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COVARIANT HONDA THEORY
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Abstract. Honda’s theory gives an explicit description up to strict isomorphism of for-
mal groups over perfect fields of characterigtic# 0 and over their rings of Witt vectors by
means of attaching a certain matrix, which is called its type, to every formal group. A dual no-
tion of right type connected with the reduatiof the formal group is introduced while Honda’s
original type becomes a left type. An analegf the Dieudonné module is constructed and an
equivalence between the categories of formmaligs and right modules satisfying certain con-
ditions, similar to the classical anti-equivalence between the categories of formal groups, and
left modules satisfying certain conditions is established. As an applicatiossisgoenorphism
classes of the deformations of a formal group over and the action of its automorphism group
on these classes are studied.

0. Introduction. Letk be a perfect field of characteristic # 0 andO its ring of
Witt vectors. Honda’s theory [5] gives an explicit description of formal groups évend
k. It attaches to every-dimensional formal groug a certainn x n-matrix over the non-
commutative twisted power series rirfgy which is called a type of. If we restrict our
consideration to the-typical formal groups we will not lose much: every formal group under
consideration is strongly isomorphic tozatypical group. In the present paper, we attach
to every p-typical formal group another matrix ovétf, which we call a ‘right type’, while
Honda’s original type will be a ‘left type’. The left type describes formal groups up to strict
isomorphism and the right type is connected with the reduction of formal groups. In a sense,
these notions are dual.

Fontaine [4] used Honda'’s technique to construct an anti-equivalence from the categories
of formal groups ovek and that ove© to the category of lefe-modules and the category
of the pairs consisting of a leffi-module and itgD-submodule satisfying certain conditions,
respectively. Moreover, the reduction modgldunctor between the former categories corre-
sponds to the forgettingf the second component functor between the latter ones. Employing
the notion of right type, we obtain an equivalence from the categories of the formal groups
overk and that ove© to the category of righE-modules and the category of the pairs con-
sisting of a rightE-module and it€¥)-submodule satisfying certain conditions, respectively. In
this construction, the reduction modugofunctor corresponds to the functor of factorization
of the first component by the-linear envelope of the second component.
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The presence of the two tools, one for the description of the isomorphisms of formal
groups, another for their reductions, makes it easy to deal with problems where both subjects
are involved. As an application, consider thessomorphism classes of the deformations over
O of a one-dimensional formal group over It is parameterized by the Lubin-Tate polydisk
pO x --- x pO (cf. [7]). We get an explicit formula for the logarithms of the deformations
whosex-isomorphism class corresponds to the given module. It enables us to get a simpler
proof of the explicit expression for the right action of the automorphism group of the formal
group on its moduli space (cf. [2] or [3]).

1. The bimodule of power series. Let k be a perfect field of characteristic # 0.
Denote the ring of Witt vector® (k) by O, its fraction field byK and its Frobenius automor-
phism byA. Thena” = a® modp for anya € ©. The main object of our consideration will
be a ringE, the non-commutative ring of formal power series with coefficient®im the
variablea with multiplication ruleaa = a“ A, a € O, and twoE-actions, left and right, on
the additive group of power series

K[[z]]p = {Zcitpi, ¢ € K}.
i>0
Foru =Y u;A/,v=Y v;al andf = Y c;t”', we define
ux f = Z <Zujc[A_jj)t”i , frv= Z (chviA_jj)t”i .
i J=i i J<i
REMARK. The left action ofE can be determined on the whole set of power series
K [[t]]o with no constant term: iff € K[[s]]o, thenu  f =), uj fA @) (see [5, 2.1)).
The right action also can be exten.ded on the whol&sédllo: if f =3, ,)—1crps t"P", then
fov =0 p=1(Xj<s Cp-ive )i, butin this case many important properties fail to
hold.

LEMMA 1. Thetwo actions define a torsion-free bimodule structure on K'[[¢]] .

PrOOF If v = vjAj, v =v,A'andf = c;t?" then
i s S s i s+ j+i

fovv=(t?) - Wi &) = ¢ ) e?

and _ ,
AL s ; AITS S AL pitst)
(f-v) - v=(cvy" t7 ) (vjA)) =civ;® vy P )
This implies the equalityf - v'v = (f - v') - v in this particular case. The general case is
obvious. The equalityu’ * f = u * (u’ * f) follows in a similar way.
Now letu = u; A/, v = v;A* and f = ¢;t”". We have

i i it i NS pitsti
U * (f . v) — (MjA/) * (CivsAltp’ s) _ Ltj(C,'USAl)A/tp’ s+j
and

Aj i+j . Aj Ai+j i+j+s
(u*f)-v=(ujc; t" ") (vs&®) =ujc vy P .
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This implies that: x (f - v) = (u * f) - v and the general case is obvious. O

In order to deal with formal power series in several variables we introduce the following
notation. If A is a ring, then we denote the module of column vectors of dimensiaith
components il by A" and the full matrix ring of order with entries inA by M, (A). As
usual,l, € M, (A) is the identity matrix.

Let x be the set of variablesxy, .. ., x, which sometimes will be treated as the column
Vector(xy, ..., xp) . Let K[[x]], denote the module of formal power series

Kllx]lp, = { Zcile’ +'~+Zcinx,f’, Cis € K} .
i>0 i>0
Let x' = (x’l,...,x,’,,)T be another set of variables. ff ¢ K[[x]]é andg € K[[x']]3
then we definef o ¢ € K[[x/]]’0 in the following way. If f = (fi(x),..., fi(x))" and
0 = (e1(x), ..., ea(xNT, then

fop=(filpr(x), ... o)), ..., filga (), . o)

In the present paper we consider two categories of formal groups: formal groups over the
unramified integer rin@ and formal groups over its residue fidldWe denote the reduction
modulo p functor between these categories byoaerbar. According to [5, Theorem 7], for
every formal groupp overk there is a formal groug over O such thatd = F, i.e. this
functor is surjective.

