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Abstract. Smooth compact complex surfaces admitting non-trivial surjective endo-
morphisms are classified up to isomorphism. The algebraic case was dealt with earlier by
the authors. The following surfaces are listed in the non-algebraic case: a complex torus, a
Kodaira surface, a Hopf surface with at least two curves, a successive blowups of an Inoue
surface with curves whose centers are nodesuo/es, and an Inoue surface without curves
satisfying a rationality condition.

1. Introduction. A surjective endomorphism of a compact complex variétmeans
a surjective morphism (holomorphic map) frakhto itself. The study of surjective endo-
morphisms of a given varietx, such as the projective spaPé, is a subject of complex
dynamics. On the other hand, in the classification theory of compact complex varieties, it
is interesting to study the varietiés which have surjective endomorphisms other than auto-
morphisms. We call a surjective endomorphism non-trivial if it is not an automorphism. For
example, complex tori and toric varieties admit non-trivial surjective endomorphisms. More-
over, the produck x Y admits a non-trivial surjective endomorphism if so kasHowever,
any surjective endomorphism of a variety of general type is an automorphism. A compact
non-singular curve admits a non-trivial surjective endomorphism if and only if it is isomor-
phic to the projective lin@®* or an elliptic curve.

The classification of the varieties admittimgn-trivial surjective endomorphisms has
been done in the following non-trivial cases: non-singular projective surfaces (cf. [19], [3]);
non-singular projective threefolds with Kodaira dimensios: 0, 2 (cf. [3]).

In this article, we shall complete the classification of non-singular compact complex sur-
facesX with non-trivial surjective endomorphisms. The classification in the case of projective
surfaces is as follows:

(1) X is atoric surface;

(2) X is aP'-bundle over an elliptic curve;

(3) X is aP-bundle over a non-singular cur@of genusy > 2 such thatX x¢ C’ ~
Pl x ¢’ for a finite étale covering’ — C;
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(4) X is an abelian surface or a hyperelliptic surface;

(5) X isan elliptic surface with Kodaira dimensieiiX) = 1 and the topological Euler
numbere(X) = 0.
The cases above correspond to the following numerical invariantg: (&) = —oo and the
irregularityg(X) = 0; (2)x(X) = —oo andg(X) = 1; (3)k(X) = —oo andgq(X) > 2; (4)
k(X) = 0; (5)k(X) = 1. The following is our main result:

THEOREM 1.1. The non-algebraic non-singular compact complex surfaces X admit-
ting non-trivial surjective endomorphisms are classified as follows:

(1) X isacomplextorus,

(2) X isaprimary Kodaira surface, a secondary Kodaira surface, or an elliptic Hopf
surface;

(3) X isaHopf surfacewith two elliptic curves or one of the following Inoue surfaces

without curves: Sy, S](VJFL gt satisfying a rationality condition (cf. Theorem 8.6)with respect

to the parameter ¢, and S](V’;, o
(4) X isasuccessive blowups of one of the following surfaces whose centers are nodes

of curves: a parabolic Inoue surface, a hyperbolic Inoue surface, and a half Inoue surface.

The cases above correspond to the following numerical invariants: (1) the first Betti
numberb1(X) is even; (2p1(X) is odd and the algebraic dimensio@X) = 1; (3)a(X) = 0,
b1(X) = 1, andba(X) = 0; (4) a(X) = 0, b1(X) = 1, andb2(X) > 0. In particular, ifX
is Kahler, thenX is a complex torus. The definitions of Kodaira surfaces, Hopf surfaces,
Inoue surfaces are given in [10], [5], [7] (cf. [1]). However we discuss the structures and the
properties of these non-Kahler surfaces in Sections 2, 6—9 below. The Kodaira siifaces
characterized by the conditiors;(X) is odd and-1(X) = 0in H2(X, Q). A Hopf surface is
a compact complex surface whose universal covering space is biholomor@fa t0, 0)}
by definition. A compact complex surface is called a surface of class VI if the first Betti
number is one. Ifitis minimal, furthermore, it is called a surface of clasg.Hbpf surfaces
and Inoue surfaces are typical examples of surfaces of clagswith the algebraic dimension
zero.

The idea of the proof of Theorem 1.1 is as follows: In the first step, we list the possible
surfacesX admitting non-trivial surjective endomorphisms. We can show that, for suah an
the setS(X) of curves with negative self-intersection number is finite by the same argument
as in [19]. This yields a strong condition dn For example, it implies that ik is a non-
algebraic elliptic surface, equivalentlydf X) = 1, then the singular fibers are multiple of
elliptic curves (cf. Proposition 4.1). Furthermore, by investigating the variation of Hodge
structure, we infer thaX is one of the surfaces listed in (2) of Theorem 1.1 (cf. Theorem 4.5).
The finiteness o (X) and some known results on surfaces of clasg Wply that if X is a
surface of class VI, then its minimal model is one of the known examples (cf. Theorem 5.2).
Thus we can make a list of the possible surfaces.

Conversely, in the second step, we examine whether a non-trivial surjective endomor-
phism exists or not individually for the cases of surfaces listed as candidates. It seems to
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be difficult to determine the existence on Kodaira surfaces, on non-elliptic Hopf surfaces,
and on Inoue surfaces without curves, becaustheif complicated construction from the
universal covering space. We consider a lift of an expected endomorphism to the universal
covering space and examine whether it really induces a non-trivial surjective endomorphism
by elementary but long calculations. In the case of Kodaira surfaces and Inoue surfaces with-
out curves, we can describe the induced enalghism of the fundamental group explicitly
by using triangular matrices iBL(3, C) (cf. Proposition 6.4, Proposition 8.5). Our method
is delicate and powerful enough for the investigation. For example, we can find a remark-
able condition on the parametefor the existence of an endomorphism on the Inoue surface
vaf;’q’r;t. Contrary to the above, in the case of elliptic Hopf surfaces, we look at the behavior
of multiple fibers of the elliptic fibration. If it has three multiple fibers, then it is obtained as
the quotient of an elliptic fiber bundle ovB? by a free action of a regular polyhedral group
G C PGL(2, C). A G-equivariant endomorphism on the elliptic bundle is constructed by a
method similar to that of Lemma 6 in [19].

This paper is organized as follows: After explaining the classification theory of non-
algebraic surfaces in Section 2, we recall gederalize the argument in [19] on the §&K)
of curves with negative self-intersection number in Section 3. The possible suXaags
listed in Section 4 and Section 5, respectively, for the cas&3 = 1 anda(X) = 0. The
existence of endomorphisms is studied indixdlly in the cases of surfaces in Sections 6, 7, 8,
and 9 for Kodaira surfaces, Hopf surfaces, Inoue surfaces without curves, and Inoue surfaces
with curves.

NOTATION. We denote the ring of integers &, the filed of rational numbers b9,
the field of real numbers by, and the field of complex numbers By as usual. The complex
projective line is denoted biy*, while the upper half plangr € C | Imz > 0} is denoted by
H. The ring of integralr x r)-matrices is denoted by MZ2).

Throughout this paper, a surface means a compact complex analytic surface while a
curve means a compact complex analytic eyffer short, if there is no fear of confusion.

Let X be a non-singular compact complex surface. FerH (X, Z), v € H* (X, 2),
we denote by - v the intersection numbef u U v, whereU is the cup-product and is
the trace magH*(X,Z) — Z. A divisor D of X defines a homology class (X, Z)
which corresponds to the first Chern claggD) = c¢1(Ox (D)) associated with the line
bundleOyx (D) by the Poincaré isomorphisH?(X, Z) >~ Ho(X, Z). The intersection number
c1(D1) - c1(D2) of two divisors D1 and D, is denoted byD1 - D,. Note thatc1(£) - C =
deg”L|¢ for a line bundleC and for an irreducible curve.

Let f: Y — X be a surjective morphism from another non-singular compact com-
plex surface. It induces the pull-bagk': H!(X,Z) — H(Y,Z) and the push-forward
f«: Hi(Y,Z) — H;(X,Z). By the Poincaré duality, the push-forward induces a homo-
morphismH{ (Y, Z) — H(X, Z), which we also denote by,. Then the composit¢, o
f*: Hi(X,Z) — Hi(X, Z) is the multiplication map by degj: the mapping degree of.

The projection formulaf,(f*x - y) = x - f,y holds forx € H/(X,Z) andy € H* (Y, Z).
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For a divisorD on X and a divisorE onY, we haveci(f*D) = f*c1(D) andci(fxE) =
fyc1(E), where f*D and f, E are the pull-back and the push-forward as divisors, respec-
tively.

Contrary to the case of algebraic surfaces, the canonical line bundle Q§ may
not have a non-zero global meromorphic section. The divisor of such a meromorphic section
is called canonical and is denoted Ky . Even if the canonical divisor does not exist, we
use the same symbd{x as the canonical divisor class virtually in order to simplify some
formulas such as the canonical bundle formula of elliptic fibration, the adjunction formula,
and the ramification formula. For example, we explain that the arithmetic genu®) =
dimHY(D, ©p) for a connected reduced divisdr is calculated by 2,(D) — 2 = (Kx +
D) - D, which is derived from the adjunction formukdp ~ (Kx + D)|p.

2. Non-algebraic surfaces. Let X be a non-singular compact complex surface. The
algebraic dimension (X) is the transcendence degree of the meromorphic function field of
X overC. Here,a(X) < 1if and only if X is non-algebraic. 1:(X) = 1, then the algebraic
reductionz: X — T is holomorphic and is an elliptic fibration. Moreover any curvesXon
are contained in fibers of. If a(X) = 0, then there exist at most finitely many irreducible
curves onX by Theorem 5.1 of [9, I]. We recall the following useful results:

LEmmMA 2.1. Supposethata(X) < 1. Thenalinebundle £ of X satisfiesthe following
properties:

(1) aw?=<o.

(2) Ifer(£)2=0,thenci(L) - c1(L') = Ofor any linebundle £'.

(3) If pg(X) =0andc1(L£)? = 0,then c1(L) istorsion in H2(X, Z).

PROOF. (1) Suppose that;(£)? > 0. The Riemann-Roch formula for(Xx, £&™)
implies thath®(Xx, £8™) orh%(X, £L2™ @ wy) increases of orden? asm — oo. However
the former case does not occur singe, X) < a(X) < 1. Thus there exists a non-zero
effective divisorD such thalOx (D) ~ wx ® L2~ for somen > 0. The exact sequence

0— HO(X, £®(—m+n)) N HO(X, wx ®£®(—m)) — HO(D,a)X ® £®(_m)|D)

impliesk (£, X) = 2 contradictingc(£71, X) < a(X) < 1.
(2) Thisis shown by (1) and by the inequalities

0> (te1(L) + c1(L))? = 2ter(L) - ea(L)) + c1(L)?

for rational numbers.
(3) follows from (2), from the surjectivity of1: Pic(X) — H?(X, Z), and from the
non-degeneracy of the intersection pairing-#(X, Q). |

NOTATION. LetC be anirreducible curve on a non-singular compact complex surface.
(1) If C? < 0, thenC is called a negative curve.

