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Abstract. Representations of arbitrary real or complex invertible matrices as prod-
ucts of matrices of special type have been used for many purposes. The matrix form of the
Gram-Schmidt orthonormalization procedure #imel Gauss elimination process are instances
of such matrix factorizations. For arbitrarfinite-dimensional, semisimple Lie groups, the
corresponding matrix factorizations are known as Iwasawa decomposition and Bruhat de-
composition. The work of Matsuki and Rossmann has generalized the Iwasawa decompo-
sition for the finite-dimensional, semisimple Lie groups. In infinite dimensions, for affine
loop groups/Kac-Moody groups, the Bruhat decomposition has an, also classical, competi-
tor, the Birkhoff decomposition. Both decompositions (in infinite dimensions), the lwasawa
decomposition and the Birkhoff decomposition, have had important applications to analysis,
e.g., to the Riemann-Hilbert problem, and to geometry, like to the construction of harmonic
maps from Riemann surfaces to compact symmetric spaces and compact Lie groups. The
Matsuki/Rossmann decomposition has been generalized only very recently to untwisted affine
loop groups by Kellersch and facilitates the discussion of harmonic maps from Riemann sur-
faces to semisimple symmetric spaces.

In the present paper we extend the decompositions of Kellersch and Birkhoff for un-
twisted affine loop groups to general Lieogps. These generalized decompositions have
already been used in the discussion of harmonic maps from Riemann surfaces to arbitrary loop
groups [2].

1. Introduction. Inrecentyears, loop groups have been used to investigate families
of geometric objects. Uhlenbeck’s investiga of harmonic maps from surfaces to compact
Lie groups [24] represents the most outstagdexample for this. Later, the study of surfaces
of constant mean curvature (the Gauss map of which is harmonic with values in the homoge-
neous spacs? = SU(2)/U (1)) lead to a generalized Weierstrass representation for harmonic
maps from surfaces to compact symmetric spgt@ks By now, similar procedures have been
employed to investigate geometric objects like Willmore surfaces [15] and affine spheres [7].
In these two cases homogeneous spaces ocewhich the transitive group is not compact.
We would expect that in many examples suclitaagion will occur. We therefore feel that
it will be useful to establish, for general Lie groups and general homogeneous spaces, the
basic properties for loop groups, as needed for the papers mentioned above. The most salient
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features of loop groups used in [24], [10], [14], [7] are certainly generalized Birkhoff and lwa-
sawa decompositions for loop groups. In this note we therefore establish these generalized
decomposition theorems for loop groups associated with arbitrary Lie groups and illustrate
the results by several typical examples. We would like to point out that the Iwasawa decom-
position in the case of the loop group associated with a general semisimple Lie group has
been established by Kellersch in his dissertation [20]. In subsequent papers [2], [3], we plan
to generalize the method used in [24] and [10] to investigate harmonic maps into general Lie
groups and harmonic maps into generalizeahs\etric spaces. This paper deals exclusively
with untwisted loop groups. We plan to discuss the twisted case elsewhere.

2. Preliminaries. LetG be a connected real analyticd group which admits a faith-
ful finite dimensional continuous representation. Then by the Levi theorem [17, Theorem
18.4.3] there exist a reductive, analytic subgrdlipf G, and a simply connected, solvable,
analytic subgrou of G, normal inG, such thaiG can be written as a semidirect product

(2.1.1) G = HxB,

2.1.2) B~ AxN,

whereA is a simply connected, connected abelian Lie groupXinsia simply connected and
connected unipotent Lie group with Lie algebra¥® = [Lie(B), Lie(B)].
In particular,N is a normal subgroup a® and we have
(2.1.3 A=RP,
The complexified groups [17, 17.58° andH € inherit the properties ab andH . HenceH ©
is a reductive complex group, amgf is also a simply connected, solvable normal subgroup

of GC. ThenG® admits a faithful finite-dimensional complex representation and satisfies [17,
18.4]

(2.1.4) G® = H°xBC.

Being complex and reductivé/ € is the complexification of émaximal) real compact sub-
groupK of HC, thatis,H® = KC. On the other hand, being solvable and simply connected,
the groupB® decomposes canonically

(2.1.5) B® = AC. NC,

where A€ is abelian andv® = [BC, BC] is simply connected and is the nilradical BF
[5, Chap. 1, §5.3, Theorem 1]N€ is closed inBC and has the Lie algebra Liz®) =
[Lie(BC), Lie(B®)]. We remark that by [17, Theorem 17.4.1] we have

(2.1.6) BC¢/NC = AC.
Also we obtain
(2.1.7) AC =P,
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3. Loop groups.

3.1. Letp be a finite-dimensional faithful representation@? and forg : §* — G©
continuous, le§ = >, .z axrk, ax € p(G©), A € S1, be the associated Fourier series. Then
the loop groupA G defined by

AGC = {g: s* - G®| 7 is absolutely convergent

is a complex Banach Lie group with the Wiener topology ([19, Chap. I, 6.1], [8, §1]). We
shall also use its subgroups

AG ={ge AG®| g(1) € G forall 1 € S1},

ATGC = {ge AG®| gandg! extend holomorphically t®},

A~GC® = {ge AG®| gandg ! extend holomorphically t€ \ D},
whereD = {z € C|| z |< 1} andC denotes the Riemann sphere. We shall also denote

§=Zakkk, ao:l},

k<0

*

(3.1.1) AZGC = {ge A—GC

the meaning of the subscript “*" remaining the same when considering inst€adé of its
subgroups.

REMARK. A;G®N ATGC = {e}, wheree € G€ is the unity of the groug°.

