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A TRANSPLANTATION THEOREM FOR THE HANKEL
TRANSFORM ON THE HARDY SPACE
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Abstract. The transplantation operators for the Hankel transform are considered and
their boundedness on the real Hardy space tahéished. As its application, we obtain the
Hérmander-Mihlin type multiplier theorem fon¢ Hankel transform on the real Hardy space.

1. Introduction. The Hankel transforrft,, f of ordern of a functionf on the open
half line (0, o) is defined by

Huf (y) = /O FOVITLO0dE, ¥ >0,

whereJ, is the Bessel function of the first kind of order The Bessel functions with =
—1/2andu = 1/2 are

|2 [ 2 .
J_12(2) = n_—ZCOSZ, J1/2(2) = H—ZSIHZ

and the Hankel transformg_1,»> f and™,> f are the cosine and sine transforms:

2 (> 2 [
H_l/zf(y)=\/; | s cosyar. Hl/zf()’)z\/; | s sinyar.

It is known that foru > —1/2, H,, is an isometry orL?(0, 0o) (Parseval’'s theorem for the
Hankel transform) an@é{, 1, = I (The inversion formula for the Hankel transform), and

fo F)g()dx = fo Hyu f (Y H,ug(x)dx

for f, g € L?(0, oo) (Plancherel’s theorem for the Hankel transform), wheie the iden-
tity operator andL?(0, oo) is the Lebesgue space of functions @ oo) such that| f|» =
(Jo~ 1f )P dx)t? < oo

We shall consider the composite

IZTL) = H[LHU9
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which is an isometry or.?(0, co) for u,v > —1/2. For f € L0, c0) with H, f €
L1(0, 00), 7, f has the integral representation

nrw= [ [ rovsnond e, x> o.

We call 7, the transplantation operator fromto ,. The aim of this paper is to prove that
the transplantation operatdfy are bounded on the real Hardy space. As an application, we
shall obtain the Hérmander-Mihlin type multiplier theorem for the Hankel transform on the
real Hardy space.

The main tools of our proofs are the atomic decomposition and the molecular character-
ization of the real Hardy space, and Sutier’s integral representation [13] @;. We recall
the representation here. LEf , be an operator defined by

Tuwf@) = lim /| Ot 0y k0 ).

(1) —+0
k(u,v) =cos(n —v)/2),
where
iﬂ,\)(xay)
—(y\ 1 v optv Y
ZKM,V Xy ; xz_yZF 2 N 2 ,V—'—l,p
2) V2 g 1 _ 2
=271k, (2 + PEEE BT 1 ),
TAx x—y x+y 2 2 x2

_ 2'((p+v+2)/2)
YT T+ DI (k- )/2)
forO <y < x,and

iﬂ,v(x’ y) = iu,u()’a X)
fory > x > 0. Here,F(«, B; y; z) is the hypergeometric function, that is,

F(a,B;y;2) = Z ((;)/k)ii)!kzk, lz] <1,

k=0
where(M)o =1, M = A(A+1) - (A+k—=1), k> 1. Ifu =v+2kandk =0,1,2,...,then
f#,u(x,y) =0fory >x>0.1fk=0-1-2,..., thenf#,u(x,y) =0forx >y > 0.
In these casesZ,l,U(x, y) have more elementary forms (see [13]). Schindler proved that if
wu, v > —1/2, then the following (A) and (B) hold:

(A) For f € C>(0, 00), T#”f(x) = T,vf(x)a.e.x > 0, whereC®(0, o) is the
space of infinitely differentiable functions of compact suppoiidioo);

(B) Letl<p<oocand-1/p<a<1-—1/p.If fooo | f(xX)|Px*Pdx < oo, then the
valueT,, , f (x) exists for a.ex > 0, and

0]

o0
/ T fOIPx*dx < C / )PP dx
0 0
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with a constanC independent of.

Guy [6] proved that the operato, initially defined onL?(0, co), are extendable to
bounded operators on thHe’-spaces, 1< p < oo, and this is the first of the transplantation
theorem for classical expansions. Schindler [13] showed a refined version of Guy’s result by
getting the explicit formula of ;” as we recalled above.

