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STABILITY OF NATURAL ENERGY FUNCTIONALS
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Abstract. We derive variational formulas of natal first order functionals and obtain
criteria for stability in particular at Riemannian subimmersions.

1. Introduction. Any function®: Sym"(m) — R(’; on symmetridm x m) matrices
which is invariant under conjugation by(@) gives rise to a functiondle : C°(M™, X*) —
Rg. Here (M™, g) and (X*, h) denote compact Riemannian manifolds of dimensions
m and k, carrying Riemannian metricg and h, respectively. We denote byf* e
I'(Hom(f*T X, T M)) the adjoint of the differentiallf € I'(Hom(T M, f*T X)) with re-
spect to the Riemannian metrics dhandX. More explicitely, it is defined by the condition
thath(df v, x) = g(v,df*x) holds foranyp € M andv € T,M,x € T,y X. Thed-energy
of a smooth mag: M — X is the integral

Eo(f) = /M of*df).

Essentially thep-energies are the natural locally computable functionals whose density de-
pends explicitely only on the first derivatives ¢fand does not involve (derivatives of) the
Riemannian curvature tensors (cf. [2], [10]).

Examples of such functionals are the 2-eneyA) = Tr(A), the p-energies@ (A) =
(Tr(A))?/? (cf. [6]), the exponential energ@ (A) = ¢ (cf. [7], [5]), but also® (A) =
Tr(AP), ®(A) = Tr(e?), the volume and the JacobiarB(A) = (o;(A))4, whereo;(A)
denotes thé-th elementary symmetric polynomial in the eigenvaluegd oBy a theorem of
Glaeser, [8], all these functiods may be written ag (4) = @5 (Tr(A), Tr(A)2, ..., Tr(A)™)
with some smooth functio@®: R™ — R. Functionals with®(A) = F(Tr(A)) have been
studied by Arain [1].

In this paper we will derive (un)stability criteria for tiie-energies at Riemannian subim-
mersions. These are mapssuch thatdf*df is an orthogonal projection of constant rank.
Examples of such maps are immersions (cf. [5], [6], [1], [3]) and Riemannian submersions
like G-mapsf: G/H — G/K, H C K C G, between compact normal homogeneous
spaces.

By a @-harmonic map we mean a critical point fAg. Such a magy is called stably
@-harmonic if the index form, i.e., the second variationEgf is nonnegative af . At a Rie-
mannian subimmersioli of rankk these properties depend on a few parameters determined
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by @: Let 1x(®), A, (@), ik (@), vi (@) € R be the parameters fab defined by expanding
the first and second derivatives &fat the orthogonal projectiop, : R — R* in terms of
traces (cf. (2.8) and (2.9))

dy @A =0 TrA+ 1 TrAy and di @(A) = e Tr(AZ) + v (Tr A2 + - .

In Proposition 3.2 we show that for a# with Ax(®) # 0 the @-harmonic Riemannian
subimmersions are those with minimal image and fibres, (®) = 0, then any Riemannian
subimmersion i€-harmonic.

The second variation of the 2-ener@y; has always finite index at a harmonic map but
usually there are few stably critical maps of the 2-energy. For instance, the identity map on the
standard-spheres* is unstable foET, if k > 3, cf. [13]. More generally, a stable harmonic
mapS™ — X or X — Sk is constant ifm, k > 2, cf. [16], [11]. In these assertions the
sphere may be replaced by certain Riemannian symmetric spaces, see [12], [9]. In [1], [5],
[6] stability criteria for isometries have been derived for functionals of the fyp& (lldf ),

F: Rar — Ra“, such as the exponential energy or fhenergy. For Riemannian submersions
in this case, see [14].

For the®-energy at a Riemannian subimmersion we compute the leading symbol of the
second variation. By Proposition 3.8 the second varialﬁam of the®-energy at a minimal
Riemannian subimmersiofi has finite index it (@), Ak (@) + A, (P), A (P) + 21 (@) +
2ui (@) andix (@) + i (@) are all positive.

Any Riemannian submersiofi: M — X of rank k with totally geodesic fibres ig-
harmonic. For vector fields along f the second variation af at f is given in Theorem
3.10. Some results of Urakawa on the 2-energy, cf. [15], immediately carry over to these more
general functionals. For instance, if the identity map%is @-unstable, then the same holds
for f (cf. (3.13)). Conversely, if the identity map ahis stably@-harmonic, we can makg
stably®-harmonic by shrinking its fibres. For equivariant maps among normal homogeneous
spaces one can explicitely compute the index ofteond variation by translating the Jacobi
operator into Lie theory and computing its small eigenvalues, analogous to [15]. This will be
pursued elsewhere.

