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Abstract. Representations of arbitrary real or complex invertible matrices as prod-
ucts of matrices of special type have been used for many purposes. The matrix form of the
Gram-Schmidt orthonormalization procedure andthe Gauss elimination process are instances
of such matrix factorizations. For arbitrary,finite-dimensional, semisimple Lie groups, the
corresponding matrix factorizations are known as Iwasawa decomposition and Bruhat de-
composition. The work of Matsuki and Rossmann has generalized the Iwasawa decompo-
sition for the finite-dimensional, semisimple Lie groups. In infinite dimensions, for affine
loop groups/Kac-Moody groups, the Bruhat decomposition has an, also classical, competi-
tor, the Birkhoff decomposition. Both decompositions (in infinite dimensions), the Iwasawa
decomposition and the Birkhoff decomposition, have had important applications to analysis,
e.g., to the Riemann-Hilbert problem, and to geometry, like to the construction of harmonic
maps from Riemann surfaces to compact symmetric spaces and compact Lie groups. The
Matsuki/Rossmann decomposition has been generalized only very recently to untwisted affine
loop groups by Kellersch and facilitates the discussion of harmonic maps from Riemann sur-
faces to semisimple symmetric spaces.

In the present paper we extend the decompositions of Kellersch and Birkhoff for un-
twisted affine loop groups to general Lie groups. These generalized decompositions have
already been used in the discussion of harmonic maps from Riemann surfaces to arbitrary loop
groups [2].

1. Introduction. In recent years, loop groups have been used to investigate families
of geometric objects. Uhlenbeck’s investigation of harmonic maps from surfaces to compact
Lie groups [24] represents the most outstanding example for this. Later, the study of surfaces
of constant mean curvature (the Gauss map of which is harmonic with values in the homoge-
neous spaceS2 = SU(2)/U(1)) lead to a generalized Weierstrass representation for harmonic
maps from surfaces to compact symmetric spaces[10]. By now, similar procedures have been
employed to investigate geometric objects like Willmore surfaces [15] and affine spheres [7].
In these two cases homogeneous spaces occur, for which the transitive group is not compact.
We would expect that in many examples such a situation will occur. We therefore feel that
it will be useful to establish, for general Lie groups and general homogeneous spaces, the
basic properties for loop groups, as needed for the papers mentioned above. The most salient
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features of loop groups used in [24], [10], [14], [7] are certainly generalized Birkhoff and Iwa-
sawa decompositions for loop groups. In this note we therefore establish these generalized
decomposition theorems for loop groups associated with arbitrary Lie groups and illustrate
the results by several typical examples. We would like to point out that the Iwasawa decom-
position in the case of the loop group associated with a general semisimple Lie group has
been established by Kellersch in his dissertation [20]. In subsequent papers [2], [3], we plan
to generalize the method used in [24] and [10] to investigate harmonic maps into general Lie
groups and harmonic maps into generalized symmetric spaces. This paper deals exclusively
with untwisted loop groups. We plan to discuss the twisted case elsewhere.

2. Preliminaries. Let G be a connected real analytic Lie group which admits a faith-
ful finite dimensional continuous representation. Then by the Levi theorem [17, Theorem
18.4.3] there exist a reductive, analytic subgroupH of G, and a simply connected, solvable,
analytic subgroupB of G, normal inG, such thatG can be written as a semidirect product

(2.1.1) G = H ×B ,

(2.1.2) B ∼= A ×N ,

whereA is a simply connected, connected abelian Lie group andN is a simply connected and
connected unipotent Lie group with Lie algebra Lie(N) = [Lie(B), Lie(B)].

In particular,N is a normal subgroup ofB and we have

(2.1.3) A ∼= Rp .

The complexified groups [17, 17.5 ],BC andH C inherit the properties ofB andH . HenceH C

is a reductive complex group, andBC is also a simply connected, solvable normal subgroup
of GC. ThenGC admits a faithful finite-dimensional complex representation and satisfies [17,
18.4]

(2.1.4) GC = H C ×BC .

Being complex and reductive,H C is the complexification of a(maximal) real compact sub-
groupK of H C, that is,H C = KC. On the other hand, being solvable and simply connected,
the groupBC decomposes canonically

(2.1.5) BC = AC · NC ,

whereAC is abelian andNC = [BC, BC] is simply connected and is the nilradical ofBC

[5, Chap. 1, §5.3, Theorem 1].NC is closed inBC and has the Lie algebra Lie(NC) =
[Lie(BC), Lie(BC)]. We remark that by [17, Theorem 17.4.1] we have

(2.1.6) BC/NC ∼= AC .

Also we obtain

(2.1.7) AC ∼= Cp .
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3. Loop groups.

3.1. Letρ be a finite-dimensional faithful representation ofGC and forg : S1 → GC

continuous, let̃g = ∑
k∈Z akλ

k, ak ∈ ρ(GC), λ ∈ S1, be the associated Fourier series. Then
the loop groupΛGC defined by

ΛGC = {g : S1 → GC | g̃ is absolutely convergent}
is a complex Banach Lie group with the Wiener topology ([19, Chap. I, 6.1], [8, §1]). We
shall also use its subgroups

ΛG = {g ∈ ΛGC | g(λ) ∈ G for all λ ∈ S1},
Λ+GC = {g ∈ ΛGC | g andg−1 extend holomorphically toD},
Λ−GC = {g ∈ ΛGC | g andg−1 extend holomorphically tōC \ D},

whereD = {z ∈ C | | z |< 1} andC̄ denotes the Riemann sphere. We shall also denote

(3.1.1) Λ−∗ GC =
{
g ∈ Λ−GC

∣∣∣∣ g̃ =
∑
k≤0

akλ
k, a0 = I

}
,

the meaning of the subscript “*" remaining the same when considering instead ofG one of its
subgroups.