To consider the transplantation operat@ysfor the casep = 1 is our problem, and the
main result of this paper is that the operat@jsare bounded on the real Hardy space, which
gives us the Hérmander-Mihlin type multiplier theorem for the Hankel transform on the real
Hardy space.

There are transplantation theorems for other orthogonal expansions. Askey and Wainger
[2] gave a transplantation theorem for the ultraspherical series, and Askey [1] generalized
their theorem to the Jacobi series. Some transplantation theorems are in Gilbert [5] and in
Muckenhoupt [12]. The Laguerre series case is in Kanjin [7]. Miyachi [10] and [11] quite
recently obtained a transplantation theoremtf@ Jacobi series in weighted Hardy spaces.

The author would like to thank the referee for careful reading of the paper and comments.

2. Results. Let H(R) be the real Hardy space, that is, the space of the boundary
functions f(x) = NF(x) of the real partsh F(z) of functions F(z) in the Hardy space
HY(R2) = {F(z); analytic inR? and||Fll ;1 g2, = SUR-o /"o |F(x + it)|ldx < oo} on
the upper half pIanEt2 = {z=x+it; t > 0}, with the norm|| f || 1), = ”F”Hl(Ri)-

We shall work on the spadg(0, co) defined by

H'(0,00) = {h|(0,00) : h € H'(R), supph C [0, 00)} ,
where[0, co) is the closed half line, and we endow the space with the npfify10 ) =
2]l g1 ()» Whereh € HY(R), supph C [0, 00) and f = h|(0,00). We remark that
H*(0,00) = {h|(0.00) : h € H'(R), ever}

ande1|lhll grry < I1flg10.00) < c2llhlly1ry With positive constants; andcz, wheref =
hl(0,00) @ndh € HY(R) is even. This fact is in [4, Chapter IIl, Lemma 7.40].
Our theorem is as follows:

THEOREM. (i) Let u > —1/2 and v > —1/2. Then 7/, initially defined on
H1(0, 00) N L?(0, 00), is uniquely extended to a bounded operator on H1(0, o), and if
we still denoteit by 77, then

17 Fll 10,000 < CILF I 12(0,00)

for f € H(0, oo) with a constant C depending only on 2 and v.

(i) Mfu>-1/2,then 7][1/2 isuniquely extended to a bounded operator from H1(0, co)
to L1(0, 00), that is,

1T, fll 120,000 < CIF N 110,000

for f € H1(0, oo) with a constant C depending only on . and v.

O — ©



——

234 Y. KANJIN

As an application of our theorem we deal with the Hormander-Mihlin type multiplier
theorem for the Hankel transform. Let> —1/2 and¢ € L°°(0, co). We define a Hankel
multiplier operatorA/lg with multiplier ¢ by

My f = Hu(@Hu ()

for f € L?(0, 00). SinceH,, is an isometry on.?(0, o), the multiplier operatorM} is
a bounded operator 0h?(0, co) with the operator normi¢| . We also define a Fourier
multiplier operatortM,,, with multiplierm € L*(R) by

Mph = F X Fh))

for h € L2(R), whereF andF 1 are the Fourier transform and the inverse Fourier transform,
respectively:

FE) = h(xe ™dx,  Flg)(x) = g(&)e' ™ dt .

1 1
2w ./R N1 /R
The Hérmander-Mihlin multiplier theorem fa#1(R) says that, ifim with ImliLery < A
satisfies the condition

(3) (é /R<552R d§

for R > 0, whereA is independent oR, then the Fourier multiplier operatavt,,, initially
defined onH1(R) N L2(R), is uniquely extended to a bounded operatorbi(R). If we still
denote it byM,,, then| M|l g1y < CAllR| g1, for b € H(R) with C independent of

h andm (cf. [4, Chapter IIl, Theorem 7.30]). We may refer to [14, Chapter IV, 83, §6] and
[4, Chapter II, Theorem 6.3] for the”-space case.

dm@) [ ds)”z - ap

COROLLARY. Let u > —1/2. Suppose that ¢ with ||¢|lL~@0.00) < A satisfies the

condition
2 1/2
dy) <AR?