(2) 1f C? =0, thenC is called a O-curve.

() If ¢ ~¥PlandC? = —d < 0, thenC is called a(—d)-curve.
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An exceptional curve of the first kind is just(a-1)-curve. Ifa(X) < 1, then a non-
negative irreducible curve is a 0-curve wjth = 1 and does not intersect other curves.

REMARK. A relative minimal model’ of X is, by definition, a non-singular compact
complex surface bimeromorphic % having no(—1)-curves. IfX is non-algebraic, thell
is unigue up to isomorphism. This is shown as follows: Suppose that there exist a bimero-
morphic morphisme: X — Y and a(—1)-curveC C X such thaiu(C) is not a point. Then
w(C) is a 0-curve withp, (1 (C)) = 1 by Lemma 2.1. Thug(C) has a node or a cusp. Let
Y’ — Y be the blowup at the singular point pf(C). Then the self-intersection number of
the proper transform oft(C) is less than-1. Sinceu factors throught’ — Y, this is a
contradiction. Thus, we call the minimal model ofX in the non-algebraic case. Similarly,
a non-algebraic surface without 1)-curves is called a minimal surface.

If X is a non-Kabhler elliptic surface with(X) = 0, thenb1(X) = 3 or 1. In the case
b1(X) = 3, the minimal model is the quotient spaceG# by an affine transformation group
and is called a primary Kodaira surface. In the caggX) = 1, the minimal model has a
primary Kodaira surface as a finite étale covering space and is called a secondary Kodaira
surface.

Let X be a compact complex surface withiX) = 0. If b1(X) is even, then the minimal
model of X is either a complex torus or &3 surface. Ifb1(X) is odd, therb1(X) = 1.

In the classification theory of compact complex surfaces by Kodaira [10], the class VIl is
not completely classified. A compact complex surface belongs to the classby( = 1.

The class VI consists of all the minimal surfaces of class VII. A surfacef class VII has
the following invariants:

g(X)— 1= py(X) = x(X,0x) = h"%(X) =0, ba(X)=—K2 >0.

Moreover the intersection pairing ¢if(X, Q) is negative definite.

A Hopf surface is a surface whose universal covering space is isomorphi¢ te
C2\ {(0, 0)}, by definition. This is a surface of class WMvith b, = 0 containing an elliptic
curve.

The classification of surfaces of class yéfter Kodaira [10] was started by the discovery
of Inoue surfaces [5], [6], [7]. The Inoue surfacgg, S}Vf;,,q_r;t, S](\,_,;,q,r contain no curves
and have the vanishing second Betti number. The surfgigesere also found by Bombieri
and are called Bombieri-Inoue surfaces. Inoue [5] showed that if a susfadelass Vip
contains no curves;(S) = 0, and has a line bundlé with HO(S, .Q§ ® L) # 0, thenS is
isomorphic to one of the Inoue surfaces above. The last condition on the existehceraft
required for the characterization. This was shown by [11], [21] in 1990’s. The other Inoue
surfaces: Parabolic Inoue surfak&g ,, Hyperbolic Inoue surfac& g , Half Inoue surface
X AN, are constructed in [7]. These surfaces contain curves and have positive second Betti
numbers. A parabolic Inoue surface is related to Hirzebruch’s cusp singularities and is called
also a Hirzebruch-Inoue surface. Another construction of these Inoue surfaces with curves is
given in [20] by the method of torus embedding theory (cf. Section 9).
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There have been many contributions to the classification of surfaces of clasbyIl
Kato [8], Enoki [2], Nakamura [13], [14], and others. The following surfaces are listed in
Table (10.3) of [13]:

FAcT. The surfaceX of class VIp with a(X) = 0 are classified as follows:

(1) A Hopf surface withu(X) = 0;

(2) A parabolic Inoue surface: It is characterized as a surface containing an elliptic
curve and a cycle of rational curves;

(3) A hyperbolic Inoue surface: It is characterized as a surface containing two cycles
of rational curves;

(4) An exceptional compactification with no elliptic curves (cf. [2]): It is characterized
as a surface containing a cydieof rational curves withD? = 0 and containing no elliptic
curves;

(5) AnhalfInoue surface: Itis characterized as a surface containing abyaieational
curves withD? < 0 andba(X) = ba(D);

(6) A surface with a cyclé of rational curves withhD? < 0 andba(X) > ba(D);

(7) A surface with no elliptic curves and with no cycles of rational curves.

Here, a cycle of rational curves means a reduced connected divisod _ C; satisfying
one of the following conditions:

(1) Disanirreducible rational curve with exactly one node;

(2) Any irreducible component; is isomorphic toP! and intersects) — C; trans-
versely at two points.

3. Curvesof negative self-intersection number. The argument of this section is al-
most parallel to that of Section 2 of [19], where the algebraic case was discussed.

LEmMMA 3.1. Asurjective endomorphism f: X — X isafinite morphism. If «(X) >
0,then f isétale.

PROOF. If an irreducible curveC is contracted to a point by, thenC? < 0. Since
fo: H3(X, Q) — H2(X, Q) is isomorphic, no irreducible curve is contracted fiyHencef
is finite. Suppose that(X) > 0. ThenKx ~ f*Kx + R for the ramification divisoR > 0.
ThusKx ~ f*f*Kx + f*R + R. Sincef*: HO%(X, mKx) — HO(X, mKx) is isomorphic,
R+ f*R + ---is contained in the fixed part ¢f1 K x|. ThusR = 0. a

LEMMA 3.2. Let f: X — X bea surjective endomorphism. If C isa negative curve,
then £(C) isalso negativeand f~1(f(C)) = C.

PROOF. Assume thatf (C) = f(C’) for another irreducible curv€’. Thenaf,C =
a’ f,C' for somea, a’ > 0. Hencer1(aC — a’C’) = 0in H2(X, Q). In particular,C - C’ < 0
and thusC = C’. O

Let f: X — X be a surjective endomorphism of degeee- 1. We consider the set
S(X) of all the negative curves aki. ThenS(X) is preserved by and the mapping(X) >
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C — f(C) € S(X) isinjective. LetR be the ramification divisor of and letSp(X) be the
set of all the negative curves contained in S&pp

LEMMA 3.3. IfC e S(X)\ So(X), then|C?| > | f(C)?|.

PROOF. There exist natural numbess b such thatf,.C = af(C) andf* f(C) = bC.
Hereb = 1 sinceC ¢ SuppR. Thusa = d andaf(C)? = C2. O

The proof of the following elementary lemma is left to the reader:
LEMMA 3.4. Let S beaset, Spafinitesubset,andlet: S — S beaninjection. If

(.¢]
S=Jn" S,
m=1
then S is finite and 4X is the identity for some k > 0, where 4" denotes the m-th power
hoho---oh:S—S.

By Lemma 3.3 and Lemma 3.4, we have:

PROPOSITION 3.5. S(X) isafinite set and thereisa natural number k with f¥(C) =
C forany C € S(X).

We can replacg by the powerf*. Hence we assume in what follows thatC) = C
foranyC € S(X). Thenf*C = aC and f,C = aC for a natural numbet > 1 witha? = d.
Let Nx denote the reduced divis@CES(X) C. ThenR = (a — 1)Nx + A for an effective
divisor A whose irreducible components are not negative curves. In particular

(3.1 Kx+ Nx = f*(Kx +Nx)+ A.
For any connected reduced cure< Ny, we have
Kp + (Nx —D)|p = (fIp)* (Kp 4+ (Nx — D)|p) + Alp .

In particular,p, (D) = hY(D, Op) < 1. If p,(D) = 1,thenAND = (Nx — D)N D = @.
If po(D) =0, then(Nx — D) - D < 2,and if further(fNx — D) - D = 2,thenAN D = §.

The induced morphisnf|p: D — D is an endomorphism of degree Moreover it is
étale outside Sin@ U A|p by the well-known Lemma 3.6 below. In particulgi(SingD) C
SingD U A|p, andA|p gives the ramification divisor of | p over D \ SingD.

LEMMA 3.6. Let t: U — V be a finite morphism between non-singular complex
manifolds and let C ¢ V bea non-singular divisor such that 7 is étale outside r—C. Then
t7iC — Ciséale.

PROOF We may assume that is ad-dimensional polydisc and' is a hyperplane by
considering the local situation. Thén\ C is isomorphic to the product of the punctured disc
and a(d — 1)-dimensional polydisc. In particular, the finite étale covetihgr —*C — V\ C
is cyclic andU — V is the cyclic covering branched alody Hencer —1C ~ C. O

A reduced connected divisdp is called a straight chain of rational curvesif =
Zle C; forirreducible curveg; ~ P! such that
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(1) Ci-C;=0forli —j| =2,
(2 Ci-Cj=1for|i —j|=1.

LEMMA 3.7. A negative curve C iseither an elliptic curve, a rational curve with ex-
actly one node, or a smooth rational curve. A reducible connected component of Ny is a
straight chain of rational curves or a cycle of rational curves.

ProoOF. If p,(D) = 1 for a connected reduced curize< Ny, thenKp = (f|p)*Kp
andf|p: D — D is étale outside Siny. Thus no rational curves with cusps are negative. If
a negative curv€'; intersects another negatige at one point not transversely, thep(C1 +
C2) = 1. This contradicts the property: no étale covering exists 6yey C2 ~ C. If three
negative curve€'1, C2, C3 intersect transversely @& NC> = C2NC3 = C3NCy1 = {P} for
a pointP, thenp,(C1 + C2 + C3) = 1. This contradicts the same property as above. These
observations tell us that a reducible connected compobeista straight chain of rational
curves or a cycle of rational curves. ]

Suppose thaX contains 8—1)-curveC. Let X — X; be the blowing down of’. Then
an endomorphism ot is induced sincg’ ~1C = C. Therefore, an endomorphism is induced
on a relative minimal model of .

4. The case of elliptic surfaces. Let X be a non-singular compact complex surface
admitting a non-trivial surjective endomorphism. Assume #hat) = 1. Letzr: X — T be
the algebraic reduction which is an elliptic ftiion onto a non-singular projective curve. A
non-trivial surjective endomorphisnfi induces a surjective endomorphignof 7' such that
homwm=mo f.

PROPOSITION 4.1. Inthissituation, X isa minimal elliptic surface with e(X) = 0.

PrROOF. The set of all the irreducible components of the reducible fibers coincides with
S(X). A O-curve is the support of an irreducible fiber. We may assumejtha€ = C for
negative curveg for the endomorphisnf.

Sep 1. We may assume thgt1C = C for any rational curvec.