We gratefully acknowledge the referee’s valuable suggestions.

2. Preliminaries.

2.1. \Variational formulas for thé-Energy. We first recall the general variational for-
mulas for the?-energy from [3]. We may always extededto a function®: M(m) — R on
all real im x m)-matrices which remains invariant under conjugation by orthogonal matrices.
A straightforward calculation yields the following formulas for the first and second variations.
Denote byV™, VX the Levi-Civita connections oM, X, and byV the induced connection
onf*TX orTM*® f*TX. Asmooth mapf: M — X is @-harmonic, i.e., a critical point
of the®-energy if

d
(2.1) drEW) = 5 Ea(f) = /M dag-ar ®(VV)*df +df*Vo) = 0
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for any smooth one parameter variatigh = F(z,-), F: (—¢,&) x M — X with v =
(d/dr) f;. In[3] the tension fieldg () € I'f*T X defined by(d/dt) E¢ (f;) = (to (f) | w)
is computed. For the 2-energ®, = d® = Tr, d°® = 0, we have

(f) =tn(f) =Trvdf.
In [3, Proposition 2.3] the index form of the-energy at ab-harmonic mapf: M — X is
computed. It is given by
2 d?
BEW,w) =~ Eo(fi) = /M Io (f)(v, w) , where

2.2)  lo(Hw,w) =dapar®(—df*R*(, v)w — df*R* (-, wyv)

+ dapar® (Vv)*(Vw) + (Vw)* (Vo))

+ d g @ (df*V + (V) df. df*Vw + (Vw)*df) .
The vector fieldy = (d/dt) f;s, w = (d/ds) f;.s along f are variation fields of a smooth
2-parameter familyf; ; = F(t,s,-), F: (—&, &) x (—&,&) x M — X. By RX we denote the
Riemannian curvature tensor &fand bydf*RX (-, w)v the homomorphisiR, ,,: TM —
T M defined by(R, x | ¥) = (RX(dfx, w)v | dfy).

The second variation aE4 can be written in the formf%E@(v, w) = (Jo(fHv | w)

with a second order differential operator, the Jacobi operatér, atting on vector fields, w
alongf. Its leading symbol is calculated from (2.2).

COROLLARY 2.3 (see [3, Proposition 2.5])The leading symbol of the second varia-
tion of E¢ isgiven by
(0@ | w) =d?PAf* v @& +EQdf v, df 'w @& +& @df*w)
+2(v | w)daprarP(EQE),
whereé € TM = T M* by the Riemannian metric, v, w € f*TX. Ifo(§) > Ofor all £ £ 0,
then J (f) isélliptic and the second variation of E¢ hasfinite index.

2.2. A Bochner formula. In Section 3 some stability criteria of Riemannian sub-
mersions will be derived by comparing (2.2) with the following Bochner formula. With
|A2 = TrA*A andB = Vdf, B(v), B(df*v) defined by(B(v)x | y) = (v | (Vxdf)y),
resp.B(df*v) = Vyr=df, a straightforward calculation gives for a closed maniftddhat

% / 1df*Vo + (Vo)*df|2 = / Idf*Toll? = THRX (- df*o)v) + (THdf*Tv))?
M M

(24) — (Vageov | T(f)) — Trdf*VuB())
4+ {(t(f) | v) Tr(df*Vv) + Tr((Vv)*B(df*v)) .

2.3. Derivatives of® at a projection. The endomorphisitif *df of a Riemannian
subimmersionf is the projection onto the horizontal distribution. We therefore need the
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derivatives of® at a projection. Decomposing” = R* @ R™* and accordingly
(2.5) Sym(m) = Sym(k) & Sym(m — k) @ M(k x (m —k)),

we determine the components #® andd?®. Since the projectiop, onto the first factor

R* is fixed by conjugation with @) x O(m — k), the first and second derivatives &f at

pr can be expressed in terms of traces and involve only few parameters. In order to derive
this expansion we choose a cui¥és) € Sym(m) throughX (0) = p;, and a skew symmetric

matrix
v = < P Z) € so(m)
=z o

with P € so(k), O € som — k) andZ € Mk x (m — k)). Since® is invariant under
conjugation by @mn), we have
d

