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THE IDEAL CLASS GROUP OF THE BASIC Zp-EXTENSION
OVER AN IMAGINARY QUADRATIC FIELD
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Abstract. We shall discuss the local triviality in the ideal class group of the bagic
extension over an imaginary quadratic field and prove, in particular, a result which implies that
such triviality distributes with natural density 1.

Introduction. Let p be a prime number, which will be fixed throughout this paper.
We shall suppose that all algebraic extensions over the rationalQielee contained in the
complex fieldC. Let Z, denote the ring op-adic integers, an@., the Z,-extension over
Q, namely, the unique abelian extension o@such that the Galois group GBlL,/Q) is
topologically isomorphic to the additive group 8f,. Let P be the set of all prime numbers.
For any algebraic extensian overQ, let Cr denote the ideal class group Bfand, for each
[ € P, let Cr(l) denote thé€-class group of, i.e., the/-primary component o€ r. As is
well-known, thep-class group 0B is trivial: Cg_, (p) = 1 (cf. Frohlich [5], Iwasawa [8]).
On the other hand, the theorem of Washington [11] implies that, for dveny \ {p}, the
[-class group 0B is finite: |Cg_, (I)| < oo.

Now, let

gq=p or g=4
according ap > 2 or p = 2. Letv be a fixed positive integer such that p”, namely,
v>2 if p=2.

Put
(p"tlog(p/2) + (6v + 4) log p)e((p — D) f3(f — DY/
(2log 2 pv=1/(p=1)(f-D/2 ’

whereg denotes the Euler function and
f=e@)=@-Dp"*.

In this paper, developing our arguments of [7, §2], we shall prove the following result among
others.

M =

THEOREM 1. Let H be the class number of the subfield of B, with degree p2°—1/4.
Then Cg_, (1) istrivial for every ! € P which satisfies

19D £1 (modgp’), I[tH, [>M.

2000Mathematics Subject Classification. Primary 11R29; Secondary 11R11, 11R20, 11R23.
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Next, take any imaginary quadratic fietdand denote byt the maximal divisor of the
discriminant ofk relatively prime top. Let K be the basi& ,-extension ovek:

K = kBs .

By means of Theorem 1 and results in Washington [10, 8IV], we shall eventually prove the
following result.

THEOREM 2. Let H bethesameasin Theorem 1, and let 4* denote the relative class
number of the intermediate field of K /k with degree p?~2 over k. Then Ck(I) is trivial
for every ! € P which satisfies

gA(vlogp +1) !
27 > )

In particular, Theorem 2 implies that there exist only a finite numbdr ef P, with
1@ £ 1 (modgp”), for which C (1) is nontrivial. Once such a result is obtained, we shall
see as a consequence that the natural densiyohthe set of all € P with Cx(l) = 1is
equal to 1 (cf. Theorem 3).

19@) £ 1 (modgp”), [tHR*, > max<Mf’ p<

REMARK. For infinitely manyl € P, Ck () is nontrivial while, for alll € P\ {p},
Ck (1) is finite (cf. [10], [11]).

The author thanks the referee who madeesal valuable comments on the paper.

1. We shall devote this section to proving several preliminary lemmas for the proof of
Theorem 1 in the next section. As usual,Zdbe the ring of (rational) integers, ahdthe set
of positive elements af. We put, inC,

£, = e¥'/P" foreachu e N.
Letm be any non-negative integer. In the case 2, we put
o Ei1 = Emon I sinrb/p"th
" b Smb-l’fl - g,;f.ﬁ b Sin(ZNbu/pm+l)
for eachu e Z with p t u. Hereb ranges over the positive integets p*+1/2 such that
bP~1 =1 (mod p”*1). We then let

T = T 1 = l_[ gmﬁ-l - Si;l-ll’-l
m = lm, 1+pm = bg b be—b °
b gl$m+l _El §m+l
In the case = 2, we put

Eni3—&,1s  Sin(r/2"t2)
"~ sin(u/2m+2)

Nmu = 7 —u
m+3 Sm+3
for each odd integer, and put

T
Nm = My 142m+1 = tan—2m+2 .
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Next, letB,, denote the intermediate field Bf, /Q with degreep™, E,, the group of all units
of B,,, andh,, the class number d@,,. As is easily seen, eaa}), , defined above belongs to
E,.. LetU,, denote the group of circular units B),, namely, the subgroup df,, generated
by —1 and byn,, , for allu € Zwith p { u. Then the index ot/,, in E,, equalsh,, (cf. Hasse
[6, 89)):

1) I = (Ep : Up) .

