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GEOMETRIC FLOW ON COMPACT LOCALLY
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Abstract. We study two kinds of transformation groups of a compact locally confor-
mally Kéhler (l.c.K.) manifold. First, we study compact l.c.K. manifolds by means of the
existence of holomorphic I.c.K. flow (i.e., a conformal, holomorphic flow with respect to the
Hermitian metric.) We characterize the structure of the compact |.c.K. manifolds with parallel
Lee form. Next, we introduce the Lee-Cauchy-Riemann (LCR) transformations as a class of
diffeomorphisms preserving the specitiestructure of |.c.K. manifolds. We show that com-
pact I.c.K. manifolds with parallel Lee form admitting a non-compact holomorphic flow of
LCR transformations are rigid: such a maifés holomorphically isometric to a Hopf mani-
fold with parallel Lee form.

1. Introduction. Let(M, g, J) be aconnected, complex Hermitian manifold of com-
plex dimensionn > 2. We denote its fundamental 2-form hy, which is defined by
o(X,Y) = g(X,JY). If there exists a real 1-form satisfying the integrability condition

do=0Aw with d6 =0,

then g is said to be docally conformally Kéhler(l.c.K.) metric. A complex manifoldv
endowed with a l.c.K. metric is called a Il.c.K. manifold. The conformal class of a I.c.K.
metric g is said to be a l.c.K. structure aW. The closed 1-forn# is calledthe Lee form
and it encodes the geometric properties of such a manifold. The vectosfiettfined by
0(X) = g(X, 0%, is called the Lee field.

The purpose of this paper is to study two kinds of transformation groups of a compact
I.c.K. manifold (M, g, J). We first consider Autck.(M), the group of all conformal, holo-
morphic diffeomorphisms. We discuss its properties in 82. A holomorphic vectorZield
(M, g, J) generates a 1-dimensional complex Lie graugThe universal covering group of
C is C.) We callC a holomorphic flow onV.

DerINITION 1.1. If a holomorphic flonC (resp. holomorphic vector field) belongs
to Aut) ck.(M) (resp. Lie algebra of Aufcx.(M)), thenC (resp.Z) is said to be dolomor-
phic I.c.K. flow(resp.holomorphic I.c.K. vector field
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A nontrivial subclass of |.c.K. manifolds is formed by thas¥, ¢, J) having parallel
Lee form with respect to the Levi-Civita connecti®tf (i.e., V96 = 0). We observe that a
compact non-Kahler l.c.K. manifol@V, ¢, /) with parallel Lee fornmp supports a holomor-
phic vector fieldZ = 6% — iJ6* which generates holomorphic isometriesgof(Compare
[18], [19], [6].) We shall prove that the converse is also true:

THEOREMA. Let(M, g, J) be a compagtconnectedl.c.K. non-K&hler manifoldof
complex dimension at lea8t If Aut|ck.(M) contains a holomorphic I.c.K. flawhen there
exists a metric with parallel Lee form in the conformal clasg of

COROLLARY A1. With the same hypothesi® admits a |.c.K. metric with parallel Lee
form if and only if it admits a holomorphic I.c.K. flow.

In 83, we discuss the existence of |.c.K. metrics with parallel Lee form on the Hopf man-
ifold. (Compare with [7].) LetA = (A1, ..., A,) with the A;’s complex numbers satisfying
0 < |Ay]l < -+ < |Ml < 1. By aprimary Hopf manifoldM 4, of type A we mean the
compact quotient manifold a&” — {0} by a subgroup™, generated by the transformation
(z1,...,2n) — (A121, ..., An2n). Note that a primary Hopf manifold of typ& of complex
dimension 2 is a primary Hopf surface of Kéhler rank 1. We prove the following:

THEOREMB. The primary Hopf manifold/, of type A supports a l.c.K. metric with
parallel Lee form.

See 8§83 which is devoted to the construction of such a metric. More generally, we prove
the existence of a I.c.K. metric with parallel Lee form on the Hopf manifold (cf. Theorem
3.1).

In the second half of the paper we adopt the viewpoinG edtructure theory in order to
study a non-compact, non-holomorphic, transformation group of a compact I.c.K. manifold
(M, g, J) with parallel Lee form. Locally, the 2-fornme defines the real 1-forms, 6 o J and
n—1 complex 1-form#* and their conjugate®”, wheret o J is called theanti-Lee formand
is defined by o J (X) = 6(J X). We consider the group Augr(M) of transformations of M
preserving the structure of unitary coframe fieffls= {6,600 J,0%,...,0""1 01, ... 671}

More precisely, an element of Aut cr(M) is called aLee-Cauchy-Riemanfi.CR) trans-
formation if it satisfies the equations:

fo=6,
fXO@ol)y=2-O0l),

0% =Vn-0PUg + (00 0) 0",

0% =Vn 0PU 4+ (00 ) 0"

Here a, v*, Ug are smooth functions with values, respectively,Rh, C and Un — 1).
Obviously, if (M, ¢, J) is the group of holomorphic isometries, then both Awt. (M) and
Aut| cr(M) contain (M, g, J).
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As the main result of this part we exhibit the rigidity of compact I.c.K. manifolds under
the existence of a non-compact LCR flow:

THEOREMC. Let (M, g, J) be a compactconnectedl.c.K. non-K&ahler manifold of
complex dimension at lea&t with parallel Lee formd. Suppose thad/ admits a closed
subgroupC* = S x R* of Lee-Cauchy-Riemann transformations whessubgroup induces
the Lee field®. ThenM is holomorphically isometriaup to scalar multiple of the metrjto
the primary Hopf manifold/ 4 of type A endowed with the canonical I.c.K. metric as stated
in Theorem B.

ACKNOWLEDGMENT. The authors are grateful to the anonymous referee for useful
criticism. The second named author thanks JSPS for financial support and the Department of
Mathematics of Tokyo Metropolitan University for hospitality during the preparation of this
work.

2. Locally conformally K&hler transformations.

PROPOSITION 2.1. Let (M, g, J) be a compact |.c.K. manifold witdimc M > 2.
ThenAut| cx.(M) is a compact Lie group.

PROOF. Note that Auick. (M) is a closed Lie subgroup in the group of all conformal
diffeomorphisms of M, g). If Aut | ck.(M) were noncompact, then by the celebrated result
of Obata and Lelong-Ferrand ([15], [14]M, ¢g) would be conformally equivalent with the
spheres?!, n > 2. HenceM would be simply connected. It is well-known that a compact
simply connected I.c.K. manifold is conformal to a Kéhler manifold (cf. [6]), which is impos-
sible because the sphe§&' has no Kahler structure. ]

From now on, we shall suppose that the |.c.K. manifold we work with is compact, non-
Kahler and, moreover, that the Lee field is nowhere vanishing. In particular, such a manifold
is not simply connected (cf. [6]). Given a l.c.K. manifalt, ¢, J), let M be the universal
covering space o#/, let p : M — M be the canonical projection and denote alsa/bthe
lifted complex structure odZ. We can associate to the fundamental 2-fasra canonical
Kahler form onM as follows. Since the Lee form is closed, its lift toM is exact, hence
p*6 = dt for some smooth function on M. We puth = ¢~ - p*g (resp.2 = e~ - p*w).