(2.6) -

P(e "X (s5)e") = dx(P[X(s),v]=0 and
t=0

d2
dsdt

(2.7) @@ﬂW@w%=dimX®mbﬂyﬂm¢m44=0

s=0,r=0

The only linear invariants on the first two summands Synand Synim — k) in (2.5) are
multiples of traces. Since
0 Z
[pk’ v] = (Z[ 0) )

it follows from (2.6) thawd,,, & vanishes on the third summandMx (m —k)) in (2.5). Hence
there arei, = A4 (@), A, = A () € R such that

(2.8) dp @A =M TrA+ 1, TrAy
for A € Sym(m) and Ay € Symk), Ay € Symim — k) andAyy € M(k x (m — k)) such
that
A ( An AVH> '
AVH Ay
For the second derivative we get from (2.7) wikth= (;, 1)), resp.X = (§ ), that

o((? 0)e (2 §)=-mo[(? 8) (L 8]

=-20Tr(Y'Z)
and
R O 0 Zz R O P VA
42((s 3oz o)=-ae(G 5) (% o))
= -2, Tr(SQ) =0,
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TABLE 1. Coefficients for some functionals.

@A) | TrA | Tr(AP), p>1 (Tr AP A | Tred | ap(A)
o p G N B R v
i 0 -p 0 0 [1-¢| (573)
me | 0 p(p—1 0 I B
w | o 0 pip—DRP2 | k|0 | (59

sincesS is symmetric and? is skew symmetric. Finally, singg, is fixed under conjugation
with O(k) x O(m — k) and since the only quadratic(§@)-invariants onB € Sym(R?) are
linear combinations of TB2) and(Tr(B))?, we get that

40((5 9= (o v)

Tr(RU), Tr(SV), Tr(R)Tr(U), Tr(S)Tr(V), Tr(S)Tr(U) + Tr(R)Tr(V) .

is a linear combination of

The second derivative may therefore be put into the form
dy ®(A) =dj P(A® A)
= i Tr(AZ) + v (Tr A)? — 22, Tr(Al5, Apy)
+ 11, TrAD) + v (Tr Ap)?
4k TrAy Tr Ay

(2.9)

with coefficientsuy = i (@), u;, = u(P), ... € R determined byp. Only the coefficients

My Ay ik, v Will show up in the index form. We list these for some examples in Table 1. Here
o, (A) denotes the-th elementary symmetric polynomial in the eigenvalues. Itis determined
by the relation

detl+1A) =Y o, (A",
p=0

3. Riemannian subimmersions. A Riemannian, or metric, subimmersion of rahk
isamapf: M — X such that for every poinb € M there exist a neighborhodd of p,
a k-dimensional manifold’, a metric submersion: U — Y and an isometric immersion
11 Y — X such thatf|y = 1 o 7. We denote by = kerdf andH = (kerdf)* c TM
its vertical and horizontal distributions and By = (imdf)+ c f*T X the pull back of the
normal bundle of¥ in X. We denote byXy, = py X, Xy = py X andX+ = p, X the
orthogonal projections ontd, H andA\, respectively. LeTk" ¢ " Hom(V ® V, H) and
T'™ ¢ I'Hom(H ® H, N) be the second fundamental forms of the fibres and the image of
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f, respectively. Left € I’ Hom(H ® H, V) be the tensor field\ (i, A") = py, Vi,h'. We will
denote the various adjoints by the same letters and write

(A 1) Lu)y = (VIR u) = 1/2(u | [h 1)) = = | V) u) = —(A@)h | )
=—(' | Alh,w)) = —(AWK | u) = —(V)h | u)
(h | T, u)) = (h | VYWY = (VY0 | )y = —(T " (hyu | )
(r 1 T™h, 1) = | T™(R')y = (r | VER) = (V7 | 1)) = —(T"™()h | )

for vector (fields):, h' € H, u,u’ € V,r € N, see [4]. The second fundamental fokra f
may be expressed in terms of the second fundamental fofth<ker and 4,

3.1 (Vxdf)Y = T™ (X7, Y) — T*(Xy, Y) — A(X3g, Yy) — A(Ypg, X)) -

In the sequel (3.1) will be used to simplify the expressions (2.1) and (2.2) for the first and
second variation at a Riemannian subimmersion of kank

3.1. The tension field at Riemannian subimmersions. For the tension field, (2.1) and
(2.8) yield the following

PROPOSITION 3.2. If f isametric subimmersion of rank k, then we have

(3.3) T(f) =TrT™ — Tr7ker
and
(3.4 T (f) = M(DP)T(f).

