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STABILITY OF NATURAL ENERGY FUNCTIONALS
AT RIEMANNIAN SUBIMMERSIONS
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Abstract. We derive variational formulas of natural first order functionals and obtain
criteria for stability in particular at Riemannian subimmersions.

1. Introduction. Any functionΦ : Sym+(m) → R+
0 on symmetric(m×m) matrices

which is invariant under conjugation by O(m) gives rise to a functionalEΦ : C∞(Mm,Xk) →
R+

0 . Here (Mm, g) and (Xk, h) denote compact Riemannian manifolds of dimensions
m and k, carrying Riemannian metricsg and h, respectively. We denote bydf ∗ ∈
Γ (Hom(f ∗T X, T M)) the adjoint of the differentialdf ∈ Γ (Hom(T M, f ∗T X)) with re-
spect to the Riemannian metrics onM andX. More explicitely, it is defined by the condition
thath(df v, x) = g(v, df ∗x) holds for anyp ∈ M andv ∈ TpM, x ∈ Tf (p)X. TheΦ-energy
of a smooth mapf : M → X is the integral

EΦ(f ) =
∫

M

Φ(df ∗df ) .

Essentially theΦ-energies are the natural locally computable functionals whose density de-
pends explicitely only on the first derivatives off and does not involve (derivatives of) the
Riemannian curvature tensors (cf. [2], [10]).

Examples of such functionals are the 2-energy,Φ(A) = Tr(A), thep-energies,Φ(A) =
(Tr(A))p/2 (cf. [6]), the exponential energy,Φ(A) = eTr(A) (cf. [7], [5]), but alsoΦ(A) =
Tr(Ap), Φ(A) = Tr(eA), the volume and the Jacobians,Φ(A) = (σl(A))q , whereσl(A)

denotes thel-th elementary symmetric polynomial in the eigenvalues ofA. By a theorem of
Glaeser, [8], all these functionsΦ may be written asΦ(A) = Φs(Tr(A), Tr(A)2, . . . , Tr(A)m)

with some smooth functionΦs : Rm → R. Functionals withΦ(A) = F(Tr(A)) have been
studied by Ara in [1].

In this paper we will derive (un)stability criteria for theΦ-energies at Riemannian subim-
mersions. These are mapsf such thatdf ∗df is an orthogonal projection of constant rank.
Examples of such maps are immersions (cf. [5], [6], [1], [3]) and Riemannian submersions
like G-mapsf : G/H → G/K, H ⊂ K ⊂ G, between compact normal homogeneous
spaces.

By a Φ-harmonic map we mean a critical point forEΦ . Such a mapf is called stably
Φ-harmonic if the index form, i.e., the second variation, ofEΦ is nonnegative atf . At a Rie-
mannian subimmersionf of rankk these properties depend on a few parameters determined
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294 S. BECHTLUFT-SACHS AND A. DÖRING

by Φ: Let λk(Φ), λ′
k(Φ),µk(Φ), νk(Φ) ∈ R be the parameters forΦ defined by expanding

the first and second derivatives ofΦ at the orthogonal projectionpk : Rm → Rk in terms of
traces (cf. (2.8) and (2.9))

d�k
ΦA = λk Tr A + λ′

k Tr AV and d2
�k

Φ(A) = µk Tr(A2
H) + νk(Tr A)2 + · · · .

In Proposition 3.2 we show that for allΦ with λk(Φ) �= 0 theΦ-harmonic Riemannian
subimmersions are those with minimal image and fibres. Ifλk(Φ) = 0, then any Riemannian
subimmersion isΦ-harmonic.

The second variation of the 2-energyETr has always finite index at a harmonic map but
usually there are few stably critical maps of the 2-energy. For instance, the identity map on the
standardk-sphereSk is unstable forETr if k ≥ 3, cf. [13]. More generally, a stable harmonic
mapSm → X or X → Sk is constant ifm, k > 2, cf. [16], [11]. In these assertions the
sphere may be replaced by certain Riemannian symmetric spaces, see [12], [9]. In [1], [5],
[6] stability criteria for isometries have been derived for functionals of the type

∫
M F(‖df ‖),

F : R+
0 → R+

0 , such as the exponential energy or thep-energy. For Riemannian submersions
in this case, see [14].

