting ofT (x1, x2, x3)

with xi ∈ R .
(2) Let∆3 denote the subgroup of∆3(C) consisting of((x1, x2), y) with x1, x2, y ∈ R .
(3) LetD : Z2× Z2→ Z be the skew symmetric form defined by

D((l1, l2), (l′1, l′2)) := l1l′2− l2l
′
1 ,

that is,

D(ξ, ξ ′) = det( tξ, tξ ′)

for row vectorsξ , ξ ′ ∈ Z2.
(4) For an integerr �= 0, let Z[r/2] = Z + Z(r/2) ⊂ Q and letΓr be the following

group structure defined onZ2 × Z[r/2]:
(ξ, y) ∗ (ξ ′, y ′) := (ξ + ξ ′, y + y ′ + (r/2)D(ξ, ξ ′)) .

An element ofΓr is denoted by(ξ, y) for a row vectorξ ∈ Z2 andy ∈ Z[r/2].
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The groupT3 acts on(w, z) ∈ H × C by the multiplication map

T (x1, x2, x3) t(1, w, z) = t(1, w + x1, z + x2w + x3) .

The group homomorphismΓ = Γ
(+)
r → T3 given by

g1 �→ T (a1, b1, c1) , g2 �→ T (a2 , b2, c2) , g3 �→ T (0, 0,−θ/r)

is compatible with the actions onH ×C . The homomorphism is written explicitly as follows:

g l1
1 g l2

2 g l3
3 �→ T ((l1, l2)a, (l1, l2)b, (l1, l2)c − (θ/r)l3+ e(l1, l2)) ,

where(l1, l2)a = l1a1 + l2a2, (l1, l2)b = l1b1 + l2b2, and (l1, l2)c = l1c1 + l2c2. An
isomorphismT3→ ∆3 is induced from (6.2). There is a homomorphismΓ → Γr given by

g l1
1 g l2

2 g l3
3 �→ ((l1, l2), l3+ (r/2)l1l2).

Then an element((l1, l2), λ) ∈ Γr comes fromΓ if and only if λ − (r/2)l1l2 ∈ Z . There is
also a homomorphismΓr → ∆3 given by

(ξ, y) �→ (ξ(a, b), ξc′ − (θ/r)y) , where c′ := c − (1/2) t(a1b1, a2b2) .

Then we infer that the diagram

Γ −−→ Γr�
�

T3
�−−→ ∆3

of injective homomorphisms is commutative. The actiong0 on H × C corresponds to the
matrix

A =

1 0 0

0 α 0
t 0 1


 .(8.3)

For the choice ofc, the relation (8.1) corresponds to the second and third equalities in (8.2).
This is also equivalent to

(N − I)c′ = (θ/r)p′ , where p′ = t(p + (r/2)n11n12, q + (r/2)n21n22) .(8.4)

In particular,G(+) is isomorphic to the subgroup ofGL(3, C) generated by the image of
Γ → GL(3, R)→ GL(3, C) and by the matrixA.

LEMMA 8.4. (1) An endomorphism ϕ of Γr , i.e., a group homomorphism ϕ : Γr →
Γr , is written as

Γr � (ξ, y) �→ ϕ(ξ, y) = (ξM, ξv + (detM)y)

for an integral (2× 2)-matrix M and a column vector v ∈ Z[r/2]2.
(2) The semigroup End(Γr) of endomorphisms of Γr is anti-isomorphic to the following

semigroup structure on M2(Z)× Z[r/2]2:

(M1, v1) � (M2, v2) = (M1M2, M1 · v2+ (detM2)v1),

where M2(Z) denotes the ring of integral (2× 2)-matrices.
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(3) An endomorphism of Γ lifts to Γr . A pair (M, v) ∈ M2(Z) × Z[r/2]2 is induced
from an endomorphism of Γ if and only if v1− (r/2)m11m12, v2− (r/2)m21m22 ∈ Z , where
M = (mij ), v = t(v1, v2).

(4) The automorphism γ �→ g0γ g−1
0 of Γ corresponds to (N, p′).

(5) An endomorphism of G(+) inducing the identity on G(+)/Γ is given by an endo-
morphism (M, v) of Γ and by integers l1, l2, l3 satisfying

MN = NM, and (M − (detM)I)p′ − (N − I)v = rM t(l2,−l1),(8.5)

where g0 is mapped to g0g
l1
1 g l2

2 g l3
3 .

PROOF. For an endomorphismϕ of Γr , we attachM = (mij ) andv = t(v1, v2) by

ϕ((1, 0), 0) = ((1, 0)M, v1) and ϕ((0, 1), 0) = ((0, 1)M, v2) .