In particular, all @ with A;(®) # 0 have the same critical subimmersions of rank £ as the
2-energy. A Riemannian subimmersion is harmonic for such @ if and only if both the image
and the fibres are minimal.

PrROOF The first formula (3.3) is immediate from (3.1), since the terms involving the
A-tensor do not contribute to the tracef) = Tr Vdf.

For the second formula (3.4) we identif,M = R" = R* @ R"* = Hp © Vp,
pr = py andp,_, = py, and apply (2.8). The integrand in the first variational formula (2.1)
thus becomes

dapar® (V) df +df*Vv) = i Tr(Vo)*df + df*Vv) + A, Tr(Vo)*df + df*Vv)y .
Sincedf o py, = 0, the second term on the right hand side vanishes and we finally obtain
ddf*df(P((VU)*df +df*Vv) = A Tr((Vo)*df +df*Vv).

But this isi; times the integrand in the first variational formula for the 2-energy. Therefore,
o (f) = ()T (f).

Finally, if (/) vanishes, then both TH™ e I'A/ and TrTKe" ¢ I"'H vanish. m

3.2. The index form at Riemannian subimmersions. The first and second derivative
of @ atpy, = df*df are given by (2.8) and (2.9). As before we will identifye f*TX =
HENCTMON andVv e TM*Q fA*TXZETM*Q (HON) CTM*Q (TM & N).
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In order to evaluate the index form (2.2) on a vector field I'f*TX = '(H®N) we
need to compute (2.8) fot1 = df*RX (v, df-)v + (Vv)*(Vv) for the terms involving the
first derivative of® and (2.9) with

A =df*Vu+ (Vu)'df = (pH((Vv)* TVoIpr pp Vv PV)

py(Vu)* py 0

for the second order terms.
With Tr A*A = [|[A|2and TrA1y = [ Vo2, = Y11 Ve, v]?, for alocal orthonormal

framing{ex+1, ..., en} Of V, we infer
55 Io (), v) = 2 (IVVlI? = Tr(RX@f -, v)v | df-)) + 20| pT Vvll3,
' + e Tr(AS 5) + 4ue(Trpy V)2,

Letdivx = Tr V¥ x denote the divergence of a vector figldn M. We will need the follow-
ing relations:

p1L Vuypy =ppy Vot py =0,
Tr(A3 3, = Tr((pp VV)* + pp V)2
= Tr((py Vor)* + pp Vor)?) + 4IT™ 0 )12
+8Tr((py Vo pr) T ™ (0p0)) .
Trpy Vo = Trpy Vo + Trpy Vot
=divuy — TrT* (vy) + Tr 7'M h).
Inserting (3.6) into (3.5) yields
Io (f)(v,v) = 24 (Vo] = THRX@f -, v)v | df ) + 2| Vot 5
+ el TP Vor)* + py Vo)) + 41T ) |12
+8Tr((py; Vo pr)T™ (03))]
+ 4o (divoy — Tr TR (vyy) + Tr T h))2.

(3.6)

(3.7)

This specializes to the formulae in [3] for isometric immersions. As in (2.3) we get

PROPOSITION 3.8. The leading symbol of the second variation of a functional E¢ at
aminimal Riemannian subimmersion of rank k is

0 (&) = 2hklE 12 + 2016V 1P p L +2ukEr ® Epy + 2uklEn) Py +AviEr ® Epy .

In particular, the p-energy, the exponential energies and the Jacobians have elliptic second
variation with positive symbol and finite index at Riemannian subimmersions, cf. Table 1.

3.3. Riemannian submersions with totally geodesic fibres. We will consider in more
detail the case of Riemannian submersions with totally geodesic fiores 7Then 0, T*¢" =
O,v=vy e HCTM and

T(RX (v, df v | df-) = — RicX (v, v) = — RicM (v, v) — 2| A(V)|1°.
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The Bochner formula (2.4) becomes
(3.9) /M % Vv + (Vo)*|% = /M IVul? = RicX (v, v) + (divv)? — 2 Tr(Vv o A(v)).
The left hand side is
% IVo + (Vo)1 = % 193 Lo g1 + VIS, .

wherep3 L, g denotes the horizontal component of the Lie derivative of the metrif of
From (3.7) and (3.9) we therefore get the following expressions for the second variation.