On the other hands,, is divisible by the class number of any subfieldBf, sincep is fully
ramified for the abelian extensid),/Q. Now, let R,, denote the group ring of Ga&,,,/Q)
overZ. Naturally, E,, becomes aR,,-module, andJ,, an R,,-submodule oft,,,. Let us take
an algebraic integer in Q(&,,): a € Z[&,,]. Thena is uniquely expressed in the form

p(p"™)

j—1
o= Z ajy ~, ai,...,appmy €Z.
j=1

For each suck and eaclp € Gal(B,,/Q), we define an elememnt, of R,, by
e(p™) '
o, = Z aj,o-’_l.
j=1
Next, letn be any positive integer, which we shall fix henceforth. For later convenience,

we put; = e27i/4r"  that is, we put

=&11 or &40

according ap > 2 or p = 2. Take any generatar of the cyclic group GaB,,/Q) and any
T € Gal(B,,/Q) of orderp:

GalB,/Q) = (o), GalB,/B,-1) = (7).

Since
r—1 L

2) (1—t)<20“”n_ ) =0 inR,,
u=0

we have

fA-D@ Bl _ (A-Dotho)  (A-D@B)o _ ((A-Daoh,

foralle € E, and all(a, B) € Z[&,] x Z[£,]. The map(a, &’) = &'* of Z[&,] x E}~7 into
EL~7 thus makes£}~* a module over the Dedekind domatiié,]. ThenU}~* becomes a
Z[&,]-submodule off,. Furthermore, we obtain the following

LEMMA 1. The Z[§,]-module E,}‘f is isomorpic to a nonzero ideal of Z[&,], and
UL~ is a free Z[£,]-module generated by 127, where s is an integer such that an exten-

sionof o in GallQ(¢)/Q) maps ¢ to 7.
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PrROOF. Assume that
g1 D% =1 with ¢ € E,, € Z[£,].

Let N be the norm ot for Q(&,)/Q. ThenN = «p for somep € Z[¢,], and hence

f@-ON _ (A-No _ (Do )y _ 1

Thusel~7 is equal to 1 ok-1.
We next assume that~* = —1, namely, that

e € Ey\Ep_1, €2€E,1.
As[B,_1(¢) : B,_1] = 2 follows, we have

P=2, QG2 = QEni1.8), &2 QEns1),

so thatg,.2¢ 1 belongs taQ(£,1) whose unit index equals 1. Therefoég, et = £,1q8
for someu € Z and some’ € E,,_1. In particular,anrzéljfl must be real. This contradiction
shows thatE,}*t is a torsion-fre€Z[£,,]-module.

Since the magy — y1~7, y € E,, induces a group isomorphishy,/E,—1 — EL 7, it
follows from the above thak}~" is a free abelian group of rark(p"). On the other hand,
the groupU,, is generated by-1 and byn,‘{"; for all nonnegative integens < p" — 2. We
also note that the quotient grod}—*/ U~ is finite in virtue of (1). Hence we see from (2)
that Unl—r is a free abelian group freely generatedrtﬁ/s")"u for all non-negative integers
u < @(p"). Itis now easy to complete the proof of the lemma. |

REMARK. NeitherEX=" nor U}~* depends upon the choice of

LEMMA 2. Let!/ be a prime number different from p, o a generator of Gal(B, /Q),
and F an extension in Q(¢,) of the decomposition field of I for Q(&,)/Q. Then [ divides the
integer h,/h,—1 if and only if there exists a prime ideal [ of F dividing [ such that »,° isan
I-th power in E,, for any element « of theintegral ideal /(1 of F.

PROOF. Let r be the restriction td, of the automorphism o0Q(¢) mapping¢ to
&1 = ¢%"/P¢. Obviously, is an element of GéB,,/Q) of order p. Take an integes for
whicho is the restriction td,, of the automorphism d(¢) mapping to ¢°. It then follows
that

(3) n o =t

The mape — 177 of E, into EL~7, together with its restriction to/,, gives rise to an exact
sequence

11— UEp—1/Uy — Ey/U, — Ei_r/Uy:lL_T -1
of finite groups, so that

(Ep :Up) = (En—1: Uy N Ey_)(EXT:UNT).
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Putting, inR,,,
p—1
T=Y o =l4c+ -+or L,
u=0
we also have
U N En—l)p =U,N En—l)T - UZ CUp-1CU,NE, 1,

while #,, is known to be relatively prime tp (cf. [5], [8]). Hence, by (1),

hn
hy1’
Let o denote the ring of algebraic intgers in Write d for the degree of)(§,) over F:
d = [Q(&,) : F). ThenZ[&,] is a free module over its subring and 1,§,, ..., E,f‘l form
a basis of the-moduleZ[&,]. We consider the quotied}~* /U1~" of Z[£,]-modules to be
ano-module in the obvious manner. Hence there exists a finité& sdtintegral ideals ofF
which yields an isomorphism

(4) (E, U7 =

£ /0E = Poja
aeS
of o-modules.

