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Abstract. We shall discuss the local triviality in the ideal class group of the basicZp-
extension over an imaginary quadratic field and prove, in particular, a result which implies that
such triviality distributes with natural density 1.

Introduction. Let p be a prime number, which will be fixed throughout this paper.
We shall suppose that all algebraic extensions over the rational fieldQ are contained in the
complex fieldC. Let Zp denote the ring ofp-adic integers, andB∞ the Zp-extension over
Q, namely, the unique abelian extension overQ such that the Galois group Gal(B∞/Q) is
topologically isomorphic to the additive group ofZp. LetP be the set of all prime numbers.
For any algebraic extensionF overQ, letCF denote the ideal class group ofF and, for each
l ∈ P , let CF (l) denote thel-class group ofF , i.e., thel-primary component ofCF . As is
well-known, thep-class group ofB∞ is trivial: CB∞(p) = 1 (cf. Fröhlich [5], Iwasawa [8]).
On the other hand, the theorem of Washington [11] implies that, for everyl ∈ P \ {p}, the
l-class group ofB∞ is finite: |CB∞(l)| < ∞.

Now, let

q = p or q = 4

according asp > 2 orp = 2. Letν be a fixed positive integer such thatq | pν , namely,

ν ≥ 2 if p = 2 .

Put

M = (pν−1 log(p/2)+ (6ν + 4) logp)ϕ((p − 1)q)f 3(f − 1)(f−1)/2

(2 log 2)p(ν−1/(p−1))(f−1)/2
,

whereϕ denotes the Euler function and

f = ϕ(pν) = (p − 1)pν−1 .

In this paper, developing our arguments of [7, §2], we shall prove the following result among
others.

THEOREM 1. Let H be the class number of the subfield of B∞ with degree p2ν−1/q .
Then CB∞(l) is trivial for every l ∈ P which satisfies

lϕ(q) �≡ 1 (mod qpν) , l � H , l ≥ Mf .

2000Mathematics Subject Classification. Primary 11R29; Secondary 11R11, 11R20, 11R23.
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Next, take any imaginary quadratic fieldk, and denote by∆ the maximal divisor of the
discriminant ofk relatively prime top. LetK be the basicZp-extension overk:

K = kB∞ .

By means of Theorem 1 and results in Washington [10, §IV], we shall eventually prove the
following result.

THEOREM 2. Let H be the same as in Theorem 1, and let h∗ denote the relative class
number of the intermediate field of K/k with degree p2ν−2 over k. Then CK(l) is trivial
for every l ∈ P which satisfies

lϕ(q) �≡ 1 (mod qpν) , l � Hh∗ , l ≥ max

(
Mf , p

(
q∆(ν logp + 1)

2π

)f)
.

In particular, Theorem 2 implies that there exist only a finite number ofl ∈ P , with
lϕ(q) �≡ 1 (mod qpν), for whichCK(l) is nontrivial. Once such a result is obtained, we shall
see as a consequence that the natural density inP of the set of alll ∈ P with CK(l) = 1 is
equal to 1 (cf. Theorem 3).

REMARK. For infinitely manyl ∈ P , CK(l) is nontrivial while, for alll ∈ P \ {p},
CK(l) is finite (cf. [10], [11]).

The author thanks the referee who made several valuable comments on the paper.

1. We shall devote this section to proving several preliminary lemmas for the proof of
Theorem 1 in the next section. As usual, letZ be the ring of (rational) integers, andN the set
of positive elements ofZ. We put, inC,

ξu = e2πi/pu for eachu ∈ N .

Letm be any non-negative integer. In the casep > 2, we put

ηm,u =
∏
b

ξ b
m+1 − ξ−b

m+1

ξ bum+1 − ξ−bu
m+1

=
∏
b

sin(2πb/pm+1)

sin(2πbu/pm+1)

for eachu ∈ Z with p � u. Hereb ranges over the positive integers< pm+1/2 such that
bp−1 ≡ 1 (modpm+1). We then let

ηm = ηm,1+pm =
∏
b

ξ b
m+1 − ξ−b

m+1

ξb1 ξ
b

m+1 − ξ−b
1 ξ−b

m+1

.

In the casep = 2, we put

ηm,u = ξm+3 − ξ−1
m+3

ξ u
m+3 − ξ−u

m+3

= sin(π/2m+2)

sin(πu/2m+2)

for each odd integeru, and put

ηm = ηm,1+2m+1 = tan
π

2m+2 .
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Next, letBm denote the intermediate field ofB∞/Q with degreepm,Em the group of all units
of Bm, andhm the class number ofBm. As is easily seen, eachηm,u defined above belongs to
Em. LetUm denote the group of circular units inBm, namely, the subgroup ofEm generated
by −1 and byηm,u for all u ∈ Z with p � u. Then the index ofUm in Em equalshm (cf. Hasse
[6, §9]):

hm = (Em : Um) .(1)

On the other hand,hm is divisible by the class number of any subfield ofBm, sincep is fully
ramified for the abelian extensionBm/Q. Now, letRm denote the group ring of Gal(Bm/Q)
overZ. Naturally,Em becomes anRm-module, andUm anRm-submodule ofEm. Let us take
an algebraic integerα in Q(ξm): α ∈ Z[ξm]. Thenα is uniquely expressed in the form

α =
ϕ(pm)∑
j=1

aj ξ
j−1
m , a1, . . . , aϕ(pm) ∈ Z .

For each suchα and eachρ ∈ Gal(Bm/Q), we define an elementαρ of Rm by

αρ =
ϕ(pm)∑
j=1

ajρ
j−1 .