For theΦ-energy at a Riemannian subimmersion we compute the leading symbol of the
second variation. By Proposition 3.8 the second variationd2

f EΦ of theΦ-energy at a minimal
Riemannian subimmersionf has finite index ifλk(Φ), λk(Φ) + λ′

k(Φ), λk(Φ) + 2µk(Φ) +
2νk(Φ) andλk(Φ) + µk(Φ) are all positive.

Any Riemannian submersionf : M → X of rankk with totally geodesic fibres isΦ-
harmonic. For vector fieldsv alongf the second variation ofEΦ at f is given in Theorem
3.10. Some results of Urakawa on the 2-energy, cf. [15], immediately carry over to these more
general functionals. For instance, if the identity map onX is Φ-unstable, then the same holds
for f (cf. (3.13)). Conversely, if the identity map onX is stablyΦ-harmonic, we can makef
stablyΦ-harmonic by shrinking its fibres. For equivariant maps among normal homogeneous
spaces one can explicitely compute the index of thesecond variation by translating the Jacobi
operator into Lie theory and computing its small eigenvalues, analogous to [15]. This will be
pursued elsewhere.

We gratefully acknowledge the referee’s valuable suggestions.

2. Preliminaries.
2.1. Variational formulas for theΦ-Energy. We first recall the general variational for-

mulas for theΦ-energy from [3]. We may always extendΦ to a functionΦ : M(m) → R on
all real(m × m)-matrices which remains invariant under conjugation by orthogonal matrices.
A straightforward calculation yields the following formulas for the first and second variations.
Denote by∇M , ∇X the Levi-Civita connections onM, X, and by∇ the induced connection
onf ∗T X or T M∗ ⊗ f ∗T X. A smooth mapf : M → X is Φ-harmonic, i.e., a critical point
of theΦ-energy if

df E(v) = d

dt
EΦ(ft ) =

∫
M

ddf ∗df Φ((∇v)∗df + df ∗∇v) = 0(2.1)
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STABILITY OF NATURAL ENERGY FUNCTIONALS 295

for any smooth one parameter variationft = F(t, ·), F : (−ε, ε) × M → X with v =
(d/dt)ft . In [3] the tension fieldτΦ(f ) ∈ Γf ∗T X defined by(d/dt) EΦ(ft ) = 〈τΦ(f ) | w〉
is computed. For the 2-energy,Φ = dΦ = Tr, d2Φ = 0, we have

τ (f ) = τTr(f ) = Tr ∇df .

In [3, Proposition 2.3] the index form of theΦ-energy at aΦ-harmonic mapf : M → X is
computed. It is given by

d2
f E(v,w) = d2

dtds
EΦ(ft,s) =

∫
M

IΦ(f )(v,w) , where

IΦ(f )(v,w) = ddf ∗df Φ
( − df ∗RX(·, v)w − df ∗RX(·, w)v

)
+ ddf ∗df Φ

(
(∇v)∗(∇w) + (∇w)∗(∇v)

)
+ d2

df ∗df Φ
(
df ∗∇v + (∇v)∗df, df ∗∇w + (∇w)∗df

)
.

(2.2)

The vector fieldsv = (d/dt)ft,s , w = (d/ds)ft,s alongf are variation fields of a smooth
2-parameter familyft,s = F(t, s, ·), F : (−ε, ε) × (−ε, ε) × M → X. By RX we denote the
Riemannian curvature tensor ofX and bydf ∗RX(·, w)v the homomorphismRv,w : T M →
T M defined by〈Rv,wx | y〉 = 〈RX(df x,w)v | dfy〉.