3.2.  Any normal complex subgroup’ of a simply connected complex Lie grodp is
closed, and the associated bund@l, =, G’/ G”) admits an angtic sectionr : G'/G" — G’
such that the mapping

G'"xG'/G"= G, ({9~ g 1)

is an analytic manifold isomorphism [17, Chap. 12, Theorem 1.2, p.135]. Theg;’'fer
G, G” = BC, we have the diffeomorphisfa© x (GC/B¢) = GC, which at the loop group
level leads to the splittings

(3.2.1) AG® = AH® . ABC,
(3.2.2) A~GS= A~H®. A™BC,
(3.2.3) ATGC = ATHC . ATBC.

NOTE. Under the assumptions made in 3.1, the Wiener-Levi theorem [19, Chap. VIII,
Theorem 3.10] shows that the projectisnof the bundle(G’, =, G’/ G”) projects loops to
loops, i.e., the absolute Fourier series convergence is preserved by composition of loops
f : §1 — G’ with the mappingr. Therefore the isomorphist# ¢ = GC/BC leads to
an isomorphism of the corresponding loop groups.

4. The Birkhoff decomposition. Let NC be the nilradical ofB€. ThenN® <« G©.
We assume without loss of generality that in the given representaiidrs represented by
upper triangular matrices with units on the diagonal.
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4.1. Based onthe decompositions in 2.1 we have the corresponding decompositions for
loop groups
(4.1.1) AB® = AAC. ANC,
(4.1.2) AAC = ACP.

Hence the decomposition of the Wiener algebra into “plus part" and “minus part" is rephrased
as

(4.1.3) AAC = AZAC. ATAC,

This yields a unique representation of the elements 4f.
Using (2.1.6) and the Wiener-Levi theorem [19, Chap. VIII, Theorem 3.10], we obtain

(4.1.4) AB® = A=AC. ATAC. ANC.
One can even show, using the subscript notation in (3.1.1),
(4.1.5) ABC = A7AC. ATAC. ANC.

This yields a unique representation of the elements Bf.
4.2. The loop groupt N can be decomposed as follows.

LEMMA. Thereexistsa canonical diffeomorphism:
(4.2.1) AN® = A7NC x ATNC.

PROOFE Letn = Lie(N) be the Lie algebra o¥. We define
(4.2.2) n®—=n and n**D =, n®], k>o0.

Let {bkj}k>0, je(1...,m,) DE @ basis fon, where for fixedk, the{bi;} je1,... m,) form a basis of
a complement o **tD in n®_ Then every element € N can be written in the form

mi

(4.2.3) n= ]‘[ ]‘[ exp (aij.bij) -

i>0,=0

Letn € ANC. We define inductively

(4.2.4) Akt D =y 7 ® o, k=0, a9=47,
where
my my
— k)— k
(4.2.5) up =[] exp(—o) ™ bip). uf =T exp—a?" - i)
j=0 j=0

and where at each stép> 0, the coefficients:,((';)i are provided by the decompositions

m;
(4.2.6) a® =TTT] expe@ bip). off =)™+t e a=C+atc,
i~k j=0
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with the constant terms containeddﬁ;”. After a finite numbem of steps we obtaifi ™) =
e € ANC. Hence, denoting

ve =) te ATNC, i =wH e ATNC, ke{0,...,m—1},
we infer the decomposition
4.2.7) i=(y...v, - ..vf)e AN ATNC.
The diffeomorphism between the set theoretic product (4.2.1) and (4.2.7) follows from [8,
Corollary 3.1.4]. O

4.3. We are now able to prove the Birkhoff splitting for the solvable grBugJsing
the results of Section 4.1, the elementsid#® can be split also as follows.

LEMMA. ABC = A;BC . A*BC. More precisely, each element b € ABC, can be
written uniquely as

(4.3.1) b=b_-b, € A;B®- ATBC,

withb € A7 B¢ andb, € A+ BC. Moreover, AB© = A; B¢ x A*BC.
PROOFE  Using the decompositions (4.1.1) and (4.1.4), we have

(4.3.2 b=a_ay-n

with a_ € A7 A%, a; € AtACandn € ANC. Thenb = a_fia,, whereii = ayna,~t e
ANC. But, according to (4.2.1); has a decomposition of the forin=7i_ - ii;, € A7 N©-
ATNC, and hence

(433) b= a,fz,fz+a+ s

witha_ € A7 AC, a; € ATAC, i e A_NC andii; € ATNC. For elements of this form
all factors are determined uniquely by To verify the last statement we apply [8, Corollary
3.14]. O

4.4, Inview of (3.2.1) it will be useful to state the Birkhoff decomposition theorem for
reductive groups [23, 8.7], [8, 8.6]. With the notation of Section 2, we have

THEOREM. Let H beareal, reductive analytic group. Then
(4.4.1) AH® = A~H®. AYHC . ATHC,
where A HC consists of all homomorphisms from S into a maximal torusin HC.

REMARK. The decomposition (4.4.1) fdr, h = h_sh,, can be made unique if we
impose additional conditions [22, Coral§a5(c)] for the semisimple part off© and if we

assume for the center part &€ that in the decomposition = ¢_1"c,, we have, e.g.,
C+()\, = 0) =1.

For the general Birkhoff decomposition theorem 4.5 below we will need a decomposition
of ABC relative to soma € A?HC. For this we consider the adjoint action B on B¢
and the induced action of HC on ABC. The elements oftiY H® can then be realized [23,
5.1], [23, 8.7] as homomorphisms 6t into some maximal toral subgroup contained in
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HC. Decomposing LieB®) = @ Lie(B®), into weight spaces relative 6, we have [18,
Chap. 7.9] that acts onABC, by

(4.4.2) svgs T =2kv,, k=k(s,0)eZ.
Thus on the Lie algebra level we obtain

(4.4.3) Lie(A™B%) = A; + A,

(4.4.4) A7 NAT = {0},

where

(4.4.5) A7 = {x € Lie(A™B®) | sxs™! € Lie(A; B®)}
and

(4.4.6) AF = {x e Lie(A™B®) | sxs7! e Lie(a* B%)).