DEFINITION 1. An n-dimensional formal groug over O is called p-typical if its
logarithm belongs t& [[x]]},. A formal group® overk is called p-typical if there exists a
p-typical formal groupF over® such thatb = F.

REMARK. These definitions differ from the conventional definition, but are equivalent
to it in our situation (see [6] for details).

We restrict our consideration to-typical formal groups. Then the reduction functor is
also surjective for categories pftypical formal groups ove® andk. It is worth noting that
our restriction does not lead to a considerable loss of generality, because any formal group is
strictly isomorphic to g-typical formal group (see [6, Theorem 15.2.9]). We also formulate
all statements for this particular case while some of them are valid in a more general situation.

We now extend the left action @& to K[[x]], and the right action of to K[[z]]g. Let
uekE feKlxllandf =Y fOx) for fO e K[[t]],, 1 <1 < n, thenu x f =
Yusx fOw);ifveE, feKltyandf = (f1,.... f)' for fj € K[[t]],, 1< j <n
wesetf -v=(f1-v,..., fu-v).

We are ready to define left and right actions

My m(E) x K[[x11y = KIIx1T,,  KIx1I}; x My, (E) K[[x'117

wherex is the set ofn variables andc’ is the set ofr variables. Letu € M; ,,(E),v €
My (E), f € KIIx]I} andu = {u;},v = {vie}, f = (f1, - f) T = PO + -+ +
f™(x), wherewj, vix € E andf; € Kl[x1l,, f@ € K[, 1< j <m,1<i<n We
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can also writef; = 3 fi(x;) and f© = (fui, ..., fu)7 for fji € K[l1ll,,1<i<n,1<
j < m. Letus define

-
u*f:(Zulj*fj,...,Zusj*fj>

T
= Z ugj* fji(xi), ..., Z usj * fi(xi)
1<i<n 1<i<n
l<j=m l<j<m
and
foo=3" P vt 4+ D (e
T
=\ X Aivae, . D fui vk
1<i<n 1<i<n
1<k<r 1<k<r

In another notation, lef € K[[x]]’l;' be written in the formf = Zizo C,»xl”, where

Ci € My,(K) andx? = (xf .....xf)T. Thenforu = Y, o U A/, U; € My, (O) and
v= Z;Zo ViAl,V; e M, ,(O) we have

wx f=>Y <Z U.,'C,.A_"j>xl” ENEEY (ZC,-V,.A_fI.)xp’ :
i J<i i J=i
REMARK. LetE be the non-commutative ring of formal power series with coefficients
in K in the variablea with multiplication ruleaa = a® A. There is a natural group isomor-
phism betweeK [[1]], andE, > c,'tpi > c;A’, which can be extended to an isomorphism
betweenK[[x]]’;} and M,,,,,,(E). Under this isomorphism, the left and right actions defined
above correspond to the left and right matrix multiplications.

PropPosITION 1. (i) For f € K[[x]]’,’,’ the following identities hold.

w*xfy-v=ux(f-v)y for ue Msu(E), ve M, (E),
Wu)x f=u'xuxf) foru' e M, s(E), ue Mgn(E),
f-)y=(f-v)-v for veM,,(E), vV e M. s(E).

In particular, the two actions define an M), (E)-bimodule structure on K [[x]]’;,.

(i) If f e K[[x]", f = xmoddeg2and u € M,, ,(E) (v € M, (E)), then the
equalityu « f =0(f-v=0)impliesu =0 (v =0).

IfueM,(E),u=pl, moddeg (v € M,(E),v = pl, moddegland f € K[[x]]",
thentheequalityu = f =0 (f -v =0) implies f = 0.

(i) For f € K[[x]]’;, andu € M, (E),u = pl, moddeg 1the equalitiesu * f = px
and f - u = px areequivalent.
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(iv) Forany¢ € O[[x]]",9 = xmoddeg2and ¢ € (’)[[x]]”f’ there exists a unique
w € My, ,(E) suchthat v = w * ¢.

For any ¢ € O[[x]]",¢ = xmoddeg2and yv € O[[x']]", where x’ is a set of m
variablesthere existsa unique w € My, ,,(E) suchthat v = ¢ - w.

PrROOF Taking into account the correspondenééhe actions to the matrix multiplica-
tions, the claims easily follow from the correspling properties of the matrix multiplication.
oooog O

LEMMA 2. () Foranyu € M,(E)and f € K[[x]]’;, suchthat u = pI, moddeg1,
f = xmoddeg2and u x f = 0modp there exists a unique v € M, (E) such that v =
ply,moddegland f - v =ux* f.

(i) Foranyv e M,(E)and f € K[[x]17, suchthatv=pl, moddeg 1l f =x moddeg?2
and f - v = O0modp there exists a unique u € M, (E) such that u = pI, moddeg land
ux f=f-v.

PROOF. We only prove (i). The uniqueness ofs obvious, and now we show its exis-
tence. Let x f = py wherep € O[[x]]},, ¢ = x mod deg2. Then Proposition 1(iv) implies
that there exists € M, (E) suchthatp-v = ux¢. Thereforeux(f-v) = pp-v = puxg =
u* (u= f), which givesf - v = u % f as required. The condition= pI, moddeg1 holds
automatically. O

DEFINITION 2. Letf € K[[x]]';, and f = xmoddeg?2. If there exists an element
u € M, (E) suchthaut = pI, moddegl and *x f = 0 modp, thenu is calleda |eft type of
f. Similarly, we call an element € M, (E) suchthat = pI, moddeg1and-v = 0 modp
aright typeof f.