@ (%o

for R > 0, where A isindependent of R. Then the Hankel multiplier operator M, initially
defined on H1(0, 00) N L2(0, o0), is uniquely extended to a bounded operator from H1(0, o)
to L1(0, 00). If we also denote it by My, then

||Mgf||L1(o,oo) < CA[lfll g1(0.00)

for f € H1(0, co)with C independent of f and ¢.

do(y)
dy

The corollary is deduced from the theorem as follows. et L°°(0, co) satisfy the
condition (4), and letf € H(0, 00) N C°(0, c0). We extendp and f to the functions on
R as even functions, and we denote them¢ghyand f,. Since the functiorp, satisfies the
condition (3), the Fourier multiplier operatovy, is a bounded operator aHl(R). Since

Ho12f(y) = Ffe(y), y > 0, we see thatM, fo(x) = M;l/zf(x), x > 0. Further,
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1/2

My, fe is an even function. Thus\/l; has a unique bounded extensionk(0, co). The

inequality|lgll 110,00 < 191l 410,00y NOIdS, and sor\/l(gl/2 is uniquely extended to a bounded
operator fromH?1(0, co) to L1(0, c0). Let u > —1/2. It follows from the theorem that
T_“l/z is a bounded operator ai’(0, co) andT,fl/2 is a bounded operator from 1(0, co)

to L1(0, 00). Therefore, the identityMy = T,fl/z/\/l;l/zT_“l/z on L%(0, o) implies the
corollary.

REMARK. Letu > —1/2. Assume that/\/lg is a bounded operator oH (0, co).
Then,¢ = 0 if we assume additionally thatsatisfiesp = H_1,,® for some® e L0, 00).
For, we first note thajZ\/l;/2 is a bounded operator aH(0, 0o) by the identity/\/l;/2 =
7’172/\/1577}/2 and the theorem. Lef € H(0, c0) N C(0, 00). Since/\/li/zf e HY(0, c0),
M;/Zf has the vanishing mean property:

/OO M2 f@)dx =0.
0

We extendp and@ to the even functions oR, and denote them by, and®,. We note that
¢ = F®,. Further, we extend to the odd function ok, which is denoted byf,. Since
—iH1/2f(y) = Ffo(y). y > 0, we see thaMy/* f (x) = My, fo(x).x > 0. The identity

My, fo = P, * f, holds. Therefore, we have
o o0
0= / / D, (y) folx — y)dydx
0 —00

_ / .() /0 foloe — y)dxdy

00 00 0 o)
_ /O o (y) f folwdudy + f () / fowdudy
-y e ¢} -y

_ 2 /O o (y) fo " fdudy = —2 /0 ) / ®(y)dydu.

thatis, [5° f(u) [ ®(y)dydu = 0 forall f € HY(0, 00) N C2°(0, oo), which implies that
fu"o @ (y)dy is a constant function in, and so® (y) = 0 for a.e.y > 0. We conclude = 0.

We conjecture that without the additionalraition the above statement holds, that is,
if Mg with ¢ € L>(0, co) is a bounded operator ali(0, 0o), theng is constant, where
w>—1/2.

The theorem will be proved in the next section. The atomic decomposition and the
molecular characterization of the real Harspace will play important roles in our proof.
A real-valued functiom is called an atom centeredaif (i) a(x) is supported in an interval
[c —h/2,¢c+h/2], (i) llalz < k=2, and (ji)) [y a(x)dx = 0. The spacé{}(R) is charac-
terized in terms of atomsf € H(R) if and only if f = > 7Zohjaj, where eaclu; is an
atom andZ?‘;o |A;| < oo. Further, theH1-norm £l 72 Ry is equivalent to ian?‘;O A1,
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the infimum being taken over all decompositions, and the sexig$, 4 ;a; converges in
H-norm.

We deal with the functiong € H(0, c0). These functions are also characterized as
follows (see [4, Chapter I, Lemma 7.40]¥ € H(0, cc) if and only if f = Z;?O:o Ajaj,
where eaclu; is an atom with supp; C [0, c0) andy 7, [4;| < co. Moreover, the norm
£ 1l 1j0,00) 1S €QUIValENt to infzi‘;o |41, the infimum being taken over all such decomposi-
tions. By this decomposition, we see th#t(0, co) N L2(0, co) is dense inH1(0, o).