Itis easy to verify thatt; and A" are closed subalgebras of (i€ BC).

Let (A~ B®); and(A~B©){ denote the integral subgroups [5, Chap. 3J0f B¢ with
Lie algebrasA;” andA; respectively, them(A~B%)7s™1 ¢ A; B¢, whiles(A=B)#s™1 ¢
AT BC. Hence we can apply [8, Corollary 3.1.4] and obtain a) and b) of the

LEMMA. a) The groups (A~ B%); and (A~B©)} are Banach Lie subgroups of
A~ BC;

b) thegroup product of the two groups s diffeomor phic with the set product of the two
groups,

c) A~BC=(A"B%; - (A"BY}.

PROOF. It remains only to prove c). Sét" = (A~ B%)*. From (4.4.3) it follows (like
in [15, Chap. Il, Lemma 2.4]) that there are open sub&gtandU; contained inL; andL;
respectively, such thdt; - Uz is an open neighbourhood efin A~ BC. ThusL; - L} =
Uer-rers 1U1- Uzris openinA™BC. But Ly - L is also closed imd~B©. To see this
we consider a sequence

4.4.7) b b b, b eL;, by eL}.

Thensb™s~1 — sbs~1 converges ind B€. But part c) of Lemma 4.3 shows
(4.4.8) sb®ste A;B¢ and sb’s™te ATBC,

thereforesh™ andsbﬂf) converge separately. Sinég andL; are closed, we have
(4.4.9) b >b_eL; and b —b,elLl.

HenceL; - L} is closed inA B®. SinceB is simply connected, its universal complexification
BC is also simply connected [17, 17.5]. As a consequence, every laBp oan be deformed
into a point, i.e.,AB is path connected. Therefore the open and closed suljsetZ;
coincides withA BC. O
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4.5. Under the assumptions made in Section 2.1, the Birkhoff decomposition for the

loop groupAGC is provided by

THEOREM. Any element g € AG® can bewritten as
(4.5.1) 9=g9-Dg,,
where g, € ATGC, D = sbT € A?GC, and

(45.2) A%GC= | s(a"BG
seAdHC

and

(4.5.3) (A~BS ={be A"B®|sbs™t € A7 B},

(4.5.4) (A"BS ={be A"B®|sbs™t € A} BC).

The expression (4.5.1) will be called a Birkhoff decompositiorof ¢g. A representation of ¢
givenin theform (4.5.6) satisfying (4.5.7) and (4.5.8) isunique and will be called canonical

PROOF.  First we use the decomposition (3.2.1), which provigeshb € AHC- ABC.
Also, sinceH € is reductive, we can apply fdr ¢ AHC the Birkhoff decomposition Theorem
4.4 of AHC. Theng = hb can be rewritten as

(4.5.5) g=h_shyb=h_s(hybhy Hh,

wheres € AH® ¢ AHC. Buth bh,~1 € ABC, and hence by Lemma 4.3 it is decom-
posablefiybh ™t = b_b,, withb_ € A7 B®. Theng= h_s-b_b, - hy and, using the
splitting of Lemmad.4 into the subgroups (4.5.3),

A™B® = (A7 B%; . (4 BS},
we obtain the decomposition
(4.5.6) g= (h—(sb=s™Y) - (sbT) - (b1hy) =g_-D-g, .

So we haveAG® = A=GC . A9GC . ATGC. Moreover, by [22, Corollary 5 (c)] we can
assume

(4.5.7) sthoseU_,
and also have
(4.5.8) b=bt e A BC.

In this case all factors occurring in (4.5.6) are uniquely determineg. byAssume thay

has two representations of the special form claimed, the second one being indicated with a

“* »_ Then the described splitting procedure yieldssh;. = h_§hy andh;*b=bT b hy =

hy 119 b+b+h+ Ourassumptlon oh_ andi_ implies in view of [22 Corollary 5 (c)] that
h_ =h_, s=3§ andhy = h+ As a consequencé,_ b b, = b b+b+ Since we have
assumed tha’Lbir e AL BC, we obtain by Lemma 4.3 and Lemma 4.4 that the corresponding
factors are the same. O
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5. The“bigcdl” of the Birkhoff decomposition.

5.1. We consider the “big cell" for the groupG°,

(5.1.1) Pgc ¥ A-GC. A*GE.

Similarly, we define the big cell for the other loop groups like/¢ and ABC. For the
elements in the big cell we have two types of splittings. On the one hand wg/kave .g,
in Pgc, but alsog = 4.5 in view of (3.2.1). Comparing these two splittings, we have

PROPOSITION If g = hb = g_g, € Pgc, thenthe A HC-component splitsash =
h_h4 € Pyc, and in the decompositions (4.5.5) and (4.5.6) the element s is the unity e of
G°©.

PROOF Fromg = g_g, and (4.5.5) we obtain
(5.1.2) s(hybhh) = (hZlg0) - (9, h3h).

Using the splittings (3.2.2) and (3.2.3) for the right two factors, we obtain
shabhi®) = (h_b_) - (hsby) = h_hy (h3 b_hi)bs .
But (2.1.4) implies that = 4_h.., and using the Bkhoff decomposition oft HC [23, Chap.
8.6], we obtain
s =e.
Then, using (5.1.2)g = h_h, b, andg = hb impliesh = h_hy € Pyc. O

LEMMA. LetD =s-bT € A?GC. Then
(5.1.3) D=e¢eos=¢ and bT=e=s=c¢.