We have to consider only rational O-curv€s If C’ is an irreducible component of
f~1c, thenC’ is not negative and’ — C is étale outside Sing by Lemma 3.6. IfC is a
rational curve with a cusp, thefY ~ C. If C is a rational curve with a node, théH also has
a node sincef is branched along the normal crossing divisor around the node. The number
of rational O-curves is finite. Hencg 1C is irreducible and f%)~1C = ¢ for somek > 0.

Sep 2. X contains no curves with cusps.

Suppose that there exist an irreducible cutweith a cusp and se? = 7(C). Note that
C = n* P is a singular fiber of type Il. By the argument of Step 1, we infer thiaf = dC
ford = degf. Hencen* P = d P. In particular, de@ = d. If D is a connected component of
Ny, thenD = 7=1P” andh*P" = dP" = aP" fora® = d. ThusNx = 0. In particular;r
is a minimal elliptic fibration with only irreducible fibers. &' = 7 ~1(P’) is another rational
0-curve, them* P’ = dP’ since f~1C’ = C’. Considering the ramification formula far
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we infer thatT ~ P! and there exist at most two rational curvesXnlf C is the unique
rational curve, therr is smooth outside? and the locally constant she&fx.Z x|c\p is
trivial. The local monodromy corresponding to a singular fiber of type Il is of order 6 in
SL(2,Z). This is a contradiction. Henclere is another rational 0-cun = 7 ~1(P’). If

C’ has a node, thei(P’) = oo for the J-function associated with. However,z is smooth
overT \ {P, P’} ~ C\ {0}. Thus the period function is constant, a contradiction. Hence there
remains the case in whiafY has a cusp. L& andl{’ respectively be open discs with centers
P and P’. A positive generator of1 (U4 \ {P}) >~ Z corresponds to a negative generator of
71U\ {P'}) by the isomorphisms

U\ (PY) = (T \ (P, P'}) < maU'\ {P'}).

Thus the condition that is of type Il implies thatC’ is of type II¥, a contradiction.

Sep 3. X contains no rational curves.

Assume the contrary. By Step ¥;*C = (degh)C for any rational curveC on X. If
degh = 1, thenNy = 0 and f is étale alongf—1C for a rational O-curveC. Here, the
mapping degree of ~1C — C is degf. However, there exists only one point fit1C over
the node ofC. This is a contradiction. Consequently, deg 2. By the same argument as in
Step 2, we infer thal' ~ P! and that the number of singular fibers supported on a union of
rational curves is at most 2. Then the period map & constant. Hence no singular fibers of
type 1, with b > 0 appear on the relative minimal modelof X — T. Therefore X has
no rational curves.

As a result;r is minimal and a singular fiber is a multiple of an elliptic curve. O

The elliptic fibrationz: X — T above defines a variation of Hodge structufeof
weight one or" since the local monodromies around the image of singular fibers are trivial.
Here, we have®'7,Qy ~ H ® Q (cf. Lemma 5.4.4 of [18]). Here{l%(T, H) # 0 implies
H ~ Z?Z by Corollary 4.2.5 of [18] (cf. Theorem 11.7 of [9, Ill]). From Leray’'s exact
sequence

0— HYT,Q) - HYX(X,Q) - HAT, H ® Q) - HXT, Q) - H%(X,Q),

we infer thatb1(X) is odd if and only if H is trivial andH2(T, Q) — H2(X, Q) is zero.
If b1(X) is even, therX is Kéhler by Miyaoka [12]. LeiC be the invertible sheatlr,0y.
Then/ is isomorphic to the graded piece(Gor the Hodge filtration orH @ O andm,wy >~
wr ® L1, Moreover,£812 ~ Oy. Theng(T) < ¢(X) = ¢(T) + h%(T, £) < ¢(T) + 1 by
the exact sequence

0— HYT, 07r) = HY(X, Ox) = HY(T, L) — 0.

Hencepy(X) = g(T)—1+h%(T, £) by x (X, Ox) = 0. If hO(T, £) = 0, thenh®(T, H) = 0,
bi(X) = 2¢(T), and X is Kahler. 1fh%(T, £) # 0, or equivalently,l ~ Or, then the
Weierstrass model [15] associated withis isomorphic to the product of an elliptic curve
andT, and henceH is trivial.

LEMMA 4.2. Theinduced endomorphismh: T — T isnot theidentity.
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PROOF. Assume the contrary. Thefiis an endomorphism oveér. Let X be the set
of points P € T such thatt* P is a multiple fiber. Lein p be the multiplicity ofz*P. Then
we have a finite ramified covering. Z — T such thatt*P = mp(t*P)reqfor P € X and
9(Z) > 2. Then the normalization oX x7 Z is smooth overZ and admits a non-trivial
surjective endomorphism. Thus we may assume from the beginningr tlasmooth and
¢(T) > 2. By considering the étale cyclic covering given&§* ~ O7, we may also assume
that £ >~ Or and hence the variation of Hodge structufeis trivial. Let E be the elliptic
curve isomorphic to a fiber of. We fix a point Oe E and give a group structure adhwhose
zero is 0. LetOr (E) be the sheaf of germs of holomorphic mappings ffbrio £. Then we
have an exact sequence

0— H~Z% - Or - Or(E) - 0.

There is an element € HY(T, O7(E)) such thatr is obtained as the torsor & x T over
T defined byy. The endomorphisni induces an endomorphisya: H — H of variation of
Hodge structures which corresponds to

HYxY(P),Z2) ~ Hi(x~X(P),2) LY Hi(z~Y(P),Z2) ~ HY=~Y(P), 2),

where the edge isomorphisms are the Poincaré duals. The induced endomofphsm->
E fixing 0 is the multiplication by a complex numbgr If we identify E to be the quotient
of C by the latticeLy = Z6 + Z for somef € H, theniLy C Lg. Hence 1#£ A € Z, or
Q(») is an imaginary quadratic field. In the latter case; A 4+ A andd = |A|? are integers
with 1 — ¢t + d # 0. The cohomology clasg satisfies..n = n. Hence(x — 1)n = 0 or
(1 -t + d)n = 0. Thuspy is torsion, which implies that is projective. This contradicts
a(X) =1. O

COROLLARY 4.3. ¢(T) < 1.If g(T) = 1, then = issmooth.

PROOF. If ¢(T) > 2, thenk¥ = idr for somek > 0. If ¢(T) = 1 and if there
exists a multiple fibe = 7~1(P), thenz~1(Q) is also multiple for anyQ € h=1(P),
sinceh: T — T is étale. Thug: is isomorphic andi* fixes P for somek > 0 since the
set of multiple fibers is finite. Hendé" is the identity for somé > 0, since the group of
automorphisms of fixing P is finite. m]

LEMMA 4.4. Letw: X — T bean dliptic surface of class Vllg. Then T =~ Pl and
singular fibers are multiple of elliptic curves. In particular, Kx ~q 7*(Kr + @) for an
effective Q-divisor ® = ) (1 — ml._l)P,' on T, where m; isthe multiplicity of the fiber 7* P;.
Furthermore the following assertions hold:

(1) Ifdeg® > 2,then any surjective endomorphism of X isisomorphic.

(2) Ifdeg® = 2,then X isa secondary Kodaira surface.

(3) Ifdeg® < 2,then X isan elliptic Hopf surface.

PROOF. T isrational byb1(T) < b1(X) = 1. The variation of Hodge structure is trivial
sincee(X) = 0 andr1(7T) = {1}. Let X = {P1, Po, ...} be the set of point® such thatr* P
is a multiple fiber. Themr* P; = m;C; for an elliptic curveC; andm; > 2. We assume that
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mi1 <mo <---. Then
1
Ky ~n*Kr +Z(m,' - DC; ~q (Kt +©®), for © = Z <1— m—i)P,' .

In particular« (X) = 1, 0,—o0 according as de@ > 2,= 2, < 2.

Suppose that(X) = 1. Let f be a surjective endomorphism &f and# the induced
endomorphism of with 7 o f = hox. Thenf is étale by Lemma 3.1. Thu§x ~ f*Kx
implies thatK7 + & ~q h* (Kt + ©). Thush is an automorphism keeping the setwhich
consists of at least three points. Hence some pa@és the identity andf is isomorphic by
Lemma 4.2.

Suppose that(X) = 0. Then(m1, ma, ...) is one of the following:

(27 27 27 2) 9 (27 37 6) b (27 47 4) 9 (37 37 3) .

In each case, there is a cyclic coveringA — T from an elliptic curve such that*P; =
m; (t* P;)red for anyi and thatr is étale outsideZ. Moreover, for a suitable choice of group
structure of4, a generator of the Galois groupofs given as the multiplication map— «az
by a primitive roota of unity of order 2, 6, 4, 3 according &8, 2, 2, 2), (2, 3, 6), (2,4, 4),
(3, 3, 3) above. The normalizatioF of the fiber produc x7 A is smooth ove and étale
over X. HenceY is a primary Kodaira surface andis secondary.

Finally suppose that deg < 2. If X # @, then(my, m2, ...) is one of the following:

(my), my,m2), 2,2,m3), (2,3,3), (23,4, (2,35).

If 13 < 2, thenX is a Hopf surface by Lemma 8 of [10] (cf. Fact 7.2 below) X = 3, then

there is a finite Galois covering: I' — T from a non-singular rational curvE such that

*P; = m;(t* P;)req fOr anyi and thatr is étale outsideZ. Moreover,t is isomorphic to the
guotient morphism by the standard action of the following regular polyhedral group contained
in Aut(I") according to(2, 2, n), (2, 3, 3), (2, 3, 4), (2, 3, 5): the dihedral groupD,, of order

2n, the tetrahedral groupl4, the octahedral grou@4, and the icosahedral gros. The
normalizationY of the fiber producX xr I" is smooth overd™ and étale oveX. HenceX is

also a Hopf surface since sols O

THEOREM 4.5. Let X be a non-singular compact complex surface admitting a non-
trivial surjective endomorphism. If a(X) = 1, then X isa complex torus, a primary Kodaira
surface, a secondary Kodaira surface or an elliptic Hopf surface.

PROOF. Assume thay(T) = 1. If H is not trivial, thenX is Kahler andp,(X) = 0.
This implies thatX is projective, a contradiction. Hend# is trivial. Thuswy >~ Ox and
3 < bh1(X) < 4. If b1(X) = 4, thenX is a complex torus. 1b1(X) = 3, thenX is a primary
Kodaira surface.

Next assume thaj(T) = 0. ThenL >~ Or andH is trivial. In particular,p,(X) = 0
andg(X) = 1. ThusX is a surface of class ! It is a Hopf surface or a secondary Kodaira
surface by Lemma 4.4. O
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Appendix to Section 4. The existence of non-trivial surjective endomorphisms on an
algebraic surfac& with x(X) = 1,e(X) = 0 is proved in Proposition 3.3 of [3] by using the
d-étale cohomology theory developed in [18]. Here, we shall give a more geometric proof.