Next, letn be any positive integer, which we shall fix henceforth. For later convenience,
we putζ = e2πi/qpn, that is, we put

ζ = ξn+1 or ξn+2

according asp > 2 orp = 2. Take any generatorσ of the cyclic group Gal(Bn/Q) and any
τ ∈ Gal(Bn/Q) of orderp:

Gal(Bn/Q) = 〈σ 〉 , Gal(Bn/Bn−1) = 〈τ 〉 .
Since

(1 − τ )

( p−1∑
u=0

σup
n−1

)
= 0 inRn,(2)

we have

ε(1−τ )(α+β)σ = ε(1−τ )(ασ+βσ ) , ε(1−τ )(αβ)σ = ε(1−τ )ασβσ

for all ε ∈ En and all(α, β) ∈ Z[ξn] × Z[ξn]. The map(α, ε′) 
→ ε′ασ of Z[ξn] × E1−τ
n into

E1−τ
n thus makesE1−τ

n a module over the Dedekind domainZ[ξn]. ThenU1−τ
n becomes a

Z[ξn]-submodule ofEn. Furthermore, we obtain the following

LEMMA 1. The Z[ξn]-module E1−τ
n is isomorpic to a nonzero ideal of Z[ξn], and

U1−τ
n is a free Z[ξn]-module generated by η1−τ

n,s , where s is an integer such that an exten-
sion of σ in Gal(Q(ζ )/Q) maps ζ to ζ s .
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PROOF. Assume that

ε(1−τ )ασ = 1 , with ε ∈ En, α ∈ Z[ξn] .
LetN be the norm ofα for Q(ξn)/Q. ThenN = αβ for someβ ∈ Z[ξn], and hence

ε(1−τ )N = ε(1−τ )Nσ = (ε(1−τ )ασ )βσ = 1 .

Thusε1−τ is equal to 1 or−1.
We next assume thatε1−τ = −1, namely, that

ε ∈ En \ En−1 , ε2 ∈ En−1 .

As [Bn−1(ε) : Bn−1] = 2 follows, we have

p = 2, Q(ξn+2) = Q(ξn+1, ε) , ε2 ∈ Q(ξn+1) ,

so thatξn+2ε
−1 belongs toQ(ξn+1) whose unit index equals 1. Therefore,ξn+2ε

−1 = ξ u
n+1ε

′
for someu ∈ Z and someε′ ∈ En−1. In particular,ξn+2ξ

−u
n+1 must be real. This contradiction

shows thatE1−τ
n is a torsion-freeZ[ξn]-module.

Since the mapγ 
→ γ 1−τ , γ ∈ En, induces a group isomorphismEn/En−1 → E1−τ
n , it

follows from the above thatE1−τ
n is a free abelian group of rankϕ(pn). On the other hand,

the groupUn is generated by−1 and byησ
u

n,s for all nonnegative integersu ≤ pn − 2. We
also note that the quotient groupE1−τ

n /U1−τ
n is finite in virtue of (1). Hence we see from (2)

thatU1−τ
n is a free abelian group freely generated byη(1−τ )σu

n,s for all non-negative integers
u < ϕ(pn). It is now easy to complete the proof of the lemma. �

REMARK. NeitherE1−τ
n norU1−τ

n depends upon the choice ofτ .

LEMMA 2. Let l be a prime number different from p, σ a generator of Gal(Bn/Q),
and F an extension in Q(ξn) of the decomposition field of l for Q(ξn)/Q. Then l divides the
integer hn/hn−1 if and only if there exists a prime ideal l of F dividing l such that ηασn is an
l-th power in En for any element α of the integral ideal ll−1 of F .

PROOF. Let τ be the restriction toBn of the automorphism ofQ(ζ ) mappingζ to
ξ1ζ = e2πi/pζ . Obviously,τ is an element of Gal(Bn/Q) of orderp. Take an integers for
whichσ is the restriction toBn of the automorphism ofQ(ζ )mappingζ to ζ s . It then follows
that

η1−σ
n = η1−τ

n,s .(3)

The mapε 
→ ε1−τ of En intoE1−τ
n , together with its restriction toUn, gives rise to an exact

sequence

1 → UnEn−1/Un → En/Un → E1−τ
n /U1−τ

n → 1

of finite groups, so that

(En : Un) = (En−1 : Un ∩ En−1)(E
1−τ
n : U1−τ

n ) .
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Putting, inRn,

T =
p−1∑
u=0

σup
n−1 = 1 + τ + · · · + τp−1 ,

we also have

(Un ∩ En−1)
p = (Un ∩ En−1)

T ⊆ UTn ⊆ Un−1 ⊆ Un ∩ En−1 ,

while hn is known to be relatively prime top (cf. [5], [8]). Hence, by (1),

(E1−τ
n : U1−τ

n ) = hn

hn−1
.(4)

Let o denote the ring of algebraic intgers inF . Write d for the degree ofQ(ξn) over F :
d = [Q(ξn) : F ]. ThenZ[ξn] is a free module over its subringo, and 1,ξn, . . . , ξd−1

n form
a basis of theo-moduleZ[ξn]. We consider the quotientE1−τ

n /U1−τ
n of Z[ξn]-modules to be

ano-module in the obvious manner. Hence there exists a finite setS of integral ideals ofF
which yields an isomorphism

E1−τ
n /U1−τ

n
∼=

⊕
�∈S

(o/a)

of o-modules.
We now assume thatl divideshn/hn−1. By (4) and the above isomorphism, there are a

prime ideall of F dividing l and an injectiveo-module homomorphismo/l → E1−τ
n /U1−τ

n .

Hence there further exists a unitε0 in E1−τ
n \ U1−τ

n such thatεβσ0 belongs toU1−τ
n for every

β ∈ l. Lemma 1 thus implies that

εl0 = η(1−τ )ωσ
n,s with a uniqueω ∈ Z[ξn] ,(5)

where, sinceZ[ξn] = o ⊕ oξn ⊕ · · · ⊕ oξd−1
n , ω is uniquely expressed in the form

ω =
d∑
j=1

υj ξ
j−1
n with υ1, . . . , υd ∈ o .