PrROOF The first equivalence follows from (2.1.4). Assume now= e. Then the
definition of (A~ B®){ impliesst = e. 0

The “big cell” Pc is characterized by

COROLLARY. ge AGCisinthebigcell Pgc ¢ AGC if and only if in the decomposi-
tion (4.5.6) onehas D = e.

PROOF Letg € Psc. Thens = e and the Lemma yield® = e. The converse of the
statement is trivial. O

5.2. Theelements d;c lyingin ABC splitin ABC, i.e., we have
PROPOSITION Leth = g_g, € PgcNABC. Thenb € Pyc,withb_ € A™BC, b, €
A1 BC,
PROOFE  Using the decompositions (3.2.2) and (3.2.3), we obtain
b=g_g, = ("% (4" %) = (4" g")(g" g g "

with ¢ ¢ A~HCandg? € A~ BC. Then making use of (2.1.4) and identifying the extreme
terms, we gey g¥ = e, which implies that the two elements are inverse to each other and
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contained inH. Altogether we obtairb = b_b; with b— = g 1g8¢% e A~BC and
by = g8 e ATBC.

LEMMA. Leth = g g, € PgcN ABC. If g_ € A;GC, thenb € Pyc, withbh_ =
g_ € A;B®, by =g, € ATBC.

PROOF Using the decompositions (3.2.2) and (3.2.3), we obtain

b=g_ g, =(g"g%)4" %) = (4" g (g 9B gk .

Sinceg? € Ay HC andg® e A BC, the relationg_g, = e impliesg? = g = e, which
proves the claim. O

5.3. Based on this result, we can prove the
THEOREM. The*“bigcell” Psc isopen and densein AGC, and the mapping
ATGE x ATGC > AGC
provides a surjective submersion onto the big cell.

PROOF The proof follows the one given in [23, Chap. 8] and [10, Chap. 2]. pet
L?(S%, C) = x— @ x4, where

X+ = {n+ EX|N+= Zznk",zn € C},
n>0
X = {n €x ‘n => w2 eC}.

n<0

Let ¢ be the non-trivial holomorphic section of the dual of the determinant bundle
(Det*, w, Gr(x)) (see, e.g., [10, 2.10]). Then, using the faithful representaién —
SL(m, C), we see than G admits a natural representati?fG® — G Lreg(x). Moreover,
for the GrassmanniaGr(x) we obtainGr(x) = GLres(x) - x+- Using (4.5.1) forg =
g_Dg,, we have

V(=19 -D-gy - xp)=71(_D-x+),
and hence,

W(g) A0 1(D.x1) £0& D e A~SL(m,C)- ATSL(m,C),

where we used thatis invariant under lefd ~ G translations (see, e.g., the proof of Lemma
2.4 in [10]). Also, from Corollary 5.1 we know € Pszc < s = e & D = e. Therefore

g € Pgc ifand only if & = 0. Since¥ is not the constant map with value B,= 123 (0N
{0}} = AGC\ w10} is open and dense inGC. O

6. Thelwasawa decomposition. Let G be a connected real Lie group which admits
a faithful finite dimensional continuous representation.

6.1. Firstwe consider the reductive subgrdpf G introduced in Chapter 2. We have
a decomposition of the reductive subgralipn the form of a semisimple Lie groupand a
compact abelian Lie groufi, H = S - K. Also, we haveH© = sC . KC.
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The generalized Iwasawa decomposition for reductive groups is provided by the follow-
ing result of Kellersch [20, Chap. 4].

THEOREM. If H isa connected reductive Lie group admitting a faithful finite dimen-
sional representation, then

(6.1.1) AH® = AH - A"H®. ATHC,
where A" HC isa specific set of representatives for the double cosetsin (6.1.1) givenin [20].
For a brief description of A™ HC, see the Appendix.

REMARK. Roughly speaking, the seit” HC is as big as the set of all homomorphisms
of $1 into a maximal torus of/¢. More precisely, the elemnts of” H consist of “twisted
square roots" of such homomorphisms. For more on this see the Appendix. For examples see
Section 9.

6.2. Next we consider the solvable normal subgrdupf G introduced in Chapter 2
and its subgroupd andN. First we show

LEMMA. AAC = AA.ATAC,

PROOFE Inview of (2.1.7) and (4.1.2) we consider the decomposition

(6.2.1) AC= AR+ ATC

provided by

(6.2.2) Yok =) @+t + Y art =) zibe AR+ ATC,
keZ k<0 k>0 k<0

This implies the stated loop group decomposition
(6.2.3) AAC = AA - ATAC = (AR + (ATC)P.
O

REMARK. This decomposition can be made unique, if one requires that the constant
terms inA™ C are purely imaginary.

6.3. Also, for the nilpotent pat¥ of B we have an Iwasawa decomposition
LEMMA. The nilpotent loops decompose as follows
(6.3.1) ANC = AN - ATNC.

PROOFE This proof is analogous to the one in Lemma 4.2. Using the same notation,
every element € N can be written in the form (4.2.3). Léte ANC. We define inductively

(6.3.2) AtD =y a0 ut . k=0, a9 =nx,
where
mi mp
(6.3.3) Up = 1_[ eXp(—a]Ef)* - byj), Mlj = l_[ exp(_a]g];)-i' - b)),

j=0 j=0
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and where at each stép> 0, the coeﬁicient&,ﬁ'j‘.)* andoz,({';)Jr are provided by the decompo-

sitions
m;
~ (k (k) (k) (k) (K)+

(6.3.9) A% = 1_[ 1_[ eXp(aij -bij), o = oy * +oy; € AR+ ATC.

i~k j=0
After a finite numberm of steps we obtaii™ = ¢ € ANC. Hence, denoting

=) te AN, v =@)HTeaTN®, ke{0,...,m—1},
we can decomposeas
(6.3.5) = (0. Um-1)- (W ;...v5)€ AN - ATNC.
O

REMARK. This decomposition can be made unique, if one requires that in (6.3.4) the
constant term in thet ™ C part is purely imaginary.