Letz: X — T be the elliptic fibration obtained as the litaka fibration. Letbe the
set of pointsP e T such thatr* P is a multiple fiber of multiplicitym p > 2. ThenKx ~q
7% (Kt +©) for theQ-divisor® = ¥, (1—m ") P as in Lemma 4.4. Note that der -+
®) > 0 by« (X) = 1. By applying Theorem 4.2 of [16], we have a finite Galois covering
Z — T such that the normalizationt of X xr Z is isomorphic to the produat x Z over
Z for an elliptic curveC and is étale ovek. We considelC as the toru€/L for the lattice
L =Zt + Z withimz > 0. We denote byx] the image ofc € C underC — C. LetG be
the Galois group. Then the induced actioryof G onY ~ C x Z is written as

([x], 2) = (lagx] + by(z), g - 2)

for somea, € C* and some holomorphic mappiidg: Z — C. Here,{ay} gives rise to a
homomorphisnG — C* andL is aG-submodule oC. In particular, the complex torus is
aG-module. The set Hox, C) of holomorphic maps: Z — C also has a righG-module
structure byp? () = a; ¢ (g - 2). By the relationugby,(z) + by (h - z) = bgi(z) for g, h € G,
we inferthat{ag‘lbg} defines an element @/ 1(G, Hom(Z, C)). Since the cohomology group
is torsion, there exist a positive integeand a holomorphic mapping Z — C such that

nagthy(z) = c(z) —agte(g - 2)
foranyg € G. The endomorphisi@ x Z — C x Z given by
([x],2) = ((n + DIx] + c(2), 2)

commutes with the action @ on C x Z. Thus it induces a non-trivial surjective endomor-
phism onX.

5. Thecaseof algebraicdimension zero. Let X be a hon-singular compact complex
surface ofa(X) = 0 admitting a non-trivial surjeite endomorphism. Suppose thstis
Kéahler. Therk(X) = 0. Thus the endomorphism is étale and hekKcadmits no negative
curves. HenceX is minimal and is a complex torus. A complex torus admits a non-trivial
surjective endomorphism as the multiplication map by an integer greater than 1.

Thus we assume that is non-Kéhler. Therk belongs to the class VII. We hav& y +
Nx)2 = 0 by (3.1). Thusp,(D) = 1 for any connected componeht of Nx. Moreover,
K2 = N2 = Y~ D? for the decompositiovVy = 3" D;. into the connected components.

LEMMA 5.1. If D isareduced divisor with (Kx + D) - D = 0, then D has at most
two connected components.

PROOF. Sincea(X) = 0, we haveh®(X, Ox(Kx + D)) = h*(X, Ox(-D)) < 1.
Henceh'(X, Ox(—D)) < 1 by (Kx + D) - D = 0. The exact sequence

0— HOX, Ox) - H(X, Op) — HY(X, Ox(—D))
impliesh®(D, Op) < 2. ]
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THEOREM 5.2. Let X be a non-Kahler surface of a(X) = 0 admitting a non-trivial
surjective endomorphism. Then the minimal model of X is one of the following surfaces. a
parabolic Inoue surface; a hyperbolic Inoue surface; a half Inoue surface; a Hopf surface;
an Inoue surface with no curves. Moreover, X is obtained from the minimal model by a
succession of blowups whose centers are nodes of curves.

ProOOF. One of the following cases occurs by Lemma 5.1
Case 1. Ny has two connected components;
Case 2. Ny is connected;
Case 3. X contains a 0-curve but no negative curves;
Case 4. X contains no curves.
Let Y be the minimal model ok and letu: X — Y be the contraction morphism. Then the
endomorphism ok descends t& andNy < u4Nx.
Case 1. Any curve onX is contained inNy by Lemma 5.1. Thug*(Kx + Nx) ~
Kx + Nx. We haveh®(X, Ox(—Nyx)) = 1 by the exact sequence

H(X, Ox) = HY(Nyx, Ony) — H3(X, Ox(—Nx)) = H*(X, Ox) = 0.

ThusKy + Nx ~ E for an effective divisotE. Here f*E = E. Therefore,E = 0, equiva-
lently, Kx + Nx ~ 0. Let D; and D, be the two connected componentgQiNy ~ —Ky.
Thenp,(D;) = 1fori = 1, 2. By Lemma (2.11) of [13]D1 is an elliptic curve if and only

if D3 = 0. Hence, ifDZ = 0, thenD2 < 0. Otherwise D1 and D are both elliptic curves
and Ny has no nodes, which implies thatis isomorphic andVy = 0, a contradiction.
Therefore ifD? = 0 or DZ = 0, theny is a parabolic Inoue surface by Theorem (7.1) of [13]
(cf. (7.12) of [13], [2]). If D? < 0 andD3 < O, thenNy = . Nx andY is a hyperbolic Inoue
surface by Theorem (8.1) of [13]. In both cases,X — Y is a successive blowups whose
centers are nodes.

Case 2. Suppose that there is a cur@enot contained ilVy. Then any curve orX
is contained inC U Nx. The contraction:: X — Y is isomorphic along. SinceC? = 0,
we see that, Ny is an elliptic curve and” is a rational curve with a node by Lemma (2.11)
of [13]. Thenp is isomorphic andX is a parabolic Inoue surface ép = 1 by [2] or by
Theorem (7.1) of [13].

Next suppose that any curve anis contained ilVy. Thenf*(Kx + Nx) ~ Kx + Nx.
Moreover,f induces a finite étale endomorphism on the complertleat X \ Nx . Therefore,
e(U) = 0. Thuse(X) = e(Ny). If Ny is an elliptic curve, ther-N2 = —K2 = ¢(X) = 0,

a contradiction. Thud/y is a cycle of rational curves. Here(X) = ¢(Ny) is equivalent to
ba(X) = ba(Nx). Thusba(Y) = ba(usNx). If Ny # 0, thenNy = u.Nx andY is a half
Inoue surface by [13]. INy = 0, thenu, Ny is a rational curve with a node. This case does
not occur by the argument in Case 3 below. Theref#ires obtained as a successive blowups
of a half Inoue surface whose centers are nodes.

Case 3. We haveba(X) = e(X) = —K2 = —(Kx + Nx)? = 0. By Lemma (2.11) of
[13], one of the following three possibilities remains:

(1) X contains two elliptic curves;
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(2) X contains an elliptic curve as a unique curve;

(3) X contains a rational curve with a node as a unique curve;
For the complementy of the union of all the curves ok, we havee(U) = 0 sincef induces
a finite étale endomorphism d@h. Hence the case (3) does not occurl¥ \ U) = 0. In the
cases (1), (2)X is a Hopf surface by Lemma 8 of [10].

Case 4. Sinceby(X) = —K§ = 0, X is one of the Inoue surfaces without curves by
[5], [11], [21]. O

6. Kodairasurfaces. A primary Kodaira surfacg is defined as a surface wiky ~
0, b1(X) = 3. The algebraic reduction: X — T is an elliptic fibration over an elliptic
curveT. This is smooth by(X) = 0 andKx ~ 0. Moreover the associated variation of
Hodge structured is trivial sincem,wy/r =~ £~ ~ Or. For a fiberE, we fix a point 0
and give an abelian group structure Brwith 0 being the identity. Then as in the proof of
Lemma 4.2,X ~ (E x T)" as a torsor corresponding to somes HL(T, O7(E)), where
Or(E) is the sheaf of germs of holomorphic mappings fréno E. The image ofy under
HY(T, Or(E)) — H(T, H) = H(T, Z?) is not zero, sinc& is non-Kahler.

Let L, denote the lattic&r +Z c C forr € H. We fix 7, 8 € H and isomorphisms
T~C/L.,E>~C/Lg. Forc € Ly and$ € C, let us consider the following automorphisms
of C x E:

91: (KD = 47, [ +ez+48), and g (z, [ = (z+ 1, [5]),

where[¢] denotest mod Ly. The quotient space d x E with respect tog1 and g is
denoted byX, s. Letr: X. s — T denote the induced smooth elliptic fibration from the first
projectionC x E — C.

LEMMA 6.1. Aprimary Kodaira surfaceisisomorphicto X. s for somec # 0 and .
PROOF. We have an isomorphism
HY(T, O7(E)) ~ HY(L., HO(C, O(E)))

by the Hochschild-Serre spectral sequence for the universal coverin@maprl’. Thus the
cohomology clasg is represented by a cocydle, = x,(z)} of holomorphic functions o€
for u € L, such thatx,4,(z) = xy(z) + x,(z +v) mod Ly. Here, X is isomorphic to the
quotient space of x E with respect to the following action of € L :

@ D= @+u, [+ xu DD .
Thus we shall find a simple form af, (z) up to coboundary. Note thét, } is determined only
by x1 andx; which satisfy
(6.1) X (z4+1) = x:(z) =x1(z + 1) —x1(z) modLyg.

We know that dinHY(7, O7) = 1 andHY(T,C) — HYT, Or) is surjective. The
homomorphism is isomorphic ta1(L,, C) — H(L., H%C, ©)). Hence, for a cocycle
{y.(z)} of holomorphic functions o€ satisfyingy,+,(z) = y»(z) + y.(z + v), there exist
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constants1, ¢z, and a holomorphic function(z) such thaty1(z) = ¢c2 + h(z + 1) — h(z),
v:(2) = c1+ h(z + t) — h(z). Sincecz(z + 1) — c2z = c2, we may assume; = 0.

Applying the observation above td/dz)x,, we have constants § and a holomorphic
functiong (z) such thak; (z) = cz+8+¢(z+71)—¢(z) andx1(z) = ¢(z+1)—¢(z). The con-
dition (6.1) is equivalentte € Ly. HenceX ~ X.s. The homomorphisrtl (T, O(E)) —
H2(T, H) is isomorphic to

HY(L.,H(C, O(E))) = H?(L, Lg) =~ Lg,
which sends; to c. Hencec # 0. O

DEFINITION 6.2. (1) Forthree complex numbersg xz, x3, let T (x1, x2, x3) denote

the matrix
1 0 O
x1 1 0].
x3 x2 1

The matrices of this form form a subgroup®E (3, C), which is denoted b{3(C).
(2) LetD: C? x C? — C be the skew symmetric form defined by

D((x1, x2), (x’l, xé)) = xlxé — xixz.
(3) LetAs(C) be the following group structure a¥, y) € C? x C:
En*EY)=E+E,y+) = (1/2)DE,8)).