REMARK. Λ−∗ GC ∩ Λ+GC = {e}, wheree ∈ GC is the unity of the groupGC.

3.2. Any normal complex subgroupG′′ of a simply connected complex Lie groupG′ is
closed, and the associated bundle(G′, π,G′/G′′) admits an analytic sectionτ : G′/G′′ → G′
such that the mapping

G′′ × G′/G′′ → G′ , (g′′, ḡ ) �→ g′′ · τ (ḡ )

is an analytic manifold isomorphism [17, Chap. 12, Theorem 1.2, p. 135]. Then, forG′ =
GC,G′′ = BC, we have the diffeomorphismBC × (GC/BC) ∼= GC, which at the loop group
level leads to the splittings

ΛGC ∼= ΛH C · ΛBC ,(3.2.1)

Λ−GC ∼= Λ−H C · Λ−BC ,(3.2.2)

Λ+GC ∼= Λ+H C · Λ+BC .(3.2.3)

NOTE. Under the assumptions made in 3.1, the Wiener-Levi theorem [19, Chap. VIII,
Theorem 3.10] shows that the projectionπ of the bundle(G′, π,G′/G′′) projects loops to
loops, i.e., the absolute Fourier series convergence is preserved by composition of loops
f : S1 → G′ with the mappingπ . Therefore the isomorphismH C ∼= GC/BC leads to
an isomorphism of the corresponding loop groups.

4. The Birkhoff decomposition. Let NC be the nilradical ofBC. ThenNC 	 GC.
We assume without loss of generality that in the given representation,NC is represented by
upper triangular matrices with units on the diagonal.
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4.1. Based on the decompositions in 2.1 we have the corresponding decompositions for
loop groups

ΛBC ∼= ΛAC · ΛNC ,(4.1.1)

ΛAC ∼= ΛCp .(4.1.2)

Hence the decomposition of the Wiener algebra into “plus part" and “minus part" is rephrased
as

(4.1.3) ΛAC ∼= Λ−∗ AC · Λ+AC .

This yields a unique representation of the elements ofΛAC.
Using (2.1.6) and the Wiener-Levi theorem [19, Chap. VIII, Theorem 3.10], we obtain

(4.1.4) ΛBC ∼= Λ−AC · Λ+AC · ΛNC .

One can even show, using the subscript notation in (3.1.1),

(4.1.5) ΛBC ∼= Λ−∗ AC · Λ+AC · ΛNC .

This yields a unique representation of the elements ofΛBC.
4.2. The loop groupΛNC can be decomposed as follows.

LEMMA . There exists a canonical diffeomorphism:

(4.2.1) ΛNC ∼= Λ−∗ NC × Λ+NC .

PROOF. Let n = Lie(N) be the Lie algebra ofN . We define

(4.2.2) n(0) = n and n(k+1) = [n, n(k)] , k ≥ 0 .

Let {bkj }k≥0, j∈{1,...,mk} be a basis forn, where for fixedk, the{bkj }j∈{1,...,mk} form a basis of
a complement ofn(k+1) in n(k). Then every elementn ∈ N can be written in the form

(4.2.3) n =
∏
i≥0

mi∏
j=0

exp(αij .bij ) .

Let ñ ∈ ΛNC. We define inductively

(4.2.4) ñ(k+1) = u−
k · ñ(k) · u+

k , k ≥ 0 , ñ(0) = ñ ,

where

(4.2.5) u−
k =

mk∏
j=0

exp(−α
(k)−
kj · bkj ) , u+

k =
mk∏
j=0

exp(−α
(k)+
kj · bkj ) ,

and where at each stepk ≥ 0, the coefficientsα(k)±
kj are provided by the decompositions

(4.2.6) ñ(k) =
∏
i≥k

mi∏
j=0

exp(α
(k)
ij .bij ) , α

(k)
kj = α

(k)−
kj + α

(k)+
kj ∈ Λ−C + Λ+C ,
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with the constant terms contained inα
(k)+
kj . After a finite numberm of steps we obtaiñn(m) =

e ∈ ΛNC. Hence, denoting

v−
k = (u−

k )−1 ∈ Λ−NC , v+
k = (u+

k )−1 ∈ Λ+NC , k ∈ {0, . . . ,m − 1} ,

we infer the decomposition

(4.2.7) ñ = (v−
0 . . . v−

m−1) · (v+
m−1 . . . v+

0 ) ∈ Λ−NC · Λ+NC .

The diffeomorphism between the set theoretic product (4.2.1) and (4.2.7) follows from [8,
Corollary 3.1.4]. �

4.3. We are now able to prove the Birkhoff splitting for the solvable groupB. Using
the results of Section 4.1, the elements ofΛBC can be split also as follows.

LEMMA . ΛBC = Λ−∗ BC · Λ+BC. More precisely, each element b ∈ ΛBC, can be
written uniquely as

(4.3.1) b = b− · b+ ∈ Λ−∗ BC · Λ+BC ,

with b ∈ Λ−∗ BC and b+ ∈ Λ+BC. Moreover, ΛBC ∼= Λ−∗ BC × Λ+BC.