Lemma 2 implies that the subsets of elementi’@[fx]]’;, which have a left type and a
right type coincide. We will denote this set B¥,. So we have
H,=1{f € K[[x]]’;,; f =xmoddeg?2 and: * f = 0modp
forsomeu € M, (E), u= pl, moddegl
= {f € K[[x]I},; f =xmoddeg2 andf - v =0modp
for somev € M, (E), v= pl, moddegl.

DEFINITION 3. Anelemenit € M, (E),u = pl, moddeglsuchthatx f = f-u =
px is calleda canonical type of f. Obviously, it is both a left and right type df.

LEMMA 3. For any f € H, there exists a unique canonical type.

ProOOF. If u’ * f = pe for some left typeu’ € M,(E) theng = w * x for some
w e M,(E), w= I, moddeg 1. We set = w~1u’ and Proposition 1(iii) proves the required
property. The uniqueness ofis obvious. O

LEMMA 4. (i) Letu € M,(E),u = pl,moddegland f € K[[x]]",f =
xmoddeg2Letux f = 0modp. Thenu’ x f = 0modp for u’ € M,, ,(E) if and only if
u' = wu for somew € My, ,(E).
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(i) Letv € M,(E),v = pl,moddegland f € K[[x]]", f = xmoddeg?2 Let
f v =0modp. Then f - v = Omodp for v € M,(E) if and only if v/ = vw for some
w e My, (E).

PROOF. We only prove (ii) as (i) has a similar proof and follows directly from [5, Propo-
sition 2.6]. Ifv/ = vw, thenf - v = f-vw = 0modp. If f-v' = 0modp, then by
Proposition 1(iv) we can find € M, ,,(E) such thatl/p)f -v' = ((1/p)f - v) - w. This
implies f - v/ = f - vw, which givesv’ = vw as required. m]

LEMMA 5. () Let u € M,(E),u = pl,moddegland f € K[[x]]’;,, f =
xmoddeg2 Let u = f = Omodp. Thenu x g = Omodp for ¢ € K[[x']]", where x’ is
the set of m variables, ifand only if g = f - w for somew € M,, ,,(E).

(i) Letv € M,(E),v = pl,moddegland f € K[[x]]", f = xmoddeg?2 Let
f-v=0modp. Theng-v = 0modp for g € K[[x]]"} ifand onlyif g = w * f for some
w € My, (E).

PROOF. As usual we only prove (i). I§ = f - w, thenu x g = u x f - w = Omodp.
If u % g = 0modp, then Proposition 1(iv) implies that there exisise M, ,,(E) such that
A/ puxg=(1/pux* f)-w. Thisgivesu x g =u* (f -w),i.e.,g = f - w. o

PROPOSITION 2. Let f € H, be of left type u and right type v. Then v = aup for
somew, B € M, (E) suchthata = 8 = I,, moddeg 1

PROOF. Letu’ be the canonical type of. Then, by Lemma 4y’ = au andv = u’B
for somex = 8 = I, moddeg 1. This gives = aup. O

The following two lemmas of Honda, proven by direct computation, are our main tool
for further investigation.

LEMMA 6 ([5, Lemma 2.3]). Let x’ be a finite set of variables. If f € H,, ¢ €
OllxNgand w € My, ,(E) thenw * (f o ¢) = (w * f) o 9 modp.

LEMMA 7 ([5, Lemma4.2]). Let x” be a finite set of variables. If f € H,,¢ €
Ollx'Ng and ¢ € K[[x']]g then f o ¢ = f o ¢y modp if and only if ¢ = v modp.

2. Modules associated with formal groups. The following proposition states that
the set of the logarithms gf-typical formal groups ove® and the set{, coincide and gives
the condition when such formal groups are strictly isomorphic.

PROPOSITION 3 ([5, Theorems 2 and 4]). (iJf f € H,,then F(x, y) = f~1(f(x)+
f () isa p-typical formal group over O.

(i) If Fisa p-typical formal group over O and f € K|[[x]], isits logarithm, then
f € Hy.

(i)  f,g € H, are of the same left type if and only if the formal groups F(x, y) =
FH @+ F) and Gx, y) = g Hg(x) + g(y)) arestrictly isomorphic.
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Letf = (f1..... f) = fPGD) +-- + fPx) € HyandF(x, y) = f7HF(0) +
f () be the corresponding-dimensional formal group ovep. Define a subgroup of the
additive groupK [[x11,

Dy ={g € Kllxllp; go F(x,y) = g(x) + g(y) modp}
and a subgroup of the additive groi[11;,
Zr={ge K[[t]]’;, ;9= fog forsomeg e O[]y}

REMARK. Dy andZy arep-typical analogues for ‘the module of quasilogarithms’ (see
[4]) and the ‘invariant Cartier-Dieudonné module’ (see [1, 5.2]), respectively.

Using theE-module structure o& [[x1], andK[[t]]’;7 we can give an explicit description
of Zf ande.

PROPOSITION 4. () Z;={> fYV w;;wi,..., w, € E}.
(i) 1fu={us}isalefttypeof £, then Z; = {(g1, ..., g)T € KI5 2w * gs =
Omodp for any1 <[ < n}.

PROOF. (ii) If ¢ € O[lr]lgandg = f o thend uj * go = D ui * (fy o) =
> (ujs * fs) o =0modp forany 1< < n by Lemma 6.