Note that thd-th power (¢, y)! is equal to(l&, Iy) for I € Z, (£, y) € A3(C). There is
an isomorphisn?3(C) — A3(C) given by

(6.2) T (x1, x2, x3) = ((x1, x2), x3 — (1/2)x1x2) .
We have a homomorphismy (X, s) — T3(C) by
gt T(t,c,8), ¢ T1,0,0, g3—T7(0,0,60), ga— 7,01,
wheregs and g4 come fromr1(E) and correspond to the following automorphism<of
g3:¢c—>¢+0, and g: ¢~ ¢+ 1.
Therefore the composite; (X, s) — A3z(C) is written as
99298 g% > (T + Lo, lie), lie + (1/2)hlac + 130 +1s),  where & :=5 — (1/2)ct.

DEFINITION 6.3. (1) For a free abelian group of finite rank and forc € L, let
L[c/2] denotes the abelian group+ Z(¢/2) C L ® Q.
(2) LetD;: L; x Ly — Z be the skew symmetric form defined by

D;(m1t + mo, m’lt + m’z) = mlm/z — m’lmz,
that is,

(x5 — ) = o)

D (x, = =
() T—71 Imzt
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(3) Forc € Ly, let I, be the following group defined ab, x Lg[c/2]:

(X, y) % (', y) = (x+x,y+ ¥ 4 (¢/2De(x, x) .

Note thatD; (x,1) = Imx/Imt andx = D;(x, 1)t — D;(x, t) forx € L;.
We have homomorphism3, — A3(C) andx1(X.s) — I1., respectively, by

(X’J’)'_) (()C, D‘L’(x’l)c)’ y+DT(-x71)8)’ and
G gR a2 gkt > (it + I, 130 +1a+ (1/2)ll2c) .
Then we have a commutative diagram

nl(Xc,B) e I,

l l

T3(C) — Az(C).
The image of the injectiom1(X.s) < I1. consists of all the elements, y) such that
y + (¢/2)D;(x,1)D.(x,t) € Lg. In particular,IT. is generated byr1(X.s) and(0, ¢/2).
The groupl1, acts onC x C by
(z,8) > (2 +x, &+ De(x, Dez+y + De(x, (e + (1/2)cx))

for (x, y) € I1..

PROPOSITION 6.4. Let f: X.s — X.sbeasurjectiveendomorphismandleth: T —
T be the induced endomorphismwith 7 o f = h o 7. Suppose that

he: HYT, ©1) — HY(T, 1)
isthe multiplicationby « € C witha L, C L. Then f isinduced from the automorphism
Pov: (2,8) > (az+ (L)@ — e, |al?C + ¢a0(2))

of C x C for a holomorphic function

9u(2) = aD- (., 1)(%2 n 8z> ¥,

for v € C.

ProoF. Allift @ of f to C x C is written as(z, ¢) — (xz + B, F(z, ¢)) for a holo-
morphic functionF (z, ¢) and for a constarg. Here,F(z, ¢) = p¢ + ¢(z) for a holomorphic
functiong(z) and a constang sinceF(z, ) mod Ly depends only og mod Ly. The en-
domorphismf: m1(X.s) — m1(Xcs) is induced fromg — @ o g o @1 and lifts to an
endomorphism of1.. The image ofx, y) € I1. is (ax, y1) for somey; € Ly[c/2] in which
the following equality holds:

p(D(x,Dcz+y+ D(x, (e + (1/2)cx)) + ¢(z + x)

(63) = ¢(2) + De(ax, Dc(az + B) + y1+ Do (ax, 1) (e + (1/2)cax) .
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By using Imax) = x Ima + @ Imx, we haveD, (ax, 1) = xD;(«a, 1) + @D, (x, 1), and
9z +x) — ¢(2) =(De(a, Dax + D (x, D(Ja|? = p))cz + y1 — py
+ (¢/2) Dy (o, Dax? + Dy (ar, 1)(cB + €)x
+ Do (x, D)(@cB + (@ — p)e) + (cx/2) Do (x, D(|a|* — p) .

Hence ¢”(z) is a constant equal td; (o, )ca and p = |a|2. If we write ¢(z) =
(ca/2) D+ (o, 1)z2 + uz + v for constants, v, then

ux = Dz (a, 1)(cB + &)x + D (x, Da(ch + (1 — a)e) + y1 — laef?y.
Thereforec = (¢ — 1)e andu = D (a, D)ae. O

THEOREM 6.5. Any primary Kodaira surface and any secondary Kodaira surface ad-
mit a non-trivial surjective endomorphism.

PROOF. For the primary Kodaira surfacé. s, the morphism®; o for / > 1 induces a
non-trivial surjective endomorphism of degi€elet Y be a secondary Kodaira surface. Then
by Lemma 4.4, there is a cyclic étale coverikigs — Y for somec, §. Then a generator of
the cyclic group acts oX. s as @, , for a roota of unity and for somev € C. We may
assumeyr = exp(2r+/—1/k), wherek = 2, 3, 4, or 6. The order ob, , is justk. If k > 2,
thent € SL(2, Z)« for the fractionally linear action ol . Hence, we may assunae= t if
k > 2. Forl € Z, we definev[l] by &), , = &1 ,;;- Then

82 -1
— 2i
v[l] =lv+ oD (a, DZ( —I+ ;a l)
1=
for/ > 0. In fact, the termz in the formulad®q, v, © Poy,vy, = Payay,vs IS Calculated as

2
a5 —1
2 g2,

vz = v1 + |a1|?v2 + a1 Dy (a1, 1)

If Kk =2, thenv[2] =2v € Ly. If k > 2, thent = « impliesD;(«,1) = 1 and
2
olk] :k(v— ﬁ) €Ly
2c

Let/ be an integer with > 1 and/2 = 1 modk. Then, forw; andwy defined by®; o o
Dy = Dig,uy, ANAPy , 0 P10 = Do, u,, WE have

P-1,\ o, -1
wy — w1 =|v+aD(a,l) e ) —1v=— vlk] € Lg .
2c k
Hence®; o induces a non-trivial surjective endomorphism on the quotient space O

7. Hopf surfaces. In this section, we shall prove the following:

THEOREM 7.1. A Hopf surface admits a non-trivial surjective endomorphism if and
onlyif it has at least two elliptic curves.
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We setW to be the open s&2\ {(0, 0)} and(z1, z») to be a coordinate system 6. A
Hopf surface is a compact complex surface whose universal covering space is biholomorphic
to W by definition. We write the function expr «/—1z) as €z).
First, we treat the case of elliptic Hopfrfaices with at most two singular fibers.
Letm1, m2, n be positive integers such that ged, m») = gcdn, m1) = gcdn, mo) =
1 and letr be a complex number iH. LetY = Y(z, m1, m2, n) be the quotient space &f
with respect to the following two actions:

A (z1,22) = (o121, @2z2), B (z1,22) = (e121, £222) ,

wherew; = e(m;1), ;i = e(m;/n), fori = 1, 2. ThenY is an elliptic Hopf surface ovepl
and smooth oveP! \ {0, oo} by the morphisn(z1, z2) — (272 : z5'*). The multiplicities of
the fibers over 0= (1 : 0) andoo = (0 : 1) arem1 andmy, respectively. Conversely, we
know the following result due to Kodaira (cf. Lemma 8 of [10, 11]):

FACT 7.2. LetY — P!be an elliptic Hopf surface smooth outsife co}. Letn1 and
my be the multiplicities of the fibers over 0 and, respectively. Suppose that ded , m2) =
1. ThenY >~ Y (t, m1, mo, n) for somer andn.

In particular, ifY — P is smooth, ther¥ ~ Y(t, 1, 1, n), which is obtained by the
actions
A: (z1,22) = p(z1,22) = (pz1, p22),  B:(z1,22) = €(l/n)(z1, z2),
for p = e(r). We writeY (7, 1, 1, n) by Y (p, n).

PROPOSITION 7.3. Letw: X — T be an dlliptic Hopf surface with at most two sin-
gular fibers. Then X admitsa non-trivial surjective endomor phism.

PROOF. We may assume that is smooth outsid¢0, co} ¢ P1 = 7. Letmy andm:
be the multiplicities of the fibers over 0 ard, respectively. Let” = P! — 7 = Pl be
the cyclic covering of degree = gcdim1, m2) branched at0, oco}. Then the normalization
Y of X xr I' is an elliptic Hopf surface étale ovér. Moreover,Y >~ Y (t, m1/k, m2/k, n)
for somer andn by Fact 7.2. A generator of the cyclic Galois group actsior= P! by
(t1 : 12) — (11 : e(1/k)t2). This lifts to an automorphism d¥ written as

C: (z1,z2) — (u(z1, z2)"™*z1, u(z1, z2)"? e(l/m1) e(1/ km1)z2)

for a unit functionk : C2 — C* and for an integet. We shall show that is constant. Since
it induces an automorphism &f, there is an integey such that

u(azy, azz)™ay = e(ma/n)loqu(z1, 22)™

u(az, 0z2)" 20 = e(ma/n) o u(z1. 22)"2 |
forany(z1, z2) € W. Substituting(z1, z2) = (0, 0), we have

u(azy, azz) = €(q/n)u(z1, z2) .
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Thenu is constant by

lu(@)| = lim |u(a’z1, aPz2)| = |u(0,0)|.
p—>00

Let ®: (z1,22) > (z4,z9) be an endomorphism o¥ ford > 1. Then® o A = A4 0 &,
®oB = Blo®,anddoC = C¢o®. Henced induces non-trivial surjective endomorphisms
onY and onX. O

Secondly, we treat the case of elliptic Hopf surfaces with at least three multiple fibers.
Let G ¢ PGL(2, C) ~ Aut(P1) be a finite subgroup and l&t c SL(2, C) be the pull-back
by SL(2,C) — PGL(2,C). We denote byA(g) the matrix inSL(2, C) corresponding to
g € G. We also denote by 1 the unit element®fand by—1 the element corresponding to
the minus of the unit matrix. Note th&t is a cyclic group or one of the regular polyhedral
groups. We choose € H such thatp = e(r). Let x;: G — C* be group homomorphisms
(characters) for = 0, 1. Let us choosé; (g) € Q satisfying €v;(g)) = xi(g). We define

¢(9) == e(¥1(9)T + Yo(g)(1/m)).
An action ofG onY (p, m) is well-defined by the maps

(21, 22) = 9(9)(z1, 22) "Ag)

for g € G. Thus, an extensioG,, , of the finite groupG by Z @ Z/mZ acts onW. The
action ofg € G onY(p, m) has a fixed point if and only i (¢)p* (i /m) is an eigenvalue
of A(g) for somek andi. Equivalently,x1(g) = 1 andxo(g) is an eigenvalue ofA(¢g)™. In
particular,g = —1 acts trivially onY (p, m) if and only if

(7.1) (x1(=1), xo(=1)) = (1, (=D™).