It is easy to check thaf2 = 0, thush is a Kahler metric onM, J). In particularg is
locally conformal to the Kéhler metrik (compare with [6] and the bibliography therein). Let
f € Aut|ck (M). By definition, f*w = ¢* -  for some functior. on M. Differentiate this
equality to yield that f*0 — 6 — d\) A w = 0. Asw is nondegenerate and dyi/ > 1,
*6 = 6 + d. Sincep*6 = dt, for any lift f of f to M we haved f*t = d(r + p*1), thus
—f*t 4 p*A = —1 + ¢ for some constant. We can writef*2 = ¢ - 2.1f ¢ #0, fisa
holomorphic homothety with respectiowhenc = 0, 7 will be an isometry.

We denote byH(M, £2, J) the group of all holomorphic, homothetic transformations
of M with respect to the Kahler structu¢g, J). If f1, fo € H(M, 2, J), there exist some
constantso(f;) (i = 1,2) satisfying f*$2 = p(f;) - 2 as above. It is easy to check that
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o(f10 f2) = p(f1) - p(f2). We obtain a continuous homomorphism:
(2.1) p:HM,2,J)— R

Let 71(M) be the fundamental group @f. Then we note that1(M) C H(M, §2, J). For
this, if y € m1(M), theny*Q2 = e 7’7 . y*p*w = e 7' 7. p*w = ¢ 7 717 . 2. SinceR2 isa
Kahler form(n > 2), e=? "7 must be constani(y).

Let C be a holomorphic I.c.K. flow o/. If we denote byC a lift of C to M, then
C C H(M, £2,J). If V is a vector field which generates a one-parameter subgroCiptioén
so does/ V with V andJ V together generating. We define a smooth function: # — Rto
bes(x) = 2(JVy, V,). SinceC centralizes each elemenof r1(M), it follows thats(y x) =
QU Vyy, Vyx) = 2 Vi, v Vi) = p(y)s(x). If every element satisfieso(y) = 1, i.e.,
y*2 = 2, thenm1 (M) acts as holomorphic isometries/obo that2 would induce a Kahler
metric onM. By our hypothesis, this does not occur. There exists at least one elgraaah
thatp(y) # 1. In particular, we note that:

(2.2) The functions is not constant on.

On the other hand, we prove the following lemma. (The proof of the lemma is almost the
same as that of [10].)

LeEMMA 2.1. p(C) =R, i.e., the groupC~ acts by holomorphimon-trivial homothe-
ties with respect to the Kéhler metricon M.

PrROOF. SinceC is connected, i (C) # R, it must be trivial. By reduction to absur-
dity, suppose that(C) = {1}. ThenC leaves2 invariant. As{V, JV} generate§, it follows
thatLy 2 = L;v$2 = 0. In particular,Vs = (JV)s = 0. For any distributionD on M,
denote byD+ the orthogonal complement 1@ with respect to the metrit, whereh (X, Y) =
R(JX,Y).Since 0= (Ly2)(JV,X)=VRUV,X)—Q2(V,JV],X)— UV, [V, X]),
if X e {V,JV}L then(JV,[V, X]) =0, similarly 2(V, [JV, X]) = 0. The equality

0=3dRX,V,IJV)=XQ2(V,JV)=VQRX,JV)+JV2(X,V)
— (X, V1.JV) = Q(V,JV],X) - 2(JV. XL V)
implies thatX2(V, JV) = 0, i.e.,Xs = O foranyX € {V, JV}+. Therefores becomes

constant, being a contradiction to (2.2). O

2.1. The submanifold and its pseudo-Hermitian structure. As lkdras one dimen-
sion, denote by-J ¢ the vector field whose one-parameter subgrplap, cr acts as holomor-
phic isometries oM.

(2.3) V2 =9, teR.

Since—J& andg together generate the grodpthe 1-parameter subgrogp; };cr generated
by & acts as nontrivial holomorphic homotheties with respec2tby Lemma 2.1. In particu-
lar, the groug ¢, };<r is isomorphic taR. Sincep; 2 = p(¢) -2 (t € R, p(¢;) € RT) from
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(2.1) andp is a continuous homomaorphism(g,) = ¢%' for some constant # 0. We may
normalizea = 1 so that:

(2.4) pfR=¢ 2, teR.

LEMMA 2.2. The group{g,};er acts properly and hence freely ad. In particular,
& # 0 everywhere oM.

PROOF. Recall that lies in Aut) cx.(M) by definition. As Aufck.(M) is a compact
Lie group, its closur€ in Aut; ck.(M) is also compact and so isomorphic té-#orus(k >
2). Therefore, the liftH of C to M acts properly orZ. The lift H is isomorphic taR! x 7,
wherel + m = k. Note that > 1 because maps any compact subgroup &fto {1}, but
the group{e:};ecr C H satisfiesp({¢;}) = RT. Hence the grouge;};cr has a nontrivial
summand inR/, which implies that{¢;},cr is closed inH. Thus, the grouf¢;};cr acts
properly onM. If we note that{¢, },<r is isomorphic taR, then it acts freely on1. ]

PROPOSITION 2.2. Lets : M — R be the smooth map definedsds) = 2(J&,, &,).
Thenlis a regular value of, and hence~1(1) is a codimension oneegular submanifold
of M.

PROOF. As g¢; is holomorphic,s(gx) = 2(J&px. Epx) = (@i bx, 9ribx) =

e’ - s(x). Hence,
*

Les =lim 2272 —
t—0 1
We also note that
(2.5) L2 =92,

By Lemma 2.2, notice thai # 0 everywhere onM. Sinces(x) # 0, s~1(1) # #. For
x € s7Y(1), ds(&) = (Les)(x) = s(x) = 1. This proves thails : 7, M — Ris onto and so
s~1(1) is a codimension one smooth regular submanifold/of =]

LetnowW = s~1(1). We can prove:

LEMMA 2.3. The submanifoldV is connected and the map : Rx W — M, defined
by H (¢, w) = ¢;w, is an equivariant diffeomorphism.

PROOF. Let Wy be a component of 1(1) andR - Wg the set{g;w ; w € Wo,t € R}.
As R = {¢;} acts freely and (¢;x) = e's(x), we havep; Wo N Wo = @ for ¢t # 0. Thus
R - Wy is an open subset dff. We prove that it is also closed. LBt- W be the closure of
R - Woin M. We choose a limit poinp = lim o,wi € R- Wo. Thens(p) = lim s(p,w;) =
lime'is(w;) = lim e'i. Putr = logs(p). Thent = lim g, SO(pt_l(p) = lim <p;1(lim QW) =
lim w;. Sinces—1(1) is regular (i.e., closed with respect to the relative topology induced from
M), its component¥y is also closed. Hena@‘lp € Wo. Thereforep = go,((pt_lp) € R- Wy,
proving thatR - Wy is closed inM. In conclusion,R - Wo = M. Now, if Wy is another
component ofs—1(1), the same argument shows: Wi = M. AsR- Wo = R- W1 and
s(W1) = 1, this impliesWp = W1, in other wordsW is connected. O
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Leti : W — M be the inclusion and : M — W the canonical projection. Define a
1-formn on W to be

(2.6) n=i%e02.