The second variation ofEΦ can be written in the formd2
f EΦ(v,w) = 〈JΦ(f )v | w〉

with a second order differential operator, the Jacobi operator ofΦ, acting on vector fieldsv,w

alongf . Its leading symbol is calculated from (2.2).

COROLLARY 2.3 (see [3, Proposition 2.5]).The leading symbol of the second varia-
tion of EΦ is given by

〈σ(ξ)v | w〉 = d2Φ(df ∗v ⊗ ξ + ξ ⊗ df ∗v, df ∗w ⊗ ξ + ξ ⊗ df ∗w)

+ 2〈v | w〉ddf ∗df Φ(ξ ⊗ ξ) ,

where ξ ∈ T M = T M∗ by the Riemannian metric, v,w ∈ f ∗T X. If σ(ξ) > 0 for all ξ �= 0,
then JΦ(f ) is elliptic and the second variation of EΦ has finite index.

2.2. A Bochner formula. In Section 3 some stability criteria of Riemannian sub-
mersions will be derived by comparing (2.2) with the following Bochner formula. With
‖A‖2 = Tr A∗A andB = ∇df , B(v), B(df ∗v) defined by〈B(v)x | y〉 = 〈v | (∇xdf )y〉,
resp.B(df ∗v) = ∇df ∗vdf , a straightforward calculation gives for a closed manifoldM that

1

2

∫
M

‖df ∗∇v + (∇v)∗df ‖2 =
∫

M

‖df ∗∇v‖2 − Tr(RX(·, df ∗v)v) + (Tr(df ∗∇v))2

− 〈∇df ∗vv | τ (f )〉 − Tr(df ∗∇vB(v))

+ 〈τ (f ) | v〉 Tr(df ∗∇v) + Tr((∇v)∗B(df ∗v)) .

(2.4)

2.3. Derivatives ofΦ at a projection. The endomorphismdf ∗df of a Riemannian
subimmersionf is the projection onto the horizontal distribution. We therefore need the
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296 S. BECHTLUFT-SACHS AND A. DÖRING

derivatives ofΦ at a projection. DecomposingRm = Rk ⊕ Rm−k and accordingly

Sym(m) = Sym(k) ⊕ Sym(m − k) ⊕ M(k × (m − k)) ,(2.5)

we determine the components ofdΦ andd2Φ. Since the projectionpk onto the first factor
Rk is fixed by conjugation with O(k) × O(m − k), the first and second derivatives ofΦ at
pk can be expressed in terms of traces and involve only few parameters. In order to derive
this expansion we choose a curveX(s) ∈ Sym(m) throughX(0) = pk and a skew symmetric
matrix

v =
(

P Z

−Zt Q

)
∈ so(m)

with P ∈ so(k), Q ∈ so(m − k) andZ ∈ M(k × (m − k)). SinceΦ is invariant under
conjugation by O(m), we have

d

dt

∣∣∣∣
t=0

Φ(e−tvX(s)etv) = dX(s)Φ[X(s), v] = 0 and(2.6)

d2

dsdt

∣∣∣∣
s=0,t=0

Φ(e−tvX(s)etv) = d2
�k

Φ(Ẋ ⊗ [pk, v]) + d�k
Φ[Ẋ, v] = 0 .(2.7)

The only linear invariants on the first two summands Sym(k) and Sym(m − k) in (2.5) are
multiples of traces. Since

[pk, v] =
(

0 Z

Zt 0

)
,

it follows from (2.6) thatd�k
Φ vanishes on the third summand M(k×(m−k)) in (2.5). Hence

there areλk = λk(Φ), λ′
k = λ′

k(Φ) ∈ R such that

d�k
ΦA = λk Tr A + λ′

k Tr AV(2.8)

for A ∈ Sym(m) andAH ∈ Sym(k), AV ∈ Sym(m − k) andAVH ∈ M(k × (m − k)) such
that

A =
(

AH AVH
At
VH AV

)
.