We assume this equality to hold fgi andxo. ThenG acts onY (p, m) and the image&,,
of the homomorphisntf}m,X — GL(2, C) given by the action oV is an extension of; by
Z ®Z/mZ. We also assume that the action@bn Y (p, m) is free. This is equivalent to:

(7.2) x1(9) #1 or xo(g) is not an eigenvalue of(¢™)

for ¢ € G \ {£1}. Then the quotient space(p, m, G, x) := G\Y(p, m) = G,y \W is an
elliptic Hopf surface ove6G\P1.

LEMMA 7.4. Let X be a Hopf surface with an elliptic fibration X — T that has at
least three singular fibers. Then X is obtained as the free quotient X (p, m, G, x) above for
some p, m, G, x.

PROOF Letw: X — T be the elliptic fibration. By the argument in the proof of
Lemma 4.4, there is a Galois covering P1 ~ I — T such that the normalizatior of
X xr I' is smooth overl" and étale oveX. ThenY ~ Y(p,m) for somep andm by
Fact 7.2. The universal covering mép — X is the composite oW — Y andY — X. The
action ofG on I lifts to that onY . Forg € G, a lift of the action ofg onY to W is written as

7= (z1,22) = u(z, g) - (z1, 22) "A(9)
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for a holomorphic functioni: W x G — C*. The description of the universal covering
mapW — Y = Y(p, m) implies that, forg, there exisk, i € Z such thatu(pz, 9) =

ok e /mu(z, g). Sinceu extends a€2 x G — C*, we havep* e(i/m) = 1 by substituting

z = (0, 0). Thereforex descends t&//(p) x G — C*, which is constant by the compactness
of the quotientW/(p). Hence we may writa(g) = u(z, g) € C*. Therefore, for any1, g2,
there exisk andi with u(g1g2) = p* €(i /m)u(g)u(g2). Henceu(g) = ¢(g) above for some
charactersy; and xo. ThusX is isomorphic to the quotient space wf by G,, ,, and the
action ofG,,, , is free since so is the action 6fonY. O

LEMMA 7.5. X(p,m, G, x) admitsa non-trivial surjective endomorphismif there ex-
ists a G-semi-invariant homogeneous polynomial H (z1, z2) of degreed > 2 such that

(1) H(z1, z2) hasonly simple zeros over P1,

(2) x1(9)42 = 8(¢9)" x0(g)¢~2 = 1 for the character § determined by

H((z1,72)"A(9)) = 8(9)H (21, 22) -

PrROOF. (cf.[19]) We setF1(z1, z2) := —3dH (21, 22)/3z2 andFa(z1, z2) := 0 H (z1, 22)/
9z1. Then the morphisn®: W > (z1, z2) — (F1(z1, 22), F2(z1, z2)) € W is well-defined
and

(F1((z1, 22) 'A(9)), F2((z1, 22) "A(9))) = 8(9) (F1(z1, 22), F2(z1, 72)) 'A(g)

for any g. Thus® is G,,, ,-equivariant by the condition (2). Hende induces a non-trivial
surjective endomorphism dof (o, m, G, x), since® induces an endomorphism Bf of de-
greed — 1> 1. O

PROPOSITION 7.6. The dliptic Hopf surface X (p, m, G, x) admits non-trivial sur-
jective endomor phisms.

PROOF. If G is a cyclic group of orden, thenG is conjugate to the cyclic group gen-

erated by
A e(1/2n) 0
- 0 e—1/2n)

in SL(2, C). Then the elliptic surfac& (o, m, G, x) — G\P! has at most two singular fibers.
Hence the existence of non-trivial surjective endomorphism& ¢n m, G, x) for a cyclic
groupG follows from Proposition 7.3.

Thus we assume thét is not cyclic. Itis enough to construgt satisfying the condition
of Lemma 7.5 in the following caseg2, 2, n), (2, 3, 3), (2, 3,4), (2, 3, 5).

Case (2,2,n): G is the dihedral group, of order 21 > 4. We may assume thét is

generated by
. 0 1 _(e1/2n) 0
0= «/—1(1 0) and A:= ( 0 e(—1/2n))

in SL(2,C). ThenQ? = A” = —1andQAQ ! = A~L In particular,A? € [G, G]. Thus
G/IG, G]is isomorphic taZ /4Z for n odd and taZ /2Z @ Z /2Z for n even.
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If n is even, them: is even by (7.1) sinc@? = —1.
Let us consider the homogeneous polynomial

H(z1,22) = 22" — 25"

of degreed = 2n. This has only simple zeros overt and isG-invariant forn odd andG-

semi-invariant fon even. Note tha# — 2 is even and moreover—2 =2(n—1) =0 mod 4

for n odd. ThusH satisfies the condition of Lemma 7.5, singE % = x % = " = 1.
Case (2,3,3): G is the tetrahedral group isomorphic to the alternating getupWe

may assume thag is generated by

A= <*/? —jfl) and B = %2 e(1/8) G _%) ,

where we regard/—1 as €1/4). ThenA2 = B3 = —1 and(AB)3 = 1. Here,G/[G, G| ~
Z/3Z.1In particular,xi3 = Xg = 1. Let us consider the homogeneous polynomial

H(z1,22) = 25 + 25+ 14123

of degreal = 8. Then this has only simple zeros o®rand isG-invariant. ThusH satisfies
the condition of Lemma 7.5, sinece— 2= 0 mod 3.

Case (2,3,4): G is the octahedral group isomorphic to the symmetric gréup We
may assume thag is generated by

_ (e(1/8) 0 _ 1 1 J—_l)
A_< 0 e(—1/8)> and B_\/Ee(l/8)<1 /o)

ThenA* = B3 = (AB)?2 = —1. Here,G/[G, G] ~ Z/2Z. In particular, the square of any
character is trivial. Here: is even by (7.1) sinca® = —1. Let us consider the homogeneous
polynomial

4 4
H(z1, z2) = z122(2] — 25)

of degreed = 6. Then this has only simple zeros ot and isG-semi-invariant. Thus{
satisfies the condition of Lemma 7.5, singeandd — 2 are even.

Case (2,3,5): G isthe icosahedral group isomorphic to the alternating gfdsipWe
may assume thag is generated by

_ (8 0> _i(—(ﬁ—ﬂ‘l) ﬂz—ﬂ‘2>
A= <o gr) a4 B=g\ gr_p2 popr)

where = e(1/5). ThenA® = B2 = —1 and(AB)® = 1. Here,G has no non-trivial
characters. Hence th&-invariant polynomial

H(z1, 22) = 2122(z1° + 112122 — 23°)

satisfies the condition of Lemma 7.5. O
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Finally, we treat the case of non-elliptic Hopf surfaces. By Theorem 32 of [10, 1], a
non-elliptic Hopf surfaceX is obtained as the quotient & with respect to the following
action ofZ @ Z/1Z: A generator ofZ acts as

(z1, 22) P> (0121 + Azy, 2z2) ,

wherem is a positive integery, az, A are complex numbers with @ |o1| < |a2| < 1 and
(@1 —af)r = 0. If A = 0, thena] # o2 for any positive integerp, ¢; A generatoiZ /IZ
acts as

(z1, 72) > (8121, €222)

for primitive /-th rootse, &2 of unity with (e1 — e5')A = 0.

The equatiorz = 0 defines an elliptic curve oK. If A # 0O, then it is a unique curve
of X. If A = 0, then the equatiopy = O defines another elliptic curve and there are no other
curves contained iX.

If L =0, then(z, z2) — (zf, zg) ford > 1 gives a non-trivial surjective endomorphism
of X. Therefore, the proof of Theorem 7.1 is reduced to the following:

PROPOSITION 7.7. If L # 0,then X admits no non-trivial surjective endomor phisms.

PROOF.  We writeaw = ap ande = 2. Thenay = o™, e1 = ¢, and(k, j) e Z&Z/1Z
acts onW by

ok (z1,22) P> (&M (@71 4+ kaa® DM edak 7).

Note thatyy ; for k > 0 is acontraction (cf. Section 10 of [10, 11]) in the sense thgajg’j(B)

converges t@0, 0) for n — +oc for the ballB = {|z1]° + |22/ < 1}. Suppose that there is a
surjective endomorphisrfi: X — X. Let®: W — W be a lift, which is written as

@ (z1,22) — (F(z1,22), G(z1, 22))

for holomorphic functions”, G defined orC2. Here,® o 910 = ¢p.q o @ for some integers
p andg. Hence the following functional equations hold:

(7.3) F(a"z1+ A2y, azp) = €™ (P F(z1, z2) + praP MG (21, 2)™),
(7.4) G(a"z1+ A7y, az2) = 1P G(z1, 22) .
Here, we have > 0 by (7.4); otherwise,
G (21, 22)| = le ¥ G(pr.0(z1, 22))| > O @S k — +00
for p < 0 andG(z1, z2) is constant fopp = 0. Moreover,F (0, 0) = G(0, 0) = 0 by
® 0 gr0(21.22) = ¢, 0 P(21.22) = ®(0,0)=(0,0) as k — +oo.
We insert here the following:

LEMMA 7.8. Let G(z1, z2) be an entire holomorphic function satisfying (7.4). Then
G(z1, 22) = czh for aconstant . If ¢ # 0,theng? = 1.
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PrROOF. We follow the argument of Kodaira in the proof of Theorem 31 of [10, II]. We

may assume that is not identically zero. We s&f,)(z1, z2) 1= 0" G(z1, 22)/dz] forv > 1.
Then
""" PeT1G () (p1,0(21, 22)) = Gy (21, 22)
by (7.4). Ifmv > p, thenG,)(z1, z2) = 0 by
G (21, 22) = ™V G (r 0(21. 22) = O for k — +oo.

Hence we can write
N .
G(z1,22) = Z Gi(z2)z}
i=0

for entire holomorphic function&';(z2) and for an integer < N < p/m such thatG y is
not identically zero. Comparing the coefficientSfoon both sides of (7.4), we have

N
. / Coml—i

(7.5) 0P Gi(z2) = ™ Y (l,)Gl(azz)Al"z’z”(’ v,

I=i
for0 < i < N. In particular,G y (az2) = e?a? "N G y(z2). Hences? = 1, andGy(z2) =
czé’_'"N for a constant # 0. Suppose thaV # 0. By (7.5) in the case= N — 1, we have:
(7.6) aPGn_1(z2) = a" V"V G y_1(az2) + C‘Nmp_ngimwrm :
Comparing the coefficients qf;""’“’" on both sides of equation (7.6), we derive a contra-
dictionto N # 0. Therefore N = 0 andG(z1, z2) = czg for somec # 0. O

PROOF OFPROPOSITION7.7 (continued). We hawe! = 1 andG(z1, z2) = czg fora
constant # 0 by Lemma 7.8. Thus the equation (7.3) is written as

(7.7) F(a™z1 + A2y, azp) = aP™ F(z1, 22) + praPDmem b
Hence,F(1) := 0 F/dz1 satisfies a functional equation
Fay(@™z1 + 228, az2) = a P D" Fy) (21, 22)

(p—Lm
2

similar to (7.4). ThusF(1)(z1,z2) = ciz for a constant; by Lemma 7.8. Then
(p—1

F(z1,22) = 12125 ™ 4 H (z») for a holomorphic functior (z2). By (7.7), we have
1P 4 H(azo) = o™ H(z2) + pha' P """
and hencdd (z2) = 5z§m for a constané andcy = pc™. Thus we obtain:

F(z1,22) = pc'"ng”’l)’" + 625", G(z1,22) = czb.

