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ON THEOREMS OF BEURLING AND HARDY
FOR THE EUCLIDEAN MOTION GROUP

RUDRA P. SARKAR AND SUNDARAM THANGAVELU
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Abstract. We establish an analogue of Beurlingiacertainty principle for the group
Fourier transform on the Euclidean motion group. We also prove the most general version of
Hardy’s theorem on it which characterisemétions on the motion group that are controlled
by the heat kernel associated to the Laplacian of the Euclidean space.

1. Introduction. A cute little theorem of Beurling on Fourier transform pairs which
was published by Hérmander [7] says that for any nontrivial funcfiom L2(R), the function
f(x) f(y) is never integrable of? with respect to the measuee™!dxdy. A far-reaching
generalisation of this result has been recently proved by Bonami et al. [1]. Let

Fo) = @02 [ e pds
Rll

stand for the Fourier transform of a functignhon R*. Then we have:

THEOREM 1.1 (Bonami-Demange-Jaming)Let f € L2(R") and suppose that for

some N >0
SO 1D i,y
/R”/I;’l (1+|X|)N (1+|y|)]\]e xay < oo.

Then f = Owhenever N < n. If N > n, then the above holdsif and only if f can be written
as

() = Pye” 4/,
where A isareal positive definite matrix and P isa polynomial of degree < (N — n)/2.

Some attempts to generalise this result to group Fourier transforms on certain Lie groups
have already been made. Unlike the Euclidean case functi@ml their Fourier transforms
f live on different sets which spoils the elegance of the above result in other contexts.

In this paper we formulate and prove an analogue of Theorem 1.1 for the Fourier trans-
form on Euclidean motion groupd (n).

Let M (n) be the semidirect product &* with K = SO (n). The group law is given by

x, b, K)Y=@x+k-v,kk'), x,yeR", k,k eK.

2000Mathematics Subject Classification. Primary 43A80; Secondary 22E.

Key words and phrases. Beurling’s Theorem, Hardy's Theorem, Motion group.

The authors are grateful to an anonymous referee farynsaggestions. They are also thankful to Ms. Asha
Lata for her excellent job of typing the manuscript.



336 R. SARKAR AND S. THANGAVELU

LetM = SO(n — 1) be considered as a subgroupkbfeaving the point; = (1,0,0,...,0)
fixed. Then all the irreducible unitary representationsiffn) relevant for the Plancherel
theorem are parametrised (upto unitary equivalence) by gaits) wherex > 0 ando € M,
the unitary dual off. (Whenn = 2 there is only one parameter namely; 0.) The group
Fourier transform off € LY(M (n)) is then defined by

A

(1.1 fh, o) = fx, k)my o (x, k)dxdk
M(n)

wherer;, , (x, k) is the irreducible unitary representationMin) associated to the parameter

(1, 0). These representations are realised on certain Hilbert spaces which will be described
in the following sections. Leuf(/\, o) |lns stand for the Hilbert-Schmidt operator norm of
f(x, o). As an analogue of Beurling’s theorem we offer:

THEOREM 1.2. Let f € LN L%(M(n)) and assume that

o |1 £ k
/ / Lf @ 0Mllbs 1£C OV ety n-145 g dk < 00
mmJo @A+ A+ |x])"

for everyo € M. Then f = 0.

Note that we have considered only the case= n. Whenn = 2 we can do slightly
better. Let us writdz, ¢#) for the coordinates oM (2), z € R2.

THEOREM 1.3. Let f € L1 N L2(M(2)) and assume that

© 1 Mllus 1 @ €] sy
Adhrdzd ,
/M(Z),/O a+r)3 (1+|Z|)3e zde < 00

Then f can berepresented as
fz.e) = gel)e
for some g € L%(T) anda > 0.

In this theorent stands for the circle group which is identified wifl® (2). Let A, be
the standard Laplacian d®' and let

(1.2) P (x) = (Amt) /2= K4

be the associated heat kernel. Then the final conclusion of the above theorem can be expressed
in terms of the heat kerngl?(z) on R". The original theorem of Beurlingv = 0) can

be viewed as an uncertainty principle for the Fourier transform. The Nase n + 1 is

then a characterisation of the heat kerpglx) on R”. Theorem 1.1 is so strong that other
‘uncertainty principles’ like the theorems of Hardy, Gelfand-Shilov and Cowling-Price all
follow from it. For example, a general form of Hardy’s theorem R¥rin [15] says that if

f e LY(R") satisfies

(1.3) £ < e+ xD"prx),  [FO)] < @+ [y)me D
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then f = 0 wheneves < r and whers =1, f(x) = Q(x)p}(x) whereQ is a polynomial of
degree< m. Itis clear that this result follows immediately from Theorem 1.1.