Then (1) and (2) follow from simple calculations. For (3), it is enough to show that the endo-
morphism lifts. This is becauseΓr is generated byΓ and an element((0, 0), r/2) commuting
with Γ . (4) follows from the relations (8.2). Letρ be the endomorphism of (5) and letϕ be
the induced endomorphism ofΓ . Thenρ(g0) = g0η for someΓ � η = g l1

1 g l2
2 g l3

3 . Let ι(η)

denote the automorphismγ �→ ηγ η−1 for γ ∈ Γ and letν denote another automorphism
γ �→ g0γ g−1

0 . Thenρ mapsg0γ g−1
0 = ν(γ ) to g0ηϕ(γ )η−1g−1

0 = ϕ(ν(γ )). Therefore,

ν ◦ ι(η) ◦ ϕ = ϕ ◦ ν .(8.6)

Conversely, if the relation (8.6) holds, thenι(η) andϕ define an endomorphismρ on G(+).
Let (M, v) ∈ M2(Z)×Z [r/2]2 correspond toϕ. We infer that(I, r t(−l2, l1)) corresponds to
ι(η) by (8.2). Thus (8.6) is equivalent to (8.5). �

PROPOSITION 8.5. Let f : X→ X be a surjective endomorphism of the surface X =
S

(+)
N,p,q,r;t (a, b). Then f is induced from the automorphism

Φ : (w, z) �→
(

cw − α

α − 1
(l1, l2)a, (detM)z+ c

α − 1
((l1, l2)b)w + δ

)
,

for a matrix M ∈ M2(Z) with a positive eigenvalue c, and for integers l1, l2, and a complex
number δ, in which the following conditions are satisfied:

(1) detM �= 0, MN = NM, and

(detM − 1)t + θ

2(n− 2)
(l1, l2)N

(
l2
−l1

)
− (l1, l2)c′ + (θ/2)l1l2 ∈ (θ/r)Z .

(2) Let v = t(v1, v2) be the solution of the equation

(M − (detM)I)p′ − (N − I)v = rM

(
l2
−l1

)
.

Then vi − (r/2)mi1m12 ∈ Z for i = 1, 2,where M = (mij ).
Conversely, if M and (l1, l2) satisfy the conditions (1), (2), then the automorphism Φ

above induces an endomorphism on X of degree (detM)2.
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PROOF. The spaceH0(X, ΘX) of global holomorphic vector fields onX is one-
dimensional and is generated by the vector field∂/∂z by Proposition 3 of [5]. Let

Φ : H × C � (w, z) �→ (Φ1(w, z), Φ2(w, z)) ∈ H × C

be a lift of the endomorphismf for some holomorphic functionsΦi . The lift is an automor-
phism sincef is étale. Note thatΦ1 depends only onw since any holomorphic mapping
C → H is constant. ThusΦ1 = F(w) for a holomorphic functionF on H . The formula
Φ∗(∂/∂z) = ∂Φ2/∂z(∂/∂z) implies thatΦ2 = εz + G(w) for a constantε �= 0 and a holo-
morphic functionG onH .

The injective endomorphismf∗ : π1(X)→ π1(X) is given byπ1(X) � g �→ Φ◦g◦Φ−1.
This defines an element(M, v) ∈ M2(Z)× Z[r/2]2 and integersl1, l2, l3 by Lemma 8.1 and
Lemma 8.4. Here the condition (8.5) is satisfied andvi − (r/2)mi1mi2 ∈ Z for i = 1, 2, for
M = (mij ) andv = t(v1, v2). Note that(ξ, y) ∈ Γr acts on∈ H × C by

(w, z) �→ (w + ξa, z + (ξb)w + ξc′ − (θ/r)y + (1/2)(ξa)(ξb)) .

HenceΦ ◦ (ξ, y) ◦Φ−1 = (ξM, ξv + (detM)y) is equivalent to:

F(w + ξa) = F(w)+ ξMa, and(8.7)

ε((ξb)w + ξc′ − (θ/r)y + (1/2)(ξa)(ξb))+G(w + ξa)−G(w)

= (ξMb)F (w)+ ξMc′ − (θ/r)(ξv + (detM)y)+ (1/2)(ξMa)(ξMb) .
(8.8)

Similarly, Φ ◦ g0 ◦Φ−1 = g0g
l1
1 g l2

2 g l3
3 is equivalent to:

F(αw) = α(F (w) + ζa) , and(8.9)

(ε − 1)t +G(αw) −G(w) = (ζb)F (w)+ ζ c′ − (θ/r)l′ + (1/2)(ζa)(ζb) ,(8.10)

whereζ = (l1, l2) andl′ := l3+ (r/2)l1l2. ThenF ′(w) has two periodsa1, a2 by (8.7). Since
a1/a2 is irrational,Za1 + Za2 ⊂ R is dense, which implies thatF ′(w) is constant. Then
G′′(w) has also periodsa1, a2 by (8.8) and henceG′′(w) is constant. MoreoverG′′(w) = 0
by (8.10). We can write