To see thatω is not an element oflZ[ξn], the ideal ofZ[ξn] generated byl, suppose contrarily
thatω is an element oflZ[ξn]. Then allυj , j ∈ {1, . . . , d}, belong tol. As l is unramified for
F/Q, we can take an elementβ ′ of ll−1 satisfying 1− β ′ ∈ l. Note thatβ ′υj l−1 belongs too
for everyj ∈ {1, . . . , d}. On the other hand, we have, by (5),

ε
lβ ′
σ

0 = η
(1−τ )(∑d

j=1 β
′υj ξj−1

n )σ
n,s .

Consequently,

ε0 = ε
(1−β ′+β ′)σ
0 = ε

(1−β ′)σ
0 η

(1−τ )(∑d
j=1 β

′υj l−1ξ
j−1
n )σ

n,s ∈ U1−τ
n ;

but this contradicts the choice ofε0. Thusω is not an element oflZ[ξn]. LetG = Gal(Q(ξn)/F ).
We then have

ωρ �∈ lZ[ξn] for any ρ in G ,(6)
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sincelZ[ξn] is the only prime ideal ofQ(ξn) dividing l. Next, define a square matrixY of
degreed with coefficients ino by

Y




1
ξn
...

ξd−1
n


 = ω




1
ξn
...

ξd−1
n


 .

Clearly,

Y




1
ξ
ρ
n

...

ξ
(d−1)ρ
n


 = ωρ




1
ξ
ρ
n

...

ξ
(d−1)ρ
n


 for all ρ ∈ G ,

so that

det(Y ) =
∏
ρ∈�

ωρ .

Hence it follows from (6) that

det(Y ) �∈ l, i.e., 1− β ′′ det(Y ) ∈ l for someβ ′′ in o .

Now, letα be any element ofll−1. We then find that

η(1−τ )ασ
n,s = η(1−τ )(det(Y ))σ (αβ ′′)σ

n,s η(1−τ )(α(1−β ′′ det(Y )))σ
n,s .

Furthermore, (5) givesη(1−τ )(ωξj−1
n )σ

n,s = ε
l(ξ

j−1
n )σ

0 asj ranges over the positive integers not
greater thand, and hence, from the definition ofY , we obtain

η(1−τ )(det(Y ))σ
n,s = ε

l(
∑d
j=1 χj ξ

j−1
n )σ

0 ,

with χj denoting the(j,1)-cofactor ofY . Sincel dividesα(1 − β ′′ det(Y )), it follows that

η
(1−τ )ασ
n,s is anl-th power inE1−τ

n . Therefore, by (3),

η(1−σ)ασ
n = εl1 for some ε1 ∈ E1−τ

n .

We can also take an elementθ of Rn satisfyingηp
2

n = η
(1−σ)θ
n ; because

(ηTn )
p = 1, i.e., η

p2

n = η
p(p−T )
n = η

p
∑p−1
u=1(1−τu)

n .

Hence we haveηp
2ασ
n = εθl1 and, consequently,ηασn is anl-th power inE1−τ

n .
Taking any algebraic integerα′ in ll−1 for whichα′l−1l + lo = o, we assume from now

on thatη
α′
σ
n is anl-th power inEn. This assumption implies by (3) that

η
(1−τ )α′

σ
n,s = εl2 with some ε2 ∈ En .

Therefore

εl2 ∈ E1−τ
n , (εT2 )

l = 1 .



IDEAL CLASS GROUP OF BASICZp-EXTENSION 381

Sinceε2 can be replaced by−ε2 in the casel = 2, we may obtainεT2 = 1, which yields

ε
p

2 = ε
p−T
2 ∈ E1−τ

n .

Henceε2 itself belongs toE1−τ
n . Lemma 1 therefore shows that

U
(1−τ )α′

σ
n ⊆ E(1−τ )l

n .

Again by Lemma 1,

(E1−τ
n : E(1−τ )l

n ) = lϕ(p
n) , (U1−τ

n : U(1−τ )α′
σ

n ) = |N ′| ,
whereN ′ denotes the norm ofα′ for Q(ξn)/Q. The choice ofα′ guarantees, however, that the
highest power ofl dividingN ′ is lϕ(p

n)−d ′
, with d ′ the degree ofQ(ξn) over the decomposition

field of l for Q(ξn)/Q. Hence, in virtue of (4),hn/hn−1 must be divisible byld
′
. Thus our

lemma is completely proved.

For each algebraic numberα, we put

‖α‖ = max
ρ

|αρ | ,
whereρ runs through all isomorphisms ofQ(α) into C. As is easily verified,

‖ββ ′‖ ≤ ‖β‖‖β ′‖ , ‖βm‖ = ‖β‖m
for every algebraic numberβ, every algebraic numberβ ′, and everym ∈ N.

LEMMA 3. Let u be a positive integer, let ε be a unit in En \ {−1,1} whose norm for
Bn/Bn−1 equals 1 or −1, and assume that n > 1 in the case p = 3. If ε is a u-th power in
En, then

2u < ‖ε‖ .
PROOF. Contrary to the assertion, suppose that 2u ≥ ‖ε‖, with ε = εu0 for some

ε0 ∈ En. Then we have‖ε0‖ ≤ 2. Sinceε0 is totally real, it follows from §II of Kronecker
[9] thatε0 = δ+ δ−1 for some rootδ of unity. On the other hand, unlessQ(ε0) coincides with
Bn, we haveε = εu0 ∈ Bn−1 and soεp, the norm ofε for Bn/Bn−1, equals 1 or−1; but, by
the hypothesisε2 �= 1, ε is not a root of unity. Thus

Q(δ + δ−1) = Q(ε0) = Bn .

