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Abstract. We characterize the invariagftstructures¥ on the classical maximal flag
manifold F(n) which admit (1,2)-symplectic metrics. This provides a sufficient condition for
the existence ofF-harmonic maps from any cosymplectic Riemannian manifold &iti0.

In the special case of almost complex structures, our analysis extends and unifies two previous
approaches: a paper of Brouwer in 1980 on locally transitive digraphs, involving unpublished
work by Cameron; and work by Mo, Paredes, Negreiros, Cohen and San Martin on cone-
free digraphs. We also discuss the constructiofi 2)-symplectic metrics and calculate their
dimension. Our approach is graph theoretic.

1. Introduction. Gray [9] and Lichnerowicz [12] were among the first to observe
the relevance of (1,2)-symplectic structurast necessarily invariant or Kahler, in Hermit-
ian geometry and harmonic maps, respectively. Originally, almost complex structures were
considered, but there is interest in studying the more general cgsstaiictures [24], [1].

Here we consider the special case of the maximal flag manifotd associated with
sl(n, C), endowed with annvariant f-structure¥. Following Burstall and Salamon [5] and
Black [1], there is interest in analyzing the conditions under whicladmits an invariant
metric ds? on F(n) which is (1,2)-symplectic, i.e.dF)D = 0 (see [19] or Section 2
below). We call such a structure (1,2)-admissible. In this paper we characterize the invariant
structures of this type.

The pair(F(n), F) defines in a natural way a digraph (oriented graghyx= (V, E),
while the metricds? provides a weighting.. > 0, ¢ € E. The (1,2)-symplectic conditions
constitute a simple system of linear homogeneous restrictions on the weightse issue is,
therefore, finding a necessary and sufficient condition for the consistency of this system.

A special case of interest is when the invariant strucfire almost Hermitian. Here, the
digraphg is complete, i.e., a tournament digraph. It was suggested by Mo and Negreiros [13]
thatF admits (1,2)-symplectic metrics if and onlygfis cone-free, namely omits certain sub-
graphs. This has been verified in some cases by Paredes [16], [17], and demonstrated in the
general case by Cohen, Negreiros and San Martin [6], [7]. Up to permutation, the incidence
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matrix of such a digraph has a stair-shaped form, and remains so under the cyclic ghift in
indices [6], [7].

Another class of digraphs, also preserved by the cyclic shift, cédleally transitive
digraphs, has been studied earlier in Brouwer’s paper [3]. We show that the cone-free and
locally-transitive conditions are, in fact, equivalent and define the same family of digraphs.
We thank Brendan McKay (ANU Canberra, Australia) for bringing [3] to our attention.

We extend the definition of local transitivity from complete digraphs to non-complete
digraphs, and in our main result (Theorem 5.1) we establish a one to one correspondence
betweenf-structures and digraphs, such that the (1,2)-admissible structures correspond pre-
cisely to the locally transitive digraphs. This way, given a trifftén), F, ds?), one can often
verify, based on the structur alone, that/s? is not (1,2)-symplectic. For more details see
[18].

Brouwer [3] gave a number-theoretic formula for the number of non-equiveden ete
locally transitive digraphs with vertices. Using the above observation, it can be seen that the
same formula describes the number of (1,2)-admissible invaalamist complex structures
onF(n) up to a natural equivalence. The same problemyfatructures remains open.

Another interesting problem is the description of the full set of (1,2)-symplectic metrics
associated with ayf-structure. In the case of almost complex structures, this was done in [6]
and [7]. We discuss this problem for the general casg-sfructures off (n) but do not solve
it completely.

It would also be interesting to connect the results obtained here with the existence and
classification of harmonic maps inkan).

2. Geometricflagmanifoldsand f-structures. Consider the classical maximal flag
manifoldF(n) = U(n)/ T, with n > 2, whereU (n) is the unitary group and@ is a maximal
torus inU (n). We shall follow the definitions and notation of [7] and [20]. In particulgr)
is the Lie algebra ot/ (n) andsl(n, C) is its complexification. I = T stands for the origin
in F(n), the tangent space &tidentifies naturally with the subspagec u(n) spanned by
Ajp = Ejx — Ej andSj, = i(Ejx + Exj). HereEj; is the matrix with 1 in entryjk and
zeros otherwise.