If > uss % go = 0modp, then we construct a sequenge= (g1, - - ., gni)' € K115
suchthat: (1yo = g; (2) gi+1 = gi — f o i for someyp; € O[[t]1; (3) X_ uss * gsi = 0 modp
forany 1< 1 < n; (4) ¢ = 0modded. This implies thatp; = 0 mod degd, which allows
us to setp = ¢o +r @1 +r - -+, Where+r is a formal addition given by the formal group
F(x,y) = f~YXf(x) + f(y)). For suchy we haveg = f o ¢ as required.

If g; is defined, thery" uss * gsi = peui for someg; = (¢1i, ..., i)' € O[[1]]§ and
we putgiy1 = ¢i — f o @i, which gives

Zuls * Gsi4+1 = Zuls *(g5i — fsogi) = Z”ls * Gsi — Z(uls * fy)og = OmOdP
forany 1 < [ < n by Lemma 6. Ifg; = c;x' moddeg + 1 forany 1< s < n, then
@si = csx' moddeg + 1 andgyi+1 = gsi — f; 0 9 = csx' — csx! = 0moddeg + 1.

() Forj = g(x1) +--- 4 g(x,) € K[[x]]} the conditionsg = > fY - w; for

somews, ..., w, € E andg = f - w for somew € M, (E) are equivalent. The conditions

> ujs % gg = 0modp forany 1</ < n andu - § = 0 modp are also equivalent. It remains
to apply Lemma 5. O

PROPOSITIONS5. (i) Dy ={) w;* fj;wi,..., wy, € E}.
(i) 1fv={vy}isarighttypeof f,then D = (g (x1) +--- + ¢ (x,) € K[[x]], ;
3 g? vy =0modp forany 1 < s < n}.

PrROOF. (i) If g=) w;* f; forsomew; € E,1< j <nthen
goF(x,y) = (wj* f)oF(x.y)=> wj*(fjoF(x,y)
=Y wj* (fj(0) + fj(3) = g(x) + g(y) modp
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by Lemma 6.

To prove the opposite inclusion we construct a sequeneek [[x1], such that: (1o =
9:(2) gi+1 = gi — D j_1 cij A" * f; forsomec;; € O; (3) gio F(x, y) = gi(x) +gi(y) modp;
(4) g = 0mod deg’. Thisimpliesthay = > w; = f; forw; = 3" ¢;; A’

If g; is defined, them; = >~7_; Cijx;)l mod degy’ +1 for somer;; € K. The congruence

gioF(x,y) = gi(x)+g;(y) modp implies thai;; (xj—|—yj)17i = c,-jxj” +c,»jyj” modp, which
givesc;; € O.

Now gi11 = g; — Y_}_y cijA’ x f; = 0mod deg’ + 1 whencey; 11 = 0 mod deg' .
Finally

gizro F(x,y) = (!Ji — D cijAlx fj) o F(x,y)
=gi(x)+ g (y) — > cijAl % (fj o F(x,y))

= 0i() + 0 () = Y cij Al * (£ () + f;(0)
= gi+1(x) + gi+1(y) modp .

(i) Forg=1(g,...,q)" € K[[x]]}, the conditiongy = > wj x f; for somews, ...,
w, € Eandg = w * f for somew € M,(E) are equivalent. On the other hand, the
conditions)" g’ - v, = Omodp forany 1< s < nandj - v = Omodp are equivalent.
Lemma 5 completes the proof. a

Propositions 4 and 5 imply thd?, is a left E-submodule oK [[x]], andZ s is a right
E-submodule of{[[t]]';,.

Given two left types, Honda described homomorphisms between formal groups with
logarithms of these types.

PROPOSITION 6 ([5, Theorem 3]). Let f € Hy,, g € H, be of left type u and «/,
respectively. Then [alr.c := g1 o (af) € Homo(F, G) for a € M,, ,(O), if and only if
w'a = wu for somew € M, ,(E).

Now we can prove that for the logarithifiof F, the moduleZ ; is connected with the
strong isomorphism class &f andD ; with the reduction off".

PROPOSITION 7. Let f, g € H, beof left typeu and u’, respectively. Then the follow-
ing properties are equivalent.
() o =wuforsomew € M, (E).
(i) Zy=2,.
(i) Zp < Z,.
(iv) Theformal groups F(x, y) = f~H(f(x)+ f(y) and G(x, y) = g (g(x)+¢(»)
are strongly isomorphic.

PROOF. Letf = fP(x1) +---+ f™(x,). ThenZ; € Z, & fP(x)) € Z, for any
1<Il<n<u'xf=0modp (Proposition 4% u' = wu for somew € M, (E) (Lemma 4).
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This implies the equivalence of properties (i) and (iii). As property (i) is symmetric, it is also
equivalent to (ii). Proposition 3(ii) provesdlequivalence of (iv) with the other properti€s.

PrROPOSITION 8. Let f,g € H, be of right type v and v/, respectively, and let
Fx,y)=fYXfx) + f(y)and G(x, y) = g~ 1(g(x) + g(y)) bethe corresponding formal
groups. Then the following properties are equivalent.

(i) v =vw for somew € M, (E).

(i) Dy =D,.
(i) Dy c D,.
(v) F=aG.

PrRoOOF. The proof of the equivalence of (i), (ii) and (iii) is analogous to that in Propo-
sition 7. Furthermoreg o F(x,y) = g(x) + g(y) = go Gmodp <& F = G modp by
Lemma 7, which proves the equivalence of (ii) and (iv). O

3. Formal groups over finite fields. The following proposition explicitly describes
homomorphisms between andG.

PROPOSITION 9 ([5, Theorems 5 and 6]).Let w € My, ,(E) and f € Hy, g € Hm

be of left type u and u’, respectively. Then we have the following.
() ¢w:= g Lo (w=x f) hasintegral coefficients if and only if u’w = zu for some

Z€ Mm,n(E)-

(i) @y isahomomorphismfrom F to G if ¢,, hasintegral coefficients.