6.4. Combining the results of 6.2 and 6.3 we finally show the following
LEMMA. AB® = AB.A*BC.
PROOF  Using (6.2.3) and (6.3.1), fdr ¢ ABC, we have
b=an = aatnny = (a - (a_,_na;l)) -(agng) € AA - ANC. A+BC,
where we usedi N© < A B¢ and the Wiener-Levi theorem for loopsinB¢/ANC. Applying
(6.3.1) toayna * implies the claim. O

COROLLARY. Using unique decompositions for AA® and ANC, every b € ABC has
a unique decomposition of the form

(6.4.2) b=an.miainy,
where
(6.4.2) a€ AA, ne AN, aye ATA®, mi,nye ATNC,
6.4.3 ailbm+a+ € AN .
+

PrROOF The proof of the Lemma shows that evérye ABC has a decomposition
(6.4.1) satisfying (6.4.2) and (6.4.3). Assume we have two such decompositions. Then

(644) ada4 - a;lnm_,_a_,_n_,_ = &&4_ . &;lﬁl;l+&+fl+ .

Hence, in view of (2.1.2) we obtawu, = aa;, whencea = a anday = a4. Substituting
this into (6.4.4), we derive

(645) nmydaqny = I,’il/;l+a+fl+ .
Therefore

(6.4.6) a;l(nm+)a+ SRy = a_;l(mer)aJr SR
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Because of (6.4.3), this implies; *(nm)a; = a; (fmi)ay and ny = iy Butthen also
n:ﬁandm+=ﬁ1+. O

6.5. Finally we obtain the following Iwasawa decomposition for an arbitrary untwisted
groupAG©

THEOREM. Let G be a connected real Lie group, which admits a finite-dimensional
faithful representation. Then

(6.5.1) AG® = AG - A"GC - ATGC

isadigoint union of double cosets indexed by the middle terms

(6.5.2) A"GC= ) wBi-s,
seAmHC
where
(6.5.3) (AB* =5.AB .57,
More precisely, every g € AG® has a unique representation of the form
(6.5.4) g=hb-wsbih,
where
(6.5.5) g=hb
and
(6.5.6) h = hshy

is the unique representation of & € AH® = AH - A"HC . AtHC as described in the
Appendix,

(6.5.7) b= (shy) ™t bwsbrs™t shy,
(6.5.8) be AB,

(6.5.9) wesABs™Y, b, e ATBC,
(6.5.10) wsbys™t e ATBC.

PROOF Letge AGC. Then (3.2.1) and Theorem 6.1 yield
(6.5.11) G = hb = hshyb = h[(shy)b(shy) Y (shy),

whereh = hsh is the unique decomposition given in the Appendix. Since the term inside
the square bracket is in B¢ <« AGC, it can be split as in Lemma 6.4. This gives

(6512) g =h- bq+ . S]’l+ =hb - [7E ]’l+ .
SinceABC = sABs~1.sAT BCs, we can decompose
(6.5.13) gr =wl, with slwse AB and s lUs=b, € ATBC.

Thusg,s = ws - s~ s = wsb,, andg has the form (6.5.4). This, of course, implies (6.5.1).
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Assume now thay has two representations of the form (6.5.4). We denote the second
representation by the same letters, but use a supersttipt addition. Then (6.5.4) implies

(6.5.14)  hshy - (shy) " X(bwsbys™) - (shy) = h$hy - Ghy) L(0wsb 571 - (5by) .
Thereforehsh, = h§hy and, since this decomposition was chosen unique, we obtain

h, s = § andhy = h,. Substituting this into (6.5.14), we obtain

bwsbys™t = bishyst.

From (6.5.10) and (6.5.8) we derive now in view of Lemma 6.4

b=>b and wsbys™t=wsbys™t.

The last equation yields

sws by =s s - by
From (6.5.9) and Lemma 6.4 we thus obtain = b, ands lws = s~1is, whencew =
w. O

7. The“bigcel” of the lwasawa decomposition.

7.1. Intheorem 5.3 we have seen that one of the double cosets in the Birkhoff decom-
position of AGC, namely, the big celP;c is open and dense inGC, and that all other double
cosets have a non-zero codimensiomi®. It is therefore natural to investigate the double
coset
(7.1.1) Ps=AG-ATGC

more closely. In the following, we justify the name “big cell” f&; by showing that under
very weak assumptions it is open and densé & and that under supplementary assump-
tions, it covers the whole loop-groupGC.

LEMMA. Pgisopenin AGC.

PrROOFE LetLie(T) denote the Lie algebra of a Banach Lie grdupwith this notation
we have

(7.1.2) Lie(AG®) = Lie(AG) + Lie(ATG°).
Therefore (as in [15, Chap. Il, Lemma 2.4]) one can show that there exist open slibsets
AG, withe € U, andUy c ATGC, with e € U,, such thatV = U - U, is an open
neighborhood oé in AGC. Note that the big celP; is the union of the open sets
PG =AG-ATG = | ] gU-Uyg,.
994—5[’
and hence is open inG°. O

7.2. For the untwisted loop groupsGC, considered exclusively in this paper, we can
extend a result of Kellersch [20, Theorem 4.58] from reductive groups to general groups. Note
that Lemma 6.4 stateRz = ABC.
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THEOREM. If the semisimple part of a maximal compact subgroup of HC is simply
connected, then the big cell P is open and densein AGC and we have

(7.2.1) PG = Py - AB® = Py x ABC.