By classical theory an invariant metes? onF(n) can be identified with an inner prod-
ucting of the form(X, Y)4 = —(A(X), Y), with A : g — q positive definite with respect to
the Cartan-Killing form(X, Y) = tr(ad(X)ad(Y)) wheread(-) stands for the adjoint repre-
sentation ofi(n). The inner product., -) , admits a natural extension to a bilinear symmetric
form ongC. We use the same notatian -) , for this form, as well as for the correspondent
complexified formA. The metric(-, -) 4 is invariant if and only ifE jx, 1 < j, k < n are the
eigenvectors ofp, that is,

A(Ejr) = A jkEji

with Ajx =Akj > 0forl<j k <n.
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For the real space, the elements of the canonical badig., S;x, with1 < j <k <n,
are eigenvectors for the same eigenvalye We denote byisf‘ the U-invariant metric asso-
ciated withA. In what follows we will useA as synonymous fcxisf‘. As a special case, the
Cartan-Killing inner productX, Y) is induced by the&artan-Killing metric corresponding to
Ljir=1forall1< j, k <n.

An f-structure (see [24]) oR(n) is a sectionF of the bundle EnI'F(n)) which sat-
isfies 73 + F = 0. A U-invariant f-structure inF (n) is completely determined by an endo-
morphism¥F : q — q, satisfyingF2 + F = 0, which commutes with the adjoint action df
F extends uniquely to an endomorphisfn: ¢¢ — ¢ which is diagonalizable with eigen-
valuesi, 0, —i (we denote by the complex unit/—1). Letq™, q°, ¢~ be the correspondent
eigenspaces, we hay€é = gt + q° + g~ with gt = q~.

The U-invariance ofF guarantees that the basic vectdfg, are eigenvectors faf.
Thus F is determined uniquely by the values; e {0, £1}, given by F(E ) = isjkE ji,

and satisfyingsy; = —ej. In the sequel we allow an abuse of notation and identify the
invariant f-structure on F(n) with {s;; : 1 < j, k < n}. In particular an invariantf-
structure withF? = —1 is an invariant almost complex structure. In our invariant context this

amounts te ;. # O forall j, k.

We say thatF (n), F, ds?) is (1,2)-symplectic ifd 7)) = 0, thatis(VF)(X, Y) =0
wheneverX € qT andY € q~, whered is the exterior derivative. Whe# is an almost
complex structure, this definition is equivalent(th2)1? = 0, wheres? is the K&hler form
[11].

We say thatF (n), F) is (1,2)-admissible if there exists a Hermitian mettié such that
(F(n), F, ds®) is (1,2)-symplectic.

The relevance of the study gfstructures in relation to flag manifolds is highlighted by a
theorem of Black [1], which gives a sufficient condition #rso that a mag: (M?, g, J) —
(F(n), ds?, F) be harmonic with respect to (the given metji@nd)every invariant metric
ds?. Using the Toda field equations and Black’stinem, harmonic tori in symmetric spaces,
such as projective or Grassmannian spaces, have been studied (see for example [2], [4]).

3. Graph theoretic description of (F(n), F, A). A digraph is a finite oriented
graphG = (V, E). If v, w € V, then an arrow — w indicates thabw € E, whilev < w
indicates eitheprw € E or wv € E. Furthermore, we define theloser andv-winner sets to
be

Gow)={weVswveE}, Gy ={weV;vwekE},

considered as subdigraphs@fThis is analogous to the concept of neighbor set used in non-
oriented graphs. Finally, we say thats awinner (resp.loser) in G if G, (v) (resp.Gw (v))
equals toV \ {v}.

The invariantf-structures oif-(n) are in 1:1 correspondence with digraghs- (V, E).
The correspondence is given by associating withftketructureZ (E ;i) = i€ j« E j; a digraph
G whose vertices arfd, . . ., n} and whose arrows are given by the following rules: Fot k
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A= Ay A = Ay A

j

FIGURE 1. 3-vertex subdigraphs associated with local transitivity.

j— k< Ejk = 1,
J<k=ej=-1,
J & k& ¢ejr=0.

Similarly, through the matrixA = {X;} we may identify an invariant metrids2 on
(F(n), F) with a positive weighting on the edge setof the digraph. Note that if ;x = O,
the weighta ;v may be ignored, sincgk ¢ E. According to [1], the (1,2)-symplecticity
conditions imposed by on the metricA amount to the following three rules:

Q) If j—=1I1, k=1, j#k then ij=iu;
(2) If I —j, =k j#k then iy =iy
3) If I —j, j—>k [ —k, then ry= Alj + Ajk-

These restrictions apply to any 3-vertex subdigrap@ of the types given in Figure 1.

