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ON THEOREMS OF BEURLING AND HARDY
FOR THE EUCLIDEAN MOTION GROUP

RUDRA P. SARKAR AND SUNDARAM THANGAVELU
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Abstract. We establish an analogue of Beurling’suncertainty principle for the group
Fourier transform on the Euclidean motion group. We also prove the most general version of
Hardy’s theorem on it which characterises functions on the motion group that are controlled
by the heat kernel associated to the Laplacian of the Euclidean space.

1. Introduction. A cute little theorem of Beurling on Fourier transform pairs which
was published by Hörmander [7] says that for any nontrivial functionf in L2(R), the function
f (x)f̂ (y) is never integrable onR2 with respect to the measuree|xy|dxdy. A far-reaching
generalisation of this result has been recently proved by Bonami et al. [1]. Let

f̂ (y) = (2π)−n/2
∫

Rn
e−i(x,y)f (x)dx

stand for the Fourier transform of a functionf on Rn. Then we have:

THEOREM 1.1 (Bonami-Demange-Jaming).Let f ∈ L2(Rn) and suppose that for
some N ≥ 0 ∫

Rn

∫
Rn

|f (x)|
(1 + |x|)N

|f̂ (y)|
(1 + |y|)N e

|(x,y)|dxdy < ∞ .

Then f = 0 whenever N ≤ n. If N > n, then the above holds if and only if f can be written
as

f (x) = P(x)e−(Ax,x)/2,

where A is a real positive definite matrix and P is a polynomial of degree ≤ (N − n)/2.

Some attempts to generalise this result to group Fourier transforms on certain Lie groups
have already been made. Unlike the Euclidean case functionsf and their Fourier transforms
f̂ live on different sets which spoils the elegance of the above result in other contexts.

In this paper we formulate and prove an analogue of Theorem 1.1 for the Fourier trans-
form on Euclidean motion groupsM(n).

LetM(n) be the semidirect product ofRn with K = SO(n). The group law is given by

(x, k)(y, k′) = (x + k · y, kk′) , x, y ∈ Rn , k, k′ ∈ K .
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LetM = SO(n− 1) be considered as a subgroup ofK leaving the pointe1 = (1,0,0, . . . ,0)
fixed. Then all the irreducible unitary representations ofM(n) relevant for the Plancherel
theorem are parametrised (upto unitary equivalence) by pairs(λ, σ ) whereλ > 0 andσ ∈ M̂,
the unitary dual ofM. (Whenn = 2 there is only one parameter namely,λ > 0.) The group
Fourier transform off ∈ L1(M(n)) is then defined by

f̂ (λ, σ ) =
∫
M(n)

f (x, k)πλ,σ (x, k)dxdk(1.1)

whereπλ,σ (x, k) is the irreducible unitary representation ofM(n) associated to the parameter
(λ, σ ). These representations are realised on certain Hilbert spaces which will be described
in the following sections. Let‖f̂ (λ, σ )‖HS stand for the Hilbert-Schmidt operator norm of
f̂ (λ, σ ). As an analogue of Beurling’s theorem we offer:

THEOREM 1.2. Let f ∈ L1 ∩ L2(M(n)) and assume that
∫
M(n)

∫ ∞

0

‖f̂ (λ, σ )‖HS

(1 + λ)n

|f (x, k)|
(1 + |x|)n e

λ|x|λn−1dλdxdk < ∞

for every σ ∈ M̂ . Then f = 0.

Note that we have considered only the caseN = n. Whenn = 2 we can do slightly
better. Let us write(z, eiϕ) for the coordinates onM(2), z ∈ R2.

THEOREM 1.3. Let f ∈ L1 ∩ L2(M(2)) and assume that
∫
M(2)

∫ ∞

0

‖f̂ (λ)‖HS

(1 + λ)3

|f (z, eiϕ)|
(1 + |z|)3 e

λ|z|λdλdzdϕ < ∞ .

Then f can be represented as

f (z, eiϕ) = g(eiϕ)e−a|z|2

for some g ∈ L2(T ) and a > 0.

In this theoremT stands for the circle group which is identified withSO(2). Let�n be
the standard Laplacian onRn and let

pnt (x) = (4πt)−n/2e−|x|2/4t(1.2)

be the associated heat kernel. Then the final conclusion of the above theorem can be expressed
in terms of the heat kernelpnt (z) on Rn. The original theorem of Beurling(N = 0) can
be viewed as an uncertainty principle for the Fourier transform. The caseN = n + 1 is
then a characterisation of the heat kernelpt(x) on Rn. Theorem 1.1 is so strong that other
‘uncertainty principles’ like the theorems of Hardy, Gelfand-Shilov and Cowling-Price all
follow from it. For example, a general form of Hardy’s theorem forRn in [15] says that if
f ∈ L1(Rn) satisfies

|f (x)| ≤ c(1 + |x|)mpns (x) , |f̂ (y)| ≤ c(1 + |y|)me−t |y|2(1.3)
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thenf = 0 whenevers < t and whens = t, f (x) = Q(x)pnt (x) whereQ is a polynomial of
degree≤ m. It is clear that this result follows immediately from Theorem 1.1.

Even though we do not have the most general version of Beurling’s theorem forM(n),
we do have a general version of Hardy’s theorem.