In particlar,Q(δ) is a quadratic extension overBn and the conductor ofQ(δ) equals that ofBn.
Here, by the equality 1+ δ2 = ε0δ, it is impossible thatp = 2, namely, thatδ is a primitive
2n+2-th root of unity. Hencep must be 3 andδ2 is a primitive 3n+1-th root of unity. We then
deduce that the norm ofδ+ δ−1 for Bn/Bn−1 equalsδ3 + δ−3, which is not a root of unity by
the assumptionn > 1. However, the norm of(δ + δ−1)u = ε for Bn/Bn−1 was 1 or−1. We
are therefore led to a contradiction and, hence, the lemma is proved.

LEMMA 4. In the case p > 2,

max(‖ηn‖, ‖η−1
n ‖) <

(
pn+1

π
sin

π

p
+ cos

π

p

)(p−1)/2

;



382 K. HORIE

in the case p = 2,

‖ηn‖ = ‖η−1
n ‖ = cot

π

2n+2
.

PROOF. We first assume thatp is odd. As Lemma 4 of [7] states that

‖ηn‖ <
(
pn+1

π
sin

π

p

)(p−1)/2

,

we shall prove that

‖η−1
n ‖ <

(
pn+1

π
sin

π

p
+ cos

π

p

)(p−1)/2

.

By the definition ofηn,

‖η−1
n ‖ ≤

∥∥∥∥sin(2π(pn + 1)/pn+1)

sin(2π/pn+1)

∥∥∥∥
(p−1)/2

.

Letm range over the positive integers less thanpn+1/2 and relatively prime top, and let

γm = sin(mπ(pn + 1)/pn+1)

sin(mπ/pn+1)
= sin(mπ/p)

tan(mπ/pn+1)
+ cos

mπ

p
.

We then easily see that ∥∥∥∥sin(2π(pn + 1)/pn+1)

sin(2π/pn+1)

∥∥∥∥ = max
m

|γm| .
Therefore it suffices to show that

|γm| < pn+1

π
sin

π

p
+ cos

π

p
.(7)

If m < p/2, then

γm > 0 , tan
mπ

pn+1
>

mπ

pn+1
, cos

mπ

p
≤ cos

π

p
,

p

mπ
sin

mπ

p
≤ p

π
sin

π

p
,

and hence

|γm| = γm <
pn+1

mπ
sin

mπ

p
+ cos

mπ

p
≤ pn+1

π
sin

π

p
+ cos

π

p
.

If p/2< m < pn+1/2, we obtain

|γm| < pn+1

π
sin

π

p

by an argument quite similar to that in the proof of [7, Lemma 4]. Thus (7) is proved.
We next assumep = 2. In this case,−η−1

n is the image ofηn under the automorphism
of Q(ξn+2) mappingξn+2 to −ξn+2. Hence the second assertion of the lemma follows from
the fact that

‖η−1
n ‖ = max

m

∣∣∣∣cos(πm/2n+2)

sin(πm/2n+2)

∣∣∣∣ ,
wherem ranges over the odd positive integers smaller than 2n+1. �
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LEMMA 5. Let S be a finite set of integers, ψ a map from S to Z, a any integer, b an
integer exceeding 1, and b′ a positive integer smaller than b. Let

S′ = {w ∈ S | w ≡ a (modpb
′
)} .

(i) If
∑
w∈S ψ(w)ξwb = 0, then

∑
w∈S ′ ψ(w)ξwb = 0.

(ii) If
∑
w∈S ψ(w)ξwb ≡ 0 (mod c) with an integer c, then

∑
w∈S ′ ψ(w)ξwb ≡ 0

(mod c).

PROOF. We may assumeS ⊆ {0} ∪ N. Under this assumption, it is easy to prove the
assertion (i), since thepb-th cyclotomic polynomial in an indeterminatey belongs toZ[ypb−1].
The assertion (ii) readily follows from (i). �

LEMMA 6. Let l be a prime number different from p, F an extension in Q(ξn) of the
decomposition field of l for Q(ξn)/Q, and D the absolute value of the discriminant of F .
Assume that l divides hn/hn−1 and that F ⊆ Q(ξν) ⊆ Q(ξn). Then

l <
√
D

(
f 2(f − 1)(f−1)/2

(log 2)p(ν−1/(p−1))f/2
log(max(‖ηn‖, ‖η−1

n ‖))
)[F :Q]

.

PROOF. Let σ be a generator of Gal(Bn/Q). By Lemma 2, there exists a prime ideal
l of F dividing l such that, for anyβ ∈ ll−1, ηβσn is an l-th power inEn. Let K denote
the decomposition field ofl for Q(ξn)/Q. Then the norm ofll−1 for F/Q is (l[�:Q]−1)[F :�].
Therefore, Minkowski’s lattice theorem shows that

‖α‖ ≤ (
√
D(l[�:Q]−1)[F :�])1/[F :Q] with someα ∈ ll−1 \ {0} .(8)

As Q(ξν) containsF , α is written in the form

α =
f∑
j=1

aj ξ
j−1
ν , a1, . . . , af ∈ Z .

It follows that

ασ =
f∑
j=1

ajσ
pn−ν(j−1) in Rn ,

so that

‖ηασn ‖ ≤ max(‖ηn‖, ‖η−1
n ‖)

∑f

j=1 |aj | .(9)

We define a square matrixX of degreef by

X =
(
ξru(j−1)
ν

)
u,j=1,...,f

.