(iiiy  Any homomorphismfrom F to G is of the form described in (ii) .

(v) Letw e My,(E)andh € H;. If g, and ¢,y = h~L o (w’ % g) have integral
coefficients, then ¢,,, = h~1o (w'w * f) also hasintegral coefficientsand @, o Gy = Gy -

We prove the theorem which can be considered as dual to Proposition 9.

THEOREM 1. Letz € My, ,(E) and f, g € H, beof right type v and v’, respectively;
let F(x,y) = f7Hf () + f(») and G(x,y) = g~ (g(x) + g(y)) be the corresponding
formal groups. Then we have the following.

() ¥.:=g¢ 1o(g-2) hasintegral coefficients.

(i) v, is a homomorphism from F to G if and only if zv = v'w for some w €
My n(E). o

(i)  Any homomorphismfrom F to G is of the form described in (i) .

(iv) Letz € My, (E),h € H;and H(x,y) = h~Y(h(x) + h(y)) be the correspond-
ing formal groups. If ¥, = h™1 o (h - Z’) and V., is @ homomorphism from G to H, then
1/_/z’ © ‘ﬁz = ‘ﬁz’z* where Yo = hto (h-7'2).

ProOF. (i) Letu’ be a left type ofg. Thenu' x (¢ -z) = (' * g) - z = Omodp,
which implies by Proposition 4 that far-z = Y /1 (9-2)" (x1). (g- )" € K[[1]]7 we have
(g-20D e Zy i, v = 9710 (g 2)? has integral coefficients for any4d/ < n.
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(i) If zv = v'w for somew € M, ,(E), then(g -z) -v = (g - v') - w = 0modp,
i.e.,g-z =w x f for somew’ € M, ,(E) by Lemma 5. Then Proposition 9 implies that
V. = @, is @ homomorphism fronk to G.

Conversely, ify, is a homomorphism fron¥ to G, theny. = @, for somew’ €
M,,.,(E) by Proposition 9. This means that! o (g - z) = g~ o (w’ * f) modp, which is
equivalenttay -z = w’ % f modp by Lemma 7. Hence; - zv = w’ * f - v = 0 modp, which
giveszv = v'w for somew € M,, ,(E) by Lemma 4.

(i) By Proposition 9 any homomorphism from to G is of the formg,, for some
w € M, ,(E) such that''w = ru, whereu, u’ are left types off, g, respectively, and
r € My, ,(E). We haveu' x (w * f) = r* (u= f) = 0modp = w * f = g - z for some
7 € My n(E) by Lemma5. Thusg - zv = w % f - v = Omodp, i.e.,zv = v'w for some
w € My, ,(E) by Lemma 4.

(iv) As v, is a homomorphism frond to H, we know from (i) thath - 7/ = w * g for
somew € M ,(E). Then(h-z')oy, = (wxg)oy, = wx(goy;) = wkg-z =h-zzmodp
by Lemma 6. Hence, oy, = h Yo ((h-2)oy,) = h™ Lo (h-7'z) = Y. modp by Lemma
7. O

DEFINITION 4. Letu € M,(E),u = pl,moddegl and'’ € M, (E),u’ =
pl, moddegl. We say that is weakly associated with u, if there arew,z € My, ,(E)
such thatw'w = zu andw # tu for anyt € M,, ,(E) (or, equivalently,z # u's for
anys € M, ,(E)). We say that: andu’ areassociated if m = n and there are invertible
w, z € M, (E) such that/'w = zu.

One can see easily that the submodul@[[x]1], is contained inD ; and the submodule
p Ollt11}, is contained inZ ;. Consider the factor modules

Dy =Ds/pOllx]l,. Zy=Zs/pOlAl,.
If fis of left typeu = {u;;} and of right typev = {v;;}, then by Propositions 4 and 5 we have
the following E-module isomorphisms. Denotg = (u;1, ..., uin), v; = (V1j,...,Unj) €
Ex-.-xEforl<l j<n.Then
Dy =Ex---xE/(Eur+---+Euy,), Zf=Ex--xE/E+---+v,E).
REMARK. [)f is isomorphic to the classical Dieudonné-Honda module (see [4]).
THEOREM 2. Let f € Hy, g € Hym and F(x,y) = fYXf(x) + f(1),G(x,y) =

g7 1(g(x)+g(y)) bethe corresponding formal groups. Let u, u’ beleft typesand v, v’ beright
typesof f and g, respectively. Then there are the following canonical group isomorphisms

HOoM(F, G) = {w € My n(E); u'w = zu, z € My n(E)}/ My n(E)u = Hom(Dg, D)
Hom(F, G) = {z € My n(E);zv = vV'w, w € My n(E)}/V' My n(E) = Hom(Z s, Z )
and ring isomor phisms
End(F) = {w € My(E) ; uw = zu, z € My(E)}/M,(E)u = End(D )
End(F) = {z € My(E) ; zv = vw, w € M,(E)}/vMy(E) ZENd(Zy).
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PROOF. We construct the chain of canonical isomorphisms
Hom(F, G) — {z € My (E); zv = V'w}/v' My, o (E) — HOM(Z ¢, Zy) .

According to Theorem 1, the mapping— V., wherey. = g1 o (g - z), provides an
epimorphism from the grouf € M,, ,(E) ; zv = v'w} to Hom(F, G). We havey, = 0 <
g lo(g-2)=0modp < g-z=0modp (Lemma 7)& z € v'M,, ,(E) (Lemma 4). This
gives the first isomorphism.