THEOREM 1.4. Let f ∈ L1(M(n)) satisfy the following two conditions:
|f (x, k)| ≤ c(1 + |x|)Npns (x) , (x, k) ∈ M(n)

‖f̂ (λ, σ )‖ ≤ c(1 + λ)Ne−tλ2
, (λ, σ ) ∈ R+ × M̂ .

Then f = 0 whenever s < t . When s = t, f can be expressed as a finite linear combination
of functions of the form

Pm,j (x)(−�n+2m)
(j−m)/2pn+2m

t (x)gmj (k)

where Pmj are solid harmonics of degreem and gmj are certain bounded functions in L2(K).

In the above the fractional powers of the Laplacian are defined via the Fourier transform:

(−�n)j/2f (x) = (2π)−n/2
∫

Rn
|ξ |j f̂ (ξ)eix·ξdξ .

The range ofm andj are restricted by the condition

|Pmj (x)||(−�n+2m)
(j−m)/2pn+2m

t (x)| ≤ c(1 + |x|)Npnt (x) .
The caseN = 0, s < t of the above theorem is due to Sundari [14]. See the work of Eguchi et
al. [3] for an analogue (again the caseN = 0, s < t) of the above for Cartan motion groups.
Eguchi et al. [4] have also treated anLp version of the above result(N = 0, s < t). The
above theorem withN > 0 ands = t is new.

It is possible to prove a refined version of the above theorem whenn = 2. Compare
the following result with Hardy’s theorem proved in [16] for the Euclidean Fourier transform.
Whenn = 2, the relevant representationsπλ(z, eiϕ) of M(2) are parametrised byλ > 0 and
realised on the same Hilbert spaceL2(T ). Let {ek(θ) = eikθ : k ∈ Z} be the standard basis
for L2(T ).

THEOREM 1.5. Let f ∈ L1(M(2)) satisfy the estimate

|f (z, eiϕ)| ≤ cp2
t (z) , z ∈ R2 .

Further assume that for every λ > 0, and k, j ∈ Z

|(f̂ (λ)ek, ej )| ≤ ckj λ
|k−j |e−tλ2

.

Then f can be represented as

f (z, eiϕ) = p2
t (z)

(∫
Rn
f (z, eiϕ)dz

)
.

The plan of the paper is as follows. In the next section we collect relevant information
from the representation theory ofM(n). We also recall a theorem of Gross and Kunze [6]
which is needed for the proof of Theorem 1.2. All the results are proved in Sections 3 and
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4. For analogues of Hardy’s theorem in the contexts of other groups we refer to [2], [11] and
[15] and the references there.

2. Representation theory of M(n). In this section we describe the unitary dual of
M(n). To enhance the readability of this paper we collect relevant information from the rep-
resentation theory ofM(n). General references are the books of Folland [5] and Suguira [13].
We also need some results from the paper of Gross and Kunze [6].

First consider the caseM(2). We write the elements ofM(2) as (z, eiϕ), z ∈ C and
ϕ ∈ R. The group law is given by

(z, eiϕ)(w, eiθ ) = (z+ eiϕw, ei(θ+ϕ)) .

For eachλ > 0 consider the representationπλ(z, eiϕ) realised onL2(T ):

πλ(z, e
iϕ)g(θ) = eiRe(λe

−iθ z)g(θ − ϕ)(2.1)

whereg ∈ L2(T ). As shown in Sugiura [13] any infinite dimensional irreducible unitary
representation ofM(2) is unitarily equivalent toπλ for someλ > 0.

Next consider the caseM(n), n ≥ 3. As in the introduction we letK = SO(n) and
M = SO(n− 1). Givenσ ∈ M̂ realised on a Hilbert spaceVσ of dimensiondσ consider the
spaceL2(K, σ) consisting of functionsϕ onK taking values inCdσ×dσ , the space ofdσ ×dσ
complex matrices, satisfying the condition

ϕ(uk) = σ(u)ϕ(k) , u ∈ M , k ∈ K
which are also square integrable onK:∫

K

‖ϕ(k)‖2dk =
∫
K

tr (ϕ(k)∗ϕ(k))dk < ∞ .

Note thatL2(K, σ) is a Hilbert space under the inner product

(ϕ,ψ) =
∫
K

tr (ϕ(k)ψ(k)∗)dk .

For eachλ > 0 andσ ∈ M̂ we can define a primary representationπλ,σ of M(n) on
L2(K, σ) as follows. Forϕ ∈ L2(K, σ), (x, k) ∈ M(n),

πλ,σ (x, k)ϕ(u) = eiλ(u
−1·e1,x)ϕ(uk) , u ∈ K .(2.2)

If ϕj (k) are the column vectors ofϕ ∈ L2(K, σ) thenϕj (uk) = σ(u)ϕj (k) for all u ∈ M.
Therefore,L2(k, σ ) can be written as the direct sum ofdσ copies ofH(K, σ)which is defined
to be the space ofϕ : K → Cdσ which are square integrable and satisfy

ϕ(uk) = σ(u)ϕ(k) , u ∈ M .