If p > 2,thenF(z1,0) = G(z1,0) = 0, which contradicts the assumption tlaandG have
Nno common zeros excefis, z2) = (0, 0). Hencep = 1 and

F(z1,22) = c"z1+ 625, G(z1,22) = cz2

for constantg # 0 and$. Thus the endomorphisifi: X — X is an isomorphism. O
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8. Inoue surfaces without curves. In the paper [5], Inoue constructed examples of
compact complex surfaces of class pith 5, = 0 having no curves. These are called Inoue
surfaces and are denoted y, SHL gt andS( ) o . Moreover Inoue showed in the same
paper that if there is an invertible shet.aﬁatlsfylng

HOs, i@ L) £0

on a surfaces with b1(S) — 1 = b2(S) = 0 having no curves, thefi is one of the surfaces
above. By the works [11], [21], we can remove the assumption on the existericahuive;
These Inoue surfaces are characterized as the surfaceswiti, b» = 0 having no curves.

LEmMmMA 8.1. Let f: X — X be an éale endomorphism of a surface of class Vllg
with k (X) = —oo. Then f*: HY(X,Z) — H(X, Z) istheidentity.

PROOF. Assume the contrary. Thef* is the multiplication map by an integer# 1.
We have the isomorphistdl(Xx, C*) ~ H1(X, O% %) from the exponential sequence an
ThusKyx ~ f*Kyx implies thatOx ((d — 1)mKx) >~ Oy for the ordenn of the torsion part
of H1(X, Z). In particularx (X) = 0, a contradiction. O

The Inoue surfac8y, is defined as follows: Le¥ be a matrix inSL(3, Z) with eigenval-
uesa, B, B such thatr > 1 andB ¢ R. Here,o ¢ Q. Let (a1, az, a3) be a real eigenvector
with « as the eigenvalue and |1, by, b3) be an eigenvector with as the eigenvalue. Then
three vectorsas, b1), (az, b2), (a3, b3) areR-linearly independent and satisfy

(aaj, Bbi) = > mij(aj.bj). where M = (m;j) € SL(3,2).
j=1

Let G, be the group of automorphismsidf x C generated by

g0: (w, 2) = (aw, Bz),
gi: (w,2)—~ (w+a;,z+b;) fori=1 2 3.

The action ofG; onH x C is properly discontinuous and free. The surféggis defined as
the quotient surfac& ), \(H x C). The generatorg satisfy the following relations:

-1 m; i i P
9i9j = 9j%, 90Gidy =91 95 °93°, forl<i,j<3.
PROPOSITION 8.2. The Inoue surface Sy, admits a non-trivial surjective endomor-
phism.

PROOF. Let @ be the automorphism dfi x C given by (w, z) — (nw,nz) for an
integern > 1. Then® o go = gpo® and® og; = g' o ® for 1 < i < 3. Thus an
endomorphisny : Sy — Sy is defined byd. Heref, : m1(Sy) — w1(Sy) is isomorphic to
the homomorphisnG y; — Gy givenbyGy 3 g — ® o go® L. Thusf is non-trivial. O

The Inoue surfac§(+) par . Is defined for a matri® in SL(2, Z) withn :=tr N > 2, for
integersp, ¢, r with r ;é 0, and for a complex numberas follows: Letx be an eigenvalue
with « > 1. Leta = a1, a2) andb = (b1, b2) be non-zero real column vectors such
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that Na = aa andNb = o~ 1b. Note thats; andb; are non-zero and/a; andby /by are
irrational. We seb := deta, b) = a1b> — axbi. For a pair(l1, I2) of integers, we set

11 -1 bl -1
e(l1, 1) == %bm + %bzaz + lilzbyas .
We defineey := e(n11, n12) ande, := e(n21, nz2) for the matrixN = (n;;). We also define a

real column vector = Y(cy, ¢p) by
(8.1) (N —De+ '(er.e2) — 0/r) ' (p.q) =0,

where!l denotes the unit matrix. Le&t™ = G

N.p.grit be the group of automorphisms of
H x C generated by

go: (w,2) = (@w,z+1),
gi:(w,2) > (w+a;,z+biw+c¢) for i=1, 2,
g3: (w,2) = (w,z—0/r).

Thengs commutes withy; for 0 < i < 2. Moreover, we have:

(8.2) 9192 = 29195 . 909105 = 9195208 . gogage "t = 9179704 .

These relations determine the group structur&6f). The subgroup™ = ;'Y ¢ G
generated by, g2, and gz is normal and the quotierG*)/I" is a free abelian group of
rank one generated by the classgef The center ofG*) is generated byz and contains

[, I']. The quotient group of" by the center is a free abelian group of rank two generated
by the classes ofy and g>. The action ofG™" onH x C is properly discontinuous and
free. The surfacéj(vf;)q’r;, is defined as the quotient space. More precisely, we denote it by

)
SN’p’q’r;t(a, b).
DeFINITION 8.3. (1) LetTzdenote the subgroup @§(C) consisting of" (x1, x2, x3)
with x; € R.
(2) LetAsdenote the subgroup af3(C) consisting of (x1, x2), y) with x1, x2, y € R.
(3) LetD: Z2 x Z2 — Z be the skew symmetric form defined by
D ((1.12), (I}, 15)) :=l1l5 — I2ly
that s,

D(, &) =det, &)

for row vectorst, &' € Z2.
(4) Foraninteger # 0, letZ[r/2] = Z + Z(r/2) C Q and letl; be the following
group structure defined &2 x Z[r/2]:

EWxE DY) i=E+E,y+y +(/2DEE)).

An element ofl'} is denoted by, y) for a row vectort € Z2 andy € Z[r/2].
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The groupTs acts on(w, z) € H x C by the multiplication map
T (x1, x2,x3) (L, w, 2) = Y1, w4 x1, 2 + xow + x3) .
The group homomorphismhi = F,(+) — T3 given by
g1 T(a1,b1,c1), g2+> T(az,b2,c2), g3r>T(0,0,-6/r)
is compatible with the actions dth x C. The homomorphism is written explicitly as follows:
010205 = T((1, I2)a, (11, I2)b, (, la)e — (0/r)lz + e(l1, 12))
where(l1, [2)a = lia1 + Ipaz, (11, 12)b = l1b1 + loby, and (I1, )¢ = lic1 + loc2. An
isomorphismiz — Az is induced from (6.2). There is a homomorphigh— I given by
glg2g2 > (1, 12), I3 + (r/2)l1l).

Then an element(ls, I2), A) € I, comes froml™ if and only if . — (r/2)l1l2 € Z. There is
also a homomorphism;,. — A3 given by

(¢, y) > (@@, b), &€ — ©/r)y), where ¢ :=c— (1/2)"(a1b1, azb) .
Then we infer that the diagram

r — I,

Lo

T3 = Az
of injective homomorphisms is commutative. The actigron H x C corresponds to the

matrix
1 0
(8.3) A=1]0 o).
59

For the choice ot, the relation (8.1) corresponds to the second and third equalities in (8.2).
This is also equivalent to

(8.4) (N —D¢c =@©/r)p', where p’ = (p+ (r/2n11n12, g + (r/2)n21n22) .

In particular, G is isomorphic to the subgroup @L(3, C) generated by the image of
I' - GL(@3,R) — GL(3, C) and by the matrix.

OoOR o

LEMMA 8.4. (1) Anendomorphism g of I, i.e, a group homomorphisme: I, —
I, iswritten as

I3, y) > 9@, y)=(EM, §v+ (detM)y)

for anintegral (2 x 2)-matrix M and a column vector v € Z[r/2]2.
(2) Thesemigroup End(I}) of endomorphismsof I, isanti-isomorphic to the following
semigroup structure on Ma(Z) x Z[r/2]2:

(M1, v1) x (M2, v2) = (M1M>, M1 - v + (detMp)vy),
where M2(Z) denotesthering of integral (2 x 2)-matrices.
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(3) Anendomorphismof I' liftsto I.. A pair (M, v) € M2(Z) x Z[r/2]2 isinduced
from an endomorphism of I if and only if v1 — (r/2)m11m12, v2 — (r/2)mo1m22 € Z, Where
M = (mjj), v = ‘(v1, v2).

(4) Theautomorphismy — goy go L of I" correspondsto (N, p’).

(5) An endomorphism of G inducing the identity on G*)/I" is given by an endo-
morphism (M, v) of I and by integers!s, I, I3 satisfying

(8.5) MN =NM, and (M — (detM))p' — (N — v =rM "'z, —11),

where go is mapped to gg gil géz g:lf.
PrRoOF. For an endomorphism of I, we attach/ = (m;;) andv = Y(v1, v2) by

¢((1,0),0) = ((L,O)M,v1) and ¢((0,1),0) = (0, HM, v2).

Then (1) and (2) follow from simple calculations. For (3), it is enough to show that the endo-
morphism lifts. This is becaugg is generated by" and an elemen(t0, 0), r/2) commuting

with I". (4) follows from the relations (8.2). Let be the endomorphism of (5) and letbe

the induced endomorphism &f. Thenp(go) = gon for somel” > n = g:ll_lgézg?. Let(n)
denote the automorphism — nyn~! for y € I' and letv denote another automorphism

Yy > gov go - Thenp mapsgoy gp - = v(y) 10 gone(¥)n 295+ = ¢(v(y)). Therefore,
(8.6) voit(n)opg=¢ov.

Conversely, if the relation (8.6) holds, thefy) and¢ define an endomorphismon G,
Let (M, v) € M2(Z) x Z[r/2]? correspond te. We infer that(1, r {(—I», I1)) corresponds to
t(n) by (8.2). Thus (8.6) is equivalent to (8.5). O

PrROPOSITION 8.5. Let f: X — X bea surjective endomorphism of the surface X =

vaf;)q’r;t(a, b). Then f isinduced from the automorphism

2
a—1

for amatrix M € M2(Z) with a positive eigenvalue ¢, and for integers s, I, and a complex
number &, in which the following conditions are satisfied:
(1) detM #0,MN = NM, and

®: (w.7) > (cw - I, l)a, (detM)z + Ll((ll, I)b)w + 5) ,
p—

(detM — 1)t + L(11, N (2 ) = (1. l)e + @/l € 012 .
2(n —2) —I1
(2) Letv = (v, v2) bethe solution of the equation
(M — (detM)I)p' — (N — v =rM (_IZ) :

Thenv; — (r/2)m;imi1p € Z fori =1, 2,where M = (m;;).
Conversely, if M and (I1, I2) satisfy the conditions (1), (2), then the automorphism &
above induces an endomorphismon X of degree (detM)?.
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PrROOF. The spaceH?(X, ®x) of global holomorphic vector fields o is one-
dimensional and is generated by the vector figlélz; by Proposition 3 of [5]. Let

®:H xC> (w2t (P1(w, 2), P2(w,z)) e H xC

be a lift of the endomorphisnf for some holomorphic function®;. The lift is an automor-
phism sincef is étale. Note thatb; depends only omw since any holomorphic mapping
C — H is constant. Thug; = F(w) for a holomorphic function® on H. The formula
®,(0/0z) = 0®2/0z(0/dz) implies thatd, = ¢z + G(w) for a constant # 0 and a holo-
morphic functionG onH.