PROOF. Using the decompositions (4.1.1) and (4.1.4), we have

(4.3.2) b = a−a+ · n
with a− ∈ Λ−∗ AC, a+ ∈ Λ+AC andn ∈ ΛNC. Thenb = a−ña+, whereñ = a+na+−1 ∈
ΛNC. But, according to (4.2.1),̃n has a decomposition of the form̃n = ñ− · ñ+ ∈ Λ−∗ NC ·
Λ+NC, and hence

(4.3.3) b = a−ñ−ñ+a+ ,

with a− ∈ Λ−∗ AC, a+ ∈ Λ+AC, ñ− ∈ Λ−∗ NC andñ+ ∈ Λ+NC. For elements of this form
all factors are determined uniquely byb. To verify the last statement we apply [8, Corollary
3.1.4]. �

4.4. In view of (3.2.1) it will be useful to state the Birkhoff decomposition theorem for
reductive groups [23, 8.7], [8, 8.6]. With the notation of Section 2, we have

THEOREM. Let H be a real, reductive analytic group. Then

(4.4.1) ΛH C = Λ−H C · ΛdH C · Λ+H C ,

where ΛdH C consists of all homomorphisms from S1 into a maximal torus in H C.

REMARK. The decomposition (4.4.1) forh, h = h−sh+, can be made unique if we
impose additional conditions [22, Corollary 5(c)] for the semisimple part ofH C and if we
assume for the center part ofH C that in the decompositionc = c−λrc+, we have, e.g.,
c+(λ = 0) = 1.

For the general Birkhoff decomposition theorem 4.5 below we will need a decomposition
of ΛBC relative to somes ∈ �dH C. For this we consider the adjoint action ofH C on BC

and the induced action ofΛH C on ΛBC. The elements ofΛdH C can then be realized [23,
5.1], [23, 8.7] as homomorphisms ofS1 into some maximal toral subgroupC contained in
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H C. Decomposing Lie(BC) = ⊕
Lie(BC)σ into weight spaces relative toC, we have [18,

Chap. 7.9] thats acts onΛBC
σ by

(4.4.2) svσ s−1 = λkvσ , k = k(s, σ ) ∈ Z .

Thus on the Lie algebra level we obtain

(4.4.3) Lie(Λ−BC) = A−
s + A+

s ,

(4.4.4) A−
s ∩ A+

s = {0} ,

where

(4.4.5) A−
s = {x ∈ Lie(Λ−BC) | sxs−1 ∈ Lie(Λ−∗ BC)}

and

(4.4.6) A+
s = {x ∈ Lie(Λ−BC) | sxs−1 ∈ Lie(Λ+BC)} .

It is easy to verify thatA−
s andA+

s are closed subalgebras of Lie(Λ−BC).
Let (Λ−BC)−s and(Λ−BC)+s denote the integral subgroups [5, Chap. 3] ofΛ−BC with

Lie algebrasA−
s andA+

s respectively, thens(Λ−BC)−s s−1 ⊂ Λ−∗ BC, while s(Λ−BC)+s s−1 ⊂
Λ+BC. Hence we can apply [8, Corollary 3.1.4] and obtain a) and b) of the

LEMMA . a) The groups (Λ−BC)−s and (Λ−BC)+s are Banach Lie subgroups of
Λ−BC;

b) the group product of the two groups is diffeomorphic with the set product of the two
groups;

c) Λ−BC = (Λ−BC)−s · (Λ−BC)+s .

PROOF. It remains only to prove c). SetL±
s = (Λ−BC)±s . From (4.4.3) it follows (like

in [15, Chap. II, Lemma 2.4]) that there are open subsetsU1 andU2 contained inL−
s andL+

s

respectively, such thatU1 · U2 is an open neighbourhood ofe in Λ−BC. ThusL−
s · L+

s =⋃
l∈L−

s ,r∈L+
s

lU1 · U2r is open inΛ−BC. But L−
s · L+

s is also closed inΛ−BC. To see this
we consider a sequence

(4.4.7) b
(n)
− · b

(n)
+ → b , b

(n)
− ∈ L−

s , b
(n)
+ ∈ L+

s .

Thensb
(n)
− s−1 → sbs−1 converges inΛBC. But part c) of Lemma 4.3 shows

(4.4.8) sb
(n)
− s−1 ∈ Λ−∗ BC and sb

(n)
+ s−1 ∈ Λ+BC ;

thereforesb(n)
− andsb

(n)
+ converge separately. SinceL−

s andL+
s are closed, we have

(4.4.9) b
(n)
− → b− ∈ L−

s and b
(n)
+ → b+ ∈ L+

s .

HenceL−
s ·L+

s is closed inΛBC. SinceB is simply connected, its universal complexification
BC is also simply connected [17, 17.5]. As a consequence, every loop inBC can be deformed
into a point, i.e.,ΛBC is path connected. Therefore the open and closed subsetL−

s · L+
s

coincides withΛBC. �
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4.5. Under the assumptions made in Section 2.1, the Birkhoff decomposition for the
loop groupΛGC is provided by

THEOREM. Any element g ∈ ΛGC can be written as

(4.5.1) g = g−Dg+ ,

where g± ∈ Λ±GC, D = sb+− ∈ ΛdGC, and

(4.5.2) ΛdGC =
⋃

s∈ΛdHC

s(Λ−BC)+s

and

(4.5.3) (Λ−BC)−s = {b ∈ Λ−BC | sbs−1 ∈ Λ−BC} ,

(4.5.4) (Λ−BC)+s = {b ∈ Λ−BC | sbs−1 ∈ Λ+∗ BC} .

The expression (4.5.1) will be called a Birkhoff decompositionof g . A representation of g
given in the form (4.5.6) satisfying (4.5.7) and (4.5.8) is unique and will be called canonical.