We call a real-valued functiom a molecule centered atif M satisfies the following
conditions: (i)

1/2 1/2
L2(R) L2(R)
(i) fR M (x)dx = 0. We callN (M) the molecular norm oM (x). The molecular characteri-
zation asserts that jf = Zj M ; with moleculesM; ande N(M;) < oo, thenf e HYR)
and| fllgiw < C Zj N(M;) with an absolute constadt. For the atomic decomposition
and the molecular characterization, we may refer to [4, III].

NM) = | M|l I1-=cl Ml <003

3. Proofs. The theorem will be proved by the following two lemmas.

LEMMA 1. Ifv > —1/2 then 7."+2 and 7. , are uniquely extended to bounded oper-
atorson H1(0, 00), that is,
1742 fll 1 0.00) < CILf 10,00 -
1720 1 10,00) = CILF I H10,00)
for f € H(0, oo) with a constant C depending only on v.
LEMMA 2. (i) Ifp>—1/2andv > 1/2,then7; isuniquely extended to a bounded
operator on H1(0, 00), that is,
||7E)f||H1(0,oo) < Cllf I1g1(0,00)

for f € H1(0, oo) with a constant C depending only on . and v.
@iy fpu > —1/2, then T,]l/z is uniquely extended to a bounded operator from
HY(0, 00) to LY(0, 00), that is,

172 F 10,00 < CIF 10,00
for f € H(0, o) with a constant C depending only on .

We see here that the theorem is deduced from these lemmas. We first note that the identity
777" =1 on L2(0, o0) holds since
7,7 = H HeHHy = HuHy =T,
Let us prove the part (i) of the theorem. Let> —1/2 andv > —1/2. It follows from

Lemma 1 that”,,, initially defined onH(0, 00) N L?(0, 00), is uniquely extended to a

bounded operator o (0, co). Sincev + 2 > 1/2, it follows from the part (i) of Lemma
2 that the operatdi‘;fJr2 is uniquely extended to a bounded operatobh0, co). Because
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of the fact7) = 7,/"27” , on H1(0, 00) N L?(0, o0), we see thaf,! has a unique bounded
extension o/ 1(0, o). The part (ii) of the theorem is the part (i) of Lemma 2 itself.
We turn to the proof of Lemma 1. Let> —1/2, and put
v4+1/2

00 v+1/2 .
d 1
UY f(x) = / (f) f(t)—tt, SO =< /0 <§> f(dt

for x > 0. Then, we see that

TP f =20+ DU f = f, T)of =20+ DSV~ f
for f € L?(0, c0) by [13, p. 383, line 5 from below and p. 381, line 8 from below]. In [8,
Proposition], we proved thdf ) and S are extended to bounded operatorsih0, co)

forv > —1/2, and thus7;'*2 and7,", , have the same boundedness, which is Lemma 1.
Lemma 2 will be reduced to the following Lemma 3 and Lemma 4.

LEMMA 3. Assumethat (i, v) satisfiesu > —1/2, v > 1/20r u > —1/2,v = —1/2.
Let a be an atom centered at ¢ with suppz C [0, 0o0), and we regard T;a asTM"a(x) = Ofor
x < 0. Then, there exists a constant C depending only on i and v such that

®) N(T'a) = | T aly? || |- —c| TYally/* < C.

LEMMA 4. Letpu > —1/2andv > 1/2. Then, fé’o 7, a(x)dx = O for every atoma
with suppe C [0, 00).

We show first that Lemma 2 is obtained by Lemma 3 and Lemma 4f leet# 1(0, o) N
L?%(0,00). Let f = > 72oXja; be an atomic decomposition gf such thaty 72 |2 <
Cll 1l g1(0,00)» WhereC is independent of . To prove Lemma 2, we shall first show that

(6) 7;ff(X)=Z)»j'T;aj(x) ae.x>0
=0

forp > —1/2,v>1/20rpu > —-1/2,v = —1/2. Letg € C°(0, co). Then we have

/0 TV F () g(x)dx = /o HyHo £ () g(x)dx = /0 F Y H Hyg(x)dx

by Plancherel's theorem and the inversion formula. The inequdfityH,g(x)| <
Cl'HugllL1(0,00) hOldS, @and|H gl 110,00y < 00 SiNCEg € C2°(0, 00). For every atonmu;,
we havela;ll 10,00 < 1. Thus we have

/0 f(x)HuHug(x)dXZ/o D a0 My g(0dx
j=0
Y /O aj ()M, Hyug(x)dx

0

~.
I

M

oo
Aj/ HyHyaj(x)g(x)dx .
0 0

~.
I
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< 232N (y) holds (cf. [4, Chapter Ill, Lemma

We remark that the inequalityy || ;10
7.11)). It follows from Lemma 3 that

M Hoajll 10,00 = 17011 110,00) < CN(Taj) < C.