It can be shown thatπλ,σ restricted toH(K, σ) is an irreducible unitary representation of
M(n). Moreover, any irreducible unitary representation ofM(n) which is infinite dimen-
sional is unitarily equivalent to one and only oneπλ,σ . Finite dimensional irreducible unitary
representations ofK also yield irreducible unitary representations ofM(n). As they do not
appear in the Plancherel formula we neglect them.
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Givenf ∈ L1 ∩ L2(M(n)) we define the group Fourier transform off by

f̂ (λ, σ ) =
∫
M(n)

f (x, k)πλ,σ (x, k)dxdk .(2.3)

Note thatf̂ (λ, σ ) is a Hilbert-Schmidt operator onH(K, σ). We would like to think of the
Fourier transformf̂ as an operator on a fixed Hilbert space. To achieve this we simply take
the direct sum of allthe Hilbert spacesL2(K, σ). More precisely, letL2(K)∧ stand for the
direct sum ofL2(K, σ) asσ varies overM̂. ThusL2(K)∧ is the set of all functionsF on M̂
such thatF(σ) belongs toL2(K, σ) for eachσ and∑

σ∈M̂
‖F(σ)‖2 < ∞ .

The Hilbert space structure ofL2(K)∧ is given by

(F,G) =
∑
σ∈M̂

(F (σ),G(σ)) .

For eachλ > 0 we can now definêf (λ) as an operator onL2(K)∧ by setting

(f̂ (λ)F )(σ ) = f̂ (λ, σ )F (σ) .

In the proof of Theorem 1.3 we make use of a result of Gross and Kunze [6] which shows
thatL2(K)∧ is isomorphic toL2(K). To state their result we need to set up some notation. Let
L(u) stand for the left regular representation ofM onL2(K) given byL(u)ψ(k) = ψ(u−1k).
For anyσ ∈ M̂ consider the projection

Pσ = dσ

∫
M

χσ (u)L(u)du(2.4)

whereχσ (u) = tr (σ (u)) is the character ofσ . A vector lies in the range ofPσ if and only if its
translates underL span a finite dimensional subspace in whichL decomposes into irreducible
representations equivalent toσ .

Note that whenψ ∈ L2(K) the function

ψ̃(σ, k) =
∫
M

ψ(u−1k)σ (u)du(2.5)

takes values inL2(K, σ) as can be easily checked. The generalised Fourier transform of a
functionψ ∈ C(K) is the functionUψ ∈ L2(K)∧ whose value atσ ∈ M̂ is given by

Uψ(σ)(k) = ψ̃(σ, k) .(2.6)

In [6] the following theorem has been proved:

THEOREM 2.1 (Gross and Kunze).The generalised Fourier transform ψ �→ Uψ ini-
tially defined on C(K) extends uniquely to a unitary operator between L2(K) onto L2(K)∧
which maps PσL2(K) onto L2(K, σ).
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For eachλ > 0 we can definef̂ (λ) as an operator onL2(K)∧ and using the above
unitary operatorU : L2(K) → L2(K)∧ we can considerU∗f̂ (λ)U as an operator onL2(K)

which is unitarily equivalent tof̂ (λ). We use this identification to obtain a formula for∑
σ∈M̂

‖f̂ (λ, σ )‖2
HS(2.7)

which is crucial in the proof of Beurling’s theorem 1.3. We remark that the Plancherel theorem
forM(n) takes the form

cn

∫ ∞

0

( ∑
σ∈M̂

‖f̂ (λ, σ )‖2
HS

)
λn−1dλ =

∫
M(n)

|f (x, k)|2dxdk(2.8)

for a suitable constantcn.

3. Hardy’s theorem for M(n). In this section we prove Theorems 1.4 and 1.5. We
first recall some results from the Euclidean harmonic analysis which will be needed in the
proofs. First of all we make use of the Hecke-Bochner formula for the Fourier transform
which states that iff (x) = P(x)g(|x|) whereg is radial andP is a solid harmonic of degree
m then

(2π)−n/2
∫

Rn
f (x)e−ix·ξdx = (−i)mP (ξ)G(|ξ |)(3.1)

whereG(|ξ |) is the Fourier transform of the radial functiong(|x|) on Rn+2m. G(|ξ |) is also
given as a Hankel transform of order(n/2 +m − 1). For these facts we refer to Stein-Weiss
[12].

In the above, a solid harmonic of degreem is a polynomial which is homogeneous of
degreem and harmonic. The set of all such polynomials will be denoted byHm and the
restrictions of elements ofHm to Sn−1 is denoted bySm. Members ofSm are called spherical
harmonics of degreem. By choosing an orthonormal basis{Ymj ; j = 1,2, . . . , dm} of Sm for
eachm = 0,1,2, . . . we get an orthonormal basis forL2(Sn−1).

The Funk-Hecke formula deals with spherical harmonic expansions of zonal functions.
If a is a function on(−1,1) this formula says that∫

Sn−1
a(x ′ · y ′)Ymj (y ′)dy ′ = cmjYmj (x

′) .(3.2)

The coefficientscmj are given in terms of ultraspherical polynomials. More precisely, let

G
n/2−1
m (t) be ultraspherical polynomials of type(n/2 − 1). Then

cmj = Γ (m+ 1)Γ (n− 2)

Γ (m+ n− 2)
wn−2

∫ 1

−1
a(t)G

n/2−1
m (t)(1 − t2)(n−3)/2dt .(3.3)

We refer to Muller [8] for this formula. In particular, takinga(t) = eiλrt , we have∫
Sn−1

eiλrx
′·y ′
Ymj (y

′)dy ′ = cmjYmj (x
′) .
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Using the Poisson integral representation of Bessel functions we can calculatecmj leading to
the formula

eiλrx
′·y ′ =

∞∑
m=0

dm∑
j=1

Jn/2+m−1(λr)

(λr)n/2−1 Ymj (x
′)Ymj (y ′)(3.4)

whereJα(t) is the Bessel function of typeα.
Hecke-Bochner formula (3.1) leads to a simple description off̂ (λ, σ ) whenf is of a

special form.