We now assume thatdividesh, /h,—1. By (4) and the above isomorphism, there are a
prime ideall of F dividing / and an injective-module homomorphisr/l — E1-7/Ul-T.
Hence there further exists a unigin EX~7 \ UL such thats” belongs toU1~" for every
B € . Lemma 1 thus implies that

(5) ep = 1'% with a uniquew € Z[&,1,

where, sinc&[é,] =0 0&, D --- D oéj’l, w is uniquely expressed in the form
d .
w= Zng,{fl with vy,...,vs € 0.
j=1

To see thab is not an element o[£, ], the ideal ofZ[¢,] generated by, suppose contrarily
thatw is an element ofZ[£,]. Then allv;, j € {1, ..., d}, belong tol. As[is unramified for
F/Q, we can take an elemept of /11 satisfying 1— 8’ < I. Note thatg’v;/~* belongs ta
foreveryj € {1, ..., d}. Onthe other hand, we have, by (5),
1B,  A-D(9g BuiEl e
"20/3 = Nn,s = .
Consequently,

1-'+8)s 1-8,  A=0(4y Broi 5, _
8028(() B'+8") :86 ﬂ)niz,s j=1PYj GUI/:lL T

but this contradicts the choice &f. Thusw is notan element dZ[,]. Let® = Gal(Q(&,)/F).
We then have

(6) o’ ¢ 1Z[&,] forany p in &,
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sincelZ[&,] is the only prime ideal of)(&,) dividing I. Next, define a square matrix of
degreed with coefficients ino by

1 1
Eﬂ Sﬂ
Y =w
éd.fl éd.fl
n n
Clearly,
1 1
" &7
Y : = o’ : forall p e &,
(d-Dp @-1p
n n
so that
dety) = ]_[ o
pe®

Hence it follows from (6) that
dety) 1, ie., 1—p"detY)el forsomepg”ino.

Now, leta be any element dfi—. We then find that

(1-t)as _ ,(1-1)(detY))s (@f")o ,,(1-7)(a(1-B" delY)))s
nn,s - nn,s nn,s .

— j-1 j-1 e
Furthermore, (5) givea,(l,ls D@ Do _ sf)@" ) as Jj ranges over the positive integers not
greater tham/, and hence, from the definition &f, we obtain

/ d’— j ){71 o
Lo, So(z"_l X6 o
with x; denoting the(j, 1)-cofactor ofY. Sincel dividesa(1 — g” det(Y)), it follows that

nffs_’)““ is ani-th power inE1~7. Therefore, by (3),

nl=e — ¢l forsomee; € EX7.

2
We can also take an elemehof R, satisfyingn, = n,(ll’”)g; because

: 2 -7 PPt
D =1, e, nl =pbPTD = yf et ~

2
Hence we have) “ = ¢f! and, consequentlyy” is an/-th power inE1~7.
Taking any algebraic integef in 11~1 for whicho/I~1( + lo = 0, we assume from now
on thaty,° is ani-th power inE, . This assumption implies by (3) that

1-0)a! .
ey 7% = eb with somees € E, .

Therefore
ehe EXT, (D) =1.
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Sincee; can be replaced bye- in the casé = 2, we may obtair? = 1, which yields
85 =T e Ei_r .
Hences: itself belongs taE}~*. Lemma 1 therefore shows that
U,il_f)“;’ c E4-01
Again by Lemma 1,
(X7 Q00 = o) @l g%y = N,

whereN’ denotes the norm af’ for Q(£,)/Q. The choice o’ guarantees, however, that the
highest power of dividing N’ is (#(?")~4' with &’ the degree o®(&,) over the decomposition
field of / for Q(&,)/Q. Hence, in virtue of (4)k,/h,—1 must be divisible byd/. Thus our
lemma is completely proved.

For each algebraic number we put

lleell = max|je”],
o

wherep runs through all isomorphisms Qf(«) into C. As is easily verified,

186" < IBINBN . 18™I = 181"
for every algebraic numbe#, every algebraic numbet, and everyn € N.

LEMMA 3. Letu beapositiveinteger, let e beaunitin E, \ {—1, 1} whose norm for
B,/B,—1 equalslor —1,and assumethat n > 1inthecase p = 3. If ¢ isa u-th power in
E,, then

2" < Je] .