As stated in the Introduction, our main problem is the characterizatiofrsifuctures
which admit (1,2)-symplectic metrics. In graph-theoretic terms, we wish to characterize the
digraphsg = (V, E) which admit positive weightgl which satisfy properties (1) trough (3).

It is this version of the problem which we shall consider in the rest of the paper.

The following definitions will be crucial for our main result.

DeFINITION 3.1. AdigraphG := (V, E) is called: (i) transitive if the relation" is
transitive (i.e., foi, j,k € V,i — j — kimpliesi — k), (ii) relatively connected if for all
i,j,keVi— jimpliesi < korj < k.

Transitivity for complete digraphs may be characterized by the absence of cycles, and
the incidence matrix of such digraphs is permutation-similar to the canonical ragtrix 1
(j < k) [14]. We shall be more interested in the followilagal version of this property.

DerINITION 3.2. We call the digrapf = (V, E) locally transitive (in short, LT) if for
all v € V each of the subdigraph§, (v) and Gy (v) is transitive and relatively connected.

The LT and non-LT 4-digraphs are given in Figures 2 and 3.

O — ©



——

Several remarks are in order:
(i) Local transitivity means that the digraptig (v) andGy (v) omit certain 3-vertex

subdigraphs, namely the ones whose edges form a non-empty subset of a 3-cycle (compare

with Figures 2 and 3).
(i) In caseg is complete, local transitivity implies that bothw (v) and G, (v) are

(complete and) transitive. This way we recover the original definition introduced for complete

digraphs by P. J. Cameron (unpublished) and discussed in [3].
(i) I max{|Gw (v)],|GL(v)|} < 2forallv e V theng is LT.
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@ . @) @ @ (5) x
(0,0,0,0) 0,0,1,1) 0,0,1,2) 0,0,1,2) 0,1,1,2) 0,1,1,2)
@) ® © (10) 1) j\
0001 ° 0,0.1,1) 0,0,1,2) 0,1,1,) 0,0,2,2) (1,11,1)
(13) ;{\ (15 (16) 1 (18) 1
%0,11) ) 0,1,1,1) (0,0,0,3) (0,1,1,1) 0,1,1,2) (0,0,2,3)
(19)) 9\ (1) (22 . (23) i (%\
0002) 0,11,1) 0,1,1,1) 0,0,1,2) 0,1,2,2) (1,1,1,2)
(25) g\ 27 (28) Z\ (30) '
0,1,1,2) 0,1,1,2) 0,1,2,2) 1,11,2) (1,1,1,1) 0,1,1,2)
(31) i (32) T (33) (34) (35) \ (36) T
01,13 (11,2,2) (0,0,2,2) @1.1.2) 0,1,2,2) (0,1,2,3)
FIGURE 2. The thirty six 4-vertex digraphs which are LT.

(iv) All the digraphs of size< 3 are LT. As ton = 4, simple analysis shows that up to
digraph isomorphism there exist 42 digraphs with 4 vertices, six of which are not LT. As seen
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(37) (39) (41)
(1,1,1,3) 0,2,2,2) (0,1,1,3)
(38) (40) (42)
0,1,2,2) (0,0,1,3) (0,1,1,2)

FIGURE 3. The six 4-vertex digraphs which are not LT.

from Figure 3, a non-LT 4-vertex digraph must have a winner or a loser, but not batlis If
the winner/loser, thely (v) (resp.Vy (v)) is a non-trivial subdigraph of a 3-cycle (see [18]).

LEMMA 3.3. Let G = (V,E) with |V| > 4. G isLT if and only if every 4-vertex
subdigraph of G isLT.

PrROOF. If G is LT then any subdigraph @, including all the 4-vertex subdigraphs, is
LT. It remains to show the converse direction. Assungiig not LT, we have two cases, both
leading to the existence of a non-LT 4-subdigraph, completing the proof.

Case 1. There exists € V such that one of the sety (v), Gw (v) is not transitive.
Namely, in this set there exigt k and/ such thatjk, kl € E, but jI ¢ E. It can be checked
against Figure 3 that wheth&tr € E or not, the subdigraph & supported orv, j, k, 1} is
not LT.