For the second derivative we get from (2.7) withẊ = ( 0 Y
Y t 0

)
, resp.Ẋ = (

R 0
0 S

)
, that

d2
�k

Φ

((
0 Y

Y t 0

)
⊗

(
0 Z

Zt 0

))
= −d�k

Φ

[(
0 Y

Y t 0

)
,

(
P Z

−Zt Q

)]

= −2λ′
k Tr(Y tZ)

and

d2
�k

Φ

((
R 0
0 S

)
⊗

(
0 Z

Zt 0

))
= −d�k

Φ

[(
R 0
0 S

)
,

(
P Z

−Zt Q

)]

= −λ′
k Tr(SQ) = 0 ,
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STABILITY OF NATURAL ENERGY FUNCTIONALS 297

TABLE 1. Coefficients for some functionals.

Φ(A) Tr A Tr(Ap), p > 1 (TrA)p eTr A Tr eA σp(A)

λk 1 p pkp−1 ek e
(k−1
p−1

)

λ′
k

0 −p 0 0 1 − e
(k−1
p−2

)
µk 0 p(p − 1) 0 0 e −(k−2

p−2
)

νk 0 0 p(p − 1)kp−2 ek 0
(k−2
p−2

)

sinceS is symmetric andQ is skew symmetric. Finally, sincepk is fixed under conjugation
with O(k) × O(m − k) and since the only quadratic O(q)-invariants onB ∈ Sym(Rq) are
linear combinations of Tr(B2) and(Tr(B))2, we get that

d2
�k

Φ

((
R 0
0 S

)
⊗

(
U 0
0 V

))

is a linear combination of

Tr(RU), Tr(SV ), Tr(R)Tr(U), Tr(S)Tr(V ), Tr(S)Tr(U) + Tr(R)Tr(V ) .

The second derivative may therefore be put into the form

d2
�k

Φ(A) = d2
�k

Φ(A ⊗ A)

= µk Tr(A2
H) + νk(Tr A)2 − 2λ′

k Tr(At
VHAVH)

+ µ′
k Tr(A2

V ) + ν′
k(Tr AV )2

+ κk Tr AH Tr AV

(2.9)

with coefficientsµk = µk(Φ),µ′
k = µ′

k(Φ), . . . ∈ R determined byΦ. Only the coefficients
λk, λ′

k, µk, νk will show up in the index form. We list these for some examples in Table 1. Here
σp(A) denotes thep-th elementary symmetric polynomial in the eigenvalues. It is determined
by the relation

det(1 + tA) =
m∑

p=0

σp(A)tp .

3. Riemannian subimmersions. A Riemannian, or metric, subimmersion of rankk

is a mapf : M → X such that for every pointp ∈ M there exist a neighborhoodU of p,
a k-dimensional manifoldY , a metric submersionπ : U → Y and an isometric immersion
ı : Y → X such thatf |U = ı ◦ π . We denote byV = kerdf andH = (kerdf )⊥ ⊂ T M

its vertical and horizontal distributions and byN = (im df )⊥ ⊂ f ∗T X the pull back of the
normal bundle ofM in X. We denote byXV = pV X, XH = pH X andX⊥ = p⊥ X the
orthogonal projections ontoV , H andN , respectively. LetT ker ∈ Γ Hom(V ⊗ V,H) and
T im ∈ Γ Hom(H ⊗ H,N ) be the second fundamental forms of the fibres and the image of
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298 S. BECHTLUFT-SACHS AND A. DÖRING

f , respectively. LetA ∈ Γ Hom(H ⊗ H,V) be the tensor fieldA(h, h′) = pV ∇hh
′. We will