ProoF.  Contrary to the assertion, suppose that2 |e|, with e = &5 for some
eo € E,. Then we haveleg| < 2. Sincegg is totally real, it follows from 8II of Kronecker
[9] thateg = 8 + 81 for some roo# of unity. On the other hand, unle€&so) coincides with
B, we haves = ¢; € B,—1 and soe”, the norm ofe for B, /B,,—1, equals 1 or-1; but, by
the hypothesis? # 1, ¢ is not a root of unity. Thus

Q@+ =Q(e0) =B, .

In particlar,Q(é) is a quadratic extension ovBf, and the conductor &@(8) equals that oB,,.
Here, by the equality % §2 = g4, it is impossible thap = 2, namely, thas is a primitive
2"+2_th root of unity. Hence» must be 3 and? is a primitive 31-th root of unity. We then
deduce that the norm éf+ 8~ for B,,/B,_1 equalss® + 83, which is not a root of unity by
the assumption > 1. However, the norm ofs + s~ = ¢ for B, /B,_1 was 1 or—1. We
are therefore led to a contradiction and, hence, the lemma is proved.

LEMMA 4. Inthecasep > 2,

1 pn+l 7 (p—1)/2
max(|[n. I, In, ") < ( sin— + cos—) :
T p p
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inthecase p = 2,
— 1y — t i
171l = lIn, "Il = co iz
PrROOF. We first assume that is odd. As Lemma 4 of [7] states that

L\ P02
Il < < Sln—> ;
T P

we shall prove that

p”+l T T (p—1)/2
In 2l < ( sin— + cos—)
0 p p
By the definition ofy,,
ety < | ST Dy |72
M — Sil’](2n’/p”+1)

Letm range over the positive integers less thér'/2 and relatively prime tg, and let

sinimz (p" + 1)/ p™t1) sin(mm/ p) mm
Ym = - 1 = T + COS—.
sin(mzm / p"*1) tan(mm /p"tt) p
We then easily see that
sin@r (p" + 1)/p"
- 1 = max|yul| .
Sln(ZJT/p"+ ) m
Therefore it suffices to show that
n+1
LT b4
(7 [Vm| < Sin— + cos—.
P P
If m < p/2,then
0, tan mr mr cosmn < cosn P sinmn <P sinn
> 9 -1 > -1 9 - J— - 9 - - — - - 9
Ym L T D »’  mm » o p
and hence
n+1 ) mm pn+1 ) T
V| = Ym < SIN— + C0S— < sin— + cos—.
mm p p T p p
If p/2 <m < p"t1/2, we obtain
n—+1 T
[Ym| < sin—
p

by an argument quite similar to that in the proof of [7, Lemma 4]. Thus (7) is proved.

We next assume = 2. In this case;n;, ! is the image of;, under the automorphism
of Q(&,+2) mappingé,+2 to —&,42. Hence the second assertion of the lemma follows from
the fact that
cosm/2"2)
sin(rrm/21+2)
wherem ranges over the odd positive integers smaller tH4rt 2 |

-1
lIm, ~[I = max

m

3
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LEMMA 5. Let S beafinite set of integers, v a map from S to Z, a any integer, b an
integer exceeding 1, and b’ a positive integer smaller than b. Let

S ={weS|w=a (modp’)}.

B > es Y(w)é&y’ =0, then Y wes' v (w)é&y = 0.

(i) 1), cs¥vw)é = 0 (modc) with an integer ¢, then 3 o ¥ (w)§ = 0
(modc).

PROOF.  We may assumé& C {0} U N. Under this assumption, it is easy to prove the
assertion (i), since the”-th cyclotomic polynomial in an indeterminagéoelongs t(Z[yl’H].
The assertion (ii) readily follows from (i). O

LEMMA 6. Let!/ bea prime number different from p, F an extension in Q(&,) of the
decomposition field of [ for Q(&,)/Q, and D the absolute value of the discriminant of F.
Assumethat / divides i,/ h,—1 and that F € Q(§,) € Q(&,). Then

fAf =Yz
< */5<(|og 2 pO—L (=172

[F:Q]
Iog(ma><||nn||,||nnl||)>) :

PROOF. Leto be a generator of Gé,,/Q). By Lemma 2, there exists a prime ideal
[ of F dividing [ such that, for any8 e /71, n,f“ is anl-th power inE,. Let R denote
the decomposition field dffor Q(¢,)/Q. Then the norm of(~1 for F/Q is (/MQI-1)IF:A],
Therefore, Minkowski’s lattice theorem shows that

(8) lee]l < (VDEHRU=HIFERHVIFQL - with some o € 1171\ {0} .