Heres denotes the interior product with From the definition ofv, };<r (See the beginning
of § 2.1) we have
dyn

(2.7) 7()6) o =—J&.

By (2.3), s(Y;w) = s(w) = 1 (w € W) so that the grougy,},;cr leavesW invariant.

Hence, the vector field J ¢ restricts to a vector field to W. If {//},cr is the one-parameter
subgroup generated by, then

(2.8) Yr=ioy.

LEMMA 2.4. Thel-formn is a contact form ori¥ for which A is the characteristic
vector field(Reeb fielgl.

PROOF. First note that)(A,) = 2(—J&,) = 2(J&y, &) = s(w) =1 (w €
W). Moreover, from (2.5)dn = i*diz 2 = i*(dig 2 + 1:d2) = i*L:2 = i*$2. Hence,
n Adn"~1 # 0 onW showing that is a contact form. Noting (2.3), (2.8) and that bgth
andy,y commutes with each other, it is easy to see that

w’;ktgf? =t 0On M

vin=n onW.
LetNull n = {X € TW | n(X) = 0} be the contact subbundle. Sinfgn(X) = An(X) —
n([A, X]) and L4n = 0 from (2.9), if X € Null n, thenn([A, X]) = 0. Moreover,

dn(A, X) = (An(X) — Xn(A) — n([A, X]))/2 = 0, which implies that/n(A, X) = 0
forall X € TW, showing thatd is the characteristic vector field. O

(2.9)

Recall thatR — M 5 W is a principal fiber bundle witf'R = (£). By Lemma 2.3,
each pointc € M can be described uniquely as= ¢, w. By (2.8),
T oYp(x) =7 o Yo(pw) =1 0@ (Yow)
=moiyg(w) =¢'g(w)=vy'gon(x),
and henceg,.(—J§) = A. Asi, . Xy — Xy = a - & for some functioru, by (2.6),7 maps

(€, J&€}* isomorphically onto Nully. Since{&, J£}* is J-invariant, there exists an almost
complex structurg on Null  such that the following diagram is commutative:

(2.10)

(£, 7} =5 Nully

(2.11) lf l’

(£, 763 =5 Nully.
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PROPOSITION 2.3. The pair(n, J) is a strictly pseudoconvegseudo-Hermitian struc-
ture onW.

PROOF Let¥ : Nully x Nullp — R be the bilinear form defined by (X,Y) =
dn(JX,Y). There existX, Y e {& J&}* such thatr,X = X, n,Y = Y. Thenitis
easy to see thatJX = JX, i,Y = Y mod&. Usingdn = i*2 as above¥ (X, Y) =
i*2(JX,Y) = 2(JX,Y) = h(X,Y), and henceV is positive definite. By definitiony is
strictly pseudoconvex. LgE, J£}+ ® C = BL0 @ B! be the canonical splitting of. Then
we prove thaf B0, B1.9] ¢ BLO, LetX, Y € BLO. SinceT1M = (¢ —iJ&} @ B1O (where
i = /1) andJ is integrable oM, [X,Y] € TYOM. Put[X,Y] = a(g —iJg) + 4 for
some functiorw andZ € B0, As 7, (— J§) = A from (2.10), 7.([X,Y]) = aiA + 7. Z
By definition, Zin(n*X 7.Y) = —n([n*X 7.Y]) = —ai. On the other hand, sincg is
J-invariant,2(X, Y) = O foranyX, Y € BL0. As abovej,7,X = X modé, similarly for
Y, we obtain thatln (. X, 7,Y) = 2(i,7. X, i7.Y) = 2(X,Y) = 0. Hence,a = 0 and
so[X,Y] = Z € B0, If we note thatr, : {¢, J€}= ® C—Nully ® Cis J-isomorphic by
(2.11), then Nulh ® C = 7,B*° @ 7, B%! is the splitting forJ, in which we have shown
[ BYO, 7, BL-0] c 7, BLO. Therefore/ is a complex structure on Nujl O

Consider the group of pseudo-Hermitian transformation&Vom, J):

(2.12) PSHW,n,J) ={f e Diff (W) | f*n=mn, fy oJ = J o fi onNull n}.

COROLLARY 2.1. The characteristic vector field generates the subgroy@’,},cr
consisting of pseudo-Hermitian transformations.

PROOF. By (2.3) and (2.9)y/; (resp.y;) preservedé, J&}* (resp. Nullp). Then the
equality o ¥y = ¥’y o from (2.10) with diagram (2.11) implies that/, /7 = Jy;, on
Null ». Therefore
(2.13) {¥/}er C PSHW, 7, J). m

Proof of Theorem A
2.2. Parallel Lee form. Let agaip, be the 1-parameter subgroup generated by
According to the notation in Lemma 2.3, [&f,,, € T,,.,M be any vector. We have.Y,,,, €
T, W, and henceé.,.Yy,uw — ¢—1. Yy, w = A&, fOr some numbek. Then,
lég(i*n*ywtw) = 2y, i*ﬂ*er,w) = 2w, w—t*Ytp,w) + 2w, Aéw)
= ﬁl):Q(ﬁDz*%w, Yyw) = e_tQ(§¢[w, Ypu) = e_tlég(ytp,w) .
By the definition (2.6),

(2.14) n'n =72 = e g2, equivalently,e’7¥n = 1: 82
As 2 = L2 = dig 2 from (2.5), we obtain that
(2.15) de'n*n =2 on M.

For the given l.c.K. metrig, the Kéhler metrid: is obtained a® = ¢~ - p*g where
dt = 6. Asw is the fundamental 2-form af, note that2 = ¢~ - p*w.
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We now consider o/ the 2-form:
(2.16) O =2¢"-d('n*n) (=27 2).
Theng(X,Y) = @(_JX, Y) is al.c.K. metric. Pub = —dr. Then, ad® = —2¢~'dt A
d(e'w*n) = —dt A ©, we see that is the Lee form ofj.

LEMMA 2.5. 6 is parallel with respect tg (V96 = 0).

PROOF. First we determine the Lee fiefd (whered (X) = g(X, 6%)). We start from:

GEY)=0OUEY)=2e""("dt A n+e'dn*n)(JE,Y)
= 2(dt AN +drtn)(JE, Y) = 2(dt A*n)(JE, V),

becausel = —x, J¢ is the characteristic vector field of the contact foynAs before, a point

x € M can be described uniquely agw for somew € W. In particular, by Lemma 2.3, the
t-coordinate ofx is . Noting thatyy (x) = ¢;Yew andyyw € W, by the uniqueness of the
t-coordinate ofiyy (x), r (Vg (x)) = t. From (2.7),

(e _dr
(2.17) di(—J&) = dt( 70 (x) 9=0> =
The above formula becomes:
gEY)=2dt A n)(JE,Y) = —dt(Y)n(—A)
=dt(Y)=—0(Y) = —g(¥,6%,

0=0

(2.18)

proving thatd? = —&. Next we observe that the flofy, };cr acts by isometries with respect
to 3. As gy is holomorphic, it is enough to prove that eaghleaves® invariant, but

e = Ze_wl?’d(e“’jtgoé‘n*n) =2 g T a*n) = 27 d(e'n¥n) = 6 .
ThusLy:5 = —L:g = 0. Now we puto = 6 in the equality(L,:7)(X, Y) + 2do(X,Y) =

25(Via*, Y), valid for any 1-formo, take into accountd = 0 and obtairv74% = 0, which
is equivalent withv96 = 0, sod is parallel with respect t§ as announced. O

By the equation (2.16); is conformal to the lifted metrip*g:

(2.19) O = - p*w (equivalentlyg = u - p*g),
whereu = 2¢~+9) . M—R* is a smooth map. We finally prove:

LEMMA 2.6. m1(M) acts by holomorphic isometries §f In particular, 71(M) leaves
0 invariant.