Here, for eachu ∈ {1, . . . , f }, ru denotes theu-th positive integer relatively prime top. We
note that det(X)2 equals the discriminant ofQ(ξν):

det(X)2 = (−1)f/2p(ν−1/(p−1))f .(10)
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Now take anyj ∈ {1, . . . , f }. Let zu denote, for eachu ∈ {1, . . . , f }, the(j, u)-cofactor of
X. Then

aj = det(X)−1
f∑
u=1

zuα
(u) ,

where for eachu ∈ {1, . . . , f }, α(u) is the image ofα under the automorphism ofQ(ξν)
mappingξν to ξruν . Hence (8) and (10), together with Hadamard’s inequality, yield

|aj | ≤ f (f − 1)(f−1)/2

p(ν−1/(p−1))f/2
(
√
Dl[F :Q]−[F :�])1/[F :Q] .

We therefore see from (9) that

log‖ηασn ‖ ≤ f 2(f − 1)(f−1)/2

p(ν−1/(p−1))f/2
(
√
Dl[F :Q]−1)1/[F :Q] log(max(‖ηn‖, ‖η−1

n ‖)) .(11)

On the other hand,ηασn is neither 1 nor−1; indeed, if(ηασn )2 = 1, thenη2N
n = 1,N being the

norm ofα for F/Q. It is also known thath1 = 1 if p = 3. Hence, by Lemma 3, we have

l log 2< log‖ηασn ‖ .
This and (11) lead us to the inequality which is to be proved. �

Now, in the casep > 2, letv be the number of distinct prime numbers dividing(p−1)/2,
let

p − 1

2
= m1· · ·mv ,

wherem1, . . . , mv are prime-powers greater than 1 andpairwise relatively prime, and letV
denote the set of roots of unity

eπic1/m1· · · eπicv/mv
for all v-tuples(c1, . . . , cv) of integers with 0≤ c1 < m1, . . . , 0 ≤ cv < mv. ThenV is a
complete set of representatives of the quotient group

〈e2πi/(p−1)〉/{−1,1} .
We letV = {1} in the casep = 2.

Let l be any prime number other thanp. Let Φl denote the set of maps fromV into
{u ∈ Z | 0 ≤ u ≤ 2f l}. Denoting byN the norm map fromQ(e2πi/(p−1)) to Q, we put

µ(l) = max
g∈Φl

∣∣∣∣N
( ∑
δ∈V

g(δ)δ − 1

)∣∣∣∣ .
LEMMA 7. Let l be as above. Assume that l divides hn/hn−1, p2ν divides qpn, and

Q(ξν) contains the decomposition field of l for Q(ξn)/Q. Then

µ(l) ≥ qpn−ν .
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PROOF. Note first that the hypothesisp2ν | qpn yields

n ≥ ν , qpn | (qpn−ν)2 .
Let r = 1 + qpn−ν . Then, from the above divisibility, we obtain

rb ≡ 1 + bqpn−ν (mod qpn) for every b ∈ Z .(12)

Let s be an integer such that

sp
n−ν ≡ r (mod qpn) ,

and letσ be the restriction toBn of the automorphism ofQ(ζ ) mappingζ to ζ s . It follows
that Gal(Bn/Q) = 〈σ 〉. As Lemma 2 shows under our assumptions, there exists a prime ideal
l of Q(ξν) dividing l such thatηβσn is an l-th power inEn for everyβ ∈ ll−1. Let α be an
algebraic integer which is contained inll−1 but not divisible byl: α ∈ ll−1 \ lZ[ξν]. Let us
write α as

α =
f∑
j=1

aj ξ
j−1
ν , a1, . . . , af ∈ Z .

Then, inRn,

ασ =
f∑
j=1

ajσ
pn−ν (j−1) .

Now, let p be a prime ideal ofQ(e2πi/(p−1)) dividing p. Let I denote the set of positive
integers< qpn congruent to elements ofV moduloqpn, whereq denotes the highest power
of p dividing q. Note thatI = {1} whenp = 2. Putt = 1 + qpn−1. As the degree ofp is
equal to 1, we obtain, in the casep > 2,

ηn =
∏
u∈I

ζ u − ζ−u

ζ tu − ζ−tu =
∏
u∈I

ξu1
ζ 2u − 1

ζ 2tu − 1
,

so that, by the definition ofσ ,

ηασn =
f∏
j=1

∏
u∈I

(
ξur

j−1

1
ζ 2urj−1 − 1

ζ 2turj−1 − 1

)aj
.

In the casep = 2,

ηn = i
ζ − 1

ζ t − 1
, and hence ηασn =

f∏
j=1

(
ir
j−1 ζ r

j−1 − 1

ζ tr
j−1 − 1

)aj
.

Consequently, it always follows that

f∏
j=1

∏
u∈I

(
ζ ur

j−1 − 1

ζ tur
j−1 − 1

)aj
= εl for some ε ∈ Z[ζ ] .
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Hence, by Lemma 5 of [7] (cf. Ennola [4]),

f∏
j=1

∏
u∈I

(
ζ lur

j−1 − 1

ζ ltur
j−1 − 1

)aj
≡

f∏
j=1

∏
u∈I

(
ζ ur

j−1 − 1

ζ tur
j−1 − 1

)aj l
(mod l2).(13)

Next, lety be an indeterminate. Define an elementJ (y) of Z[y] by

J (y) =
l−1∑
c=1

(−1)c−1

l

(
l

c

)
yc or J (y) = −y + 1

according asl > 2 or l = 2. Then

(y − 1)l = yl − 1 + lJ (y)

and, for eachb ∈ Z and eachu′ ∈ Z with p � u′,

(ζ u
′ − 1)bl ≡ (ζ lu

′ − 1)b−1(ζ lu
′ − 1 + blJ (ζ u

′
)) (mod l2) .

We therefore see from (13) that

f∏
j=1

∏
u∈I
((ζ lur

j−1 − 1)(ζ ltur
j−1 − 1 + aj lJ (ζ

turj−1
)))

≡
f∏
j=1

∏
u∈I
((ζ lur

j−1 − 1 + aj lJ (ζ
urj−1

))(ζ ltur
j−1 − 1)) (mod l2) .