LEMMA 3.1. Let f ∈ L1(M(n)) be of the form f (x, u) = P(x)g(|x|)h(u) where P
is a solid harmonic of degree m. Then for every λ > 0 and σ ∈ M̂ we have

f̂ (λ, σ )ϕ(k) = λmG(λ)P (k−1e1)

∫
K

h(u)ϕ(ku)du

where G(λ) is the (n+ 2m)-dimensional Fourier transform of g(|x|).
The lemma follows immediately from the definition ofπλ,σ (x, u) in view of (3.1). In

particular when we take

f (x, u) = P(x)(−�n+2m)
(j−m)/2pn+2m

t (x)h(u)(3.5)

we see that

f̂ (λ, σ )ϕ(k) = λj e−tλ2
P(k−1e1)

∫
K

h(u)ϕ(ku)du(3.6)

for everyϕ ∈ H(K, σ). This formula will be used in the proof of Theorem 1.4.
We also need the following lemma on entire functions of order 2.

LEMMA 3.2. Let F(z) be an entire function of a single complex variable z which
satisfies

|F(z)| ≤ c(1 + |z|)Nea|Im(z)|2 , z ∈ C ,

|F(x)| ≤ c(1 + |x|)Ne−ax2
, x ∈ R .

Then F(z) = P(z)e−az2
where P(z) is a polynomial of degree ≤ N .

A proof of this lemma can be found in Sarkar [10]. Having collected all the results
needed, we begin with a proof of Theorem 1.4. Note that we only need to consider the case
s = t . Forϕ,ψ ∈ H(K, σ) consider

(f̂ (λ, σ )ϕ,ψ) =
∫
M(n)

∫
K

f (x, u)eiλk
−1e1·x(ϕ(ku),ψ(k))dkdxdu .(3.7)

Since the functionf satisfies the estimate

|f (x, u)| ≤ c(1 + |x|)Npnt (x)(3.8)
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it is clear that the above integral (3.7) converges even ifλ ∈ C . Indeed,∣∣∣∣
∫
K

eiλ(k
−1e1·x)(ϕ(ku),ψ(k))dk

∣∣∣∣ ≤ e|Im(λ)||x|
∫
K

|ϕ(ku)||ψ(k)|dk

≤ e|Im(λ)||x|‖ϕ‖‖ψ‖ .
Using this estimate and (3.8) in (3.7) we see that

|(f̂ (λ, σ )ϕ,ψ)| ≤ c(1 + |λ|)Net |Im(λ)|2‖ϕ‖‖ψ‖ .(3.9)

Thus the functionλ → (f̂ (λ, σ )ϕ,ψ) extends to an entire function of order 2 satisfying the
estimate (3.9) for allλ ∈ C . We are also given the estimate

|(f̂ (λ, σ )ϕ,ψ)| ≤ c(1 + |λ|)Ne−t |λ|2‖ϕ‖‖ψ‖(3.10)

for all λ ∈ R. Appealing to the complex analytic Lemma 3.2 we conclude that

(f̂ (λ, σ )ϕ,ψ) = Pσ (λ, ϕ,ψ)e
−tλ2

(3.11)

wherePσ (λ, ϕ,ψ) is a polynomial of degree atmostN .
It is now clear thatPσ (λ, ϕ,ψ) is linear inϕ andψ. If we write

Pσ (λ, ϕ,ψ) =
N∑
j=0

aσ,j (ϕ,ψ)λ
j

then it can be easily shown thataσ,j (ϕ,ψ) are sesquilinear forms onH(K, σ). Cauchy’s
formula together with the estimate (3.9) shows thataσ,j (ϕ,ψ) are actually bounded:

|aσ,j (ϕ,ψ)| ≤ cσ,j‖ϕ‖‖ψ‖
wherecσ,j are constants independent ofϕ andψ. Hence there are bounded linear operators
Aσ,j onH(K, σ) such that

aσ,j (ϕ,ψ) = (Aσ,jϕ,ψ) , ϕ,ψ ∈ H(K, σ) .
Therefore, we have obtained the relation

(f̂ (λ, σ )ϕ,ψ) =
( N∑
j=0

(Aσ,jϕ,ψ)λ
j

)
e−tλ2

for everyϕ,ψ ∈ H(K, σ). This simply means that

f̂ (λ, σ ) = e−tλ2
N∑
j=0

λjAσ,j(3.12)

as operators acting onH(K, σ). From the definition off̂ (λ, σ ) it follows that
N∑
j=0

λjAσ,jϕ(k) = etλ
2
∫
M(n)

f (x, u)eiλk
−1e1·xϕ(ku)dxdu .(3.13)

We can calculateAσ,jϕ(k) by taking derivatives on both sides atλ = 0 : j !Aσ,jϕ(k) is the
j -th derivative of the right hand side of (3.13) atλ = 0.
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This shows thatAσ,jϕ is a finite linear combination of functions of the form∫
M(n)

f (x, u)(k−1e1 · x)pϕ(ku)dxdu(3.14)

with 0 ≤ p ≤ j . We can use Funk-Hecke formula to expand(k−1e1 · x)p = |x|p(k−1e1 · x ′)p
in terms of spherical harmonics:

(k−1e1 · x ′)p =
p∑

m=0

dm∑
l=1

cmlYml(k
−1e1)Yml(x

′)(3.15)

where the coefficientscml are given by expandinga(t) = tp in terms of the ultraspherical
polynomials. Therefore,Aσ,jϕ is a finite sum of terms of the form∫

M(n)

f (x, u)|x|pYml(x ′)Yml(k−1e1)ϕ(ku)dxdu

= Yml(k
−1e1)

∫
K

fp,m,l(u)ϕ(ku)du

(3.16)

where we have written

fp,m,l(u) =
∫

Rn
f (x, u)|x|pYm,l(x ′)dx .