PrROOF. We prove the following two facts:

1. y*n*n = n*nforeveryy € m1(M).

2. y*e' = p(y) - e, wherep : m1 (M) — RT is the restriction of the homomorphism
defined in (2.1).

First note that aR = {¢,} centralizest1(M), y.& = & fory € w1 (M). As y is holo-
morphic,y,J& = J&. Sincerr1(M) acts onM as holomorphic homothetic transformations,
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(i.e.,y*2 = p(y) - 2), m1(M) preservesé, J&}+. If we recall thatr, : {£, J€}- — Null 5
is isomorphic, then foX e {&, JE}L, y*n*n(X) = n(meysX) = 0. As—m, JE = A is the
characteristic field ofy, it follows thaty*z*n(J&) = n(m.ysJ&) = n(mJE) = —1. This
shows thay*7*n = 7* on M. On the other hand, if we noje& = &, then

Y (e2)(X) = 2, v X) = 2(v:&, yuX) = v R(E, X)
=py) - 2, X)=py) 2(X),

wherep(y) is a positive constant. Applying* to 7*n = e~ - 1 §2 from (2.14), we obtain
y*e . p(y) = e . Equivalently,y*e’ = p(y) - ¢'. This shows 1 and 2. From (2.16),

y 0 = y* Qe d(e' 7w ) = 20() e d(p(y) - €'yt

=2¢" . dn*n) =06.

Sinceg(X,Y) = O(JX,Y), m1(M) acts through holomorphic isometriespfWe have that
6(Y) = g(¥,6% = —g(¥, §) (Y € TM) from (2.18). Then,

YY) = —g(Y. ) = —g(nY. &) = —g(¥. §) = 6(Y). 0

From this lemma, the covering map: M — M indl{ces al.c.K. me:[ri@ with parallel
Lee formé on M such thatp*§j = g andp*d = 6 with V9 6(p.¥) = VZ(Y). Applying
y* to both sides of (2.19), we derive
yg=g=wn-p", y'u-ypg=yn-pg.

Thereforey *u = 11, which implies tha factors through a majp : M—R* so thatp*§ =

p*(ii-g). We haver - g = g. The conformal class af contains a l.c.K. metrig with parallel
Lee formé. This ends the proof of Theorem A. O

As to Corollary A in the Introduction, we recall the following. (Compare [18], [6,
p. 37].) Let(M, g, J) be a compact, connected, non-Kahler, I.c.K. manifold with parallel Lee
form 6. Then the following results holdi(6%, 6%) =const,

LyzJ =Lyg:d =0, Lgzg=Lyp:g=0.

ThenZ = 6% —iJ6*% is a holomorphic vector field becaugg®, J6%] = 0 (cf. [12]). By
Definition 1.1,Z = 0% — iJ6% is a holomorphic I.c.K. vector field.

PROPOSITION 2.4. The real vector field§® and J6* satisfy the following

1. Aflow generated by the Lee fiedd lifts to a one-parameter subgroup of nontrivial
homothetic holomorphic transformations with respec&to

2. Aflow generated by the anti-Lee field/6* lifts to a one-pararater subgroup con-
sisting of holomorphic isometries with respect2o

PROOF. Let{¢,};cr be the flow generated W on M and{¢;}cr its lift to M. Denote
by & the vector field onM induced by{g;}. Then, p.& = 6%. Because is parallel,{¢;}
(resp.{¢;}) acts by holomorphic isometries with respectjtéresp. p*g). In particular,{¢;}
preservep*w. Then, for2 = e~ p*w, we havep;2 = e WTOQ Asp i (@ )icr—RT
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is a homomorphism and(¢;) = ¢~ ™7 is constant for each € R (dimc M > 2), we
can describe as (¢t — ) = ¢ -t for some constant. Recall that is the K&ahler metric
associated tad2. If {¢,} acts as holomorphic isometries with respect{ahen the above
equation implies that = 0, i.e.,¢;t — v = 0 for everyr, and sal¢r = 0. On the other hand,
asdt = p*6, we have:

0= Let =dt(§) = 0(p«) = 6(6%) = const > 0,

a contradiction. Thusp2 = p(¢)2 = "2 with ¢ # 0. Hence,{¢;};cr is a group
of nontrivial homothetic holomorphic transformations isomorphid&toOn the other hand,
let (v, };er (resp.{v:}:cr) be the flow generated by J6% on M (resp.—J& on M). As
p(JE) = Ip:& = JO,

Lyet =dt(JE) = p*0(J&) = 0(JOF) = g(JO",6%) =0,

and hence);"t = t for everyr € R. By the fact thatl ;5: g = 0, L;p:0 = 0. This implies
thaty 2 =y e "y p*w = e_’p*lﬂt*w =e Tpfw = 2. O

LetR— M 5 W be the principal bundle, wheR = {¢;};cr (cf. Lemma 2.2). Define
the centralizer oRin H(M, £2, J) to be:

DEFINITION 2.1. Cx(R)y={f e H(M,2,J) | fow, =g, 0 f forall t € R}.

As C centralizes the fundamental gromp(M), noting the remark below (2.1), we have

(2.20) m1(M) C Cx(R) .

LEMMA 2.7. There exists a homomorphism: Cy(R) — PSHW, n, J) for which
7 : M — W becomes-equivariant. Moreoverthere exists a splitting homomorphism:
PSHW, n, J)=>Cx(R).

PrROOF. By definition, any elemenf € Cy(R) satisfiesf,.& = &. As f*2 = p(f)S2,
choosinge® = p(f), puty = ¢_so f. Then,y*2 = 2. In particular,y leavesW invariant.
Let y’ be the restriction of to W (i.e.,i o ¥y’ = y). Using (2.6) and..§ = &, we have that
Y''n = y*Le2 = L2 = n. Hencey’ € PSHW, n, J). If we definev(f) = y’, then
it is easy to see that is a well-defined homomorphism. Let= ¢,w be a point inM. As
(x) = w, w(fx) = 7(psy (prw)) = w(@spriy'w) = w(iy'w) = y'w = v(f)7(x), sox is
v-equivariant.

Fory € PSHW, 1, J), we define a diffeomorphisg : M— M to be

(2.21) y(x) =v(gw) =gyw.