PROOF Letj =g-g, € AG- ATGC. Theng = hb with h € AH andb € AB,
andg, = by - hy with by € ATB® andh; € ATHC. Inserting this, we obtaig =
hhy - hitbbihy, and sincé = hi'bbihy € ABC, we seePg C Py - ABC.

Conversely, le§ € Py - AB®. Thenj = hhyb, h € AH,hy € ATHC, b € AB and
g can be written in the form

G = hhibhTthy .

From Lemma 6.4 we knowbh;' = bby with b € AB,by € A*BC, andg e Pg
follows. This proves the first part of (7.2.1). From (2.1.4) the second part follows. But now
the claim follows, since by [20, Theorem 4.58}; is open and dense in HC under our
assumptions. O

7.3. From [20, Theorem 4.48] we know that for a semisimple Lie grwpe have
Pg = AGC if and only if S is compact. This is at the heart of

THEOREM. Let G, H = SK and S beasin Section 2.1 and Section 6.1. Then Pg =
AGC ifand only if S is compact.

PROOF (1) Assume firstS is compact. We prove the nontrivial inclusionG® ¢
Pg = AG - ATGC. From [23] we know thatt S¢ = AS - AT SC. Then Theorem 6.1 and the
fact thatAK commutes withA+SC, imply AHC = AH - AT HC. Using (3.2.1) and Lemma
6.4, we obtain

AG® = AH® - AB®=AH - ATH® . AB® = AH - ATH®. AB- ATBC.
But every element
g=hhybby € AGS = AH-ATH®. AB. A*B°
can be written in the form
(7.3.1) g=h-hy-b-by=h-hybhi* -hiby =h-bby hiby,

where we have used Lemma 6.4 again. This yigldsP.

(2) LetnowPs = AGC. Then the uniqueness statement of Theorem 6.5 shows that
A™GC only consists offe}. In view of (6.5.11) and (6.1.1) Theorem, this yields that the
Iwasawa decomposition of S¢ consists of one double coset only. Theref6ris compact
[20, Theorem 4.48]. O

A somewhat different proof for the same result can be obtained using (7.2.1).
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8. TheBirkhoff decomposition-applications.
8.1. Inthe case whe@ is the nilpotent group

1 a
(8.1.1) G:{(O 1>aeR},
the decomposition is straightforward,
1 agrk 1 agrk 1 Y gk
kXE:Z — EO : k=0 € A=G®. ATGE,
0 1 0 1 0 1
8.2. Forthe grous of upper triangular unipotent matrices
1 a ¢
(8.2.1) G = 0 15 a,b,ceRy ,
0 0 1
any loopg € AG can be decomposed
1 a ¢ 1 a- c- 1 ay cy
g=l 01 b |=l0 1 b |-{O0 1 by |eAG° ATGE,
0 0 1 0 0 1 0 0 1

where

a= Zakkk, b= Zbkkk, c= chkk,

kez kez kez
and the entries of the right factors are

ay =Zak)»k, a_ =Zak)»k,
k>0 k<0

by=Y b, b= bk,
k>0 k<0

ey = Z(Ck - Z arbr—)A*
k>0 r<r(k)

co=Y (= Y arbip)Ak, r(k) =min{0,k + 1}.
k<0 r<r(k)

8.3. LetG be the simple special linear Lie group
(8.3.1) G = SL(2,R)={< ‘C’ Z ) a,b,c,d € R, ad—bc:l} .

Then forAG® = ASL(2, C) we have the decomposition
g=g_-D-g. € A7G°- AIG". ATGE.

In general the Birkhoff decomposition has an arbitrary Weyl group element as middle term.
In the case under consideration, however, the Weyl group has two parts, one just a permuta-
tion matrix and then the homomorphisms into a maximal torus. The permutation matrix is
incorporated into one of the other two factors. Note, while in the first two sections we had
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examples, for which the splitting could be carried out by hand, in the present case the splitting
is highly nontrivial and it is geerally virtually impossibled carry out the glitting by hand.
8.4. LetQ be aLie group, and = Lie(Q) its Lie algebra. Consider

8.4.1) G = T Q = the tangent bundle ap .
ThengG carries the structure of a Lie group (ttamgent group) via the multiplication
(8.4.2) Xo %Yy = (LasYp + RpeX,) forall X, eT,0, Y,eTp0,

where for alla, x € Q, the mapd.,(x) = ax andR,(x) = xa denote the left multiplication
in O and the right multiplication irQ, respectively. Recall the trivialization @fQ given by

843 1:TQ—0xq, t(Xp)="X), X=60X, foral X,eT,0,
wheref is the left Maurer-Cartan form af,

(8.4.9 0(Xn) = Ly-1, Xy, forall X, e T 0.

Identifying T Q = Q x q via (8.4.3), the induced group operation @nx q is

(8.4.5) (h, X) o (W, X"y = (hh', X' + Ad (W)71X),

and the equation which provides the big cell decomposition is equivalent with

(8.4.6) h=h"h* and X =X"+Ad ") 1Xx".

In the general double-coset case, we have for an eletheitt) € AT Q€ the decomposition
(8.4.7) (h,X)=(h",X )o(o,Z)o(ht,Xt) e A"TQC- AT Q% ATTQC.

Using (8.4.5), this provides two equations: the first is the usual Birkhoff decomposition for
QC-valued loops from Theorem 4.5

(8.4.8) h=h"-o-ht e A=Q% 490%. A*Q°,
and the second relation

(8.4.9) X=X"+Ad (h"7Z + Ad(eh™)"1x~
provides the Lie algebra terms of the decomposition (8.4.7).