Finally, e−tλ2
λjAσ,jϕ(k) is a finite sum of functions of the form

e−tλ2
λjYm,l(k

−1e1)

∫
K

fp,m,l(u)ϕ(ku)du .

In view of Lemma 3.1 this simply means thatλje−tλ2
Aσ,j is a finite sum of operators of the

form ĝp,m,l(λ, σ ) with

gp,m,l(x, u) = |x|mYm,l(x ′)(−�n+2m)
(j−m)/2pn+2m

t (x)fp,m,l(u) .(3.17)

This completes the proof of Theorem 1.4.
We remark that whenN = 0, s = t the conclusion of Theorem 1.4 takes the form

f (x, u) = pnt (x)

( ∫
Rn
f (x, u)dx

)
.

We now give a proof of Theorem 1.5, that is, a refined version of Hardy’s theorem onM(2).
In this case it is slightly convenient to work with the following definition off̂ (λ):

f̂ (λ) =
∫
M(2)

f (z, eiϕ)πλ(z, e
iϕ)∗dzdϕ(3.18)

where we use the complex variablez to stand for elements ofR2. An easy calculation shows
that

f̂ (λ)g(θ) =
∫ 2π

0
f̂ (λ, ei(θ+ϕ))g(θ + ϕ)dϕ
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whereg ∈ L2(T ) and

f̂ (w, eiϕ) = 1

2π

∫
R2
e−iRe(zw̄)f (z, eiϕ)dz(3.19)

is the Euclidean Fourier transform off on R2.
From the above formula we obtain, withek(θ) = eikθ ,

(f̂ (λ)ek, ej ) = 1

2π

∫ 2π

0

∫ 2π

0
f̂ (λeiθ , eiϕ)eijϕei(k−j)θdθdϕ .(3.20)

Now, the Bessel functionsJn(t) are given by the equation

Jn(t) = 1

2π

∫ 2π

0
e−it sinθ e−inθ dθ .

The functionsJn(t) andJ−n(t) are related by

Jn(t) = (−1)nJ−n(t) .
In terms of the Bessel function we can write (see Rubin [9])

(f̂ (λ)ek, ej ) = (−i)k−j
2π

∫ 2π

0

∫ 2π

0

(∫ ∞

0
f (reiθ , eiϕ)Jk−j (λr)rdr

)
ei(k−j)θeijϕdθdϕ .

If we definef̃ (r,m, n) to be the Fourier coefficients

f̃ (r,m, n) =
∫ 2π

0

∫ 2π

0
f (reiθ , eiϕ)eimθeinϕdθdϕ

then we can write the above as

(f̂ (λ)ek, ej ) = (−i)k−j
2π

∫ ∞

0
f̃ (r, k − j, j)Jk−j (λr)rdr .(3.21)

Assumingk ≥ j and defining

gkj (r) = f̃ (r, k − j, j)r−k+j

we have the equation, with some constantsckj ,

(f̂ (λ)ek, ej ) = ckjλ
k−j

∫ ∞

0
gkj (r)

Jk−j (λr)
(λr)k−j

(λr)2(k−j)+1dr .(3.22)

Thus,λ−k+j (f̂ (λ)ek, ej ) is the Fourier transform of the radial functiongkj (|x|) onR2(k−j)+2.
Now the conditions of the theorem onf andf̂ imply that

|gkj (|x|)| ≤ ce−|x|2/4t , |ĝkj (ξ)| ≤ ce−t |ξ |2

and hence by Hardy’s theorem onR2(k−j)+2 we getgkj (r) = ckj e
−r2/4t which means

f̃ (r, k − j, j) = ckj r
k−j e−r2/4t .(3.23)

Whenk �= j the equation (3.23) is not compatible with the estimate

|f̃ (r, k − j, j)| ≤ ce−r2/4t
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unlessckj = 0. We can do the same thing whenk ≤ j leading to the conclusion that
∫ 2π

0

∫ 2π

0
f (reiθ , eiϕ)eimθeinϕdθdϕ = 0

wheneverm �= 0. We also havef̃ (r,0, j) = cj e
−r2/4t . Hence we obtain

f (z, eiϕ) = p2
t (z)

( ∞∑
j=−∞

cj e
ijϕ

)
.

This proves Theorem 1.5 with

g(eiϕ) =
∞∑

j=−∞
cj e

ijϕ =
∫

R2
f (z, eiϕ)dz .

4. Beurling’s theorem for M(n). We begin a proof of Theorem 1.2 by obtaining an
expression for the sum

∑
σ∈M̂ ‖f̂ (λ, σ )‖2

HS. We make use of the unitary operatorU intro-

duced in Section 2 to realisêf (λ) as an integral operator onL2(K) whose kernel can be
calculated. We use the explicit expression for this kernel to calculate the above sum.