F(w) = cw − α

α − 1
(l1, l2)a

for a constantc with Ma = ca by (8.7) and (8.9). Note thatc > 0 since ImF(w) = c Im w >

0. Letc� be the conjugate of the algebraic integerc overQ . ThenMb = c�b. Similarly from
(8.10) and (8.8), we have

G(w) = c

α − 1
((l1, l2)b)w + δ , cMb = εb

for someδ ∈ C . Thusε = cc� = detM. We note that

θ = a2b2

n21
(α − α−1) ,

1

2
− α

α − 1
= − α + 1

2(α − 1)
= − 1

2(n− 2)
(α − α−1) ,

((l1, l2)a)((l1, l2)b) = a2b2

n21
(l1, l2)N

(
l2
−l1

)
.
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Thus (8.10) is written as

(detM − 1)t = (1/2− α/(α − 1))(ζa)(ζb)+ ζ c′ − (θ/r)l′

= − θ

2(n− 2)
(l1, l2)N

(
l2
−l1

)
− (l1, l2)c′ − (θ/2)l1l2− (θ/r)l3 .

Hence the conditions (1) and (2) required forM and(l1, l2) are satisfied. Conversely, suppose
that the conditions are satisfied. The condition (8.8) for any(ξ, y) ∈ Γr is equivalent to

(M − (detM)I)c′ = c

α − 1
((l1, l2)b)a + αc�

α − 1
((l1, l2)a)b + (θ/r)v .

By (8.4) and (8.5), it is also equivalent to

θM

(
l2
−l1

)
= c((l1, l2)b)a − c�((l1, l2)a)b .

In other words,Z t(l2,−l1) = 0 for the matrix

Z := θM − ca(b2,−b1)+ c�b(a2,−a1) .

However,Za = Zb = 0 by direct calculation. HenceZ = 0. Therefore,Φπ1(X)Φ−1 ⊂
π1(X) for the automorphismΦ. Thus an endomorphism ofX is induced. �

THEOREM 8.6. S
(+)
N,p,q,r;t (a, b) admits a non-trivial surjective endomorphism if and

only if t ∈ Qθ , where θ = det(a, b).

PROOF. If the endomorphism exists, thent ∈ Qθ by Proposition 8.5, (1). Conversely
suppose thatt ∈ Qθ . We consider a matrixM = (mij ) = kN + I for an even integerk > 0.
ThenM has a positive eigenvaluec = kα + 1 and detM = k2 + kn + 1 > 1. It is enough
to show that,M satisfies the conditions (1) and (2) of Proposition 8.5 for(l1, l2) = (0, 0) for
somek > 0. By assumption,

(detM − 1)t = k(k + n)t ∈ Z(θ/r)

for somek. Let v be the solution of(M − (detM)I)p′ = (N − I)v. Sincem11m12 =
k(kn11+ 1)n12 andm21m22 = kn21(kn22+ 1) are even, we have only to show thatv ∈ Z2.
We note that(N − I)−1 = (2− n)−1(N−1− I) andM − (detM)I = k(N − (k+ n)I). Thus
if k is divisible byn− 2, thenv ∈ Z2. �

The Inoue surfaceS(−)
M,p,q,r is defined in [5, §4] for a matrixM ∈ M2(Z) with detM =

−1, trM > 0 and for integersp, q, r �= 0. The surfaceS(−) = S
(−)
M,p,q,r has an Inoue surface

S(+) = S
(+)
N,p1,q1,r;0 as an unramified double covering forN = M2 and for suitable integers

p1, q1. The involution ofS(+) generating the Galois group is induced fromΨ : (w, z) �→
(βw,−z) for the positive eigenvalue

√
α = β of M.

THEOREM 8.7. S
(−)
M,p,q,r admits a non-trivial surjective endomorphism.

PROOF. We consider an endomorphism ofS(+) given by

Φ : (w, z) �→ ((kα + 1)w, (k2+ kn+ 1)z)
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for a suitable integerk > 0 as in Theorem 8.6. ThenΨ ◦ Φ = Φ ◦ Ψ . ThusΦ also gives a
non-trivial surjective endomorphism ofS(−). �

9. Inoue surfaces with curves. A parabolic Inoue surface, a hyperbolic Inoue sur-
face, and a half Inoue surface are the first examples of surfacesX of class VII0 with a(X) = 0,
b2(X) > 0. Descriptions different from those in [7]of these surfaces are given in [20] by the
theory of toric varieties.