By definition, 7 o y = y o w and ther-coordinate satisfies that*s = ¢. By (2.15) and
y*n = n, it follows thaty*2 = d(e" 'n*y*n) = d(e'n*n) = 2. To see thay : M—M
is holomorphic, notice that.& = &. As y (Yyx) = y (Yoprw) = v (@i’ gw) = @iy ' gw,
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andy, A = A,

. - (dig deiiy (Y'qw)

Vu(—JEx) = J/*<—(x) ) = (7

’ do oo do 6=0
2.22 . (dy’ . .
( ) = QrylxVx _O(w) = Qrelx Ve Aw = QryisAyy
do 6=0

= @ (=JEpw) = _‘]E];X .

Hence,y preservedé, J&€}+. Since the complex structute : Null —Null 5 is defined by
the commutative diagram (2.11)y. (. X) = y.J (. X) for X e {&, J&}* by definition.
Thenm . J(X) = Jyum(X) = Jmp(X) = m.J7.(X). As a consequencg, o J =
J o7, onM. Hence,j € Cx(R). Itis easy to check that(y) = 7 is a homomorphism of
PSHW, n, J) into C1(R) such that o ¢ = id. O

REMARK 2.1. Fromthislemma, thereis anisomorphisgAR) ~ Rx PSHW, n, J),
where each element 6%, (R) is described ag; - g(«) fors € R, « € PSHW, n, J). It acts
onM as

@s - q () (@ - w) = @qy - QW
for which there is an equivariant principal bundle:

R— (Cx(R), 1) U5 (PSHW, 5, 1), W).

2.3. Central group extension. The material in this subsection and, in particular, Propo-
sition 2.5, will be needed in Section 4.
Consider the exact sequence:

(2.23) 1— R—> Cx(R) —> PSHW, 5, J) —> 1.

Suppose thaR N 71 (M) is nontrivial. Then it is an infinite cyclic subgroupsuch that the
quotient groufR/Z is a circleSt. PutQ = v(z1(M)) c PSHW, 5, J). We have a central
group extension:

(2.24) 1—>Z—>nl(M)—v> 0—1.

The above principal bundle restricts to the following one:
(2.25) (Z.R) — (uu(M). 31) &2 (0, W),

As both R and1(M) act properly onM, Q acts also properly discontinuously (but not
necessarily freely) o'W such that the quotient Hausdorff spad& Q is compact. Since
p(2) c p(R) = RT from § 2.1,p(2Z) is an infinite cyclic subgroup dR*. We need the
following lemma. (Compare [10], [5].)

LEMMA 2.8. Letl— Z— m1(M)— Q —1be the central extension as giver(h24)
Then 1 (M) has a splitting subgroug”’ of finite index

1—Z—7 — 0 —1.

O — ©



——

212 Y. KAMISHIMA AND L. ORNEA

In particular, there exists a subgroufi’ of 7/ which maps isomorphically onto a subgroup
Q' of finite index inQ.

PrRoOF. Consider the homomorphispi = plr, ) : 71(M) — RT from (2.1). Then,
o' (1(M)) is a free abelian group of rarkk > 1. If we note thaip’(Z) is an infinite cyclic
subgroup ofo’ (r1(M)), then we can choose a subgradpf finite index inp’ (1 (M)) such
that p’(Z) is a direct summand iG; G = p'(Z) x Z¥-1. Putnr’ = p’_l(G) and H' =
p/_l(Zk‘l). Then,z’ has finite index int1(M). Obviously,v mapsH’ isomorphically onto
v(H") = Q’, which is of finite index inQ. O

ProPOSITION 2.5. The subgrou@’ acts freely oW so that the orbit spac®#/Q’ is a
closed strictly pseudoconvex pseudo-Héan manifold induced from the pseudo-Hermitian
structure(n, J) on W.

PROOF. Let f = v'"1: Q’— H' be the inverse isomorphism. For eache Q' there
exists a unique elemente’) € R such thatf («') = ¢, ) - ¢(@’). As we know thatQ acts
properly discontinuously oV from the remark below (2.25), the stabilizer at each point is
finite. Suppose that'w = w for some poiniv € W. Asa’ € Q,, («')! = 1 forsomd. Since
¢ is a central element angis a homomorphism, £ £ ((«)) = @) - 4((@)") = @iae)-
Thus,A(¢') = 0, i.e., f (&) = g(’). By the definition of the actiow’, M), f () (g;w) =
g@)(gw) = g’w = g;w. As 7’ acts freely oM, f(¢/) = 1 and sax’ = 1. If we note
thatQ’ ¢ PSHW, n, J), then(z, J) induces a pseudo-Hermitian structdfie /) on W/Q’.
Here we use the same notatigrfor the complex structure on Nulj. O

3. Examplesof I.c.K. manifoldswith parallel Leeform. In this section we present
an explicit construction for the Hopf manifolds.

Let S7~1 = {(z1,...,24) € C"||z1° + - - - + |z4]% = 1} be the sphere endowed with
its standard contact structure

n
(3.1) no=y (xjdyj —yjdx;),
j=1

wherez; = x;j ++/—1y;. Let Jo be the restriction of the standard complex structur€’ofo
C" —{0}. Itis known that the group of pseudo-Hermitian transformations,®3H?, 1o, Jo)
is isomorphic with Un) (see [21], for example). We define a 1-parameter subgfoupr C
PSH %=1, 5o, Jo) by the formula:

Vi1, ... zn) = (€21, ..., €72, ,

where i= /-1 anday, ..., a, € R. The vector field induced by this action is
n
d d
i\ a<<x<__y<_)
; J J dyj J dx]-

and satisfiego(A) = a1|z1|? + - - - + anlznl?.
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Now we require thatio(A) > 0 everywhere o5?*~1. Then the numbers, must satisfy
(up to rearrangement):

3.2) O<a;<---=<ay.
Define a new contact formy on the sphere by
1
na = m 70 -

The contact distributions ofig and n4 coincide, but the characteristic field @f; is A:
na(A) = 1, 14dns = 0. As A generates the flof,},cr € PSHS? 1, 5o, Jo), note
thaty, o Jo = Jo o ¥+ on Null 4. Define a 2-form on the produBt x $%*~1 by:

Q4 =2d('prina), teR.

Here pr: R x §2~1 — §2-1 is the projection. IR = {¢,}scr acts onR x $%*~1 by left
translationsip, (¢, z) = (s +1, z), then the groufR x PSHS?*~1, 54, Jo) acts by homothetic
transformations with respect 124:

(3.3) (s X )" R4 =¢"- 24, oecPSHS? L na, Jo).

In general, PSKs2'~1, 4, Jo) is the centralizer ofy, };cr in U(n). In view of the formula
of ¥, PSHS2'~1, 54, Jo) contains at least the maximal torus of) :

(3.4) T" C PSHS? L, na. Jo) .

(For example, if all; are distinct, PSKS?' 1, n4, Jo) = T".)