As before let{Ymj ; 1 ≤ j ≤ dm,m = 0,1,2, . . . } be an orthonormal basis ofL2(Sn−1)

consisting of spherical harmonics. Define

fmj (r, k) =
∫
Sn−1

f (rx ′, k)Ymj (x ′)dx ′(4.1)

and letgmj (r, k) = r−mfmj (r, k). Also define

g̃ mj (λ, k) =
∫ ∞

0
gmj (r, k)

Jn/2+m−1(λr)

(λr)n/2+m−1
rn+2m−1dr .(4.2)

Then we have the following result.

PROPOSITION 4.1.

∑
σ∈M̂

‖f̂ (λ, σ )‖2
HS =

∞∑
m=0

dm∑
j=1

λ2m
∫
K

|g̃ mj (λ, k)|2dk .

PROOF. Forλ > 0, σ ∈ M̂ andϕ,ψ ∈ H(K, σ)
(f̂ (λ, σ )ϕ,ψ) =

∫
M(n)

f (x, u)(πλ,σ (x, u)ϕ,ψ)dxdu

=
∫
M(n)

f (x, u)

(∫
K

eiλ(k
−1e1,x)(ϕ(ku),ψ(k))dk

)
dxdu .

We now make use of the expansion

eiλ(k
−1e1,x) =

∞∑
m=0

dm∑
j=1

Jn/2+m−1(λ|x|)
(λ|x|)n/2−1

Ymj (k
−1e1)Ymj (x

′)(4.3)
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where we have writtenx = |x|x ′. Using this expansion and recalling the definition of
g̃mj (λ, u) we obtain

f̂ (λ, σ )ϕ(k) =
∫
K

( ∞∑
m=0

dm∑
j=1

λmg̃ mj (λ, u)Ymj (k
−1e1)

)
ϕ(ku)du

=
∫
K

( ∞∑
m=0

dm∑
j=1

λmg̃ mj (λ, k
−1u)Ymj (k

−1e1)

)
ϕ(u)du .

Thus we have

f̂ (λ, σ )ϕ(k) =
∫
K

Gλ(k, u)ϕ(u)du

where the kernelGλ is given by

Gλ(k, u) =
∞∑
m=0

∞∑
j=1

λmg̃ mj (λ, k
−1u)Ymj (k

−1e1) .(4.4)

SinceL2(K, σ) is the direct sum of copies ofH(K, σ) the action off̂ (λ, σ ) onL2(K, σ)

is also given by

f̂ (λ, σ )ϕ(k) =
∫
K

Gλ(k, u)ϕ(u)du , ϕ ∈ L2(K, σ) .

Using the unitary operatorU : L2(K) → L2(K)∧ we consider the operatorU∗f̂ (λ)U on
L2(K). For everyψ ∈ L2(K),Uψ(σ)(k) = ψ̃(σ, k) where

ψ̃(σ, k) =
∫
M

ψ(u−1k)σ (u)du .(4.5)

By the definition off̂ (λ) we have

(f̂ (λ)Uψ)(σ)(k) = f̂ (λ, σ )ψ̃(σ, k)

=
∫
K

∫
M

Gλ(k, u)ψ(m
−1u)σ(m)dmdu .

If T (λ, σ ) = U∗f̂ UPσ onL2(K) then from the definition ofPσ andU it follows that

T (λ, σ )ψ(k) =
∫
K

∫
M

Gλ(k, u)ψ(m
−1u)tr σ(m)dmdu .

With tr σ(m) = χσ (m) we have

T (λ, σ )ψ(k) =
∫
K

( ∫
M

Gλ(k,mu)χσ (m)dm

)
ψ(u)du .

SinceL2(K) is the direct sum ofPσL2(K) asσ ranges overM̂ we see that∑
σ∈M̂

‖T (λ, σ )‖2
HS = ‖U∗f̂ (λ)U‖2

HS =
∑
σ∈M̂

‖f̂ (λ, σ )‖2
HS .
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Now T (λ, σ ) is an integral operator onL2(K) with kernel

Gλ,σ (k, u) =
∫
M

Gλ(k,mu)χσ (m)dm .(4.6)

Therefore,

‖T (λ, σ )‖2
HS =

∫
K

∫
K

|Gλ,σ (k, u)|2dkdu(4.7)

and summing overσ ∈ M̂ we get

∑
σ∈M̂

‖f̂ (λ, σ )‖2
HS =

∑
σ∈M̂

∫
K

∫
K

∣∣∣∣
∫
M

Gλ(k,mu)χσ (m)dm

∣∣∣∣
2

dkdu .

Invoking Peter-Weyl we obtain

∑
σ∈M̂

‖f̂ (λ, σ )‖2
HS =

∫
K

∫
K

|Gλ(k, u)|2dkdu .(4.8)

Recalling the definition ofGλ(k, u) and using the orthonormality of the spherical harmonics
we complete the proof of the proposition. �

Next we make the following observation. Forδ ∈ K̂ consider the functionf ∗ χδ. Then
writing πλ,σ (f ) for f̂ (λ, σ ), an easy calculation shows that

πλ,σ (f ∗ χδ) = πλ,σ (f )πλ,σ (χδ) .