9. Thelwasawa decomposition-applications.

9.1. Inthe case, wheg is the nilpotent group defined in (8.1.1), the Iwasawa decom-
position is straightforward,

1l a\ (1 a 1 at +~C
(9.1.1) (O 1>_(0 l>.<0 l)eAG-AG,

wheread = a+a* € AC = AR+ A*Cis performed as in (6.2.2)his is in accordance with
Theorem 7.3, since for the semisimple subgréugpntained inG of 6.1 we haveS = {e}.
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9.2. For the groug of upper triangular unipotent matrices (8.2.1) any lgop AG®

can be decomposed in the form
ab + ]’l 1 at h+
b 0o 1 by |eac-atGC,

1 a ¢ 1
015h]|=1]0
0 0 1 0 1 0 0 1

where
i=a+ay, b=b+b,, and é—a-b=h+h,

o Pr R

are split as in (6.2.2). This again in accordance withheorem 7.3, since agafh= {e}.
9.3. Forthe simple special linear Lie groSipp (2, R), the decomposition is much more
less trivial. Any loopg € ASL(2, C) can be decomposed in the form [20, p. 122]

(9.3.1) G=0 Ggn 9+ € AG- A"G®. ATGC,

where the double cosets of the lwasawa decomposition have the represer(dtives
{0,1,...}):

9.3.2) A’”Gcz{( )\Op A?,, )‘ pe N}U
1/ x»+1) irx P t-1
{E( iGoo—1) A PG4 ) pe N} :

All the double cosets occurring in (9.3.2) are distinct. There is only one open double coset,
the big cell. It is obtained fop = 0 in the first set and is dense. All other double cosets have
positive codimension il SL(2, C) [20].

9.4. For the tangent group in 8.4, we have according to Theorem 6.5

(9.4.1) AT Q¢ = ATQ - A"TQC - ATTQC.

ExAMPLE 1. LetQ be asin 6.1 and 9.1. Then for the maximal semisimple gHup
contained inQ we haveS = {e}, and it is easy to show that also the maximal semisimple
subgroups of; = T Q is trivial. Therefore, by Theorem 7.3, the big cell covers the whole
groupAT Q€. As a matter of fact the splitting is straightforward in this example:

((55)-(55)-((52)-(c5))
(5 2) (%))

with the factors provided by the (6.2.2) type splittings: a + a*, X = X + X ™.

(9.4.2)

ExXAMPLE 2. Taking nowQ = SL(2, R), one can see that the middle term of the Lie
algebra part of the decomposition vanishes and we have
(3. X) = (9. X)0(0,0)0 (g7, XT)

(94.3) € (AQ x AQ) - (A™Q° x {0g}) - (4T Q% x ATq") -
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Using (8.4.5) in (9.4.3), we find thgt = g.o.¢" is the usual Iwasawa decomposition (6.5.1)
with o € A" Q€ = A™SL(2, C) in (9.3.2), and that the terms of the Lie algebra pag Aq
andXt e AtqC are provided by the relatioki = Ad(cht)~1X + X or, equivalently,

(9.4.4) Ad(chtHX = X + Ad(chH)XT.

Appendix: A generalized |wasawa decomposition in untwisted loop groups. This
Appendix presents briefly the results of [20]; see also [9]. The main result of [20] is slightly
sharpened and adjusted to the needs of this paper.

1. Letg be a finite dimensional, real semisimple Lie algebra ghdts complexifi-
cation. ByG® we denote the simply connected and connected complex Lie group with Lie
algebrag®. We will always assum&© to be a subgroup of som@L(n, C) (see [13, 5.1]).
Let r denote the (complex antilinear) complex conjugatiogGmwith fixpoint algebray. Then
t has a (complex antilinear) lift t6< as an automorphism of order 2, also denoted blyet
G be the connected component of the identity element ofdfix {g € G¢| t(g) = g}.

Denoting as usual b§! the unit circle, we set

AGE ={g: 8 = ¢°| llgll < oo},

where g is a continuous function with Fourier expansign= )"
Znez ”gn” < 00, Where

nez Mg, and gl =

.....

ThenAgC is a Banach Lie algebra.
Considering more generally

AMat(N, C) = {A : §* = ¢ | | Al < o0},

where| A| is defined as above, we see thidtlat(N, C) is an associative Banach algebra with
identity 7 and AG€ is the connected component of the Banach group

AGI(N, C) = (AMat(N, C))* = {g € AMat(N, C) | gis invertible ,

with Lie algebra LietG® = AgC.
2. The following Banach Lie subalgebras. 0§ will be of interest:

AtgC ={h € Ag®|h, =0forn <0},

A—g¢ ={h € Ag®|h, =0forn > 0}.
Itis easy to see that

ATgC+ A7 = AgC.

To make this a direct sum of vector spaces it suffices to make sure tl“@g fandg,, the
19-coefficients inA+g¢ and A~ gC respectively, we have

g5 +0o =9% gfngy =1(0}.
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For our purposes it will also be important to extend the conjugatitmAg®:

(T =(g9(h), reSt.

Then we set
Ag={ge A¢g® | tg=g}.
NOTE. The coefficients img of A0 satisfyr gy = g, i.€., 90 € g = Fix(7). Itis easy
to verify thatAg is a (real) Banach subalgebra4§® and that we have
Ag+ ATgC = AgC.

To make this decomposition ofg® unique, it suffices to find a subalgelsf;\of gar such that

g+ =9% gnsf =1{0}.
In [20, 1.77] it has been shown that such a (real, solvable) subalg@hmm be found. Thus,
on the Lie algebra level there exists a unique lwasawa decomposition.

3. Finally, for our purposes it will be convenient to decompase® andA~g€ in a
simple fashion: denoting bythe diagonal elements gf, we set

b+=C+U+,
b_=c+u_,

where(uy)p and(u_)g consist of strictly upper and strictly lower triangular matrices, respec-
tively.