Even though we do not have the most general version of Beurling’s theoremi(for,
we do have a general version of Hardy’s theorem.

THEOREM 1.4. Let f € LY(M(n)) satisfy the following two conditions:
lf (e 0l <@+ xDVplex),  (x,k) € M(n)
1F G o)l <c@+mNe ™ (o) e Ry x M.

Then f = O whenever s < r. Whens = ¢, f can be expressed as a finite linear combination
of functions of the form

P, j () (= Apyom) ™2 pI 2 (1) gy (K)
where P,,; are solid harmonics of degree m and g,,; are certain bounded functionsin L%(K).

In the above the fractional powers of the Laplacian are defined via the Fourier transform:

(a2 p ) = @2 [ el Fene e
The range ofn and are restricted by the condition
| Pj (O (= A 2) V™2 pi 27 ()| < e+ 1x DV ().

The caseV = 0, s < t of the above theorem is due to Sundari [14]. See the work of Eguchi et
al. [3] for an analogue (again the ca¥e= 0, s < t) of the above for Cartan motion groups.
Eguchi et al. [4] have also treated & version of the above resulv = 0,s < ¢). The
above theorem witlv > 0 ands = ¢ is new.

It is possible to prove a refined version of the above theorem when2. Compare
the following result with Hardy’s theorem proved in [16] for the Euclidean Fourier transform.
Whenn = 2, the relevant representatioms(z, ¢'#) of M (2) are parametrised by > 0 and
realised on the same Hilbert spab&T). Let {e;(0) = ¢*? : k € Z} be the standard basis
for L2(T).

THEOREM 1.5. Let f € LY(M(2)) satisfy the estimate
|f(z. )] <cpfz), zeRE.

Further assumethat for every A > 0,andk, j € Z
(f Wer, )] < cxgalt=ile2.

Then f can be represented as

[z e = pf(z)( / fG ei“’)dz) .
Rn

The plan of the paper is as follows. In the next section we collect relevant information
from the representation theory &f (n). We also recall a theorem of Gross and Kunze [6]
which is needed for the proof of Theorem 1.2. All the results are proved in Sections 3 and
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4. For analogues of Hardy’s theorem in the contexts of other groups we refer to [2], [11] and
[15] and the references there.

2. Representation theory of M(n). In this section we describe the unitary dual of
M (n). To enhance the readability of this paper we collect relevant information from the rep-
resentation theory a¥/ (n). General references are the books of Folland [5] and Suguira [13].
We also need some results from the paper of Gross and Kunze [6].

First consider the caskf (2). We write the elements aff/(2) as (z, ¢'¥),z € C and
¢ € R. The group law is given by

(z, €)Y (w, ') = (z + ' %w, ' 0T9)) |
For eachh > 0 consider the representation(z, ¢'*) realised on.2(T):
(2.1) 73 (2, €9)g(0) = R0 — )

whereg € L?(T). As shown in Sugiura [13] any infinite dimensional irreducible unitary
representation of/ (2) is unitarily equivalent tor;, for somex > 0.

Next consider the cas# (n),n > 3. As in the introduction we leK = SO () and
M = SO(n — 1). Giveno € M realised on a Hilbert spadg, of dimensiord,, consider the
spacel.2(K, o) consisting of function on K taking values irC% >4 the space o, x dy
complex matrices, satisfying the condition

owk) =ocWek), ueM, kekK

which are also square integrable &n
/K lp (k) [1%dk =/th (p(k)*p(k))dk < 0o
Note thatL?(K, o) is a Hilbert space under the inner product
(o) = [ 1tk
For eachh > 0 ando € M we can define a primary representation, of M(n) on
L?(K, o) as follows. Forp € L%(K, o), (x, k) € M(n),

(2.2) o (x, o) = eik("fl'el’x)(p(uk), uek.

If (k) are the column vectors ¢f € L%(K, o) theng;(uk) = o(u)g; (k) forallu € M.
Therefore L?(k, o) can be written as the direct sumdf copies ofH (K, o) which is defined
to be the space af : K — C% which are square integrable and satisfy

ouk) = ocWpk), ueM.