Here and below( denotes a positive constant which may differ at each different occurrence.
Thus, the last sum is equal to

/0 Z AiHuHyaj(x)g(x)dx,
j

i=0
which leads to

/0 ﬁf(x)g(x)dx:/o Z)»j’z;faj(x)g(x)dx
j=0

forall g € C°(0, 00), and we get (6).
Because of (6), we have

o0 o0
17} flgioe < C Y _ NOT ap) < C Y |4IN(T a))
j=0 j=0

o
<CY M = Clf im0
j=0
foru > —1/2,v > 1/2 by Lemma 3, Lemma 4 and the molecular characterization. If
uw>-1/2,v=-1/2,then

o0 o0
17! flli0.00 < D IMHITYaj 1000 < C D IIN(Ta))
j=0 j=0

o0
<CY Il = Clf .00 -
j=0

These inequalities allow us to use the standard density argument, and we obtain Lemma 2.
We now come to the proofs of Lemma 3 and Lemma 4.

PROOF OFLEMMA 3. Leta be an atom centered atwith suppa C [0, c0). Let
O =[c—h/2,¢c+ h/2] C [0, c0) be the smallest interval containing sup;ﬁinceTM" is an
isometry onL?(0, 0o), it follows that

(7 I17Vall2 = llallz < h~Y2.
To prove (5), itis enough to show thiat - —c| 7,Va [|2 < ChY?. We putQ = [c — h, ¢ + hl.

We write
|||-—c|T,fa||§={/ _+/ ~}pc—c|2|T,fa<x)|2dx
(0,00NQ (0,00)\0Q

=Vi+ Vo, say.
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For V1, we have by (7),
Vi<h?|T}al3 <h.

An essential part of the proof is to shaw < Ch. By Schindler’s results (A) and (B),
we see thaf; = 7),, on L?(0, 00). Thus, Schindler’s integral representation (1) leads us to

’];fa(x) = lim / a(y)[(x, y)dy +k(n,v)a(x) a.e. x>0,
§——+0 lx—y|>8

where we put (x, y) = I,,,(x, y) for simplicity. Forx € (0, 00) \ O, we have
Traw = [ akiw.ydy.
0

and thus,

2
dx .

f a()1(x,y)dy
0

Vo [ el
0,000\ 0

The Taylor expansion af(x, y) in y atc and the cancellation property of atoms imply

B al
/awﬂudwy=/a@krum+9@—®Xy—d®a 0<0<1.
0 0 y

If we show

(8) ‘ﬂ(x,g)‘f%, E=c+60(y—c), 0<0<1 yeQ, xe(0,00))\0Q
dy lx — ¢l

with C depending only om andv, then

<
T x—cf?

'/ a(y)i(x,y)dy / la(W)| |y —cldy
0 0

lall2h®? <

lx —cl? lx —cl?

which leads to the desired inequality

2 dx
Vo < Ch 5 <Ch.
(0,000 0 ¥ — ¢l

The rest of the proofis devoted to proving (8). We divide the matter into two cases; Case
l:c+h <xandy € Q;Casell: 0<x <c—handy € Q.
We begin with Case I. SinceQ y < x, it follows from (2) that

ol B
5@, ¥) =27 K o (WS (e, y) + Wy (x, ) + Wa(x, »)),

O — ©
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where

1\ /vy =12y 1 1 V—u v+ y?
Wi(x,y) = )= - F , : L=,
r ey <v+2)<x> x<x—y+x+y> ( 2 2 U x2>

v+1/2 2

y 1 -1 v vtp y
W+ 3 = - F 3 5 1; ) 3
2 (0 <x> ((x —y)? * (x +y)2> ( 2 2 VT xz)

and

v+1/2 2

y 1 1 ad V—p v+pu y

W+ 3 = - ~ F 3 y 19_
3 (6 (x> (x—y+x+y>3y{ ( 2 2 Ut x2>}

v2—pu?(y 324 1 n 1 F v—pu+2 v+u+2 42 y?
_ Y b , sV + 2
2w+ \x x\x—y x+y 2 2 x?