As Q(&,) containsF, « is written in the form
f .
o= Zajéj_l, ai,...,af €Z.
j=1

It follows that
f
0o =Y a0 "0 in R,
j=1

so that

T as
) I 1 = masmal, llny H==214"

We define a square matri of degreef by

X — (gsu(jfn) '

Here, for eacly € {1, ..., f}, r, denotes the-th positive integer relatively prime tp. We
note that detX)? equals the discriminant @(&,):

(10) det(X)2 = (—1)7/2p-Y=f
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Now take anyj € {1,..., f}. Letz, denote, for each € {1, ..., f}, the(j, u)-cofactor of
X. Then

f
aj = detx)? Z zua™
u=1
where for eacht € {1,..., f}, «® is the image ofx under the automorphism @(&,)
mappingé, to &,*. Hence (8) and (10), together with Hadamard’s inequality, yield

_1)(f-D/2 P .
f(F=2 (VDIFQI-IF:R11/[F:Ql.

R V=Y

We therefore see from (9) that

fAf -z

Qo
(1) loglm,” Il = SO-T-D772

(v DIFQ=HYIER ogmax(na I, 17, 1)) -
On the other hands;” is neither 1 nor-1; indeed, if(7;°)? = 1, thenp2¥ = 1, N being the
norm ofa for F/Q. Itis also known that; = 1 if p = 3. Hence, by Lemma 3, we have

llog2 < log|ln5e |l .

This and (11) lead us to the inequality which is to be proved. |

Now, in the casg > 2, letv be the number of distinct prime numbers dividing-1)/2,
let
p—1
2
wheremy, ..., m, are prime-powers greater than 1 gralrwise relatively prime, and It
denote the set of roots of unity

=m1---My,

wicy/my, | mwicy/my

e e

for all v-tuples(cy, ..., ¢y) of integers with 0< ¢1 < m1, ..., 0 < ¢, < m,. ThenV is a
complete set of representatives of the quotient group

(/=0 111y,

We letV = {1} in the casep = 2.
Let/ be any prime number other than Let @; denote the set of maps from into
{u e Z|0<u < 2fI}. Denoting byt the norm map fronQ(e%*/(P=D) to Q, we put

‘ﬁ(Zg(é)é - 1)‘

eV

LEMMA 7. Let! beasabove. Assume that [ divides i,/ h,_1, p?* divides ¢p", and
Q(&,) contains the decomposition field of / for Q(&,)/Q. Then

/) = max
wu) may

v

() = gp"".
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PrOOF. Note first that the hypothesjs?” | ¢p” yields

n>v, qp"|(gp"")?.

Letr = 14 gp"~". Then, from the above divisibility, we obtain
(12) r’ =14 bgp"" (modgp") foreverybeZ.

Lets be an integer such that

sP =r (modgp"),

and leto be the restriction td,, of the automorphism o®(¢) mapping¢ to ¢*. It follows

that Ga(B,/Q) = (o). As Lemma 2 shows under our assumptions, there exists a prime ideal
[ of Q(&)) d|V|d|ngl such thaty,” is ani-th power inE, for everyg € I[1. Leta be an
algebraic integer which is contained/iit® but not divisible byl: « € [I71\ 1Z[£,]. Let us

write « as

f
a:Zaj"g‘{)"_l, ai,...,ay € L.

Then, inR,,,
f
Qg = Zajcrpnfv(j*l).
j=1

Now, letp be a prime ideal oR(¢%7//(P—1) dividing p. Let I denote the set of positive
integers< ¢gp" congruent to elements &f modulogp”, whereq denotes the highest power
of p dividing ¢. Note that/ = {1} whenp = 2. Putr = 1+ gp"~1. As the degree of is
equal to 1, we obtain, in the cage> 2,

— é'_
M = é-tu - —tu l_lsl §21u _ 1’

uel uel

so that, by the definition af,

f it é-Zurf’l _1\%
Ay __ ur
My l_[ l_[ (Sl é_2“,”,]'—1 _ 1) .

In the casep = 2,

f j-1 aj
~1 T o1\
M =i £ ;- and hence e =[] <i"’ 1;) .

k] gtrﬁl -1

Consequently, it always follows that

é-urfl_l l
Hn(gm/i ) =¢ forsomee € Z[¢].

j=luel
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Hence, by Lemma 5 of [7] (cf. Ennola [4]),

lur] 1 ur] 1

(13) ]"[]"[(ghw,1 ) ]‘[]‘[({Wl 1>ajl (mod/?).