It can be shown that; , restricted toH (K, o) is an irreducible unitary representation of
M (n). Moreover, any irreducible unitary representationMtr) which is infinite dimen-
sional is unitarily equivalent to one and only amg,,. Finite dimensional irreducible unitary
representations ok also yield irreducible unitary representationsifrn). As they do not
appear in the Plancherel formula we neglect them.
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Given f € L1 N L2(M(n)) we define the group Fourier transform phby
(2.3) fon, o) = f(x, k)0 (x, k)dxdk .
M (n)

Note thatf(/\, o) is a Hilbert-Schmidt operator oH (K, o). We would like to think of the
Fourier transform/ as an operator on a fixed Hilbertage. To achieve this we simply take
the direct sum of althe Hilbert spacesz(K o). More precisely, let.?(K)" stand for the
direct sum ofL2(K, o) aso varies oveM. ThusL2(K)" is the set of all function& on M
such thatF (o) belongs taL2(K, o) for eacho and

Y IF@)* < o0,
oeM
The Hilbert space structure (K )" is given by
(F,G) =) (F(0),G(0)).
oeM

For eachh. > 0 we can now definé(k) as an operator oh%(K)" by setting
(fFWF) (o) = f(h0)F(0).

In the proof of Theorem 1.3 we make use of a result of Gross and Kunze [6] which shows
thatL2(K)" is isomorphic ta.2(K ). To state their result we need to set up some notation. Let
L(u) stand for the left regular representationfon L2(K) given by L (u)y (k) = v (u~1k).

For anys € M consider the projection

(2.4) Py = da/ Xo (W) L(u)du
M

wherey, (u) = tr (o (1)) is the character af. A vector lies in the range a?; if and only if its
translates unddt span a finite dimensional subspace in whichecomposes into irreducible
representations equivalentdo

Note that wheny e L?(K) the function

(2.5) V(o k) = / v th)o (u)du
M

takes values ir.2(K, o) as can be easily checked. The generalised Fourier transform of a
functiony € C(K) is the functionUy € L?(K)”" whose value at € M is given by

(2.6) Uy (o) (k) = (0, k).
In [6] the following theorem has been proved:

THEOREM 2.1 (Gross and Kunze).The generalised Fourier transform s — U+ ini-
tially defined on C(K) extends uniquely to a unitary operator between L2(K) onto L2(K)"
which maps P, L2(K) onto L2(K , o).
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For eachh. > 0 we can definq?(x) as an operator ofi?(K)” and using the above
unitary operatol/ : L2(K) — L%(K)" we can considet/* f (\)U as an operator oh2(K)
which is unitarily equivalent tgf (). We use this identification to obtain a formula for

2.7) o UfoL ol
oeM

which is crucial in the proof of Beurling’s theorem 1.3. We remark that the Plancherel theorem
for M (n) takes the form

(2.8) Cn / oo( > ||f(x,c)||§s>x"ldx = / | f(x, k)|°dxdk
0 - M(n)
oceM

for a suitable constat,.

3. Hardy’'stheorem for M(n). In this section we prove Theorems 1.4 and 1.5. We
first recall some results from the Euclideanmanic analysis which will be needed in the
proofs. First of all we make use of the Hecke-Bochner formula for the Fourier transform
which states that iff (x) = P(x)g(]x|) whereg is radial andP is a solid harmonic of degree
m then

(3.1) @0 [ fee " dx = ()" PEOGED

whereG (|€]) is the Fourier transform of the radial functigiijx|) on R**2". G(|¢|) is also
given as a Hankel transform of order/2 + m — 1). For these facts we refer to Stein-Weiss
[12].

In the above, a solid harmonic of degmeeis a polynomial which is homogeneous of
degreem and harmonic. The set of all such polynomials will be denoted-hy and the
restrictions of elements 6{,, to S"~1 is denoted bys,,. Members ofS,, are called spherical
harmonics of degrea. By choosing an orthonormal bagig,,;; j = 1,2,...,d,} of S, for
eachm =0, 1, 2, ... we get an orthonormal basis fa#(S"1).

The Funk-Hecke formula deals with spherical harmonic expansions of zonal functions.
If a is a function on(—1, 1) this formula says that

3.2) / Y)Y (Y = ¥ ().