Here the Fourier transform ofχδ is given by

πλ,σ (χδ)ϕ(k) =
∫
K

χδ(u)πλ,σ (0, u)ϕ(k)du

=
∫
K

χδ(u)ϕ(ku)du .

Now ρ(u) = πλ,σ (0, u) is a representation ofK onH(K, σ) and soρ is a direct sum of
irreducible unitary representations ofK. Let ρ1 be a subrepresentation ofρ realised on a
subspaceV of H(K, σ). Then onV

πλ,σ (χδ)ϕ(k) =
∫
K

χδ(u)ρ(u)ϕ(k)du = ρ(χδ)ϕ(k) .

But ρ(χδ) = 0 unlessρ is unitarily equivalent toδ. Thusπλ,σ (χδ) �= 0 only whenπλ,σ
containsδ. By Frobenius reciprocity,[πλ,σ , δ] = [δ, σ ] (where[π, δ] is the multiplicity ofδ
in π) and henceπλ,σ (χδ) �= 0 only when[δ, σ ] �= 0. Thusπλ,σ (f ∗ χδ) �= 0 only for finitely
manyσ ∈ M̂ since[δ, σ ] < ∞.
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We now embark on a proof of Theorem 1.2. It is enough to show thatf ∗ χδ = 0 for
everyδ ∈ K̂. If we let fδ = f ∗ χδ thenπλ,σ (fδ) �= 0 only for finitely manyσ and hence

∫
M(n)

∫ ∞

0

( ∑
σ∈M̂

‖f̂δ(λ, σ )‖2
HS

)1/2

(1 + λ)n

|fδ(x, k)|
(1 + |x|)n e

λ|x|λn−1dλdxdk

≤
∑
σ∈M̂

∫
M(n)

∫ ∞

0

‖f̂δ(λ, σ )‖HS

(1 + λ)n

|fδ(x, k)|
(1 + |x|)n e

λ|x|λn−1dλdxdk .

Since

fδ(x, k) =
∫
K

f (x, ku−1)χδ(u)du = f ∗ χδ(x, k)

andf̂δ(λ, σ ) = f̂ (λ, σ )πλ,σ (χδ) the above is bounded by

∑
σ∈M̂

∫
M(n)

∫ ∞

0

∫
K

‖f̂ (λ, σ )‖HS

(1 + λ)n

|f (x, ku−1)|
(1 + |x|)n |χδ(u)|eλ|x|λn−1dλdxdkdu

which is finite by the hypothesis.
Appealing to the result of the proposition we conclude that for everym ∈ N and 1≤

j ≤ dm

∫ ∞

0

∫ ∞

0

∫
K

λm

( ∫
K |g̃ mj (λ, k)|2dk

)1/2

(1 + λ)n

|fmj (r, k)|
(1 + r)n

eλr(λr)n−1drdλdk < ∞

wherefmj andgmj are defined in terms of the functionfδ = f ∗χδ. (We have suppressed the
δ-dependence for the sake of simplicity of notation). For eachψ ∈ C(K) consider

hmj (r) =
∫
K

gmj (r, k)ψ(k)dk

so that the Hankel transform of type(n/2 +m− 1) of hmj (r) is

h̃mj (λ) =
∫
K

g̃ mj (λ, k)ψ(k)dk .

Sincefmj (r, k) = rmgmj (r, k) and

|h̃mj (λ)| ≤
( ∫

K

|g̃ mj (λ, k)|2dk
)1/2

‖ψ‖2

we have∫ ∞

0

∫ ∞

0
λm

|h̃mj (λ)|
(1 + λ)n

rm|hmj (r)|
(1 + r)n

eλr(λr)n−1drdλ

≤ c

∫ ∞

0

∫ ∞

0
λm

( ∫
K |g̃ mj (λ, k)|2dk

)1/2

(1 + λ)n

( ∫
K |fmj (r, k)|dk

)
(1 + r)n

eλr(rλ)n−1drdλ < ∞ .
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Thus we have ∫ ∞

0

∫ ∞

0

|hmj (r)|
(1 + r)n+m

|h̃mj (λ)|
(1 + λ)n+m

eλr(λr)n+2m−1drdλ < ∞ .

Sinceh̃mj (λ) is the Hankel transform of order(n/2 + m − 1) of hmj (r) we can appeal to
Beurling’s theorem onRn+2m. Sincen +m ≤ n+ 2m we gethmj (r) = 0. As this is true for
everym andj we getfδ = 0. Hencef = 0 as desired.

This completes the proof of Theorem 1.2. We now give a proof of Theorem 1.3.
We follow the same notation used in the proof of Theorem 1.5. Under the hypothesis of

the theorem ∫ ∞

0

∫ ∞

0

|(f̂ (λ)ek, ej )|
(1 + λ)3

|f̃ (r, k − j, j)|
(1 + r)3

eλrλrdrdλ

≤ c

∫
M(2)

∫ ∞

0

‖f̂ (λ)‖HS

(1 + λ)3

|f (z, eiϕ)|
(1 + |z|)3 e

λ|z|λdλdzdϕ < ∞ .

This means that, assumingk ≥ j ,
∫ ∞

0

∫ ∞

0

|gkj (r)|r(k−j)
(1 + r)3

|g̃ kj (λ)|λ(k−j)
(1 + λ)3

eλrλrdrdλ

=
∫ ∞

0

∫ ∞

0

|gkj (r)|
(1 + r)3+k−j

|g̃ kj (λ)|
(1 + λ)3+k−j e

λr(λr)2(k−j)+1dλdr < ∞ .