j=luel j=luel

Next, lety be an indeterminate. Define an elemént) of Z[y] by

-1 c—1
-1 !
J(y):z( ) (C)yc or J(y)=-y+1

= !
according ag > 2 orl = 2. Then
0= =y -1+1J()
and, for eaclth € Z and each/’ € Z with p 1 u/,
@ =" =" =D =14 b)) (mod ).
We therefore see from (13) that

f - - .
[TTT@™ ™ = v — 14 aji@™ )

j=luel

= l_[ l_[((é.lurj—l 14 ajl]({urj_l))(é'lmrj_l _ 1)) (mod 12) .

j=luel

This implies that

! _ f
a9y (T =0) ¥ X ans @

j=luel m=1wel

f ) f
<1_[ H(glturlfl _ 1)) Z ZamJ@.wr )H’/n " (modl) )

j=luel m=1wel
Here
j-1 j-1
M0 = 1_[ ({ltur -1, ngl,w = l_[ (é.lur -1,
(J,u)#(m,w) (J,u)#(m,w)

with (7, u) running through{l, ..., f} x I \ {(m,w)}. Let ¥ be the set of maps from
{1,..., f} x I to {0, 1}. Put

f
AG) =" luri~Ye(j.u) foreachk e w.
j=luel
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Forany(m, w) € {1,..., f} x I, let¥, ,, denote the set of the restrictions of map#irio
{1,..., f} x I\ {(m, w)}. We then put, for eack’ € ¥, ,, and each € V¥,

Biy= > luri TN (ju,
(o), w)

Gle, k) =kmw)+ Y ((,u)+c'(,u),
(Jj,u)#(m,w)

where(j, u) runs througH1l, ..., f} x I\ {(m, w)}. It follows that

f ) f
(15) (l_[ n(é‘lwkl - 1)) Z Z am-](gtwrmil)nm,w

j=luel m=1wel

f

- Z Z Z Z (—1)G(K’K/)amJ(g’wrm_l)gA(KHtB(K’) ’

m=1wel k¥ k'e¥y, v

f ) f
o (T =) X Case i,

j=luel m=1wel
f ’ -1 ’
- _ Z Z Z Z (_1)G(K,K )amJ(é-wr ){IA(K)‘FB(K) .
m=1wel ke¥ k'eWy,

To apply Lemma 5 to (14) later, we now consider the two congruences

/
(A7)  rwr™ e+ A(k) + 1B(k) = Z Zz(1+ Hur’™t =1 (modgp"™),
j=luel
!
(18)  wr"le+1A®) + Bi) =D Y 1A+ nur/t =1 (modgp").
j=luel
Here(m,w) € {1,..., f} x I,k € ¥, k' € ¥y, and

cef{l,...,1-1} or ce{0,1}

according a$ > 2 orl = 2. We easily find that either of the above congruences is equivalent
to the following:

f
19 > <2fl = ke (ow) + 1, u))>u -1

uel\{w} j=1

;
+(2fl—Zl/<(j,w)— Z llc/(j,w)—c)wEO (modgp™™").

j=1 JE(L, s SN\ fm)
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By the definition ofd;, there exists a uniqug € @; such that

f
9(8) = 2f1 =Y " 10c(j, u) + ' (j, )

j=1
if § e V,uel\{w},ands =u (modgp"), and such that

f
9@ =2f1=) kc(wy — Y W(w—c
Jj=1 JE(L .. fI\{m}
if § € Vands = w (modqgp™). Therefore, (19) is written in the form
> 98 —1=0 (modgp"").
seV

Now, contrary to the conclusion of the lemma, assume ft&t < gp"~". Since the
above congruence induces

m( PNIOLES 1) =0 (modgp"™"),

seVv
the definition ofw (/) enables us to deduce
D g8 —1=0
seV

from (17) or, equivalently, from (18). Lemma 7 of [7] then implies th&t) = 1 and that
9(8) = Oforeverys € V\{1}. Consequently, both of (17), (18) are equivalent to the condition
that

w=1 c¢=1-1, «x(,u)=1forevery(j,u)in{l,..., f}xI,

k'(j,u) =1 forevery(j,u)in{1,..., f} x I\ {(m, 1)},
where

mef{l,....f}, keV¥, kK eW¥,1.

It follows under this condition that, for eaeh,

/
B+ 1r" = A®k) = Z Zlurj_l, Gk, k)=o) f —1.

j=luel

Hence, in view of (14), (15), (16), and Lemma 5, we obtain
f‘ .
Z amt A=Dtr" 4 @br) ST Yy lurd L et
m=1

d A=Dr" (4 Yy Yoy turi g1
= Z am§ j=1 el (mod1),

m=1
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namely,

f
(20) > ane"
m=1

Furthermore, by (12),

f m—1
> ame™™ (mod).
m=1

rmfl

¢ =¢em 1t foreachm.