Sll*
The coefficients:,,; are given in terms of ultraspherical polynomials. More precisely, let
Gi,’fz_l(t) be ultraspherical polynomials of tyge/2 — 1). Then

— 1
(33) = F(znj(Jr i)r(n 2) 2 2 / aGUP @ — 23y
m-+n— _

We refer to Muller [8] for this formula. In particular, takingr) = ¢/*"', we have

/ Y ()Y = ey Y (1)
N
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Using the Poisson integral representation of Bessel functions we can calgylé¢ading to
the formula

! Juj24m—1(A , ,
(3.4 ey Z Z fnjzm A 10) Yinj (X)) Ymj (y")

n/2—1
m=0 j=1 (A7)

whereJ, (¢) is the Bessel function of type.
Hecke-Bochner formula (3.1) leads to a simple descriptiorf @f, o) when f is of a
special form.

LEMMA 3.1. Let f € LY (M (n)) beof theform f(x, u) = P(x)g(|x|)h(u) where P
isa solid harmonic of degree m. Then for every A > O and o € M we have

FOn0)0k) = A"G )Pk Ler) / h(w)g (ku)du
K

where G (i) isthe (n + 2m)-dimensional Fourier transformof ¢(|x|).

The lemma follows immediately from the definition of  (x, u) in view of (3.1). In
particular when we take

(3.5) Fr,u) = P(x)(—Apgam)™™2 p2m () ()

we see that

(3.6) . o)pk) =2 e Pk tey) / h(u)gp(ku)du
K

for everyp € H(K, o). This formula will be used in the proof of Theorem 1.4.
We also need the following lemma on entire functions of order 2.

LEMMA 3.2. Let F(z) be an entire function of a single complex variable z which
satisfies
IF(2)] < c(1+ [z2hNeim@F 2 e C,
IF()| < e(L+ [x)Ve ™, xeR.
Then F(z) = P(z)e*“Z2 where P(z) isa polynomial of degree < N.

A proof of this lemma can be found in Sarkar [10]. Having collected all the results
needed, we begin with a proof of Theorem.1iNbte that we only need to consider the case
s =t.Forgp, v € H(K, o) consider

3.7) (f(k,cr)cp,t/f)=/ /f(x,u)e"“‘*lfl'w(ku),w(k))dkdxdu.
M(n) JK

Since the functiory satisfies the estimate

(3.8) |f (e, u)| < e+ |xDN pl(x)
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it is clear that the above integral (3.7) converges everdfC. Indeed,

/K oMk terx) (p(ku), ¥ (k))dk

< elfm®Iixl / o (ku) ||y (k) |dk
K

< el gy ).
Using this estimate and (3.8) in (3.7) we see that

(3.9 I(F O o), )] < e+ AN e MmO g1y

Thus the functiorh. — (f(x, o), ¥) extends to an entire function of order 2 satisfying the
estimate (3.9) for alh € C. We are also given the estimate

A 2
(3.10) I(F O )@, ¥ < @+ DN e oy
for all » € R. Appealing to the complex analytic Lemma 3.2 we conclude that
(3.11) (F O )0, ¥) = Py (h, @, Y)e ™™

whereP, (1, ¢, V) is a polynomial of degree atmoat.
Itis now clear thatP, (A, ¢, ¥) is linear ing andy. If we write

N
Po(hop. ) = do j(9, ¥)A

j=0
then it can be easily shown that ; (¢, ¥) are sesquilinear forms oH (K, o). Cauchy’s
formula together with the estimate (3.9) shows thaf (¢, ) are actually bounded:
lag, j (@, ¥)| < co jll@lV Il
wherec,, ; are constants independent@find+. Hence there are bounded linear operators
As,j ONH (K, o) such that
as,j (9, V) = (Agjo, V), ¢, ¥ € H(K,0).
Therefore, we have obtained the relation

N
(f O, o), ¥) = (Z(Ag, i wf)eﬂz

j=0
for everyp, v € H(K, o). This simply means that

N
A~ 52 ;
(3.12) fOuo)y =Y WA,
j=0

as operators acting ofi (K, o). From the definition of(x, o) it follows that
N
(3.13) 3 W Avjek) = £, w)e ™ T o ) dodu .
: M(n)
j=0

We can calculatel, ;o (k) by taking derivatives on both sides’at= 0 : j!A, jo(k) is the
j-th derivative of the right hand side of (3.13))at 0.
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This shows thati,; ;¢ is a finite linear combination of functions of the form