SinceZy ZE x --- x E/(ViE +--- 4+ v,E) forv; = (v1j,...,vs),1 < j <nand
v = {v;;}, the second isomorphism is obviousi> ‘homomorphism takingg®,1 <1 <n
to g(l) syt + g(m) - zmi', Where f = f(l)(xl) ot f(n)(xn)7 g = g(l)(xl) 4o
+g" (o) and £ € K111, ¢ € K111}

The claims concerning left types and modulé; are well-known and have similar
proofs. O

COROLLARY 1. Let f € Hy, g € Hp. Let u, u’ beleft types and let v, v" be right

typesof f and g, respectively. Then the following properties are equivalent:
(i) o' isweakly associated with u.

(i) v isweakly associated with v.

(i)  Thereexistsanon-zerohomomorphismfrom F to G, where F (x, y) = f~1(f(x) +
f) and G(x, y) = g g(x) + g(»). B B

(iv) Thereexists a non-zero E-module homomorphismfrom Z; to Z,;.

(v) Thereexistsa non-zero E-module homomorphismfrom Dy to Dy

COROLLARY 2. Let f, g € H,. Letu, u’ beleft typesand let v, v be right types of f

and g, respectively. Then the following properties are equivalent:
() u andu’ are associated.

(i) v and areassociated.

(i) F and G are isomorphic, where F(x,y) = f~X(f(x) + f(y)) and G(x, y) =
97 Hg(x) + g(»)). i i

(iv) Theright E-modules Z  and Z, are isomorphic.

(v) Theleft E-modules D and D, areisomorphic.

4, Classification results.

LEMMA 8. Let £ be anintegral domain satisfying both left and right Ore conditions.
Then any linear system of n — 1 equationsin n variables with coefficientsin £

aiixy + aigxa + -+ -+ ax, =0
axix1 + azxa + -+ - +agx, =0

ap—11X1 + ap_12x2 + -+ - + ap—1,x, =0
has a non-zero solutionin £.
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PROOF. We proceed by induction om; the casen = 2 follows from the right Ore
condition. Ifaj1 = --- = a,_11 = 0, we can assume thai = 1,x = --- = x, = 0.
Letai1 # 0. Then by the left Ore condition there exist u; € £, 2 < i < n such that
Aria11 = piair andup; # 0. This gives the system

(A2aio — p2az2)xz + - - - + (A2a1, — peaz,)x, =0

(An—1a12 — fn—1ap-12)X2 + - - - + (Ay—1a11 — Un—10n—1n)Xpn = 0

which has a non-zero solution = &2, ..., x, = §, by the induction assumption. The right
Ore condition implies thatthere afe b € £, b # 0 such thatiy1£1+ (a1282+- - -+a1,&,)b =
0. Checkthat1 = &1, x2 = &2b, ..., x, = &,b give a non-zero solution of the initial system.

For2<i<n-1
wilai1€r + (@i2é2 + - - - + ainén)b) = Ai(a1161 + (ar2bo + - - - + a1,€,)b) =0,
whenceu;1&1 + aj2&2b + - - - + ain&,b = 0 as required. O

PROPOSITION 10. For u € M, (E) the following conditions are equivalent.
() Thereexist w € M, (E) and aninteger & such that wu = A" 1, modp.
(i) Thereexist w € M, (E) and aninteger i such that uw = A" I, modp.
(i)  plI, is not weakly associated with u, i.e., if su = Omodp for s € M, (E), then
s = 0modp.
(iv) u isnot weakly associated with p1,, i.e., if us = Omodp for s € M, (E), then
s = 0modp.

PROOF. Let & be the non-commutative ring of formal power series with coefficients in
k in the variablea with multiplication ruleAoe = «” A, @ € k. The reduction mapping from
M, (E) to M, (£) is denoted by overline. Notice that the rifgsatisfies both left and right
Ore conditions.

(i) = (i) Let w € M,(E) be such thaiw = A", in M,(£). If 5& = 0 then
5A" = suw = 0, which impliess = 0.

(iv) = (i) By Lemma 8, for any 1< i < n there exists a non-zero column vector
o;i € £" such thatio; is a column vector with all components exceptitireone equal to zero.
Theith component is non-zero since otherwise the non-zero matex\1,, (£) with columns
all equal too; satisfiesioc = 0. Letw € M,(E) be such that itéth column iso;, 1 < i < n.
Theniw is a diagonal matrix with no zero entries on the main diagonal and we can assume
Uw = Ahln.

Implications (i)= (vi) and (iii) = (i) have similar proofs, so we are done. m]

REMARK. Corollary 1 implies that the above conditions are also equivalent to the fol-
lowing conditions:
(i) Hom(F,F,) = {O};
(i) Hom(F,, F) = {O};
(i) Hom(Zy, E"/pE") = {O};
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(iv) Hom(E"/pE", Zy) = {0};
whereF is the formal group with the logarithryi of canonical type: and F,, is the additive
formal group.

DEFINITION 5. We say thait € M,(E) is of finite height if u satisfies one of the
equivalent conditions listed above. A formal group ogers of finite height if its logarithm
f has the canonical type of finite height. A formal group oveés of finite height if it is equal
to the reduction of a formal group ovér of finite height.

REMARK. (1) If f is the logarithm of a formal group ové? of finite height, then
Lemma 4 implies that any left or right type ¢fis also of finite height.

(2) Any lifting of a formal group ovek of finite height is of finite height by Proposi-
tion 8.

Provide the ringE with a-adic topology. LetZ be the category of right topological
E-modulesZ such that:

(a) the action ofa on Z is injective;

(b) Zp < Za;

(c) Z/Zais afinite dimensional vector space ower
and the morphisms of are theE-linear mappings.