from the formula(d /dz) F (o, B; y; z) = (@B/y)F(e + 1, 8 + 1; y + 1; 7). We shall show

c .
(9) Wi el<——. j=123
/ x —c|

with C depending only om andv.
Since

_IrWlr'ty —a—p)
'y —a)I'(y — B)
forR(y —a — B) > 0(cf. [9, (9.3.4)]), it follows fromrw +1— (v — w)/2— (v+pn)/2=1

and¢ < x that
Vo vt £2
F ,— 1=
‘ < 2 7 VT x2)

lim F(o, B;y;2)
z—1—

<C

for 0 < y < x with a constantC depending only o, v. We see that¢/x)"~1/2 < 1 for
0 <y < xwhenv —1/2 > 0, and that

|Wy (x s>|<ci<#+ ! )
=" x\x—¢l  x+¢/)°

Since¢ € Q andc + h < x, itfollows that|x — &| > |x — ¢|/2. AlsO,x + & > x > |x —¢|.
These imply the inequality (9) with = 1. We note that the ter|17VlJr does not appear in
al/dy whenv = —1/2.

For W2+(x, &), in a similar way, we have

. 1 1 ) c
W2 (.9l = C(|x 2T arez) S e

forv > —1/2, which is the inequality(9) with = 2.
To estimateW3+(x, &), we use the formula (cf. [9, (9.2.6)]):

yA—2)F(o,By;2)—yFla-L18y:20)+ —BzF(a, By +12) =0.

O — ©



——

TRANSPLANTATION THEOREM FOR HANKEL TRANSFORM 241

The substitutionr = (v —u +2)/2, 8= (v + u+2)/2, y = v + 2,z = y?/x? gives

w+2 v+ +2 x2 Vo422
F e +2y P - Y
2 2 —y 20+2) x¢—y
where
vV—u v+u+2 y?
h=F ) 5 2;_ )
! < 2 > Vte s
v—u+2 v+u+2 y?
Fo=F , ; 3 =).
2 ( 2 y  VtE
This implies
Ev+3/2 1 1 \2
W;_(x,é) = Cﬂ,v(;) (x y + m) Fily=¢

/ ¢ v+5/2 1 1
* C“’”<§> ((x —£?2  (x +s>2> Faly=s

wherec,, , andc;’v are some constants depending only.oandv. We note thatFy|, | F2| <
CforO<y<xsincev+2—@wv—pw/2—w+pu+2/2=1andv+3— (v —pu+2)/2—
(v+ u+2)/2 = 1. Thus, in the same way as in the above cases, we have the inequality (9)
with j = 3, which completes Case I.

We turn to Case Il. It follows from G< x < y that

al
—(x Y) =27 Ky W (W) (x, p) + Wy (x,y) + W3 (x, »)},

/2 4 2
_ 1 w—v v+pu X
W bl = F bl 5 1;_ bl
1 () ( )() ( —x+y+X) ( 2 2 hT y2)

nrl/z -1 w—v v+ u x?
W (o) = () (( Y. (y+x>2>F< 2 2 ’“1’?)

n+1/2 2
1 0 nw—v v+ pu X
V. —1F : T
3o )= () (y x y+x)3y{ ( 2 2 KT y2>
B MZ—u2<x>“+5/21< 1,1 )
2w+ \y y\y—x y+x

nu—v+2 v+u+2 x2
F ; ; 22—
. < 2 2 S

X n+5/2 1 1 2
P F
C”’“<y) <y—x+y+X) ®

O L
_CU — - 4,
H\y (y—x)?2 (y+x)?

and

O — ©
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where
w—v v+pu+2 x?
F3=F ) y 2;_ )
: ( 2 2 o y2>
u—v+2 v+u+2 x2
Fa=F s ; 3 —= ).
¢ ( 2 2 SRR

Since O< h < ¢, itfollows thaté > ¢ —h/2 > ¢/2 > |x — ¢|/2, which implies ¥(x + &) <
1/& < 2/|x —c|. Thisinequality and Allx — &| < 2/|x — ¢| allow us to follow the lines of the

proof of Case | ifu > —1/2, and get the inequality (8) in Case Il. We complete the proof of

Lemma 3.