(3.14) f e, u)(k~Yer - x)Po(ku)dxdu
M(n)

with 0 < p < j. We can use Funk-Hecke formula to expahdles - x)? = |x|?(k~ ey - x')P
in terms of spherical harmonics:

P dm

(3.15) (kilé’l X = Z Z lele(kilel)le(x/)

m=0 =1
where the coefficients,,; are given by expanding(s) = ¢? in terms of the ultraspherical
polynomials. Therefored,, ;¢ is a finite sum of terms of the form

F 0, w)|x|P Yot (") Yot (K~ Ler) @ (ku)dxdu
(3.16) M(n)
= Yo (kLeg) fK Fpm i Wp(ku)du

where we have written
Sfpomi @) =/ G, w)|x|P Y (x"dx .
Rﬂ
Finally, e~ Ao, jo(k) is a finite sum of functions of the form

2 .
e )Lij,l(kilel)/ Spmieku)du .
K

In view of Lemma 3.1 this simply means trvalte*“ZA,,,j is a finite sum of operators of the
form g, m,1 (X, o) with

(BA7) Gy ey w) = XYt () (= Do) T2 PN (1) f i (1)

This completes the proof of Theorem 1.4.
We remark that wheiw = 0, s = r the conclusion of Theorem 1.4 takes the form

Fleou) = p?(x)(/R” e, u)dx) .

We now give a proof of Theorem 1.5, that is, a refined version of Hardy’s theorem(@n
In this case it is slightly convenient to work with the following definition/of.):

(3.18) fn) = / [z, e)m(z, ) dzdg
M(2)

where we use the complex variahléo stand for elements ¢. An easy calculation shows
that

ZJTA .
fg®) = /0 Fn, e @) g(0 + p)dg
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whereg € L%(T) and
. . 1 o .
(3.19) fw,e?) = > /Rze*’Re(z“”f(z, ¢'¥)dz

is the Euclidean Fourier transform gfon R,
From the above formula we obtain, with(0) = ¢'*?,

n 1 2 21 . . L .
(3.20) (fWex, ej) = 5/ fre?, e9)eli?e! =0 4o |
0 0

Now, the Bessel function, (r) are given by the equation

1 2 o .
Jn ([) — / e*lfslneeflngde .
2 0

The functions/,, () andJ_, (¢) are related by
Jn(t) = (=D)"J_n(1).
In terms of the Bessel function we can write (see Rubin [9])

R (— l)k Jj r2r p2n
(f Mex, ej) = // (/ fre, ey j(Ar)rdr)e’(k N0eii?dhdg .

If we define f(r, m, n) to be the Fourier coefficients

27 p2m
fr,m,n) = / Fre'?, el?)e'™m e dodp
then we can write the above as o
(3.21) (fWex. ej) = e
Assumingk > j and defining
aj(r) = fr k= j. pr*t
we have the equation, with some constanjs

/O fr k= j, ) k—jOuryrdr .

(322)  (f(Wer,e)) = cijpt™) / g (’; ’)i r]) (r)2E=D
0

Thus, 2. =%+ (f (M)ex, e;) is the Fourier transform of the radial functigg (| x|) onR2*=/)+2,
Now the conditions of the theorem cfhandf imply that

|k (x| < ce™ X/ 15 (6)] < ce 6P
and hence by Hardy’s theorem 83*~/)+2 we getg; (r) = ckje*rz/“’ which means
(3.23) frk—j, J) = ckj k=i
Whenk # j the equation (3.23) is not compatible with the estimate
[Frik = . )l < e/
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unlesscx; = 0. We can do the same thing whierk j leading to the conclusion that
27 p27 ) . . )
/ f(retQ’etga)ethemgadew =0
o Jo

whenever # 0. We also have (r, 0, j) = Cje_r2/4t. Hence we obtain

o0

f(z.e?) =pt2(z)( > cjeif‘/’).

j=—00

This proves Theorem 1.5 with

9(e) = Z cjel’ = / f(z,e®)dz.

Jj=—00

4. Beurling'stheorem for M(n). We begin a proof of Theorem 1.2 by obtaining an
expression for the suh, _ . I £, o)||f,s. We make use of the unitary operat@rintro-
duced in Section 2 to realisﬁ?(k) as an integral operator ob?(K) whose kernel can be
calculated. We use the explicit expression for this kernel to calculate the above sum.