PROOF. First we use the decomposition (3.2.1), which providesg = hb ∈ ΛH C ·ΛBC.
Also, sinceH C is reductive, we can apply forh ∈ ΛH C the Birkhoff decomposition Theorem
4.4 ofΛH C. Theng = hb can be rewritten as

(4.5.5) g = h−sh+b = h−s(h+bh+−1)h+ ,

wheres ∈ ΛdH C ⊂ ΛH C. But h+bh+−1 ∈ ΛBC, and hence by Lemma 4.3 it is decom-
posable,h+bh+−1 = b−b+, with b− ∈ Λ−∗ BC. Theng = h−s · b−b+ · h+ and, using the
splitting of Lemma4.4 into the subgroups (4.5.3),

Λ−BC = (Λ−BC)−s · (Λ−BC)+s ,

we obtain the decomposition

(4.5.6) g = (h−(sb−−s−1)) · (sb+−) · (b+h+) = g− · D · g+ .

So we haveΛGC = Λ−GC · ΛdGC · Λ+GC. Moreover, by [22, Corollary 5 (c)] we can
assume

(4.5.7) s−1h−s ∈ U− ,

and also have

(4.5.8) b−−b+− ∈ Λ−∗ BC .

In this case all factors occurring in (4.5.6) are uniquely determined byg. Assume thatg
has two representations of the special form claimed, the second one being indicated with a
“ ˆ ”. Then the described splitting procedure yieldsh−sh+ = ĥ−ŝĥ+ andh−1+ b−−b+−b+h+ =
ĥ−1+ b̂−−b̂+−b̂+ĥ+. Our assumption onh− andĥ− implies in view of [22, Corollary 5 (c)] that
h− = ĥ−, s = ŝ andh+ = ĥ+. As a consequence,b−−b+−b+ = b̂−−b̂+−b̂+. Since we have
assumed thatb−−b+− ∈ Λ−∗ BC, we obtain by Lemma 4.3 and Lemma 4.4 that the corresponding
factors are the same. �
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5. The “big cell” of the Birkhoff decomposition.

5.1. We consider the “big cell" for the groupΛGC,

(5.1.1) PGC
def= Λ−GC · Λ+GC .

Similarly, we define the big cell for the other loop groups likeΛH C and ΛBC. For the
elements in the big cell we have two types of splittings. On the one hand we haveg = g−.g+
in PGC , but alsog = h.b in view of (3.2.1). Comparing these two splittings, we have

PROPOSITION. If g = hb = g−g+ ∈ PGC , then the ΛH C-component splits as h =
h−h+ ∈ PHC , and in the decompositions (4.5.5) and (4.5.6) the element s is the unity e of
GC.

PROOF. Fromg = g−g+ and (4.5.5) we obtain

(5.1.2) s(h+bh−1+ ) = (h−1− g−) · (g+h−1+ ) .

Using the splittings (3.2.2) and (3.2.3) for the right two factors, we obtain

s(h+bh−1+ ) = (h̃−b̃−) · (h̃+b̃+) = h̃−h̃+(h̃−1+ b̃−h̃+)b̃+ .

But (2.1.4) implies thats = h̃−h̃+, and using the Birkhoff decomposition ofΛH C [23, Chap.
8.6], we obtain

s = e .

Then, using (5.1.2),g = h−h+b, andg = hb impliesh = h−h+ ∈ PHC . �
LEMMA . Let D = s · b+− ∈ ΛdGC. Then

(5.1.3) D = e ⇔ s = e and b+− = e ⇒ s = e .

PROOF. The first equivalence follows from (2.1.4). Assume nows = e. Then the
definition of(Λ−BC)+s impliesb+− = e. �

The “big cell” PGC is characterized by

COROLLARY. g ∈ ΛGC is in the big cell PGC ⊂ ΛGC if and only if in the decomposi-
tion (4.5.6) one has D = e.

PROOF. Let g ∈ PGC . Thens = e and the Lemma yieldsD = e. The converse of the
statement is trivial. �

5.2. The elements ofPGC lying in ΛBC split in ΛBC, i.e., we have

PROPOSITION. Let b = g−g+ ∈ PGC ∩ΛBC. Then b ∈ PBC , with b− ∈ Λ−BC, b+ ∈
Λ+BC.

PROOF. Using the decompositions (3.2.2) and (3.2.3), we obtain

b = g−g+ = (gH− gB−)(gH+ gB+) = (gH− gH+ )(gH+ −1gB−gH+ )gB+ ,

with gH− ∈ Λ−H C andgB− ∈ Λ−BC. Then making use of (2.1.4) and identifying the extreme
terms, we getgH− gH+ = e, which implies that the two elements are inverse to each other and
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contained inH . Altogether we obtainb = b−b+ with b− = gH+ −1gB−gH+ ∈ Λ−BC and
b+ = gB+ ∈ Λ+BC. �

LEMMA . Let b = g−g+ ∈ PGC ∩ ΛBC. If g− ∈ Λ−∗ GC, then b ∈ PBC , with b− =
g− ∈ Λ−∗ BC, b+ = g+ ∈ Λ+BC.

PROOF. Using the decompositions (3.2.2) and (3.2.3), we obtain

b = g−g+ = (gH− gB−)(gH+ gB+) = (gH− gH+ )(gH+ −1gB−gH+ )gB+ .

SincegH− ∈ Λ−∗ H C andgB− ∈ Λ−∗ BC, the relationg−g+ = e impliesgH− = gH+ = e, which
proves the claim. �

5.3. Based on this result, we can prove the

THEOREM. The “big cell ” PGC is open and dense in ΛGC, and the mapping

Λ−GC × Λ+GC → ΛGC

provides a surjective submersion onto the big cell.

PROOF. The proof follows the one given in [23, Chap. 8] and [10, Chap. 2]. Letχ =
L2(S1, C) = χ− ⊕ χ+, where

χ+ =
{
η+ ∈ χ

∣∣∣∣ η+ =
∑
n≥0

znλ
n, zn ∈ C

}
,

χ− =
{
η− ∈ χ

∣∣∣∣ η− =
∑
n<0

znλ
n, zn ∈ C

}
.