Let Z° be the full subcategory of of objectsZ such thatZ is a free®-module of finite
rank.

THEOREM 3. The correspondence F + Z, where f is the logarithm of F, estab-
lishes an equival ence between the category of p-typical formal groups over k and the category
Z; in particular, the subcategory of p-typical formal groups over k of finite height is equiva-
lent to the subcategory Z°.

PROOF. It is easy to see thaif € Z. Theorem 1(iv) and Theorem 2 prove that the
correspondencé& — Z is functorial and fully faithful. It remains to check that for every
objectZ e Z there existsf € H, such thatZ andZ ; are isomorphic a&-modules.

Letd; + ZA,...,d, + ZA form a basis ofZ/ZA. Then for evenyl’ € Z there exist
o1, ..., con € O andd” € Z such thatd’ = Y d;jco; + d”A. For anyN > 0 that gives
d' —Ydj(coj +---+cynjAa) € ZaV*1 for somec;; € O, whenced’ = 3 d;w; for some
wi,...,w, € E.

As Zp C Za, there existy;; € E,1 < i,j < n such thaty; = pmoddegl
v;j = Omoddegl for # j and) d;v;; = Oforany 1< j < n. Takef € H, of right
typev = {v;;}. We know that agi-moduleZ s = E x --- x E/(viE +--- + v,E) forv; =
(vij, ..., vyj) and now we only have to prove that the equalityd;jz; = 0forzy, ..., z, €
E impliesz; = > vj;w; for somews, ..., w, € E.

To this end we construet sequences;; € E,1 < j < n such that: (1xo; = z;;
(2) Y djzij = 0; (3)zit1j = zij — Y_j_q vjiai A’ for somea; € O; (4) z;; = 0moddeg. If
zij, 1 < j < nare already defined, we know that = b;; A’ mod deg + 1 for someb;; € O.
The injectivity of A impliesY"d;b;; € Za, which givesb;; = pa;; for somea;; € O and
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we setz,-+1j = Zij — 27;1 vjlailAi. ThenzdeiJrlj = Zdjz,'j — ZdjvjzailAi = 0 and
Zi41j = pa;jA' — pa;;A' =0moddeg + 1. Nowwe have; = ) vj/(aq +ayh+---) as
required.

Let f e H, be the logarithm of @-typical formal group of finite height. Thefi- A1, =
f - pzmodp for somez € E and integetr, which impliesf® - o" € pZ;, 1 <1 < nfor
f=fOx)+ -+ fP%,). Then{f® . A/ ;1 <1 <n,0< j < h} gives a system
of generators ofZ,. It remains to check thaZ s has nop-torsion. Letp > d;z; = 0,
then pz = vw for somew € M, (E), wherez = {zj}ﬁjzl. Since f is the logarithm of a
formal group of finite height, we hawe = pw’ for somew’ € M, (E). Thusz = vw’ and
> djz; =0.

Conversely, ifZ; € Z°, then for every component of = f®(x1) + - + f®(x,)
there exists a polynomia} € E such thatf” - z; = 0modp, 1 < I < n. SinceZ; is a free
O-module,z; is not divisible byp. Then we can assumg = A" modp for some integef:
and 1</ < n. By Lemma 4,f is the logarithm of a formal group of finite height. a

Let ZY be the category consisting of the pai#, Y) such that:

(@) Zis a free rightE-module of finite rank;

(b) Y is afree rightD-submodule o¥Z of the same rank;

(€) (Y+ZA)/ZA = (Zp+ ZA)/ZA;
and the morphisms frortZ1, Y1) to (Z2, Y2) be E-linear mappingg : Z1 — Z» such that
&(Y1) C Yo

Let ZY° be the full subcategory ofY of objects(Z, Y) such thatZ/(Y) is a free
O-module of finite rank, wheréY') denotes the minimal righf-submodule containingj.

For f € H, andF(x,y) = f~X(f(x) + f(y)) being the corresponding formal group,
we define arO-submodule ofZ ¢

Yo={(a1t,...,ant)" ; a; € pO}.

THEOREM 4. The correspondence F +— (Zy, Yo), where f is the logarithm of F,
establishes an equivalence between the category of p-typical formal groups over O and the
category ZY; in particular, the subcategory of p-typical formal groupsover O of finite height
is equivalent to the subcategory ZY°.

PrROOF. If we fix f@, ..., f™ as generators of s, we haveYo = {}},_; /) -
ujib;; by € O}, whereu = {u j;} € M, (E) is the canonical type of . This implies

Yo+ ZA)/ZsA = {me -pb;+ZsA; bj € O} = (Zp+ZiA)/ZsA,

whence(Z ¢, Yo) € ZY.

Let G be anothem-dimensional formal group oveé? with logarithmg of canonical type
v = {vj;}. If ¢ = [alr,c € HOmp(F, G), we haveva = wu for somew = {w;;} € M, (E)
by Proposition 6. This allows us to define the image o6 be equal to thé&-linear mapping
from Z; to Z,, which sendsf) > Y ¢@ - w;;,1 < j < n. Then) fV - u;b —
Y gD wiuub =Y g vapb =Y. g9 - vi; (3 ajiby), therefore the image dfy is



COVARIANT HONDA THEORY 317

in Yo. The correspondence is functorial and fully faithfuli¢if Z; — Z, is an E-linear
mapping such that(Yo) € YothenY> &(fY)) - uj; = 3 (¢ - vy) -aj foranyl< j <n
and somerj; € O. Thisimpliesva = wu for a = {a;;} € M,(O) andw = {w;;} € M,(E)
such that(f)) = 3" ¢V - w;;. Hencelalr,c € Homo(F, G) by Proposition 6.