denote the various adjoints by the same letters and write

〈A(h, h′) | u〉 = 〈∇M
h h′ | u〉 = 1/2 〈u | [h, h′]〉 = −〈h′ | ∇M

h u〉 = −〈A(u)h | h′〉
= −〈h′ | A(h, u)〉 = −〈A(h)h′ | u〉 = −〈∇M

h′ h | u〉 ,

〈h | T ker(u, u′)〉 = 〈h | ∇M
u u′〉 = −〈∇M

u h | u′〉 = −〈T ker(h)u | u′〉 ,

〈r | T im(h, h′)〉 = 〈r | T im(h)h′〉 = 〈r | ∇X
h h′〉 = −〈∇X

h r | h′〉 = −〈T im(r)h | h′〉
for vector (fields)h, h′ ∈ H, u, u′ ∈ V , r ∈ N , see [4]. The second fundamental form∇df

may be expressed in terms of the second fundamental formsT im, T ker andA,

(∇Xdf )Y = T im(XH, YH) − T ker(XV , YV ) − A(XH, YV ) − A(YH,XV ) .(3.1)

In the sequel (3.1) will be used to simplify the expressions (2.1) and (2.2) for the first and
second variation at a Riemannian subimmersion of rankk.

3.1. The tension field at Riemannian subimmersions. For the tension field, (2.1) and
(2.8) yield the following

PROPOSITION 3.2. If f is a metric subimmersion of rank k, then we have

τ (f ) = Tr T im − Tr T ker(3.3)

and

τΦ(f ) = λk(Φ)τ(f ) .(3.4)

In particular, all Φ with λk(Φ) �= 0 have the same critical subimmersions of rank k as the
2-energy. A Riemannian subimmersion is harmonic for such Φ if and only if both the image
and the fibres are minimal.

PROOF. The first formula (3.3) is immediate from (3.1), since the terms involving the
A-tensor do not contribute to the traceτ (f ) = Tr ∇df .

For the second formula (3.4) we identifyTpM ∼= Rm = Rk ⊕ Rm−k ∼= Hp ⊕ Vp,
pk = pH andpn−k = pV , and apply (2.8). The integrand in the first variational formula (2.1)
thus becomes

ddf ∗df Φ((∇v)∗df + df ∗∇v) = λk Tr((∇v)∗df + df ∗∇v) + λ′
k Tr((∇v)∗df + df ∗∇v)V .

Sincedf ◦ pV = 0, the second term on the right hand side vanishes and we finally obtain

ddf ∗df Φ((∇v)∗df + df ∗∇v) = λk Tr((∇v)∗df + df ∗∇v) .

But this isλk times the integrand in the first variational formula for the 2-energy. Therefore,
τΦ(f ) = λk(Φ)τ(f ).

Finally, if τ (f ) vanishes, then both TrT im ∈ ΓN and TrT ker ∈ Γ H vanish. �

3.2. The index form at Riemannian subimmersions. The first and second derivative
of Φ at pH = df ∗df are given by (2.8) and (2.9). As before we will identifyv ∈ f ∗T X ∼=
H ⊕ N ⊂ T M ⊕ N and∇v ∈ T M∗ ⊗ f ∗T X ∼= T M∗ ⊗ (H ⊕ N ) ⊂ T M∗ ⊗ (T M ⊕ N ).
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STABILITY OF NATURAL ENERGY FUNCTIONALS 299

In order to evaluate the index form (2.2) on a vector fieldv ∈ Γf ∗T X = Γ (H⊕N ) we
need to compute (2.8) forA1 = df ∗RX(v, df ·)v + (∇v)∗(∇v) for the terms involving the
first derivative ofΦ and (2.9) with

A2 = df ∗∇v + (∇v)∗df =
(

pH((∇v)∗ + ∇v) pH pH ∇v pV
pV (∇v)∗ pH 0

)

for the second order terms.
With Tr A∗A = ‖A‖2 and TrA1,V = ‖∇v‖2

V = ∑m
i=k+1 |∇ei v|2, for a local orthonormal

framing{ek+1, . . . , em} of V , we infer

IΦ(f )(v, v) = 2λk(‖∇v‖2 − Tr〈RX(df ·, v)v | df ·〉) + 2λ′
k‖ p⊥ ∇v‖2

V
+ µk Tr(A2

2,H) + 4νk(Tr pH ∇v)2 .
(3.5)