Let N = d/dt be the vector field induced dR x %'~ by theR-action. Taking into
account thaf (R x $2'~1) = N @ A @ Null n4, we define an almost complex structuke
onR x §2'~1 py

JANZ—A, JAAZN,
JaINullna = Jo,
and show its integrability. Indeed, let
TRx S H@C={(T0+ A -iN) @ {T 4+ (A +iN))

be the splitting orresponding ta/, (here7% + 701 = Nully4 ® C). As J4|Null 4 =
Jo, [T10, 7011 < 110, Recalling thatA is the characteristic field of4, we see that
[X,A] € Nullys forany X € Nullps. If X € T19 then[X, A — iN] = [X, A] =
lim;o(X — ¥_1.X)/t. Noting thaty, € PSHS?'~1, na, Jo) (i.e., Y1 Jo = Jovix),
JalX, A —iN] = JolX, A] = lim JoX —VnJoX _ [JoX, Al
t—0 t
=[iX,A]l=i[X, Al =i[X, A —iN].

Thus[X, A —iN] € {T*0 + (A — iN)}. HenceJ, is integrable. By the definition afy, it
is easy to check that the elementsfok PSHS2'~1, 54, Jo) are holomorphic with respect
to J4. Moreover,£24 is J4-invariant. Henceg24 is a Kahler form on the complex manifold
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(R x §2=1, J4) on whichR x PSHS?"~1, 54, Jo) acts as the group of holomorphic ho-
mothetic transformations. Define a Hermitian megficand its fundamental 2-ford4 by
setting

op=2¢"-024.

(3.5) ) i -
gA(X,Y) =wa(JaX,Y), X, YeT(RxS" ).

(Compare (2.16).) By (3.3)R x PSHS%'~1 54, Jo) acts as holomorphic isometries of
(Ga, J4). When we choose a properly discontinuous gréug R x PSHS?'~1 54, Jo)
acting freely onR x $2'~1, g4 (resp.@4) induces a Hermitian metrig4 (resp. the funda-
mental 2-formw ) on the quotient complex manifol®R x $2*~1/I", J,), where the complex
structureJ, is induced fromJ,. We have to check thajy is a l.c.K. metric with paral-
lel Lee form. Letp : R x $2~1 5 R x §%*~1/I" be the projection so thgi*ws = @4.
Sincews = e - 24, we havedvs = —dt A @a. Thusga is a l.c.K. metric with Lee
form d(—r) onR x §2'~1, If we note that the grouR x PSHS2'~1, 54, Jo) leavesd(—1)
invariant, i.e.,(¢; x a)*d(—t) = d(—(s +1t)) = d(—t), thend(—r) induces a 1-forn®
onR x §%*~1/I" such thatp*9 = d(—r). The equationidy = —dt A @4 implies that
dwp = 0 Aws ONR x §271/I". Asdb = 0, g4 is a |.c.K. metric with Lee forng. For
the rest, the same argument as in the proof of Lemma 2.5 can be applied to shéwsthat
the parallel Lee form ofi4. Finally, we examine the complex structufg onR x %=1/,

Let H : R x $2~1 — C" — {0} be the diffeomorphism defined by
H(t9 (Zl7 ey Zl’l)) = (e_altzla LR ) e_antzn)9

wherefas, ..., a,} satisfies the condition (3.2). We shall show théats (J4, Jo)-biholomor-

phic. We have:

dH(t +s,2)
dt

—ais ans

Hy(Ng,z) = =(—ay-e Lyee., —p-€ M

=0

“Zn)
dt

t=0>>
= —(iale_al‘YZL cee, iane_“”szn) = JOH*(N(s,z)) .

FromH.(As,z)) = —JoH«(Ns,z)), we deriveJoH (A ) = Hi(Nis.z)) = Hi(JaA). Now
let X € Nullyy c 7521 and leto(r) be an integral curve ok on $2'~1: 6(r) = X,
¢(0) = X;. We can viewX as a pairX, = (s, 6(0)). Then

d .
H*(JAN(S,z)) = H*(_A(s,z)) = _H*<<S» _(elmlzl» ey elta,,Zn)

d
H(X(5.0) = - H (s, 0(1)]=0 = (e761(0), ..., e 6, (0)).

From this we obtain
Hi(JaX(5,2)) = Hi((s, Jo5(0)) = Hy((s, (i61(0), ..., i6,(0))))
= (ie7%61(0), ..., ie "% 6,(0))
= Jo(e ™61(0), ..., e " 6,(0)) = JoH«(X(s.7)) -
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ThereforeH : (R x §%*~1, J4) — (C" — {0}, Jo) is biholomorphic.

Let Hol(C" — {0}, Jo) be the group of all biholomorphic transformations. We can obtain
a faithful homomorphisnR x PSH %=1, 54, Jo) — Hol(C" — {0}, Jo) by associating to
eachy € Rx PSH %1, 54, Jo) the biholomorphic mapf o y o H~1. Let I'y; be the image
of I''in Hol(C" — {0}, Jo).

DEFINITION 3.1. The quotient complex manifol€” —{0})/ Iy is called a Hopf man-
ifold.

Since our magH induces a holomorphic diffeomorphishh : (R x $2*~1) /I — (C" —
{0})/ Iy, letting H*g = g4 for thel.c.K. metricgs on (R x $§%*~1)/I", we have shown:

THEOREM 3.1. The Hopf manifoldC" — {0})/I'y admits a l.c.K. metrig; with par-
allel Lee formg.

By (3.4), T" c PSHS%~1 4, Jo). Chooses € R — {0} andn complex numbers
c1,...,cn € 8L Let(s, (c1,...,cn)) € Rx PSHS?~1 n4, Jo) and consider an infinite
cyclic subgroufZ generated by this element. Then the corresponding gZeuis generated
by the elemente™* . ¢1,...,e %% . ¢,) acting onC" — {0}. Let A = (A1, ..., A,), With
Lj=e % .cjand soZy = ((A1,...,%,)). The condition (3.2) ensures that the complex
numbers ; satisfy

0< Myl =--- =fral < 1.

PutM, = (C"—{0})/Zy. We callM 4 aprimary Hopf manifold of typel. Indeed, fon = 2,
one recovers the primary Hopf surfaces of Kahler rank 1. In particular, we derive Theorem B
in the Introduction.

REMARK 3.1. Note that the manifold& 4 are all diffeomorphic withs® x $%*~1 and
that forcy = --- = ¢, = L anda; = --- = a,, we obtain the standard Hopf manifold, the
first known example of a |.c.K. manifold with parallel Lee form, cf. [18].

In [7] a l.c.K. metric with parallel Lee form is constructed on the primary Hopf surface
M, 5, = (C?—{0})/I', I = Z being generated b1, z2) — (A1z1, A222), |A1] > |A2| > 1.
There the diffeomorphism betweét, , ,, and St x $%is used to construct a potential for
the Kahler metrid: (in the notation of the present paper) on the universal cover. The same
diffeomorphism is then used to transport the |.c.K. structur§or $° and to show that the
induced Sasakian structure 6A is a deformation of the standard Sasakian structure of the
3-sphere. See also [1] where a complete list of compact, complex surfaces admitting l.c.K.
metrics with parallel Lee form is provided.