As before let{Y,,;; 1 < j < dy,m =0,1,2,...} be an orthonormal basis &£ (5" 1)
consisting of spherical harmonics. Define

(4.2) R e O

and letgy,; (r, k) = r=™ fij(r, k). Also define

q = Jnj24m—1(Ar)
4.2) gmj()t, k) = '/0 Gmj (r, k)ww,.1+2m ar
Then we have the following result.

PROPOSITION 4.1.

00 dnm

dofonolEs=) ZAZ'"/ |G mj O, ) |Pdk.

ceM m=0 j=1

PROOF. Fori > 0,0 € M andg, v € H(K, o)
(fO, o), ) = /M ( )f(x, u) (7, 6 (x, )@, ¥)dxdu

= fx,u) ( / MK (0 (k. 1//(k))dk) dxdu .
M(n) K

We now make use of the expansion

; Jnj2+m—1(A|x]) _
(4.3) ke - ZZ ”éﬁ;wz Y (k" en) Yo (x)
m=0 j=1
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where we have written = |x|x’. Using this expansion and recalling the definition of
Gmj (A, u) we obtain

0o dpm

fOs 00 = /K (Z D NG s u)Ym,-(k—leﬂ)go(ku)du

m=0 j=1

o0 dm

= /K ( Z Z)\m G mj (A, k™) Yo (k1€1)>g0(u)du .

m=0 j=1
Thus we have

FO, o)k = /K G.(k, u)g(u)du

where the kernefs, is given by

o o0
4.9 Golkou)y =Y Y "G i ok ) Yo (ke
m=0 j=1

SinceL?(K, o) is the direct sum of copies @f (K, o) the action off (x, o) on L4(K , o)
is also given by

Fon 0)pk) = / Gtk wpdu, ¢ € LXK, o).
K

Using the unitary operatay/ : L2(K) — L2(K)" we consider the operatdr* f (1)U on
L?(K). Foreveryy € L2(K), Uy (o) (k) = ¥ (o, k) where

(4.5) V(o k) = / Vo (u)du .
M
By the definition of/ (1) we have
(FOU) (@) K) = £, o) (0. k)
- / / G;.(k, )y (m™tu)o (m)dmdu .
KJM
IfT(h,0)= U*fUP(, on L2(K) then from the definition o, andU it follows that
T(h, o)yY(k) = / / G;.(k, w)y (m~Yu)tr o (m)ydmdu .
KJM
With tr o (m) = x,(m) we have

T()»,cr)@h(k):/ (/ Gk(k,mu)xa(m)dm>1/f(u)du.
kK \Jm

SinceL2(K) is the direct sum oP, L2(K) aso ranges ovelM we see that

Y T as = 10 F UG = D 1 o)liEs.

oeM oeM
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Now T'(x, o) is an integral operator oh?(K) with kernel

(4.6) Gx,a(k,u)=/ G (k, mu) xo(m)dm .
M

Therefore,

(4.7) 1T, )3 = fK fK G0 (k, w)|?dkdu

and summing oves € M we get

2
Y I o)lEs = Z/ / ‘/ Go.(k. mu)xo (m)ydm | dkdu.
~ ~ JK JK M
oeM oeM

Invoking Peter-Weyl we obtain

(4.8) Z||f(x,a)||ﬁs=fkfk|Gk(k,u>|2dkdu.

oeM

Recalling the definition o0&, (k, u) and using the orthonormality of the spherical harmonics
we complete the proof of the proposition. O

Next we make the following observation. Fbe K consider the functiorf * xs. Then
writing 7, » (f) for f(x, o), an easy calculation shows that

a0 (f * X8) = 70,0 (F)T2,0(Xs) -
Here the Fourier transform ¢f; is given by
Thr G000 = [ 500,00 g ()
K
= / xsw)p(ku)du .
K

Now p(u) = m, (0, u) is a representation ok on H(K, o) and sop is a direct sum of
irreducible unitary representations &f. Let p1 be a subrepresentation pfrealised on a
subspacé’ of H(K, o). Then onV

o (Xs)p (k) =/Kxa(u)p(u)¢(k)du = p(xs)ek) .