Let divx = Tr ∇Mx denote the divergence of a vector fieldx onM. We will need the follow-
ing relations:

p⊥ ∇vH pV = pH ∇v⊥ pV = 0 ,

Tr(A2
2,H) = Tr((pH ∇v)∗ + pH ∇v)2)

= Tr((pH ∇vH)∗ + pH ∇vH)2) + 4‖T im(v⊥)‖2

+ 8 Tr((pH ∇vH pH)T im(vH)) ,

Tr pH ∇v = Tr pH ∇vH + Tr pH ∇v⊥

= div vH − Tr T ker(vH) + Tr T im(v⊥) .

(3.6)

Inserting (3.6) into (3.5) yields

IΦ(f )(v, v) = 2λk(‖∇v‖2 − Tr〈RX(df ·, v)v | df ·〉) + 2λ′
k‖∇⊥v⊥‖2

V
+ µk[Tr((pH ∇vH)∗ + pH ∇vH)2) + 4‖T im(v⊥)‖2

+ 8 Tr((pH ∇vH pH)T im(vH))]
+ 4νk(div vH − Tr T ker(vH) + Tr T im(v⊥))2 .

(3.7)

This specializes to the formulae in [3] for isometric immersions. As in (2.3) we get

PROPOSITION 3.8. The leading symbol of the second variation of a functional EΦ at
a minimal Riemannian subimmersion of rank k is

σ(ξ) = 2λk|ξ |2 + 2λ′
k|ξV |2 p⊥ +2µkξH ⊗ ξH + 2µk|ξH|2 pH +4νkξH ⊗ ξH .

In particular, the p-energy, the exponential energies and the Jacobians have elliptic second
variation with positive symbol and finite index at Riemannian subimmersions, cf. Table 1.

3.3. Riemannian submersions with totally geodesic fibres. We will consider in more
detail the case of Riemannian submersions with totally geodesic fibres. ThenT im = 0,T ker =
0, v = vH ∈ H ⊂ T M and

Tr〈RX(v, df ·)v | df ·〉 = − RicX(v, v) = − RicM(v, v) − 2‖A(v)‖2 .
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300 S. BECHTLUFT-SACHS AND A. DÖRING

The Bochner formula (2.4) becomes∫
M

1

2
‖∇v + (∇v)∗‖2 =

∫
M

‖∇v‖2 − RicX(v, v) + (div v)2 − 2 Tr(∇v ◦ A(v)) .(3.9)

The left hand side is

1

2
‖∇v + (∇v)∗‖2 = 1

2
‖ p∗

H Lv g‖2 + ‖∇v‖2
V ,

wherep∗
H Lv g denotes the horizontal component of the Lie derivative of the metric ofM.

From (3.7) and (3.9) we therefore get the following expressions for the second variation.

THEOREM 3.10. The index form of a Riemannain submersion f : M → X with totally
geodesic fibres is given by∫

M

IΦ(f )(v, v) =
∫

M

2λk(‖∇v‖2 − RicX(v, v)) + µk‖ p∗
H Lv g‖2 + 4νk(div v)2

=
∫

M

2λk(‖∇v‖2
V + 2 Tr(∇v ◦ A(v)))

+ (λk + µk)‖ p∗
H Lv g‖2 + (4νk − 2λk)(div v)2

(3.11)

=
∫

M

(2λk + 2µk)(‖∇v‖2 − RicX(v, v)) − 2µk‖∇v‖2
V

+ (2µk + 4νk)(div v)2 − 4µk Tr(∇v ◦ A(v)) .

(3.12)

3.4. Applications. There are a number of immediate consequences of these formulas.
Let f : Mm → Xk as before be a Riemannian submersion of rankk with totally geodesic
fibres andΦ : M(m) → R be O(m)-invariant. In caseλk(Φ),µk(Φ), νk(Φ) ≥ 0, it follows
from (3.11) thatf is stablyΦ-harmonic if it is stably harmonic.