4. Lee-Cauchy-Riemann transformations. In this section, we study the group
Aut| cr(M) described in the Introduction.

Let{d,0 0 J,0% 0%}4=1... ,—1 be aunitary, local coframe fikadapted to a |.c.K. man-
ifold (M, g, J) with parallel Lee form. Consider the subgroGpof GL(2n, R) consisting of
the following elements:
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1 0 0 0
0 u v¥ ¥
ueRT,vWeCUYeUm—1)
0 0 ﬁUg 0 B

00 0 Julg

Let G—P— M be the principal bundle of th&-structure consisting of the above
coframedd, 6 o J, 6%, 6%}. If we note thaiG is isomorphic to the semidirect produ@t— x
(U(m — 1) x RY), then the Lie algebrg is isomorphic toC"~ 1 % u(n — 1) + R. Note that
the subgrou” 1 is of even rank, while«(n — 1) + R is of order 2. In particular, the matrix
groupg C g/(2n, R) has no element of rank 1, i.e., itédliptic (cf. [11]). As M is assumed to
be compact, it is known that the group of automorphiginsf P is a finite dimensional Lie
group.

DEFINITION 4.1. The group of all diffeomorphisms @f onto itself which preserve
the aboveG-structure is denoted by Augr(M, g, J, 0) (or simply by Aut cr(M)). We
call Aut_ cr(M) the group of Lee-Cauchy-Riemann transformations on a |.c.K. manifold
(M, g, J) adapted to the parallel Lee forfn

By definition, if f € Aut_cr(M), thenf* : P— P is a bundle automorphism satisfying
fro=e0,
f*® o J)=x- (0o J)for some positive, smooth function,
O =Vr-0PvE + 00 ) w*,
fH0% =n-0PVE + @0 d) 0

(4.1)

for functions Vg‘, w® with values in Un — 1), respectively inC. Note that the group of
holomorphic isometries(M, ¢, J) is contained in Autcr(M). In fact, an elemenff €
(M, g, J) satisfiesf*0 = 6, f*@ o J) = (6 o J) and f*w = w. Let (9%, J6*}* be the
orthogonal complement of the complex plane figlél, 6%} with respect tgy. It is obviously
J-invariant. If we observe thab|{6%, JO%}- = —i 3", 58450% A 67, then f*0* = 6P Ug,
0% = éﬂl_/g for some Un — 1)-valued function/g.

LEMMA 4.1. Any elemenif € Aut cr(M) preservegd®, Jo%}- and is holomorphic
on it.

PROOF. LetX e {6%, Jo%}L. The equationg ™0 = 6, f*(@ o J) = A - (6 o J) show
that
9(f+ X, 0%) = 0(f:X) = 0(X) = g(X,0%) =0,
(4.2) 9(fx X, J0F) = —g(J £ X, 0%) = —0(J . X) = —0 0 J (f.X)
=—A-00J(X)=—g(X, 00 =g(X,J6% =0.

Thus f, applies{6®, J6%}1 onto itself. Moreover, ifeg is a dual frame field t@* (simi-
larly for 6%), then the framé6®, 6%},—1 . ,_1 spang6?, J6%}+ ® C. The equationf*6% =

o’ o

.....
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VA 6PVE 4 (6 0 J) - w® implies that .65 = Vx - egvf (similary for £,6%). Therefore
feod =Jo foon{0% Jo}+. 0

When a nhoncompact LCR flow exists on a compact |.c.K. maniféldith parallel Lee
form, we shall prove a rigidity similar to the one implied by a noncompact CR-flow on a
compact CR-manifold (cf. [15], [9]).

Proof of Theorem C

4.1. Existence of spherical CR-structure ®ifQ’. Letl—Z—n' > Q' —1be
the split central group extension from Lemma 2.8. Blit= M/x’. Then it is easy to see
that the Lee forn®, the LCR-actionC* lift to those of M’, so we retain the same notation
for M’. We putC* = S x Rt, whereR" = {¢,};cr is a LCR flow onM’. By hypothesis,
S1 = {¢:}:er induces the Lee field®. From 1 of Proposition 2.4$? lifts to a nontrivial
holomorphic homothetic flol® = {¢,};cr 0N M with respect ta2. We obtain a LCR-action
of R x RT on M for which R acts properly as before. Consider the commutative diagram of
principal bundles:

/ v

Z — T — 0o’

| | |
(4.3) R — (RxR-IM 2% RHwW)

| lr [

st — (stxRY M) B R W0
From the bottom line, the projectioh maps the groufR™ = {¢;},cr Onto a groupR* =
{¢:}1er acting onw/Q’.

LEMMA 4.2. The groupR™ = {¢,};cr acts by CR-transformations o/ Q’ with re-
spect to the CR-structure induced from the strictly pseudocopgexdo-Hermitian structure

@, J).

PROOF. As £ generates the flolRR = {¢;};cr, p«& = 6% on M’ by hypothesis and
so p : M— M’ maps the complex plane field, J&} onto {7, J6%}. By Lemma 4.1, each
$: € Aut cr(M') preserve$d?, (6oJ)"}L. Soits liftg, preserves thé-invariant distribution
(€, JEYE. Sincer, : ({€, JEY-, J) — (Null , J) is J-isomorphic and each, is holomor-
phic on{&, JE}*, 7, : ({67, (0 o JH)E}E, J) — (Null 7, J) is alsoJ-isomorphic through the
commutative diagram and thus eafHis holomorphic on Null; (¢;5 0 J = J o ¢;+). There-
fore, R" = {¢}:cr i a closed, noncompact subgroup of CR-transformatiori &’ with
respect taNull 7, J). ]

By this lemma, we obtain a compact strictly pseudoconvex CR-manitol@’ admit-
ting a closed, noncompactR-transformation®R™*. Then we apply the result of [9] to show
thatWw/Q’ is CR-equivalent to the sphesé”—1 with the standard CR-structure. In particular
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Q' = {1} and thusQ is a finite subgroup of PSHV, », J) from Lemma 2.8. By the definition
of spherical CR-structure (cf. [13], [8]), there exists a developing pair:

(, dev) : (Autcr(W), W) — (PU(n, 1), '~ 1)

for which dev is a CR-diffeomorphism and: Aut cr(W) — PU(n, 1) is the holonomy iso-
morphism. Here PWi, 1) = Autcr(52'~1) and Autcr(W) is the group of all CR-automor-
phisms of W containing the groupR™ and PSHW, , J) D Q.

As St (c C*) acts onM without fixed points (but not necessarily freely, i.e., with possi-
ble subset of exceptional orbigs - x for which the stabilizes? is a non-trivial cyclic subgroup
of 81; cf. [3]), the quotient spac#l/St = W/Q(~ $%~1/u(Q)) is an orbifold, so such a
finite subgroup? may exist.

On the other hand, we recall some facts from the theory of hyperbolic groups (cf. [4]).
The noncompact closed(R")-action ons%~1 is characterized as whether it is either lox-
odromic (= R™) or parabolic(= R) for which R* has exactly two fixed pointf0, oo} or
R has the unique fixed poirfbo} on §2*~1. Moreover, the centralizafpy, 1) (11 (R)) of
w(RT) in PU(n, 1) is one of the following groups up to conjugacy:

(4.4) RxUmn—-1 or Rt xUmn—-1).

Sincerr1(M) centralizeRk x RT, note thatQ centralizefR™ (cf. (2.24)). The holonomy group
w(Q) belongs taCpy. 1) (1L (RT)). As n(Q) is a finite subgroup, (4.4) implies that

(4.5) w(@) c U —1).