This implies that

( f∏
j=1

∏
u∈I
(ζ lur

j−1 − 1)

) f∑
m=1

∑
w∈I

amJ (ζ
twrm−1

)Πm,w(14)

≡
( f∏
j=1

∏
u∈I
(ζ ltur

j−1 − 1)

) f∑
m=1

∑
w∈I

amJ (ζ
wrm−1

)Π ′
m,w (mod l) .

Here

Πm,w =
∏

(j,u) �=(m,w)
(ζ ltur

j−1 − 1) , Π ′
m,w =

∏
(j,u) �=(m,w)

(ζ lur
j−1 − 1) ,

with (j, u) running through{1, . . . , f } × I \ {(m,w)}. Let Ψ be the set of maps from
{1, . . . , f } × I to {0,1}. Put

A(κ) =
f∑
j=1

∑
u∈I

lurj−1κ(j, u) for each κ ∈ Ψ .
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For any(m,w) ∈ {1, . . . , f } × I , letΨm,w denote the set of the restrictions of maps inΨ to
{1, . . . , f } × I \ {(m,w)}. We then put, for eachκ ′ ∈ Ψm,w and eachκ ∈ Ψ ,

B(κ ′) =
∑

(j,u) �=(m,w)
lurj−1κ ′(j, u) ,

G(κ, κ ′) = κ(m,w)+
∑

(j,u) �=(m,w)
(κ(j, u)+ κ ′(j, u)) ,

where(j, u) runs through{1, . . . , f } × I \ {(m,w)}. It follows that

( f∏
j=1

∏
u∈I
(ζ lur

j−1 − 1)

) f∑
m=1

∑
w∈I

amJ (ζ
twrm−1

)Πm,w(15)

= −
f∑
m=1

∑
w∈I

∑
κ∈Ψ

∑
κ ′∈Ψm,w

(−1)G(κ,κ
′)amJ (ζ twr

m−1
)ζA(κ)+tB(κ ′) ,

( f∏
j=1

∏
u∈I
(ζ ltur

j−1 − 1)

) f∑
m=1

∑
w∈I

amJ (ζ
wrm−1

)Π ′
m,w(16)

= −
f∑
m=1

∑
w∈I

∑
κ∈Ψ

∑
κ ′∈Ψm,w

(−1)G(κ,κ
′)amJ (ζwr

m−1
)ζ tA(κ)+B(κ ′) .

To apply Lemma 5 to (14) later, we now consider the two congruences

twrm−1c + A(κ)+ tB(κ ′) ≡
f∑
j=1

∑
u∈I

l(1 + t)urj−1 − 1 (mod qpn−ν ) ,(17)

wrm−1c + tA(κ)+ B(κ ′) ≡
f∑
j=1

∑
u∈I

l(1 + t)urj−1 − 1 (mod qpn−ν ) .(18)

Here(m,w) ∈ {1, . . . , f } × I , κ ∈ Ψ , κ ′ ∈ Ψm,w, and

c ∈ {1, . . . , l − 1} or c ∈ {0,1}
according asl > 2 or l = 2. We easily find that either of the above congruences is equivalent
to the following:

∑
u∈I\{w}

(
2f l −

f∑
j=1

l(κ(j, u)+ κ ′(j, u))
)
u− 1(19)

+
(

2f l −
f∑
j=1

lκ(j,w)−
∑

j∈{1,...,f }\{m}
lκ ′(j,w)− c

)
w ≡ 0 (mod qpn−ν ) .
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By the definition ofΦl , there exists a uniqueg ∈ Φl such that

g(δ) = 2f l −
f∑
j=1

l(κ(j, u)+ κ ′(j, u))

if δ ∈ V , u ∈ I \ {w}, andδ ≡ u (mod qpn), and such that

g(δ) = 2f l −
f∑
j=1

lκ(j,w)−
∑

j∈{1,...,f }\{m}
lκ ′(j,w)− c

if δ ∈ V andδ ≡ w (mod qpn). Therefore, (19) is written in the form∑
δ∈V

g(δ)δ − 1 ≡ 0 (mod qpn−ν ) .

Now, contrary to the conclusion of the lemma, assume thatµ(l) < qpn−ν . Since the
above congruence induces

N

( ∑
δ∈V

g(δ)δ − 1

)
≡ 0 (mod qpn−ν ) ,

the definition ofµ(l) enables us to deduce∑
δ∈V

g(δ)δ − 1 = 0

from (17) or, equivalently, from (18). Lemma 7 of [7] then implies thatg(1) = 1 and that
g(δ) = 0 for everyδ ∈ V \{1}. Consequently, both of (17), (18) are equivalent to the condition
that

w = 1, c = l − 1 , κ(j, u) = 1 for every(j, u) in {1, . . . , f } × I ,

κ ′(j, u) = 1 for every(j, u) in {1, . . . , f } × I \ {(m,1)} ,
where

m ∈ {1, . . . , f } , κ ∈ Ψ , κ ′ ∈ Ψm,1 .
It follows under this condition that, for eachm,

B(κ ′)+ lrm−1 = A(κ) =
f∑
j=1

∑
u∈I

lurj−1 , G(κ, κ ′) = ϕ(q)f − 1 .

Hence, in view of (14), (15), (16), and Lemma 5, we obtain

f∑
m=1

amζ
(l−1)trm−1+(1+t )∑f

j=1
∑
u∈I lurj−1−t lrm−1

≡
f∑
m=1

amζ
(l−1)rm−1+(t+1)

∑f
j=1

∑
u∈I lurj−1−lrm−1

(mod l) ,
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namely,

f∑
m=1

amζ
−t rm−1 ≡

f∑
m=1

amζ
−rm−1

(mod l) .(20)

Furthermore, by (12),

ζ r
m−1 = ζ ξm−1

ν for eachm .