Let τ be the non-trivial holomorphic section of the dual of the determinant bundle
(Det∗, π,Gr(χ)) (see, e.g., [10, 2.10]). Then, using the faithful representationGC →
SL(m, C), we see thatΛGC admits a natural representationΛGC → GLres(χ). Moreover,
for the GrassmannianGr(χ) we obtainGr(χ) = GLres(χ) · χ+. Using (4.5.1) forg =
g−Dg+, we have

Ψ (g) = τ (g− · D · g+ · χ+) = τ (g−D · χ+) ,

and hence,

Ψ (g) �= 0 ⇔ τ (D.χ+) �= 0 ⇔ D ∈ Λ−SL(m, C) · Λ+SL(m, C) ,

where we used thatτ is invariant under leftΛ−GC translations (see, e.g., the proof of Lemma
2.4 in [10]). Also, from Corollary 5.1 we knowg ∈ PGC ⇔ s = e ⇔ D = e. Therefore
g ∈ PGC if and only if Ψ �= 0. SinceΨ is not the constant map with value 0,P = Ψ −1{C \
{0}} = ΛGC \ Ψ −1{0} is open and dense inΛGC. �

6. The Iwasawa decomposition. Let G be a connected real Lie group which admits
a faithful finite dimensional continuous representation.

6.1. First we consider the reductive subgroupH of G introduced in Chapter 2. We have
a decomposition of the reductive subgroupH in the form of a semisimple Lie groupS and a
compact abelian Lie groupK, H = S · K. Also, we haveH C = SC · KC.
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The generalized Iwasawa decomposition for reductive groups is provided by the follow-
ing result of Kellersch [20, Chap. 4].

THEOREM. If H is a connected reductive Lie group admitting a faithful finite dimen-
sional representation, then

(6.1.1) ΛH C = ΛH · ΛmH C · Λ+H C ,

where ΛmH C is a specific set of representatives for the double cosets in (6.1.1) given in [20].
For a brief description of ΛmH C, see the Appendix.

REMARK. Roughly speaking, the setΛmH C is as big as the set of all homomorphisms
of S1 into a maximal torus ofH C. More precisely, the elemnts ofΛmH C consist of “twisted
square roots" of such homomorphisms. For more on this see the Appendix. For examples see
Section 9.

6.2. Next we consider the solvable normal subgroupB of G introduced in Chapter 2
and its subgroupsA andN . First we show

LEMMA . ΛAC = ΛA · Λ+AC.

PROOF. In view of (2.1.7) and (4.1.2) we consider the decomposition

(6.2.1) ΛC ∼= ΛR + Λ+C

provided by

(6.2.2)
∑
k∈Z

zkλ
k =

∑
k<0

(zkλ
k + z̄kλ̄

k) +
∑
k≥0

zkλ
k −

∑
k<0

z̄kλ̄
k ∈ ΛR + Λ+C ,

This implies the stated loop group decomposition

(6.2.3) ΛAC ∼= ΛA · Λ+AC ∼= (ΛR)p + (Λ+C)p .

�
REMARK. This decomposition can be made unique, if one requires that the constant

terms inΛ+C are purely imaginary.

6.3. Also, for the nilpotent partN of B we have an Iwasawa decomposition

LEMMA . The nilpotent loops decompose as follows

(6.3.1) ΛNC = ΛN · Λ+NC .

PROOF. This proof is analogous to the one in Lemma 4.2. Using the same notation,
every elementn ∈ N can be written in the form (4.2.3). Letñ ∈ ΛNC. We define inductively

(6.3.2) ñ(k+1) = u−
k · ñ(k) · u+

k , k ≥ 0 , ñ(0) = ñ ,

where

(6.3.3) uk =
mk∏
j=0

exp(−α
(k)∗
kj · bkj ) , u+

k =
mk∏
j=0

exp(−α
(k)+
kj · bkj ) ,
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and where at each stepk ≥ 0, the coefficientsα(k)∗
kj andα

(k)+
kj are provided by the decompo-

sitions

(6.3.4) ñ(k) =
∏
i≥k

mi∏
j=0

exp(α
(k)
ij · bij ) , α

(k)
kj = α

(k)∗
kj + α

(k)+
kj ∈ ΛR + Λ+C .

After a finite numberm of steps we obtaiñn(m) = e ∈ ΛNC. Hence, denoting

vk = (uk)
−1 ∈ ΛN , v+

k = (u+
k )−1 ∈ Λ+NC , k ∈ {0, . . . ,m − 1} ,

we can decomposẽn as

(6.3.5) ñ = (v0 . . . vm−1) · (v+
m−1 . . . v+

0 ) ∈ ΛN · Λ+NC .

�
REMARK. This decomposition can be made unique, if one requires that in (6.3.4) the

constant term in theΛ+C part is purely imaginary.

6.4. Combining the results of 6.2 and 6.3 we finally show the following

LEMMA . ΛBC = ΛB · Λ+BC.

PROOF. Using (6.2.3) and (6.3.1), for̃b ∈ ΛBC, we have

b̃ = ãñ = aa+nn+ = (a · (a+na−1+ )) · (a+n+) ∈ ΛA · ΛNC · Λ+BC ,

where we usedΛNC 	ΛBC and the Wiener-Levi theorem for loops inΛBC/ΛNC. Applying
(6.3.1) toa+na−1+ implies the claim. �

COROLLARY. Using unique decompositions for ΛAC and ΛNC, every b ∈ ΛBC has
a unique decomposition of the form

(6.4.1) b = an.m+a+n+ ,

where

a ∈ ΛA, n ∈ ΛN , a+ ∈ Λ+AC , m+, n+ ∈ Λ+NC ,(6.4.2)

a−1+ bm+a+ ∈ ΛN .(6.4.3)

PROOF. The proof of the Lemma shows that everyb ∈ ΛBC has a decomposition
(6.4.1) satisfying (6.4.2) and (6.4.3). Assume we have two such decompositions. Then

(6.4.4) aa+ · a−1+ nm+a+n+ = ââ+ · â−1+ n̂m̂+â+n̂+ .