3.4.1. Positive elliptic symbol. By Proposition 3.8 the second variation ofEΦ has
positive symbol atf if

λk(Φ) , λk(Φ) + µk(Φ) , λk(Φ) + 2µk(Φ) + 2νk(Φ) > 0 .

Hence in this case we always have finite index and nullity of the second variation ofEΦ .
Some results of Urakawa, [15], for the 2-energy extend to suchΦ-energies. For instance,
from (3.11), the second variation ofEΦ at f restricted to basic vector fields coincides with
the second variation ofEΦ at the identity map ofX. Hence the index, nullity and smallest
eigenvalue of the Jacobi operatorJΦ(f ) can be compared to the corresponding quantities of
the identity map onX by (cf. [15], Proposition 6.3)

indexd2
f EΦ ≥ indexd2

idX
EΦ ,

nullity d2
f EΦ ≥ nullity d2

idX
EΦ ,

λ1(JΦ(f )) ≤ λ1(JΦ(idX) .

(3.13)

Combining this with the instability result of [3, Theorem 3] yields
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PROPOSITION 3.14. If Φ has λk(k − 2) > 2µk + 2νkk, then any Riemannian sub-
mersion f : Mm → Sk with totally geodesic fibres onto the standard k-sphere is unstable for
EΦ .

The canonical variation of the metricg on M is by definition the 1-parameter familygt

of metrics onM obtained by rescaling the metric on the fibresf −1(x), x ∈ X, by a factor
t ∈ R+, i.e.,gt = p∗

H g + t2 p∗
V g. The second variation may be written as

d2
f EΦ = QV + QH

with QV (v,w) = 〈v | JVw〉 = 2
∫
M

λk‖∇v‖2
V andQH(v,w) = 〈v | JHw〉 collecting the

remaining horizontal terms in (3.11). The vertical Jacobi operatorJV coincides with that of
[15] and the horizontal Jacobi operatorJH is the one of [15] plus the terms involvingµk and
νk. Let Qt be the second variation with respect to the metricgt . ThenQt = t−2QV + QH =
(t−2 − 1)QV + Q1. We decomposeL2(f ∗T X) = kerJV ⊕ (kerJV )⊥ and identify kerJV
with the space of basic vector fields and(kerJV )⊥ with those vector fields whose average
along the fibres off vanishes. A straightforward calculation shows thatQH(v0, v⊥) = 0
for v0 ∈ kerJV , v⊥ ∈ (kerJV )⊥. Furthermore,JV is the Laplacian along the fibres with
values in the vector bundlef ∗T X. Hence the restriction ofJV to (kerJV )⊥ has a smallest
eigenvalueλ1(J

V ) > 0. Let −C be a lower bound for the spectrum ofJΦ (for t = 1) and
chooset ≤ (C + 1)−1/2. Then

Qt(v) = (t−2 − 1)QV (v⊥) + Q1(v
0) + Q1(v

⊥) ≥ Q1(v
0) .

Thus, if the identity map onX is stablyΦ-harmonic, we always haveQ1(v
0) ≥ 0 and infer

that f is stablyΦ-harmonic with respect to sufficiently smallt (cf. Theorem 7.3 in [15]).
As an example, any Riemannian submersion with totally geodesic fibres is stably harmonic
for the exponential energy if the fibres are suitably rescaled, since the identity map is always
stable for the exponential energy (cf. [5]).

3.4.2. Small Ricci curvature. If the Ricci-curvature ofX is small relative to theA-
tensor, we use the estimate

‖∇v‖2
V + ‖A(v)‖2 ≥ 2 |Tr(∇v ◦ A(v))|

together with (3.12). It follows for instance that if

RicX(v, v) ≤ −‖A(v)‖2 , λk ≥ |µk| , 2νk ≥ −µk ,

then a Riemannian submersionf : M → Xk with totally geodesic fibres is stablyΦ-harmonic.
This applies to all the functionals in Table 1.
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