It remains to prove that for every obje¢Z,Y) € ZY there existsf € H, such
that (Z,Y) is isomorphic to(Z¢, Yo). Letds,...,d, be free E-generators ofZ and let
> djuji1, ..., > djuj, be freeO-generators of. If u%, € O is the constant term af ;;
andu’ = {uf;} then the equality

{Zdjbjp+ZA; b; e 0} =(Zp+ZA)/ZA = (Y +ZA)/ZA
= {Zdiu;’lbl + ZA; b € (9}

implies tham?l = 0modp andu’s = pl, fore € M, (O). Thereforeg is invertible and we
can assume’ = pl,. Now choosef € H, of canonical type:. Then theE-linear mapping
fromZ s to Z, which sends’) - d;, 1 < j < n, induces anisomorphism betwegfy, Yo)
and(Z,Y).

SinceZy/(Yo) = Zs/pOllt1T}, = Zs,we havethatZ s, Yo) € ZY° & Zs/(Yo) = Zy
is a free®-module of finite ranks Zf € Z° & fis the logarithm of a formal groups of
finite height. O

5. Applications. We illustrate the application of our approach by considering the
Lubin-Tate polydisk, which parameterizes thé&somorphism classes of deformations of a
one-dimensional formal group over a perfect field of characterjsticO (see [7]).

Let @ be a one-dimensional finite height formal group okeén normal form andA a
complete Noetherian loc&-algebra with maximal ideat > pA and residue fieldi /M D
k. Two formal groups oveA are calledk-isomorphic if there exists an isomorphism between
them with identity reduction. Lubin antiate constructed a moduli space feisomorphism
classes of deformations d@f. More precisely, they proved the existence of a formal grbup
overO[[t1, ..., ty—1]] such that for any deformatiof of @ over A there is a uniqué:z — 1)-
tuple (t1, ..., th-1), i € M, such thatF is x-isomorphic tol'(zy, ..., t5—1) over A and
thex-isomorphism is uniquely defined. The formal graligs not unique and Hazewinkel’s
universalp-typical formal group [6] gives the explicit construction for one of them.

The choice of g-typical formal group® of height/ corresponds to the choice of mul-
tiplicative representative,, rj 11, ... € O. Let the sequence € K|11, ..., t;,—1] be given
by the recursive relation

min(i,h—1)

o i

p/ AT

pa; = Z 1 ai,j—i—g riai-j, ap=1.
j=1 j=h
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The power seriesf = Zaixl” is the logarithm of a formal groug™ over O[[z1, ...,
th—1]], which parametrizes thex-isomorphism classes of deformations @f (cf.
[6, Theorem 22.4.4]).

Now consider the casg = O. For any modulugz, ..., t-1) € pO x --- x pO
we denote byf; (x) = Zai(r)xl’l the logarithm of the correspondingtypical deformation
over Q. Proposition 8 implies that; = w, x fo for somew, € E. We findw, explicitly,
namely we prove that

1min(i,h—l) o
i—j .
wy =1+ E <; Z ij aij(t)>A’ .
i>1 j=1

The recursive relation far; ands = t can be written in our notation g% - ug = (px) - we,
whereug = p—r, A" —r, 14" —. .. Sincewp = 1, we getfo-ug = px andw, * fo-ug =
wr * (px) = (px) - w; = fr - ug, which gives the desired result.

The formula obtained allows us to give an explicit description of the right action of the
automorphism group Ap® on the moduli space (see [2, 3] for details) £l Auty® and
[F] is thex-isomorphism class of a deformatidnof @ over O, then by definition F1& =
[p~1o Fog], wherep € O[[x]]loandg = &.

By Proposition 9 any € Aut; @ is equal tap,,, wherep,, = fo_l o(wx* fo)andw € E
satisfiesiow = zug for somez € E. By the Weierstrass preparation theorem for the #ihg
there is a unique € E* such thatu, := sug is a monic polynomial of degrele. Thus we
can only consider polynomials = 1+ Zf‘;ll BiAl, B; € O with upsw = zug for some
z € E ande € O*. Our aim is to find an explicit relation between the coefficients of such
polynomials and the corresponding Lubin-Tate’s parameters.

Letugy = Zf?zl w; Al whererr;, = 1andr; € pO forl < i < h—1. Define the sequence
{n € O asfollows:iop=1,;; =0forl<j<h—1and

. Afh Ai*h .
Gi=— ml e Jzh.

Let O{y}, denote theO-submodule ofO[[y]], consisting of the formal power series
Z?io ijp] such that linc; = 0. LetA operate o {y}, by the formula

o . o0 .
E : wP — E : A p!

A cjyt = Ciay" .
j=0 j=0

This determines a leff-module structure o®{y},. One can see that, gjyl’j € O{y}, and
ug . gij’ = 0. Define the sequence of rigid analytic functions

oo Mmin(i,h—1)

Al piTi
on(t1, ..., th-1) = p&u + Z Z §i+,1ff ai—j, n=>0.
i=1 j=1



COVARIANT HONDA THEORY 319

Denote the coefficients a#, by b;, i.e.,w, = > 72, b;Al,bg=1. Thenp,(z1, ..., Tho1) =
P Y20 ¢h,bi. Sincew, = s1uj +e(1+ Y177 B;A") for somesy € E, we get

o0 o0 ) h-1 o0 )

n j i j
> = pun ey = pe(1+ 3 pua’) g
n=0 j=0 i=1 j=0

which impliesg; = ((po, ..., pr—1)Z~1)i/po, WhereZ = {§iA+ij}f'1,;io- This is Theorem 6.5
of [3].
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