But p(xs) = 0 unlessp is unitarily equivalent ta5. Thusm, »(xs) # 0 only whenrx;
containss. By Frobenius reciprocityr; o, 81 = [8, o] (where[rx, §] is the multiplicity of§
in ) and hencer; - (xs) # 0 only when[s, o] # 0. Thusm, »(f * xs) # 0 only for finitely
manyos € M since[s, o] < oo.
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We now embark on a proof of Theorem 1.2. It is enough to show fhatys; = O for
everys € K. If we let fs = f * xs thenm, (fs) # 0 only for finitely manys and hence

S ( ZA ||f:s()t70)”as>l/2

/ oceM | f5(x, k)| e)”lxl)\n_ld)»dxdk
M@ Jo a+n" A+ |xpr

< Z / /00 ||f8()"7 O)"HS |f5(-x1 k)' eAlxl)\,n_ld)\,dxdk.
~ JM(n) JO
oceM

T+ A+ )
Since
k) =/Kf(x,ku_1)x(s(u)du=f*xa(x,k)

andfs(x, o) = f (i, o) (xs5) the above is bounded by

oo £ A, ,k -1
Z/ / I f (&, 0)llns | f (x, ku )l|X5(u)|e)‘|x|)»"_ld)\dxdkdu
~ JM(n) JO K
oceM

@+nr A+ xpn

which is finite by the hypothesis.
Appealing to the result of the proposition we conclude that for ewery N and 1<
J<dn

Y GOk 12dk) Y2 £,
/0 /o /z(km(legngjl(Jr’)\))’l : |{ijr)](rl) |€”(Ar)”‘ldrd/\dk<oo

wheref,,; andg,,; are defined in terms of the functigfy = f * xs. (We have suppressed the
s-dependence for the sake of simplicity of notation). For each C(K) consider

hmj(r) = / Gmj (s k)Y (k)dk
K
so that the Hankel transform of tyge/2 + m — 1) of h,,; (r) is
hamj (1) =/ G mj Os k)Y (k) .
K

Since f; (r, k) = r" g, (r, k) and

) 1/2
|hm,-<x)|s(mem,-(A,k)de) iz

we have
0 0 Nl O] 7" [ (1], 1
/o /0 M @y ¢ O

< C/OO/OO bR (S 19 mj O, k)|2dk)l/2 (S | fmj (r. ) 1dk)
< A (L+ 0 A+ r)

V" drda < .
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Thus we have

X MO VD sy
A A3y A gy’ (Ar) rdi < oo.

Sinceﬁmj (A) is the Hankel transform of orddr/2 4+ m — 1) of h,,;(r) we can appeal to
Beurling’s theorem olR"+2". Sincen + m < n + 2m we geth,,; (r) = 0. As this is true for
everym andj we getfs = 0. Hencef = 0 as desired.

This completes the proof of Theorem 1.2. We now give a proof of Theorem 1.3.

We follow the same notation used in the proof of Theorem 1.5. Under the hypothesis of

the theorem
00 poo |(f . = e
/ / [(fMex, e | f(r k ],])|exrkrdrdk
o Jo (1+)»)3 (1+V)3

o0 7 i

1 Wllks 1£ G €9 50

<c e"adidzdy < o0o.
/M@)/o A+ 103 A+ 123 ¢

This means that, assumiig> j,

/°° /°° Lgrj (P r =D 1§ 3 G |AE=D
o Jo (1+V)3 (1+)\)3

_ [T 0l 191 M ()2 Dy < 0o
o Jo (L4r)3h=i (1413 '

Applying the result of Bonami et al. to the functiggy (|x|) on R?*~/)+2 we obtain

M ardrdi

91y (1) = Py (e)e ™/

where degPy; < 3+ (k — j) — 2(k — j) —3 = —(k — j). ThusPx; = O unlessc = j and
we have

gk (Ix]) = cpe ¥4 = F(1x], 0, k)
for some constantsg, # > 0. Therefore,
Fz ) = cetve P/

Now we recall that f (A)ex, e;)A~* =7 is the Fourier transform of (r, k — j, j)r—*=7 on
R2k=N+2 Therefore,

(fMex, ej) = 5ij1¢€7’“2 .

Hence, the equation

1FOEs =Y 1F el =Y 1(f Mex, e))I?
k

k.j
gives us

A~ _ 2
IFOIEs =D lexlPe 254"
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Thus the hypothesis ofi and f gives

A 2
/ OO/ TS Ol e i < oo
o Jo @+ aA+n3

Since|| £ (M) [lus > |ck|e—’f<’\2 for everyk we have

o2/ )
| j|/ / T )3 e MM ardrda < 0o
r

It can be shown that the above is impossible unigss¢; for all k and j. Thusz; = ¢ for all
k and we have

f(z, %) = eI/ < cheik‘p>
k

proving the theorem.
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