Applying the result of Bonami et al. to the functiongkj (|x|) on R2(k−j)+2 we obtain

gkj (|x|) = Pkj (x)e
−|x|2/4tkj

where degPkj ≤ 3 + (k − j) − 2(k − j) − 3 = −(k − j). ThusPkj = 0 unlessk = j and
we have

gkk(|x|) = cke
−|x|2/4tk = f̃ (|x|,0, k)

for some constantsck, tk > 0. Therefore,

f (z, eiϕ) =
∑

cke
ikϕe−|z|2/4tk .

Now we recall that(f̂ (λ)ek, ej )λ−(k−j) is the Fourier transform of̃f (r, k − j, j)r−(k−j) on
R2(k−j)+2. Therefore,

(f̂ (λ)ek, ej ) = δkj cke
−tkλ2

.

Hence, the equation

‖f̂ (λ)‖2
HS =

∑
k

‖f̂ (λ)ek‖2
2 =

∑
k,j

|(f̂ (λ)ek, ej )|2

gives us

‖f̂ (λ)‖2
HS =

∑
|ck|2e−2tkλ2

.
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Thus the hypothesis onf andf̂ gives
∫ ∞

0

∫ ∞

0

‖f̂ (λ)‖HS

(1 + λ)3

e−r2/4tk

(1 + r)3
eλrλrdrdλ < ∞ .

Since‖f̂ (λ)‖HS ≥ |ck|e−tkλ2
for everyk we have

|cj |
∫ ∞

0

∫ ∞

0

e−r2/4tk

(1 + r)3
e−tj λ2

eλrλrdrdλ < ∞ .

It can be shown that the above is impossible unlesstk = tj for all k andj . Thustk = t for all
k and we have

f (z, eiϕ) = e−|z|2/4t
(∑

k

cke
ikϕ

)

proving the theorem.

REFERENCES

[ 1 ] A. B ONAMI , B. DEMANGE AND P. JAMING, Hermite functions and uncertainty principles for the Fourier and
windowed Fourier transforms, Rev. Mat. Iberoamericana 19 (2003), 23–55.

[ 2 ] M. COWLING, A. SITARAM AND M. SUNDARI, Hardy’s uncertainty principle on semisimple Lie groups,
Pacific J. Math. 192 (2000), 293–296.

[ 3 ] M. EGUCHI, S. KOIZUMI AND K. K UMAHARA , An analogue of the Hardy theorem for the Cartan motion
group, Proc. Japan Acad. Ser. A, Math. Sci. 74 (1998), 149–151.

[ 4 ] M. EGUCHI, S. KOIZUMI AND K. K UMAHARA , An Lp version of the Hardy theorem for motion groups, J.
Aust. Math. Soc. Ser. A, 68 (2000), 55–67.

[ 5 ] G. B. FOLLAND, A course in abstract harmonic analysis, Stud. Adv. Math. CRC Press, Boca Raton, Fla, 1995.
[ 6 ] K. I. GROSS ANDR. A. KUNZE, Fourier decompositions of certain representations, Symmetric spaces (Short

Courses, Washington Univ., St. Louis, Mo.,1969–1970), 119–139, Boothby and Weiss, Eds., Marcel-
Dekker, New York, 1972.

[ 7 ] L. H ÖRMANDER, A uniqueness theorem of Beurling for Fourier transform pairs, Ark. Mat. 29 (1991), 237–
240.

[ 8 ] C. MULLER, Spherical harmonics, Lecture Notes in Math. 17,Springer Verlag, Berlin-Heidelberg-New York,
1966.

[ 9 ] R. L. RUBIN, Harmonic analysis on the group of rigid motionsof the Euclidean plane, Studia Math. 62 (1978),
125–141.

[10] R. P. SARKAR, A complete analogue of Hardy’s theorem on semisimple Lie groups, Colloq. Math. 93 (2002),
27–40.

[11] A. SITARAM AND M. SUNDARI, An analogue of Hardy’s theorem for very rapidly decreasing functions on
semisimple groups, Pacific J. Math. 177 (1997), 187–200.

[12] E. M. STEIN AND G. WEISS, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press,
Princeton, N.J., 1971.

[13] M. Sugiura, Unitary representations and harmonic analysis, Halsted Press, New York-London-Sydney, 1975.
[14] M. SUNDARI, Hardy’s theorem for then-dimensional Euclidean motion group, Proc. Amer. Math. Soc. 126

(1998), 1199–1204.
[15] S. THANGAVELU, Revisiting Hardy’s theorem for the Heisenberg group, Math. Z. 242 4 (2002) 761–779.
[16] S. THANGAVELU, Hardy’s theorem for the Helgason Fourier transform on noncompact rank one symmetric

spaces, Colloq. Math. 94 (2002), 263–280.



ON THEOREMS OF BEURLING AND HARDY 351

STAT-MATH DIVISION STAT-MATH DIVISION

INDIAN STATISTICAL INSTITUTE INDIAN STATISTICAL INSTITUTE

203 B.T. RD 8 TH MILE, MYSORERD

CALCUTTA 700108 BANGALORE 560059
INDIA INDIA

E-mail address: rudra@isical.ac.in E-mail address: veluma@isibang.ac.in