The injective endomorphistf, : 71(X) — m1(X) is given byr1(X) 3 g — ®Pogod L,
This defines an eleme¥, v) € M2(Z) x Z[r/2]? and integersy, l», I3 by Lemma 8.1 and
Lemma 8.4. Here the condition (8.5) is satisfied and- (r/2)m;1m;2 € Z fori = 1, 2, for
M = (m;;) andv = '(v1, v2). Note that(¢, y) € I acts one H x C by

(w,z) = (w+éa,z+ EbDw + &’ — (0/r)y + (1/2)(£a)(ED)) .
Henced o (£, y) o @1 = (§M, £v + (detM)y) is equivalent to:
(8.7) F(w+é&a) = F(w)+&Ma, and

e((Ebyw +&c" — (O/r)y + (1/2)(Ea)(Eb) + G(w + £a) — G(w)

8.8
(69 = (EMb)F(w) +EMc' — (0/r)(Ev + (detM)y) + (1/2)(EMa)(EMD) .

Similarly, ® o go o @1 = gogi! g2 4% is equivalent to:

(8.9) F(aw) = «(F(w) +¢a), and

(8.10) (¢ =11+ Glaw) — G(w) = CHF(w) +¢c' —(0/r)l' + (1/2)(Ca)(¢h),
where¢ = (11, I2) andl’ := I3+ (r/2)l11l2. ThenF’(w) has two periodas, a2 by (8.7). Since
ai/ay is irrational,Za1 + Zaz C R is dense, which implies that’(w) is constant. Then

G”(w) has also periodss, a2 by (8.8) and henc&” (w) is constant. Moreovet” (w) = 0
by (8.10). We can write

Fw) = cw — —— (. Ip)a
a—1

for a constant with Ma = ca by (8.7) and (8.9). Note that> 0 since ImF (w) = clmw >
0. Letc? be the conjugate of the algebraic integaverQ. ThenMb = ¢*b. Similarly from
(8.10) and (8.8), we have

G(w) = %((h, L)byw +8. cMb=ch

-1
for somes € C. Thuse = cc? = detM. We note that
azbo 1 1 o a+1 1 1
9 = — s —_ — = — = — — .
oy T ) 3T 1T T 2eo T 2w @)

b
(1. I)a) (1. [2)b) = ‘22_212(,1, I)N ( —1?1) .
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Thus (8.10) is written as
(detM — 1)t = (1/2 — a/(a — D)(Ca)(&h) + ¢c' — 0/
0 12 /
=————(1,10)N —(I1,1 —(@/2)l> — B/r)l3.
z(n_z)(l, 2) (—11) (l1,I2)¢" — (8/2)al2 — (8/r)!3

Hence the conditions (1) and (2) required Mrand(l1, [2) are satisfied. Conversely, suppose
that the conditions are satisfied. The condition (8.8) for@ny) € I, is equivalent to

f
(M — (detM)I)c' — L(([l’ I)b)a + &((11’ Io)a)b + ©/r)v.
a—1 a—1
By (8.4) and (8.5), it is also equivalent to
oM (_lil) = c((1, D)b)a — ¢*((11, l2)a)b .

In other wordsZ (>, —I1) = O for the matrix
Z :=60M — ca(ba, —b1) + c*b(az, —ay) .
However,Za = Zb = 0 by direct calculation. Hencg = 0. Therefore@m1(X)® ! C

1(X) for the automorphisn®. Thus an endomorphism &f is induced. O
THEOREM 8.6. S](V-i,_ii,q,r;t(a’ b) admits a non-trivial surjective endomorphism if and

onlyift € Q6, where6 = det(a, b).

PrRoOOF If the endomorphism exists, thene Q6 by Proposition 8.5, (1). Conversely
suppose that € Q6. We consider a matri*f = (m;;) = kN + I for an even integet > 0.
ThenM has a positive eigenvalue= ko + 1 and det¥ = k% + kn + 1 > 1. Itis enough
to show thatM satisfies the conditions (1) and (2) of Proposition 8.5ferl2) = (0, 0) for
somek > 0. By assumption,

(detM — 1)t = k(k +n)t € Z(0/r)

for somek. Let v be the solution of M — (detM)I)p’ = (N — I)v. Sincemiimiz =
k(kn11 + Dn12 andmoimor = kno1(knoo + 1) are even, we have only to show that Z2.
We note thatN — 1)1 = 2—n)"Y (N1 = 1)andM — (detM)I = k(N — (k+n)I). Thus
if k is divisible byn — 2, thenv € Z2. O

The Inoue surfac@f‘a)q’r is defined in [5, 84] for a matrid € M2(Z) with detM =
—1,trM > 0 and for integerp, ¢, r # 0. The surface™) = S,(‘;’)l,’q,r

s = stP .o as an unramified double covering for = M2 and for suitable integers
N,p1,91,7;0

p1, q1. The involution of St generating the Galois group is induced fram (w, z) —
(Bw, —z) for the positive eigenvalug’a = 8 of M.

has an Inoue surface

THEOREM 8.7. S}, admitsanon-trivial surjective endomorphism.

PROOF. We consider an endomorphism$f- given by
@: (w,2) > ((ka + Dw, (k2 + kn + 1)z)
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for a suitable integet > 0 as in Theorem 8.6. Theh o @ = @ o ¥. Thus® also gives a
non-trivial surjective endomorphism 6f~). |

9. Inoue surfaces with curves. A parabolic Inoue surface, a hyperbolic Inoue sur-
face, and a half Inoue surface are the first examples of surfaoéslass Vip with a(X) = 0,
b2(X) > 0. Descriptions different from those in [@f these surfaces are given in [20] by the
theory of toric varieties.

A parabolic Inoue surfac; , for a complex nhumbek with 0 < |A| < 1 and for a
positive integem is given as the quotient space of a toric vari€y(X') with respect to an
automorphisny} of infinite order which are defined as followi. is a free abelian group of
rank two with basigy, e2 and the fan¥ consists of the cones

{0}, Rsxoe2, Rxolex+ve2), Rxole1+veo) +Rxoler+ (v — Deo)
forallv € Z. Let g, be the automorphism of the open orbiyf = N ® C* given by
(z,2) = (Az,22),

where(z, /) € (C*)? corresponds ta ® e1 + z’ ® e2. Theng, extends holomorphically to
an automorphism of (). Note thatg] is given by

(Z, Z,) — ()\nz’ )Ln(n—l)/ZZnZ/).

The surfaceX; , is of class VIb with b2(X) = n. It contains an elliptic curveE with
E2 = —n and a cycleD of rational curves consisting of irreducible components with
D? = 0. Here,E is the quotient curve of the orbit correspondinggoe» and an irreducible
component o is the quotient of the orbit correspondingRa.g(e1 + vez) for somev.

PrRoOPOSITION 9.1. Parabolic Inoue surfaces X, , admit non-trivial surjective endo-
mor phisms.
PROOF. For an integek > 1, lethy be the following endomorphism dfy:

2
(z,7) > (5, FE-D/25
Thenhy extends to an endomorphism Df (X) andgf o hg = hg o g». Thushy induces a
non-trivial surjective endomorphism oty ,. a

A hyperbolic Inoue surfac& g y and a half Inoue surfacﬁﬁ,N are defined as follows
for a real quadratic fiel®k and for a free abelian subgrodp C K of rank two generatingt
overQ: LetA®q R — R? be the isomorphism given by (&, &%) for £ € £ and for the
conjugates® overQ. We set

IN={ueO;|u>0 uN=N} and F,\TZ{MEFN|MI:>0},

whereOg is the unit group of the rin@g of integers of&. Thenly ~ Z and F,\T is a
subgroup of index at most two. Lély and ®y be the convex hulls o N (R0 x R-0)
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andN N (R-o x Rg), respectively. LetZy be the fan oN ® R = R2 corresponding to the
decomposition oR.g x (R \ {0}) into sectors by rays joining 0 and a point of

NN (06N UIOY) .

ThenI{ acts on the toric variet§ y(X) by ux: N — N. If I} is of index two inIy, then
I'y also acts on the toric variety. L&t n(X) be the topological quotient space Bf(X)
by the compact torubl ® U(1) ¢ Ty = N® C*, whereU(1) = {z € C; |z| = 1}. Let
ordy: Tn(X) — Men(2) be the quotient map. Its restriction Toy is described as the
composite

id®|- id(—1
ordy: N@ C* -2 NgR.g 229 N g R,

in which the first arrow is induced from the norm map> |z| and the second from @ r
—logr. Let V\ be the pull-back by ofg of the open subset

(R0 xR UMNE)\N®R).

Then the hyperbolic Inoue surfaég; \ is defined as the quotient spaE}gL\VN. The half
Inoue surfacé(ﬁ,N is defined in the cadd \ : F,\J,“] = 2 as the quotient spadey\ V.

PROPOSITION 9.2. Hyperbolic Inoue surfaces and half Inoue surfaces admit non-
trivial surjective endomorphisms.

PROOF For a positive integetr > 1, the multiplicationN — N by / defines an endo-
morphism ofT y(X) of degred? > 1. This preserve¥y and commutes with the action of
F,jr or I'y. Thus a surjective endomorphism of degiees induced. O

COROLLARY 9.3. Let X be a successive blowups of an Inoue surface with curves
whose centers are nodes of curves. Then X admits a non-trivial surjective endomorphism.

PROOF. LetY be an Inoue surface with curves and Jet Y — Y be a non-trivial
surjective endomorphism. By replacingby some powerf, if necessary, we may assume
that f~1(C) = C for any curveC. Then f~1(P) = P for any node of the uniok J C of
all curves. LetY; — Y be the blowup at a node. Then f induces a non-trivial surjective
endomorphismyi: Y1 — Y1 which also preserves any curve Bn In particular,fl‘l(Pl) =
P1 for any nodeP; of the union of all the curves df;. Therefore, ifX — Y is a succession
of blowups whose centers are nodes of curves, then a non-trivial surjective endomorphism on
X is induced fromf. O
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