4.2. Rigidity of (M, g, J) under the LCR action dR*.  Let (5o, Jo) be the standard
strictly pseudoconvex pseudo-Hermitian structuresdtr (cf. (3.1)). By definition, there
exists a positive function on W such that

(4.6) devino=u-n.

By Lemma 2.4, we know that is the characteristic CR-vector field & for (1, J). If {¢//}
is the flow generated by, then note from (2.1.3) thdi)’,} ¢ PSHW, n, J). Because¥
is compact, PSHV, n, J) is compact. As PSHV, n, J) C Autcr(W), the closure of the
holonomy image«({y”,}) (which is a connected abelian group) lies in the maximal t@rtus
of the maximal compact subgroug4) in PU(n, 1) up to conjugacy. We can describe it as

n') = (9 ey reR

forsomes; e R(i = 1,...,n). Onthe other hand, let = dev.(A). Since dev is equivariant,
devy’,w) = u(y¥’',)deMw) on §2=1 = {z = (z1,22,...,20) € C"| |z1|2 + |ZZ|2 + .4
|zn|? = 1}, we have

duy’)) < d d .
4.7) Azziud;p’ =Zaj xjd_yj - yjﬁj . z=devw), z; =x;+iy;.
j=1
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Asn(A) = 1, we have

(4.8) u(w) = devino(A) = no(A) = Y a; - |z;[*.

j=1
Sinceu > 0 from (4.6), we can assume that, up to rearranging the order of indices
(4.9) O<ar<---<ay.

As dev! maps the pseudo-Hermitain structuyrg J) on W to (dev1* 5, Jo) on 21 we
put

(4.10) na = dev .

Using (4.8), we obtain

1
(4.11) 5-mo on $¥L

NA=<n .2
Z?:laj 1zl

When we note thaip = u’ - n4 whereu’ = u o dev'l, andT (R x $%'Y) = {d/dr, A} &
Null 5o, denote the complex structuve onR x §%*~1 by

d d
Ial— a4 A= L
(4.12) Agy =—A Jad=4

JAINull no = Jo.
(Compare §3.) Let Pr R x §%~152-1 pe the canonical projection. In view of (3.5),
setting
Qu=d -Pr'ny), aos=2e"-24,
gAX,Y) =04(JaX. Y),

we obtain a l.c.K. structuré2 4, J4) on the producR x $2~1 endowed with the group
R x PSH 2"~ 5 4, Jo) of holomorphic homothetic transformations.

(4.13)

PrROPOSITION 4.1. There exists an equivariant holomorphic isometry between the
l.c.K. manifolds(Cy (R), M, £2, J) and (R x PSHS?'™Y 4, Jo), R x 271, 2 4, J 4).

PROOF. LetG : M—Rx $2'~1pe a diffeomorphism defined (¢, w) = (¢, devw)).
Note that P G = devorr on M. As every element of,(R) is described ag; - ¢(«) from
Remark 2.1, define a homomorphigin: Cy(R)—R x PSHS?"~1, 5 4, Jo) by setting

V(s - q(a)) = (s, u(a)).
Recall that the actiog («) (¢;w) = ¢,aw from (2.21). Then,
G(ps - q(@)(@rw)) = G(@s4r - aw) = (s + 1, deMaw)) = (s + 1, u(a) dev(w))
= (5, u(@) (7, deMw)) = ¥ (¢ - (@) G(prw) .

Hence,(¥, G) : (Cr(R), M) — (R x PSHS?'~1 5 4, Jo), R x §2~1) is equivariantly dif-
feomorphic. Next, sinc&*r = r for thez-coordinate oR x $2"~1 and dev 4 = 5 from
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(4.10), it follows that
(4.14) G*24=G*d(e' - Prny) = d(eC" - G*Pry) = d(e' - n¥n) = 2.
By definition,G .& = d/dt. Moreover, whenx = g;w,
G (%)) = Gsw) = G(psiyy',w) = (s, dew(y’,w)) = (s, w(¥',) devw)) .
By (2.7) and (4.7),

dGy,

Gy (=J&) = dr (x)

d
t=0 ) dt Gx

ThusG.(J&) = J4G&. As G*24 = $2 from (4.14),G maps(&, J&}* onto{d/dt, At
Consider the commutative diagram:

TTx

(e, 7835, = (Nullp, J)
(4.15) lc* ldev*

(d/de, Ay*, T =% (Null no, Jo) -

Here note thail 4 = Jo on Null4 = Null no. ForX e {&, J&}T,
PLG.J(X) = dev.(J7: X) = Jodevirrs(X) = J4PLG+(X) = PrJ4G+(X),

thus,G.J(X) = J4G.(X). Hence,G is (J, J4)-biholomorphic. Moreover, a&*@® 4 =
G*(2e7'24) = 2712 = @ andg(X,Y) = O(JX,Y), we obtain thatG*j4 = g. There-
fore, (¥, G) induces a holomorphic isometry frotM, §, J) onto (R x $%*~1/w (r1(M)),
9A.JA). m

4.3. The HopfmanifoldR x $%'~1/w (1 (M)). We prove thaRx S?"~1/w (r1(M))
is a primary Hopf manifoldV/ 4, for someA obtained in §3. Each elementaf (M) is of the
formy = ¢, - g(a) for somes € R, wherev(y) = @ € Q = v(w1(M)). By the defini-
tion of ¥, ¥ (y) = (s, u(a)). We show that¥ (x1(M)) has no torsion element. For this,
if w(y) is of finite order (say/), then 1= (0,1) = ¥ (y') = (s, u(a')). Then,s = 0
so that¥ (y) = (0, u(«)). On the other hand, recall from (4.5) thatQ) c Un — 1)
up to conjugacy, and sp(Q) has a fixed pointvg € $%*~1. Since¥ (r1(M)) acts freely
on R x §2~1 while ¥ (y)(r, wo) = (¢, u(@)wo) = (, wo), it follows that¥(y) = 1.
Moreover, ify1 = ¢y - g(a1), 2 = @5, - q(a2), thenW¥ ([y1, y21) = (0, u([a1, a2]). For
the same reaso ([r1(M), r1(M)]) = {1}. Hence,71(M) is a finitely generated tor-
sionfree abelian group. If we recall from (2.24) that1Z — 71(M)— Q — 1 is the cen-
tral group extension wher@ is finite, thenz1(M) itself is an infinite cyclic group. Since
W (r1(M)) C R x PSHS?"1 54, Jo) and the projection map# (1(M)) onto ;(Q) in
PSH S~ 5 4, Jo), n(Q) is a finite cyclic group. As PSE2'~1, 5 4, Jo) has the maximal
torusT" (cf. (3.4)), we obtain that¥’ (71(M)) € R x T" up to conjugacy. A generator of
¥ (r1(M)) is described ass, (c1,...,¢,)) € Rx T". Noting (4.9), leth; = ¢~%*c; and
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A = (A1,..., ). By Theorem 3.1 and the remark belowR,x $2'~1/@ (71 (M)) is a pri-
mary Hopf manifoldM 4 of type A. This finishes the proof of Theorem C in the Introduction.
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