Complex conjugation then transforms (20) into

f
¢! Z amEM V" = ca (modl).

m=1
However,;’ = &1¢ holds, and:! = &, follows fromv < n. Thus
((1—Dca=0 (modl), ie., «elZ[&)].
This contradiction completes the proof of the lemma.
2. In this section, we shall prove the three assertions stated in the introduction. The

letterx will denote a real variable.
Let us first prove the following result, which essentially implies Theorem 1.

PROPOSITION Let

_ (log p)e(q) f2(f — HV~V/2
T (2 |Og ap(vfl/(pfl))(f,]_)/z s

and let 1 be the minimal positive integer such that
(p— 1)f()\.M*)f‘ < p(A—v+l)/ga(p—l) )
Then Cg_, (1) istrivial for every ! € P satisfying
199 %1 (modgp”), [fH, 1= ((—1M).
PROOF. Let

1y gy 2= DY dog pe(g) S (f — U2
L=p—-Df)"" M= (2log 2 p-/(p-D)(F-1)/2

We define a smooth functioW (x) by
W(x) = p&v+D/@=Df) _p
Obviously,W (x) — oo for x — oo, and the definition of impliesW (i) > 0. We put

oo $P DS <<p(p—1)fL>+v_1’
logp logp

so that
Wi(xg) =0; Wx)>0 if x>x9; Wkx)<0 if x <xg.
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On the other hand,

_ (ogp) f2(f —HY~b72
~ (log 2) pv—1(r=D)(f-1)/2

_togp fy, 1 -2 1 1-p\ (f=D/@p-2)
~ log2 -1 P\CT 1 '

1 \U-D2 L \LP
14+ — 1+ — > 1
<+f—1) < e, P<+p_1) >1,

Since

it follows that

_ 3 2
vp ~ DL > f > 4, L>f—>pl/(”_l).
log p Jelog2 Ve
Furthermore,
gp-bf p-1_ 1
logp ~ logp ~ log2

We therefore see that
x0>2, W) =p@W/er-DH _ 5 < ,Ye-D_ _o.

Hence we have > 3 and the restriction oV (x) on the intervali, co) is a strictly increasing
function.

Now, let!/ be a prime number different from such thatCg_ (/) is not trivial. Assume
further that

10 £1 (modgp”), I[1H.

It suffices to prove the inequality
(21) < (=M.
As Cg_, (1) is not trivial,! dividesh,, / h,—1 for someu € N. By the assumptioh{ H,

p'>p* g, namely, p*|qp".
so thatu > v follows. We then know, from the assumptitfi?) % 1 (modgp"), thatQ(&,)
contains the decomposition field bfor Q(&,)/Q. Therefore, by Lemma 6,

2M, PR
(22) l < <<p(q)Tgp log(max(|n, |l IIn, ||))) .

Hence, in the case wherie= 1 andp > 2, Lemma 4 gives

M 2 f
l<< * log <p—smz+cosz>> ,
log p T p p

which, together with. > 3, proves (21).
We next suppose that> 2 or p = 2. Itis easily seen that
u+1

p

. Y .
sin— +cos— < p* if p>2.
T p p
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Hence, by Lemma 4 and (22),
(23) I < (M),

whereii = u oru + 1 according ap > 2 orp = 2; p" = gp"~L. Also, we obtain, for any

g € &y,
“ﬂ(Zg(é)é - 1)‘ = ]_[ Zg(é)ép - 1‘.

seV p '8eV
Herep ranges over the automorphismsQ@(,-1), and

D g8 -1

seV

-1
Slg@® -1+ Y 96 < F=-211.
seV\{1}

Thus
pd < ((p=DfHre.
However, sincg?” dividesgp®, Lemma 7 yields;p*~" < 1(I). Hence
p(ﬂ—v+1)/<a(p—l)
(p=Df
This, together with (23), implie® (&) < 0, while

<.

Wkx)>0 if x>A.
Therefore, we havé < A — 1 and, consequently, (21) is obtained from (23). O
We are now ready to give
PROOF OFTHEOREM1. LetL, W(x), xo be the same as in the above proof, and let
R -Df
log p
Then

o((p = D) F2(f (p — WM 1\ 1\
: (r) Clze) )

1 -
2log2 -1 *

RL
p—1

e -Dbpf32 1 <g>”"”2
2log2 v2\2 '

Therefore

pvfl

2

log(RL) < 2logp — log(2v/2log 2) + 3vlog p + log g .
We also have. — 1 < 2xq, because
W(2xp) = p~V/@P=DNHR212 _ 21 (RIog(RL) + v — 1)
> RL(RL — 21og(RL) — 1)+ L(R —2(v — 1)) > 0.
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Hence
A—1<2(Rlog(RL) +v—1) < R(p”1 |Og§ + (6v +4) |ng> .