Complex conjugation then transforms (20) into

ζ t
f∑
m=1

amξ
(m−1)t
ν ≡ ζα (mod l) .

However,ζ t = ξ1ζ holds, andξ tν = ξν follows fromν ≤ n. Thus

(ξ1 − 1)ζα ≡ 0 (mod l) , i.e., α ∈ lZ[ξν] .
This contradiction completes the proof of the lemma.

2. In this section, we shall prove the three assertions stated in the introduction. The
letterx will denote a real variable.

Let us first prove the following result, which essentially implies Theorem 1.

PROPOSITION. Let

M∗ = (logp)ϕ(q)f 2(f − 1)(f−1)/2

(2 log 2)p(ν−1/(p−1))(f−1)/2
,

and let λ be the minimal positive integer such that

(p − 1)f (λM∗)f ≤ p(λ−ν+1)/ϕ(p−1) .

Then CB∞(l) is trivial for every l ∈ P satisfying

lϕ(q) �≡ 1 (mod qpν) , l � H , l ≥ ((λ− 1)M∗)f .

PROOF. Let

L = ((p − 1)f )1/fM∗ = (p − 1)1/f (logp)ϕ(q)f 2+1/f (f − 1)(f−1)/2

(2 log 2)p(ν−1/(p−1))(f−1)/2
.

We define a smooth functionW(x) by

W(x) = p(x−ν+1)/(ϕ(p−1)f ) − Lx .

Obviously,W(x) → ∞ for x → ∞, and the definition ofλ impliesW(λ) ≥ 0. We put

x0 = ϕ(p − 1)f

logp
log

(
ϕ(p − 1)fL

logp

)
+ ν − 1 ,

so that

W ′(x0) = 0 ; W ′(x) > 0 if x > x0 ; W ′(x) < 0 if x < x0 .
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On the other hand,

L ≥ (logp)f 2(f − 1)(f−1)/2

(log 2)p(ν−1/(p−1))(f−1)/2

= logp

log 2
f 2

(
1 + 1

f − 1

)(1−f )/2(
p

(
1 + 1

p − 1

)1−p)(f−1)/(2p−2)

.

Since (
1 + 1

f − 1

)(f−1)/2

<
√
e , p

(
1 + 1

p − 1

)1−p
≥ 1 ,

it follows that

ϕ(p − 1)fL

logp
>

f 3

√
e log 2

> 4 , L >
f 2

√
e
> p1/(p−1) .

Furthermore,
ϕ(p − 1)f

logp
≥ p − 1

logp
≥ 1

log 2
.

We therefore see that

x0 > 2 , W(1) = p(2−ν)/(ϕ(p−1)f ) − L ≤ p1/(p−1) − L < 0 .

Hence we haveλ ≥ 3 and the restriction ofW(x) on the interval[λ,∞) is a strictly increasing
function.

Now, let l be a prime number different fromp such thatCB∞(l) is not trivial. Assume
further that

lϕ(q) �≡ 1 (mod qpν) , l � H .

It suffices to prove the inequality

l < ((λ− 1)M∗)f .(21)

AsCB∞(l) is not trivial, l divideshu/hu−1 for someu ∈ N. By the assumptionl � H ,

pu > p2ν−1/q , namely, p2ν | qpu ,
so thatu ≥ ν follows. We then know, from the assumptionlϕ(q) �≡ 1 (mod qpν), thatQ(ξν)
contains the decomposition field ofl for Q(ξu)/Q. Therefore, by Lemma 6,

l <

(
2M∗

ϕ(q) logp
log(max(‖ηu‖, ‖η−1

u ‖))
)f

.(22)

Hence, in the case whereu = 1 andp > 2, Lemma 4 gives

l <

(
M∗

logp
log

(
p2

π
sin

π

p
+ cos

π

p

))f
,

which, together withλ ≥ 3, proves (21).
We next suppose thatu ≥ 2 orp = 2. It is easily seen that

pu+1

π
sin

π

p
+ cos

π

p
< pu if p > 2 .
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Hence, by Lemma 4 and (22),

l < (ũM∗)f ,(23)

whereũ = u or u + 1 according asp > 2 orp = 2; pũ = qpu−1. Also, we obtain, for any
g ∈ Φl , ∣∣∣∣N

( ∑
δ∈V

g(δ)δ − 1

)∣∣∣∣ =
∏
ρ

∣∣∣∣
∑
δ∈V

g(δ)δρ − 1

∣∣∣∣ .
Hereρ ranges over the automorphisms ofQ(ζp−1), and∣∣∣∣

∑
δ∈V

g(δ)δρ − 1

∣∣∣∣ ≤ |g(1)− 1| +
∑

δ∈V \{1}
g(δ) <

p − 1

2
· 2f l .

Thus

µ(l) < ((p − 1)f l)ϕ(p−1) .

However, sincep2ν dividesqpu, Lemma 7 yieldsqpu−ν ≤ µ(l). Hence

p(ũ−ν+1)/ϕ(p−1)

(p − 1)f
< l .

This, together with (23), impliesW(ũ) < 0, while

W(x) ≥ 0 if x ≥ λ .

Therefore, we havẽu ≤ λ− 1 and, consequently, (21) is obtained from (23). �

We are now ready to give

PROOF OFTHEOREM 1. LetL,W(x), x0 be the same as in the above proof, and let

R = ϕ(p − 1)f

logp
.

Then

RL =ϕ((p − 1)q)f 3(f (p − 1))1/f

2 log 2

(
1 + 1

f − 1

)(1−f )/2(
p

(
1 + 1

p − 1

)1−p)(f−1)/(2p−2)

<
ϕ((p − 1)q)f 3 · 2

2 log 2
· 1√

2

(
p

2

)pν−1/2

.

Therefore

log(RL) < 2 logp − log(2
√

2 log 2)+ 3ν logp + pν−1

2
log

p

2
.