PROOF OFLEMMA 4. Leta be an atom with supp C [0, co). It follows from Lemma
3 and the inequality 7, all ;10 ~) < 2¥?N(7,a) that7, a is integrable fop, > —1/2,v >
1/2orp > —1/2,v = —1/2. Thus, for these, v, we have

o vV H o —SXZ vV
/0 7, /a(x)dx = sl—l>n-i1-0/0 e 7, /a(x)dx.

By the fact

M
Tt = im_ [ Hoat) ey

in L2(0, 00), we have

00 00 5 M
/0 T a(x)dx = lim Iim/0 e‘”/o Hya(y)/xyJ, (xy)dydx

e—>4+0M—o00

oo M roo
= lim lim / e_”Z/ / a(t)/ytJ, (yt)dt/xyJ, (xy)dydx .
0 0 0

e—>+0M—>o0

Sincel/z7Ju(z)| < C,z > Ofora > —1/2 ande—”za(t) isintegrable inx, y, t) on (0, co) x
(0, M) x (0, 00), it follows that
v o : e
./o 7 /a(x)dx = SI_l)ﬁ;() Mlinoofo a(t)B,, (H)dt

for u,v > —1/2, where
(&) M e
By, (t)=/O D, (y)dy,

D (y) = /O e Sy I (xy)dx (1)

To provefooo 7, a(x)dx = 0, we shall show the following:
() Letr >0,0<e<landl< M. If u > —3/2,# —1 andv > —1/2, then
1B (1)| < C, whereC depends only o andv.
(I Foreveryr > 0, limg_ 10 lim— o B](tf,)(t) = Cy.,v, Where
_ T(u/2+4/3)I(v/2+1/4)
WY P (w2 +1/4 T (v/2 + 3/4)

O — ©
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whenu > —3/2,# —1 andv > —1/2.
If we show (1) and (I1), then by the Lebesgue dominated convergence theorem we shall
get

v _ H H & _ _
/0 Tﬂa(x)dx = /o a(r) SI—IUJ-OA/II[POO B,/ ()dt = C“’V./o a(t)dt =0

for u > —1/2 andv > 1/2, and the proof of Lemma 4 will be completed.
Let us prove (1) and (Il). We shall use the formula (cf. [15, 13.3(3), p. 394])

© 2
/O e xydu(xy)dx

YA +3/2)/2) 2y , o,
- 2#+15(#+3/2)/2F(M + 1)6‘ @((H, + 1/2)/27 H’ + 1» y /(48)) ’

where u > —3/2 and @ («; y; z) is Kummer's confluent hypergeometric series defined
by @(a; y;2) = Y rool(@i/()illz*/k! for z,a,y € C, y # 0,—1,-2,.... Since
@ (a; v; z) is an entire function of, it follows that for 0< y < 2./e,

o
(10) /0 e STy, (xy)di| < Comn/23A /2,

wheny > —3/2. The asymptotic formula (cf. [3, 6.13.1(3), Vol. 1, p. 278])

r
D(a;y;2) = ﬁezza_y[le 0(zI™1, Mz—> o0, y#£0-1,-2,...

(@)

gives, for2/e <y,
o
2
(11) / e~ iy lu(ay)dx = Cuy~t + Re(y).  |Re(y)| < Cey~S,
0

if © > —3/2, # —1, whereC depends only om andC,, = 2Y2I (1 + 3/2)/2) /T (1 +
1/2)/2).
Letr > 0,0 <& <1and1l< M. We divide the integraB](tj)(t) = fé” Dt(s)(y)dy into

two parts:
) Ve M e
B <t>={/ +/ }Df ()dy.
0 2/

We begin with estimating the integrgyf(f*/E Dt(s)(y)dy. By (10) and|\/zJu(z)| < C,z > 0
forv > —1/2, we have

25 25
< /0 D (y)\dy < CeH/2-3/4 / Y2y = ¢

2/¢ ©
(12) ‘ [ 2w
0 0

for u > —3/2 andv > —1/2, whereC depends only om andv. Letr > 0 be fixed and let
¢ > 0 be sufficiently small so thatZe < 1/¢. By (10) and the fact, (z) = 0(z") (z — 0)