Hence, in view of (2.1.2) we obtainaa+ = ââ+, whence,a = â anda+ = â+. Substituting
this into (6.4.4), we derive

(6.4.5) nm+a+n+ = n̂m̂+a+n̂+ .

Therefore

(6.4.6) a−1+ (nm+)a+ · n+ = a−1+ (n̂m̂+)a+ · n+ .
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Because of (6.4.3), this impliesa−1+ (nm+)a+ = a−1+ (n̂m̂+)a+ and n+ = n̂+. But then also
n = n̂ andm+ = m̂+. �

6.5. Finally we obtain the following Iwasawa decomposition for an arbitrary untwisted
groupΛGC

THEOREM. Let G be a connected real Lie group, which admits a finite-dimensional
faithful representation. Then

(6.5.1) ΛGC = ΛG · ΛmGC · Λ+GC

is a disjoint union of double cosets indexed by the middle terms

(6.5.2) ΛmGC =
⋃

s∈ΛmHC

(ΛB)#
s · s ,

where

(6.5.3) (ΛB)#
s = s · ΛB · s−1 .

More precisely, every g ∈ ΛGC has a unique representation of the form

(6.5.4) g = hb · wsb+h+ ,

where

(6.5.5) g = h̃b̃

and

(6.5.6) h̃ = hsh+
is the unique representation of h̃ ∈ ΛH C = ΛH · ΛmH C · Λ+H C as described in the
Appendix,

b̃ = (sh+)−1 · bwsb+s−1 · sh+ ,(6.5.7)

b ∈ ΛB ,(6.5.8)

w ∈ sΛBs−1 , b+ ∈ Λ+BC ,(6.5.9)

wsb+s−1 ∈ Λ+BC .(6.5.10)

PROOF. Let g ∈ ΛGC. Then (3.2.1) and Theorem 6.1 yield

(6.5.11) g̃ = h̃b̃ = hsh+b̃ = h[(sh+)b̃(sh+)−1](sh+) ,

whereĥ = hsh+ is the unique decomposition given in the Appendix. Since the term inside
the square bracket is inΛBC 	 ΛGC, it can be split as in Lemma 6.4. This gives

(6.5.12) g̃ = h · bq+ · sh+ = hb · q+s · h+ .

SinceΛBC = sΛBs−1 · sΛ+BCs, we can decompose

(6.5.13) q+ = wl , with s−1ws ∈ ΛB and s−1ls = b+ ∈ Λ+BC .

Thusq+s = ws · s−1ls = wsb+, andg has the form (6.5.4). This, of course, implies (6.5.1).
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Assume now thatg has two representations of the form (6.5.4). We denote the second
representation by the same letters, but use a superscript “ˆ ” in addition. Then (6.5.4) implies

(6.5.14) hsh+ · (sh+)−1(bwsb+s−1) · (sh+) = ĥŝĥ+ · (ŝĥ+)−1(b̂ŵŝb̂+ŝ−1) · (ŝb̂+) .

Thereforehsh+ = ĥŝĥ+ and, since this decomposition was chosen unique, we obtainh =
ĥ, s = ŝ andh+ = ĥ+. Substituting this into (6.5.14), we obtain

bwsb+s−1 = b̂ŵsb̂+s−1 .

From (6.5.10) and (6.5.8) we derive now in view of Lemma 6.4

b = b̂ and wsb+s−1 = ŵsb̂+s−1 .

The last equation yields
s−1ws · b+ = s−1ŵs · b̂+ .

From (6.5.9) and Lemma 6.4 we thus obtainb+ = b̂+ ands−1ws = s−1ŵs, whencew =
ŵ. �

7. The “big cell” of the Iwasawa decomposition.

7.1. In theorem 5.3 we have seen that one of the double cosets in the Birkhoff decom-
position ofΛGC, namely, the big cellPGC is open and dense inΛGC, and that all other double
cosets have a non-zero codimension inΛGC. It is therefore natural to investigate the double
coset

(7.1.1) P̃G = Λ G · Λ+GC

more closely. In the following, we justify the name “big cell” for̃PG by showing that under
very weak assumptions it is open and dense inΛGC and that under supplementary assump-
tions, it covers the whole loop-groupΛGC.

LEMMA . P̃G is open in ΛGC.

PROOF. Let Lie(T ) denote the Lie algebra of a Banach Lie groupT . With this notation
we have

(7.1.2) Lie(ΛGC) = Lie(ΛG) + Lie(Λ+GC) .

Therefore (as in [15, Chap. II, Lemma 2.4]) one can show that there exist open subsetsU ⊂
ΛG, with e ∈ U , andU+ ⊂ Λ+GC, with e ∈ U+, such thatV = U · U+ is an open
neighborhood ofe in ΛGC. Note that the big cell̃PG is the union of the open sets

P̃G = ΛG · Λ+GC =
⋃

gg+∈P̃

gU · U+g+ ,

and hence is open inΛGC. �
7.2. For the untwisted loop groupsΛGC, considered exclusively in this paper, we can

extend a result of Kellersch [20, Theorem 4.58] from reductive groups to general groups. Note
that Lemma 6.4 states̃PB = ΛBC.
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THEOREM. If the semisimple part of a maximal compact subgroup of H C is simply
connected, then the big cell P̃ is open and dense in ΛGC and we have

(7.2.1) P̃G = P̃H · ΛBC ∼= P̃H × ΛBC .