THEOREM 3.10. Theindex formof a Riemannain submersion f: M — X with totally
geodesic fibresis given by

[ 1o(r)0w0) = [ 20019017 = RIS 0,00+ sl L gl + dvacivo?
M M
(3.11) = / 204 (IVV]1% + 2 Tr(Vv 0 Av)))

M

+ O + 0l P35y Lo gll? + (dog — 200 (div v)?

_ / @0 + 200 (1 70]1% = RicX (v, v)) — 21| Vvl
M

+ 2ug + 4vp) (divv)? — dug Tr(Vv o A(v)) .

(3.12)

3.4. Applications. There are a number of immediate consequences of these formulas.
Let f: M™ — X* as before be a Riemannian submersion of rankth totally geodesic
fibres and® : M(m) — R be Q(m)-invariant. In case.;(®), ur(®), vr(®) > 0, it follows
from (3.11) thatf is stably®-harmonic if it is stably harmonic.

3.4.1. Positive dliptic symbol. By Proposition 3.8 the second variation B, has
positive symbol aff if

(@), M(P) + i (@), Mic(P) + 21 (P) + 20 (P) > 0.

Hence in this case we always have finite index and nullity of the second variatifig of
Some results of Urakawa, [15], for the 2-energy extend to sbidnergies. For instance,
from (3.11), the second variation @y at f restricted to basic vector fields coincides with
the second variation af ¢ at the identity map of(. Hence the index, nullity and smallest
eigenvalue of the Jacobi operathy (/) can be compared to the corresponding quantities of
the identity map orX by (cf. [15], Proposition 6.3)

indexd?Ee > indexdj Eo .
(3.13) nuIIityd%Eq> > nullity d3 _Eo

rM(Jo (f) < r(Ja(idx) .

Combining this with the instability result of [3, Theorem 3] yields
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PROPOSITION 3.14. If @ has Ax(k — 2) > 2uy; + vk, then any Riemannian sub-
mersion f: M"™ — Sk with totally geodesic fibres onto the standard k-sphereis unstable for
Egp.

The canonical variation of the metricon M is by definition the 1-parameter family
of metrics onM obtained by rescaling the metric on the fibrgsl(x), x € X, by a factor
te R"ie.,g = Py 9+ 1? p}, 9. The second variation may be written as

d?Ey = 0¥ + Q"
with QY (v, w) = (v | JYw) = 2 [, il[Vv[2 and Q™ (v, w) = (v | J™w) collecting the
remaining horizontal terms in (3.11). The vertical Jacobi opevataroincides with that of
[15] and the horizontal Jacobi operatbft is the one of [15] plus the terms involving, and
k. Let O, be the second variation with respect to the megricThenQ, = =20V + QM =
(72— 1) QY + Q1. We decomposé2(f*TX) = kerJV & (kerJY)+ and identify ket/V
with the space of basic vector fields aficerJV)+ with those vector fields whose average
along the fibres off vanishes. A straightforward calculation shows tgdf (v2, v) = 0
for v0 € kerJY, vt e (kerJV)L. Furthermore/V is the Laplacian along the fibres with
values in the vector bundlg*T X. Hence the restriction of ¥ to (kerJ V)1 has a smallest
eigenvaluer1(JY) > 0. Let—C be a lower bound for the spectrum & (for + = 1) and
choose < (C +1)~Y2. Then
0:(v) = 72 = 1OV + Q1) + 01(v") = 0109 .

Thus, if the identity map oiX is stably®-harmonic, we always hav@1(v®) > 0 and infer
that f is stably @-harmonic with respect to sufficiently small(cf. Theorem 7.3 in [15]).
As an example, any Riemannian submersion with totally geodesic fibres is stably harmonic
for the exponential energy if the fibres are shiyarescaled, since the identity map is always
stable for the exponential energy (cf. [5]).

3.4.2. Small Ricci curvature.  If the Ricci-curvature ofX is small relative to thea-
tensor, we use the estimate

IVoll§ + IA@)I? = 2[Tr(Vv o A(v))
together with (3.12). It follows for instance that if
RicX(v,v) < =A@, = Il 206 = —p,
then a Riemannian submersign M — X* with totally geodesic fibres is stab#y-harmonic.
This applies to all the functionals in Table 1.
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