O — ©
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forv £ -1, -2, ..., we have
NG NG
‘/ DO (dy| < Cs—ﬂ/z—s/zl/ P2 U2y op /20244

0 0

Thus, for every > 0, we have
2/e
(13) lim / D¥(y)dy =0
e—=0Jo

wheny > —3/2 andv > —1/2.
We next estimate the integrjﬁj"‘:/E Dfs) (y)dy. By (11), we have

M
/ D (y)dy = C, U1+ Uy,
2Je
where

M M
m=/ Vv I(ty)y Tty w=/ Viy o () Re (y)dy
NG 2/e

foru > —3/2, # —1.
The integralU, is estimated by (11) and/zJ,(z)| < C,z > Oforv > —1/2. We have

o0
(14) |Ws@/ vy <c
2

NG
foru > —3/2,# —1 andv > —1/2. Letr > 0 be fixed, and let > 0 be sufficiently small
andM be sufficiently large so thatZe < 1/t < M. We divide the integral as follows:

1/t M
w:{/ +f L@hwmmwwﬂé+%,sw
2./ 1/t
By the fact/, (z) = 0(z") (z — 0) forv # -1, -2, ..., we have
1/t
= [ e

2/e

1/t
C/ (ty)' T2y =3dy < Ct%c (v > 3/2),
0

IA

1/t
c/ 2ey~Ydy < Cr?e(|logt| + log(1/e)) (v =3/2),
2/e

C * (ly)”+l/2€y_3dy < Ctv+l/28(u+l/2)/2 (v < 3/2)

NG
foru > —3/2, # —1landv # —1, -2, ... . It follows from the fact,/zJy(z) = O(1)(z —
o) that

o0
|UZ| < c/ ey 3dy < Cr%.
1/t

O — ©
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Therefore, we have
(15) lim Iim U>=0

e—>0M—o00
foru > —3/2,# —1landv > —1/2.
We turn to estimatind/;. We first deal with the case\Z < 1/r < M and divide the
integral:

1/t M
Uy = {/ +/ }ﬁlu(ty)y‘ldy =U; +UZ, say.
2./ 1/t

By the fact /,(z) = 0(")(z — 0) for v # —1,-2,..., we have|Uj| <
Cfol/t(ty)”""l/zy_ldy. Thus, ifv > —1/2, then|U}| < C. Let us evaluat&/Z. The Bessel
function satisfiesd /dz)z7* J4(z) = —z % Jy+1(z). This and integration by parts lead to

M

_ apd _

U2 =(—t"32) [y S/Zd—((rw ”+1Jv_1<zy>)dy
1/t y

= ("R T 01,
M d
— =t T - (0¥ dy = UPt+ UPE L say.
11 dy
The first termUlz’1 =—(M) Y27, M)+ J,_1(D) satisfiequz’1| < C since/zJy(2) =
O(1)(z — oo) and 1< tM. The second term
22 3\1 (M 2
Uy = <v - 5)—/ y Wiy u-a(ty)dy
I J1t

is evaluated as followsUZ?| < Cr~1 ff;; y~2dy < C. Thus, we hav¢U?| < C and then

|U1] < C inthe case ¢ < 1/t < M. Inthe case ir < 2,/¢, we havelU;| < C in the
same way as in the estimationldf, and in the cas& < 1/¢, we also haveU;| < C in the
same way as in the estimation laif Therefore, these and (14) imply

M (&)
/2 D (ndy

Ve

(16) <C

foru > —3/2,# —1landv > —1/2.
Combining (12) and (16), we have (I). The statement (lI) is proved as follows: By (13)
and (15), we have

o0
lim lim B®@) =cC, lim lm U;=C / v J,(ty)y i
il M() Ms—>+0M—>oo 1 " ) \/_y v(ty)y y

e—>+40
o0
= CM/ Jowyu=Y?du = C,,.,
0

for everyr > O whenu > —3/2, # —1 andv > —1/2. We here used;” J, (u)u~Y/?du =
T(v/241/8)/(I(v/2+3/4/2) forv > —1/2.
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