PROOF. Let g̃ = g · g+ ∈ ΛG · Λ+GC. Theng = hb with h ∈ ΛH andb ∈ ΛB,
and g+ = b+ · h+ with b+ ∈ Λ+BC andh+ ∈ Λ+H C. Inserting this, we obtaiñg =
hh+ · h−1+ bb+h+, and sincẽb = h−1+ bb+h+ ∈ ΛBC, we seeP̃G ⊂ P̃H · ΛBC.

Conversely, let̃g ∈ P̃H · ΛBC. Theng̃ = hh+b̃, h ∈ ΛH,h+ ∈ Λ+H C, b̃ ∈ ΛB and
g̃ can be written in the form

g̃ = hh+b̃h−1+ h+ .

From Lemma 6.4 we knowh+b̃h−1+ = bb+ with b ∈ ΛB, b+ ∈ Λ+BC, and g ∈ P̃G

follows. This proves the first part of (7.2.1). From (2.1.4) the second part follows. But now
the claim follows, since by [20, Theorem 4.58]P̃H is open and dense inΛH C under our
assumptions. �

7.3. From [20, Theorem 4.48] we know that for a semisimple Lie groupS we have
P̃G = ΛGC if and only if S is compact. This is at the heart of

THEOREM. Let G, H = SK and S be as in Section 2.1 and Section 6.1. Then P̃G =
ΛGC if and only if S is compact.

PROOF. (1) Assume firstS is compact. We prove the nontrivial inclusionΛGC ⊂
P̃G = ΛG · Λ+GC. From [23] we know thatΛSC = ΛS · Λ+SC. Then Theorem 6.1 and the
fact thatΛK commutes withΛ+SC, imply ΛH C = ΛH · Λ+H C. Using (3.2.1) and Lemma
6.4, we obtain

ΛGC = ΛH C · ΛBC = ΛH · Λ+H C · ΛBC = ΛH · Λ+H C · ΛB · Λ+BC .

But every element

g = hh+bb+ ∈ ΛGC = ΛH · Λ+H C · ΛB · Λ+BC

can be written in the form

(7.3.1) g = h · h+ · b · b+ = h · h+bh−1+ · h+b+ = h · b̃b̃+ · h+b+ ,

where we have used Lemma 6.4 again. This yieldsg ∈ P̃G.
(2) Let nowP̃G = ΛGC. Then the uniqueness statement of Theorem 6.5 shows that

ΛmGC only consists of{e}. In view of (6.5.11) and (6.1.1) Theorem, this yields that the
Iwasawa decomposition ofΛSC consists of one double coset only. ThereforeS is compact
[20, Theorem 4.48]. �

A somewhat different proof for the same result can be obtained using (7.2.1).
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8. The Birkhoff decomposition-applications.

8.1. In the case whenG is the nilpotent group

(8.1.1) G =
{(

1 a

0 1

)∣∣∣∣ a ∈ R
}

,

the decomposition is straightforward,
 1

∑
k∈Z

akλ
k

0 1


 =


 1

∑
k<0

akλ
k

0 1


 ·


 1

∑
k≥0

akλ
k

0 1


 ∈ Λ−GC · Λ+GC ,

8.2. For the groupG of upper triangular unipotent matrices

(8.2.1) G =







 1 a c

0 1 b

0 0 1







∣∣∣∣∣∣ a, b, c ∈ R


 ,

any loopg ∈ ΛG can be decomposed

g =

 1 a c

0 1 b

0 0 1


 =


 1 a− c−

0 1 b−
0 0 1


 ·


 1 a+ c+

0 1 b+
0 0 1


 ∈ Λ−GC · Λ+GC ,

where
a =

∑
k∈Z

akλ
k, b =

∑
k∈Z

bkλ
k, c =

∑
k∈Z

ckλ
k ,

and the entries of the right factors are


a+ =
∑
k≥0

akλ
k , a− =

∑
k<0

akλ
k ,

b+ =
∑
k≥0

bkλ
k , b− =

∑
k<0

bkλ
k ,

c+ =
∑
k≥0

(ck −
∑

r<r(k)

arbk−r )λ
k ,

c− =
∑
k<0

(ck −
∑

r<r(k)

arbk−r )λ
k, r(k) = min{0, k + 1} .

8.3. LetG be the simple special linear Lie group

(8.3.1) G = SL(2, R) =
{(

a b

c d

)∣∣∣∣ a, b, c, d ∈ R, ad − bc = 1

}
.

Then forΛGC = ΛSL(2, C) we have the decomposition

g = g− · D · g+ ∈ Λ−GC · ΛdGC · Λ+GC .

In general the Birkhoff decomposition has an arbitrary Weyl group element as middle term.
In the case under consideration, however, the Weyl group has two parts, one just a permuta-
tion matrix and then the homomorphisms into a maximal torus. The permutation matrix is
incorporated into one of the other two factors. Note, while in the first two sections we had
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examples, for which the splitting could be carried out by hand, in the present case the splitting
is highly nontrivial and it is generally virtually impossible to carry out the splitting by hand.

8.4. LetQ be a Lie group, andq = Lie(Q) its Lie algebra. Consider

(8.4.1) G = T Q = the tangent bundle ofQ.

ThenG carries the structure of a Lie group (thetangent group) via the multiplication

(8.4.2) Xa ∗ Yb = (La∗Yb + Rb∗Xa) for all Xa ∈ TaQ , Yb ∈ TbQ ,

where for alla, x ∈ Q, the mapsLa(x) = ax andRa(x) = xa denote the left multiplication
in Q and the right multiplication inQ, respectively. Recall the trivialization ofT Q given by

(8.4.3) τ : T Q → Q × q , τ (Xh) = (h,X) , X = θ(Xh) for all Xh ∈ ThQ ,

whereθ is the left Maurer-Cartan form ofG,

(8.4.4) θ(Xh) = Lh−1∗Xh, for all Xh ∈ ThQ .