Case 2. There exists € V such that one of the sety. (v), Gw (v) is neither trivial
nor relatively connected. Namely, in this set there exjst and!/ such thatjk € E, but
jl kl,1j,lk ¢ E. Here the subdigraph supported fn j, k, [} is also not LT. O

The case oflmost complex structures, which correspond tomplete digraphs, is of
special interest. Exactly two of the six 4-vertex digraphs in Figure 3 are complete: those
which contain a winner/loser and a 3-cycle. In [13] these two digraphs were called “cones”,
and in [6], [7] a complete digrapfi which omitted them was called “cone-free”. Lemma 3.3
states, therefore, th&ét is LT if and only if it is cone-free. As a result, the two families of
complete digraphs studied separately in [6], [7], [13], [17] (coneless tournaments) and in [3]
(LT tournaments) are shown to be one and the same.

4. Completely non-transitive structures.  An f-structureZ onF(n) will be called
completely non-transitive if the Cartan-Killing metric {;; = 1, forall 1 < j, k < n)is
(1,2)-symplectic with respect t@. Structures of this type have a simple graph theoretic
description, and all the (1,2)-symplectic metrics relative to such a structure can be described.
First we characterize the corresponding digraphs.
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DEFINITION 4.1. (i) A transitive triangle is a transitive digraplyy; = (V;, E;) with
[V;| = 3. AssumingV; = {u, v, w} andE; = {uv, vw, uw}, we shall refer tarv, vw assides
and touw as abase. (ii) We shall call a digraply’ = (V’, E’) completely non-transitive if it
does not contain any transitive triangle.

LEMMA 4.2. Aninvariant f-structure F on F(n) is completely non-transitive if and
only if the associated digraph G is completely non-transitive.

PROOF. If G is completely non-transitive then, due to the absence of transitive triangles,
system (1-3) has no identities of type (3) and hencedréan-Killing metric A = 1, which
automatically satisfies (1-2), is (1,2)-symplectic. Conversely, if the Cartan-Killing metric is
(1,2)-symplectic, then (3) cannot occur, hegceontains no transitive triangles. ]

A completely non-transitive digraph is LT. Indeed, the set§}, (v) andg, (v) contain
no edges (also, the digraph is cone-free, since every cone contains a transitive triangle). At
the same time, the correspondiifgstructure is (1,2)-admissible due to Lemma 4.2. In the
special case of complete digraphs, Lemma 4.2 implies that the Cartan-Killing metric is (1,2)-
symplectic only if| V| < 3, as observed in [6].

Define the following equivalence relation between edge&’ine ~ ¢’ if for some
v,v,u € V we have eithee = vu ande’ = v'u, ore = uv ande’ = uv’. A metric on
G’ is (1,2)-symplectic if and only if it is constant on every equivalence clasg’iflThus,
the dimension of the cone of invariant (1,2)-symplectic metrics is equél tbe number of
equivalence classes .

How cang be calculated frong’ directly? We do not know the answer, but a promising
observation is thas is the number of connected components in a “spanning fores'for
assuming every vertex in the forest is a winner or a loser.

In studying (1,2)-symplectic invariant metrics @R(n), 7, A) associated to a general
LT digraphg, our approach consists in the reductiondofo an associated completely non-
transitive subdigrapl§y’ with the same vertex set, based on the following “edge deletion
lemma”.

LEMMA 4.3. Let G = (V, E) bea LT digraph which is not completely non-transitive
(see Definition~4.1). Ther contains an edge which is a base but not a side. In this case,
the subdigraplyy := (V, E \ {e}) is LT.

PROOF. LetG, = (Vi, E,) be a maximal subdigraph ¢f which is complete and tran-
sitive, and V.| > 3. The assumption guarantees the existence of at least one such subdigraph.
Theng, has a single basee E. which is not a side, namely the arr@which connects the
winner and loser irg,.

The edge is therefore a base ii. We claim thate cannot be a side in some transitive
triangle inG. Assume to the contrary that such a triangle= (V;, E;) does exist. Note that
Vi ¢ Vi, sincee is not a side irg,. Therefore, the subdigrag* of G supported orv, U V,
strictly containgG*. Local transitivity ofG implies thatG* is again complete and transitive,
contradicting the maximality of...
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Next we show tha€ = (V, E \ {¢}) is LT. By Lemma 3.3 it suffices to show that every
4-subdigraplg = (V, E) c G is LT. Assume that = uw, u, w € V. If {u,w} ¢ V, then
Gisa subdigraph of, and hence is LT by Lemma 3.3. Otherwise{iif w} C V, suppose
thatG is not LT. According to a remark (i) made in Section3contains a winner or a loser,
sayv. It follow from e ¢ E thatv # u, w. Whetherv is a winner or a loseg; is a side in the
transitive trianglgu, v, w} in G, which is impossible by the first part of the Lemma. O

We close this section with several remarks (see [18]):
(i) The completely non-transitive digragf obtained by edge deletion frogh does

not depend on the order of the edges deleted.