A parabolic Inoue surfaceXλ,n for a complex numberλ with 0 < |λ| < 1 and for a
positive integern is given as the quotient space of a toric varietyTN(Σ) with respect to an
automorphismgn

λ of infinite order which are defined as follows:N is a free abelian group of
rank two with basise1, e2 and the fanΣ consists of the cones

{0} , R≥0e2 , R≥0(e1+ νe2) , R≥0(e1+ νe2)+ R≥0(e1+ (ν − 1)e2)

for all ν ∈ Z . Let gλ be the automorphism of the open orbitTN = N⊗ C� given by

(z, z′) �→ (λz, zz′) ,

where(z, z′) ∈ (C�)2 corresponds toz ⊗ e1 + z′ ⊗ e2. Thengλ extends holomorphically to
an automorphism ofTN(Σ). Note thatgn

λ is given by

(z, z′) �→ (λnz, λn(n−1)/2znz′) .

The surfaceXλ,n is of class VII0 with b2(X) = n. It contains an elliptic curveE with
E2 = −n and a cycleD of rational curves consisting ofn irreducible components with
D2 = 0. Here,E is the quotient curve of the orbit corresponding toR≥0e2 and an irreducible
component ofD is the quotient of the orbit corresponding toR≥0(e1+ νe2) for someν.

PROPOSITION 9.1. Parabolic Inoue surfaces Xλ,n admit non-trivial surjective endo-
morphisms.

PROOF. For an integerk > 1, lethk be the following endomorphism ofTN:

(z, z′) �→ (zk, zk(k−1)/2z′k
2
) .

Thenhk extends to an endomorphism ofTN(Σ) andgk
λ ◦ hk = hk ◦ gλ. Thushk induces a

non-trivial surjective endomorphism onXλ,n. �

A hyperbolic Inoue surfaceX�,N and a half Inoue surfacêX�,N are defined as follows
for a real quadratic fieldK and for a free abelian subgroupN ⊂ K of rank two generatingK
overQ : Let K⊗Q R → R2 be the isomorphism given byξ �→ (ξ, ξ�) for ξ ∈ K and for the
conjugateξ� overQ . We set

ΓN = {u ∈ O×
�
| u > 0, uN = N} and Γ +N = {u ∈ ΓN | u� > 0} ,

whereO×
�

is the unit group of the ringO� of integers ofK. ThenΓN � Z andΓ +N is a
subgroup of index at most two. LetΘN andΘ ′N be the convex hulls ofN ∩ (R>0 × R>0)
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andN ∩ (R>0 × R<0), respectively. LetΣN be the fan ofN⊗ R = R2 corresponding to the
decomposition ofR>0× (R \ {0}) into sectors by rays joining 0 and a point of

N ∩ (
∂ΘN ∪ ∂Θ ′N

)
.

ThenΓ +N acts on the toric varietyTN(Σ) by u×: N→ N. If Γ +N is of index two inΓN, then
ΓN also acts on the toric variety. LetMcN(Σ) be the topological quotient space ofTN(Σ)

by the compact torusN ⊗ U(1) ⊂ TN = N ⊗ C�, whereU(1) = {z ∈ C ; |z| = 1}. Let
ordN : TN(Σ) → McN(Σ) be the quotient map. Its restriction toTN is described as the
composite

ordN : N⊗ C� id⊗|·|−−−→ N⊗ R>0
id⊗(− log)−−−−−−→� N⊗ R ,

in which the first arrow is induced from the norm mapz �→ |z| and the second from 0< r �→
− logr. Let VN be the pull-back by ordN of the open subset

(R>0× R) ∪ (McN(Σ) \ N⊗ R) .

Then the hyperbolic Inoue surfaceX�,N is defined as the quotient spaceΓ +N \VN. The half

Inoue surfacêX�,N is defined in the case[ΓN : Γ +N ] = 2 as the quotient spaceΓN\VN.

PROPOSITION 9.2. Hyperbolic Inoue surfaces and half Inoue surfaces admit non-
trivial surjective endomorphisms.

PROOF. For a positive integerl > 1, the multiplicationN → N by l defines an endo-
morphism ofTN(Σ) of degreel2 > 1. This preservesVN and commutes with the action of
Γ +N or ΓN. Thus a surjective endomorphism of degreel2 is induced. �

COROLLARY 9.3. Let X be a successive blowups of an Inoue surface with curves
whose centers are nodes of curves. Then X admits a non-trivial surjective endomorphism.

PROOF. Let Y be an Inoue surface with curves and letf : Y → Y be a non-trivial
surjective endomorphism. By replacingf by some powerf k, if necessary, we may assume
thatf−1(C) = C for any curveC. Thenf−1(P ) = P for any node of the union

⋃
C of

all curves. LetY1 → Y be the blowup at a nodeP . Thenf induces a non-trivial surjective
endomorphismf1 : Y1→ Y1 which also preserves any curve onY1. In particular,f−1

1 (P1) =
P1 for any nodeP1 of the union of all the curves ofY1. Therefore, ifX → Y is a succession
of blowups whose centers are nodes of curves, then a non-trivial surjective endomorphism on
X is induced fromf . �
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