We also haveλ− 1< 2x0, because

W(2x0) = p(ν−1)/(ϕ(p−1)f )R2L2 − 2L(R log(RL)+ ν − 1)

≥ RL(RL − 2 log(RL)− 1)+ L(R − 2(ν − 1)) > 0 .
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Hence

λ− 1< 2(R log(RL)+ ν − 1) < R

(
pν−1 log

p

2
+ (6ν + 4) logp

)
.

Theorem 1 thus follows from our Proposition. �

We next proceed to

PROOF OFTHEOREM 2. LetC−
K denote the kernel of the norm mapCK → CB∞ , and

let C−
K(l) denote for eachl ∈ P the l-primary component ofC−

K . By class field theory, the

norm mapCK → CB∞ induces an isomorphismCK/C
−
K

∼→ CB∞ . Hence, for eachl ∈ P ,
CK(l) = 1 if and only ifC−

K(l) = CB∞(l) = 1. On the other hand, letΣ be the finite set of
algebraic integers inZ[ξν] of the form

(1 − ξν)

ϕ(q)/2∑
u=1

ξ
bu
ν

1 − ξ
∆cu
ν

∆∑
j=1

aj,uξ
cuj
ν ,(24)

where eachaj,u ranges over−1, 0 and 1, eachbu over all integers, and eachcu over the
integers relatively prime top. It is shown in [10, §IV] not only thatΣ has a nonzero element
but thatC−

K(l) = 1 for every prime numberl other thanp with the following properties (cf.
[7, Theorem 1]; as for the first property, see also the remark below this proof):

(i) l does not divideh∗,
(ii) l is relatively prime to all non-zero elements ofΣ,
(iii) lϕ(q) �≡ 1 (mod qpν), namely,Q(ξν) contains the decomposition field ofl for the

abelian extensionB∞(e2πi/q)/Q.
Now, letΛ be the norm forQ(ξν)/Q of an element ofΣ in the form (24). LetZ1 denote

the set of positive integers< pν relatively prime top, andZ2 the set of positive integers
< pν/2. Then

|Λ| ≤ p
∏
a∈Z1

( ϕ(q)/2∑
u=1

∆

|1 − ξ
∆cua
ν |

)
≤ p

(
1

f

∑
a∈Z1

ϕ(q)/2∑
u=1

∆

|1 − ξ
∆cua
ν |

)f

= p

(
ϕ(q)∆

2f

∑
a∈Z1

1

|1 − ξaν |
)f

,

∑
a∈Z1

1

|1 − ξaν | =
∑
a∈Z1

1

2 sin(πa/pν)
≤ 2

( ∑
a∈Z2

1

2 sin(πa/pν)

)

< 2

(
1

2 sin(π/pν)
+

∑
a∈Z2\{1}

pν

π

∫ πa/pν

π(a−1)/pν

dx

2 sinx

)

<
1

sin(π/pν)
+ pν

π

∫ π/2

π/pν

dx

sinx
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<
pν

π

(
1 + π2

3p2ν

)
+ pν

π
log

(
1

tan(π/2pν)

)
<
pν

π
(ν logp + 1) .

Hence we have

|Λ| < pΓ f with Γ = q∆(ν logp + 1)

2π
,

so that, asl in (ii) above, every prime number at least equal topΓ f is relatively prime to all
nonzero element ofΣ. We further find thatΓ > 1, i.e.,pΓ f > p. Therefore Theorem 1
completes the proof of Theorem 2. �

REMARK. Theorem 1 of [7] has assumed that the relative class number ofkm∗ is not
divisible by l; but, in view of the proof of the theorem, we can change this assumption into
the assumption that the relative class numbers ofkm∗/p′ for all prime divisorsp′ of m∗ are
relatively prime tol.

Finally, let
P(x) = {l ∈ P | l ≤ x} ,

and putπ(x) = |P(x)| as usual. It follows from Theorem 2 that

lim inf
x→∞

|{l ∈ P(x) | CK(l) = 1}|
π(x)

≥ lim
x→∞

|{l ∈ P(x) | lϕ(q) �≡ 1 (mod qpν)}|
π(x)

= 1 − 1

pν
.

Since any integer greater than 1 can be chosen asν, we then obtain:

THEOREM 3.

lim
x→∞

|{l ∈ P(x) | CK(l) = 1}|
π(x)

= 1 .

In particular,

lim
x→∞

|{l ∈ P(x) | CB∞(l) = 1}|
π(x)

= 1 .

3. We conclude the paper by making some additional remarks on our main results.
With x0 andR in the proof of Theorem 1, we actually see that

λ− 1< x0 + x0

x0/R − 1
log

x0

R
<

17

10
x0 .

Accordingly, in Theorems 1 and 2, the constantM can be replaced by a constant somewhat
smaller thanM.

Whereas Theorem 1 is proved, we have not yet found a prime numberl0 for which
CB∞(l0) is nontrivial. It thus seems interesting to know if such a primel0 exists or how many
examples ofl0 exist (cf. [7, §3]). We would note here that Cohn [2], closely connected with
Theorem 1 forp = 2, is a suggestive article in spite of its incompleteness (cf. also Cerri [1],
Cohn and Deutsch [3], Washington [12]).

Whenp, ν, and the conductor ofk are small enough, we obtain a few results more
precise than Theorem 2, by checking the proofs of several assertions in §1, [7], and [10].



394 K. HORIE

For instance, it turns out that, ifp equals 2 or 3, then the class number ofQ(ξm) for every
m ∈ N is relatively prime to everyl ∈ P with l2 �≡ 1 (mod 2qp). On the other hand, the
arguments in the present paper suggest apossibility of extending our theorems forB∞ orK
to some results for a more general type of abelian extension overQ. Such generalizations and
the above-mentioned improvements will be discussed in our forthcoming papers.
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