Let U+ denote the connected subgroup/b*FGC with Lie algebra LieU+ = us. Then
U are simply connected and connected Banach subgroup& 6t

If C denotes the connected subgroupst with Lie algebrac, thenC andBs. = C U
are connected Banach Lie subgroupsi@i®.

By N we denote the normalizer 6fin Ap°|GC, the elements afiGC which are Laurent
polynomials. ThenW = N/C is called the Weyl group ofi G (relative toC).

One can show tha¥ can be written in the form

[0}
N =NIT,
where]s] denotes the normalizer 6f in G© andIT denotes the group of all homomorphisms
from $* to T, whereT is a maximal torus ir/, andU is a compact real form of;¢, and
(Lie T)C =c.
Using the notation introduced abovbe Birkhoff decomposition of AG€ is given by

AG®=U_NU; = | JB_wBy = | JU-wCU, |
weW weW

wherew denotes simultaneously an element of the Weyl group and a representadivia of
N C AGC. This union is disjoint. Fow € W we have

Uy = Uy NwBw HUL NwB_w™),
U-NwUiwt=U_n CwlUyw?
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and several similar relations.

4. Using the notation of the previous section, we can find roog§ @ind of Ag® such
thatu.. is spanned by the positive and negative rootd 61 respectively, with Cartan algebra
C.

o o
ThenU, = U4+ U’, whereU; = Uy N GC andU?} = I + O(1). Then for the complex

conjugationr we haver(U}r) = U*. Moreover, there exists some) € v% the Weyl group
of G relative toc such that
T(Ug) = walU_wo.

Then we have the modified Birkhoff decomposition

AG® =t (UpNUy = | rWpwCUy .

weW

This union is disjoint. The representationoE AGC as an element in(U,)wCU,. can be
made unique by choosing., r; € Uy andn € N such that

y = t(s4)nry and nr.;.nfl et(U-).

Such choices can always be made.

5. In general terms, the generalized Iwasawa decomposition is the set of double cosets
relative to the action ofAG x ATG®on AG® given by

(h,vy)-g=hguit.
Thus
AG® = JAG -x - A*GE,
xel

wherel parametrizes the double cosets and a representative for each coset.

The final goal is to make this much more explicit. To this end we start withAGC
and considex = t(g)~1g. Thenx is an element of the set ot “symmetric elements”

T={peAG | t(p)=p7H).
Note
(t@ 'glge AGY C T

and the inclusion is (in general, certainly) strict.
Using the modified Birkhoff dcomposition, one finds uniquec N, r4, v4 € U4 such
that

t(r+)_1xr+ =nvy, t(n)= n_l, nv+n_1 = r(v+)_1.
In particular,nv; is splittable. One considers the connected Lie group
Uit = Uy N (won) " TU_(won) .
Then there exists a unique= exp X with
X elieUyy, do(X)=-X,
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where® (g) = t(ngn~1) such that (y)~1nv,y = n. Note that this implies that is splittable
as well.
6. The next step is the splitting ofe N. First we note that eveny € N can be written
uniquely in the form
n=gq- exp(H-)-t,
wherer € IT, H_ € crandg € U, gtg~! C t, wheret = Lie T. In our case we also know
t(n) = n~L. This implies

t@)=qt, 1=t g™hH

andH_ = —t(¢H_q™1). Settingyg = exp(—%H,), we obtain

T(yo) tnyo=gq 1.
Of coursegt is again splittable. In [20], [9] it has been explained how to split elements of
this type and that there exist only countably many double cosets.
Let A”GC denote the set of such thatr (s) s = gz for gt in a set of representatives
of the double cosets. Then altogether we have shown:

THEOREM (Generalized lwasawa decomposition).
(1) AG® = |J AG-s-U™. Thisunionisdigoint.
seAmGC
(2) Every g e AG® hasaunique representation of the form
g=hsyoyry,
where
(i) he AG,
(o]

(i) t)ts=qreUnN-I,
(i) t(syo)lsyo=q exp H.t =ne€ N, yo= exp(—3H_), H_ € Cr,
(iv)  t(syoy) Isyoy = nvy, nvin—t =t(vy) 71,

y=expX e Ut N won) tU-(won), y* =4,

dd(X) = =X, ®(p) =t(apn™h),
V) w9 tg=t0)t nvy ry, ry €Uy, nrant e t(UL).

PROOFE The existence of such a decomposition has been shown in [20], [9]. Let
g = hsyoyry = h3joyry
be two decompositions as in (2). Then
(9 Tty =) vy ry = T(F) DL
Sincenvy = t(vy) " n andidy = t(v4) 14,
T(uyry) tnry = (@4 7).
Since alsonryn~t € t(U-) and i i~t € t(U_), the uniqueness of the generalized
Birkhoff decomposition (see A.4.) implies = 7y, n = n andviry = v47¢, whence also
vy = Vg
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Next, since the group
Ut N (won)™t- U - (won)
is nilpotent, connected and simply connected, the equations

Y=vy, y=expX

definey uniquely fromv, = exp(+2X). Moreover,

t() Iy =exp(—tX) - n- exp(X) =n-t(nexp(—X)n~1) exp(X)
=nd(exp(—X)) - exp(X) =nexpX - - expX =nv4,

where we have used(n) = n~1. Thust(syg) tsyo =n = ¢ - expH_ - r. Note thatyg =
exp(—%H_) definesyg uniquely. Altogetherp,, y andyg have been determined uniquely.
Butz(s)~ s = ¢r and by definitiors is a uniquely chosen representative for the double cosets.
Therefore alse = 5§ andh = h follows. a
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