Theorem 1 thus follows from our Proposition. ]
We next proceed to

PROOF OFTHEOREMZ2. LetCj, denote the kernel of the norm méx — Cg,, and
let Cx (1) denote for eaclh € P thel-primary component of' ;.. By class field theory, the
norm mapCg — Cg,, induces an isomorphisifig /C > Ce,,- Hence, for each € P,
Cx() = lifandonly if Cx () = Cg, (/) = 1. On the other hand, |e&¥ be the finite set of
algebraic integers id[£,] of the form

v(q)/2 A

(24) 1-&) ) "’%”HALMZaj,ussuf,
u=1

where eachi;, ranges over-1, 0 and 1, eacly, over all integers, and each over the
integers relatively prime t@. It is shown in [10, 81V] not only tha” has a nonzero element
but thatC (/) = 1 for every prime number other thanp with the following properties (cf.
[7, Theorem 1]; as for the first property, see also the remark below this proof):

(i) [ does notdivide:™,

(iiy [ isrelatively prime to all non-zero elements bf

(i) 199 £ 1 (modgp”), namely,Q(&,) contains the decomposition field bfor the
abelian extensioB, (¢271/7) /Q.

Now, let A be the norm foQ(¢,)/Q of an element o in the form (24). LetZ1 denote
the set of positive integers p" relatively prime top, and Z, the set of positive integers
< p¥/2. Then

E =) =r(5 )
aczy N i 11— &0 b A A sA ‘
o(@)A 1/
(%37 S i)
2f & -l
1 1 1
aEXZ:I — &/ ZZSIrl(fm/p”) (ZZSIn(ﬂa/p”))
(o 2, 5L, 2)
ZSir‘(rr/pV) GZ\ w(a—1)/p¥ ZSInx

1 pv /2 dx
sin(rr/ pY) 7T Ja/pv SiNX



IDEAL CLASS GROUP OF BASICZ ,-EXTENSION 393

v 2 v v
p T p 1 p

—(1 —log| ——— —(lo 1).
- < +3p2")+ b g(tar‘(n/Zp“)) ~x (viogp+1)

gA(wlogp +1)

I S

so that, ag in (i) above, every prime number at least equapto’ is relatively prime to all
nonzero element of. We further find that™ > 1, i.e.,pI"/ > p. Therefore Theorem 1
completes the proof of Theorem 2. O

Hence we have
Al < pI'! with ' =

REMARK. Theorem 1 of [7] has assumed that the relative class numbgg+ak not
divisible by!; but, in view of the proof of the theorem, we can change this assumption into
the assumption that the relative class numberk,©f, for all prime divisorsp’ of m* are
relatively prime td.

Finally, let
Px)={l€eP|l=x},

and putr (x) = |P(x)| as usual. It follows from Theorem 2 that

Iiminf'” € P(x) | Ckx(l) =1}

X—00 T(x)

@(q) v
o fim WP P01 modgp)l 1
X—00 T(x) pY

Since any integer greater than 1 can be chosen ag then obtain:

THEOREM 3.
im {l € P(x) | Cg() =1} 1
xX—00 m(x)
In particular,
im l{l € P(x) | Cg, (1) =1} 1
X—00 T(x)

3. We conclude the paper by making some additional remarks on our main results.
With xo andR in the proof of Theorem 1, we actually see that
X0 | xo 17

xo/R—19% =10
Accordingly, in Theorems 1 and 2, the constantcan be replaced by a constant somewhat
smaller thanV1.

Whereas Theorem 1 is proved, we have not yet found a prime nufglier which
C,, (lo) is nontrivial. It thus seems interesting to know if such a prigexists or how many
examples ofg exist (cf. [7, §3]). We would note here that Cohn [2], closely connected with
Theorem 1 forp = 2, is a suggestive article in spite of its incompleteness (cf. also Cerri [1],
Cohn and Deutsch [3], Washington [12]).

When p, v, and the conductor of are small enough, we obtain a few results more
precise than Theorem 2, by checking the proofs of several assertions in §1, [7], and [10].

A—1<xo+
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For instance, it turns out that, jf equals 2 or 3, then the class humbeiQgE,,) for every
m € N is relatively prime to every € P with /2 # 1 (mod Zp). On the other hand, the
arguments in the present paper sugggsbssibility of extendig our theorems foB., or K

to some results for a more general type of abelian extension@veuch generalizations and
the above-mentioned improvements will be discussed in our forthcoming papers.
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