(i) A completely non-transitive digraply’ can be the outcome of a non-void
edge deletion of a LT digraph if and only if the union of all the subdigraphg’ aif type
{uv, vw, zw} and{wz, wv, vu} does not contain every subdigraph of type, vw}.

(iii) 1t seems that a completely non-transitive digraph is the result of edge deletion of
a transitive digraph if and only if for all vertexwhich is not a winner or a losejGy (v)| =
IGL ()] =1.

5. Characterization of (1,2)-admissible f-structures. We will now state the cen-
tral result in our paper. The proof of this result is combinatorial and relies heavily on the
results obtained in the preceding sections.

THEOREM 5.1. Let F beaninvariant f-structureon F(n), n > 2. (F(n), F) admits
invariant (1,2)-symplectic metricsif and only if 7 isLT.

We will prove the following clearly equivalent statement:

LEMMA 5.2. Thedigraph G = (V, E), |V| > 2 admits (1,2)-symplectic invariant
metricsif and only if itisLT.

PROOF. Forn < 4, G is always LT, and verification of the lemma is an easy exercise.
Forn = 4, verification is easy, based on the digraphs in Figure 3. So, assuimé

If G admits (1,2)-symplectic invariant metrics, then by restriction every 4-vertex subdi-
graph ofG admits (1,2)-symplectic metrics, and hence (as just observed) is LT. But then by
Lemma 3.3G is LT.

Conversely, assume th@is LT. We argue by induction. i is completely non-transitive,
then the existence of (1,2)-symplectic metrics was guaranteed in the previous section. Oth-
erwise, by Lemma 4.3, we may delete an eddeom G = (V, E), obtaining another LT
digraphG = (V, E). By the induction argumeng has (1,2)-symplectic metrics. We extend
each such metric to a metric ¢hby definingr, = A, + A.», wheree’ ande” are the sides
corresponding to the bage This is the only extension for which is (1,2)-symplectic on
the triangle in question, anathce the only extension whichight be (1,2)-symplectic for the
whole digraph. We want to show that, in fact, it is.

Step 1. We show that the extension is well-defined. Namely, assume thatw is
simultaneously a base for two transitive triangles, $ay, vw, uw} and {uz, zw, uw} with
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{u, v, w, z} C V. We need to show that a priori
(4) )\uz + )\zw = Ayv + Aypw -

There are two cases to considen > z, we may assume for definiteness that- z. In this
case, by (3) we have a prioti, = A,; — Ayy aNdA,; = Ayy — Azw, iIMplying (4). Otherwise,
if v # z, by (1-2) we have a prioti,, = Ay; Avw = Azw, again implying (4).

Step 2. We show that the extended metric is (1,2)-symplectic. Every conflict within the
constraint system (1) through (3) should involve the deleted edgiceé is assumed to
satisfy these restrictions. By Lemma 4e3s not a side ing, and hence any conflict with (3)
is of the type already discussed in Step 1.

A conflict with (1) implies thai. # A, where, saye = uw ande’ = rw. This can occur
only if r ¥ u. Now it can be easily seen that independently of the relation betweaed?, G
andg cannot both be LT, since one of the two contains one of the non-LT digraphs of Figure
3. This is a contradiction to our assumptions.

A conflict with (2) leads to a similar contradiction, and so the proof is complete. O

Assume thatthe LT digraphiis reduced, via edge deletion, to a completely non-transitive
digraphg’. Theorem 5.1 shows that every (1,2)-symplectic metriggbaxtends uniquely to
a (1,2)-symplectic metric og. Thus, the dimension of the cone of (1,2)-symplectic metrics
is equal in both digraphs (in the previous section it was denotegl) bl is not clear how to
calculateg directly from the original digraplgy. One approach is to represent (1 through 3)
as a homogeneous linear system andwate the dimension of its kernel.

The classification of (essentially different) (1,2)-admissible invariant structurés:0n
is reduced, via Theorem 5.1, to the classification of (permutationally different) LT digraphs.
Brouwer [3] applied a nice counting argument in order to enumeratothglete LT digraphs
with n vertices. On first reading it appears thattisthod is not adequate for the enumeration
of all the LT digraphs with: vertices. One possible attack on the problem would be to enu-
merate first the completely non-transitive ones, and then to figure out how many LT digraphs
edge-delete into a given completely non-transitive digraph.
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