IdentifyingT Q = Q × q via (8.4.3), the induced group operation onQ × q is

(8.4.5) (h,X) ◦ (h′,X′) = (hh′,X′ + Ad (h′)−1X) ,

and the equation which provides the big cell decomposition is equivalent with

(8.4.6) h = h−h+ and X = X+ + Ad (h+)−1X− .

In the general double-coset case, we have for an element(h,X) ∈ ΛT QC the decomposition

(8.4.7) (h,X) = (h−,X−) ◦ (σ,Z) ◦ (h+,X+) ∈ Λ−T QC · ΛdT QC · Λ+T QC .

Using (8.4.5), this provides two equations: the first is the usual Birkhoff decomposition for
QC-valued loops from Theorem 4.5

(8.4.8) h = h− · σ · h+ ∈ Λ−QC · ΛdQC · Λ+QC ,

and the second relation

(8.4.9) X = X+ + Ad (h+)−1Z + Ad(σh+)−1X−

provides the Lie algebra terms of the decomposition (8.4.7).

9. The Iwasawa decomposition-applications.

9.1. In the case, whenG is the nilpotent group defined in (8.1.1), the Iwasawa decom-
position is straightforward,

(9.1.1)

(
1 ã

0 1

)
=

(
1 a

0 1

)
·
(

1 a+
0 1

)
∈ ΛG · Λ+GC ,

whereã = a +a+ ∈ ΛC = ΛR +Λ+C is performed as in (6.2.2).This is in accordance with
Theorem 7.3, since for the semisimple subgroupS contained inG of 6.1 we haveS = {e}.
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9.2. For the groupG of upper triangular unipotent matrices (8.2.1) any loopg ∈ ΛGC

can be decomposed in the form
 1 ã c̃

0 1 b̃

0 0 1


 =


 1 a ab + h

0 1 b

0 0 1


 ·


 1 a+ h+

0 1 b+
0 0 1


 ∈ ΛG · Λ+GC ,

where

ã = a + a+ , b̃ = b + b+ , and c̃ − a · b̃ = h + h+
are split as in (6.2.2). Thisis again in accordance withTheorem 7.3, since againS = {e}.

9.3. For the simple special linear Lie groupSL(2, R), the decomposition is much more
less trivial. Any loopg̃ ∈ ΛSL(2, C ) can be decomposed in the form [20, p. 122]

(9.3.1) g̃ = g · gm · g+ ∈ ΛG · ΛmGC · Λ+GC ,

where the double cosets of the Iwasawa decomposition have the representatives(N =
{0, 1, . . . }):

ΛmGC =
{(

λp 0
0 λ−p

)∣∣∣∣ p ∈ N
}⋃

(9.3.2)

{
1

2

(
λp(λ + 1) iλ−p(λ−1 − 1)

iλp(λ − 1) λ−p(λ−1 + 1)

)∣∣∣∣ p ∈ N
}

.

All the double cosets occurring in (9.3.2) are distinct. There is only one open double coset,
the big cell. It is obtained forp = 0 in the first set and is dense. All other double cosets have
positive codimension inΛSL(2, C) [20].

9.4. For the tangent group in 8.4, we have according to Theorem 6.5

(9.4.1) ΛT QC = ΛT Q · ΛmT QC · Λ+T QC .

EXAMPLE 1. LetQ be as in 6.1 and 9.1. Then for the maximal semisimple groupS

contained inQ we haveS = {e}, and it is easy to show that also the maximal semisimple
subgroups ofG = T Q is trivial. Therefore, by Theorem 7.3, the big cell covers the whole
groupΛT QC. As a matter of fact the splitting is straightforward in this example:((

1 ã

0 1

)
,

(
0 X̃

0 0

))
=

((
1 a

0 1

)
,

(
0 X

0 0

))

◦
((

1 a+
0 1

)
,

(
0 X+
0 0

))(9.4.2)

with the factors provided by the (6.2.2) type splittingsã = a + a+, X̃ = X + X+.

EXAMPLE 2. Taking nowQ = SL(2, R), one can see that the middle term of the Lie
algebra part of the decomposition vanishes and we have

(g̃ , X̃) = (g,X) ◦ (σ, 0) ◦ (g+,X+)
(9.4.3) ∈ (ΛQ × Λq) · (ΛmQC × {0 q}) · (Λ+QC × Λ+qC) ·
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Using (8.4.5) in (9.4.3), we find thatg̃ = g.σ.g+ is the usual Iwasawa decomposition (6.5.1)
with σ ∈ ΛmQC = ΛmSL(2, C) in (9.3.2), and that the terms of the Lie algebra partX ∈ Λq
andX+ ∈ Λ+qC are provided by the relatioñX = Ad(σh+)−1X + X+ or, equivalently,

(9.4.4) Ad(σh+)X̃ = X + Ad(σh+)X+ .

Appendix: A generalized Iwasawa decomposition in untwisted loop groups. This
Appendix presents briefly the results of [20]; see also [9]. The main result of [20] is slightly
sharpened and adjusted to the needs of this paper.

1. Let g be a finite dimensional, real semisimple Lie algebra andgC its complexifi-
cation. ByGC we denote the simply connected and connected complex Lie group with Lie
algebragC. We will always assumeGC to be a subgroup of someGL(n, C) (see [13, 5.1]).
Let τ denote the (complex antilinear) complex conjugation ingC with fixpoint algebrag. Then
τ has a (complex antilinear) lift toGC as an automorphism of order 2, also denoted byτ . Let
G be the connected component of the identity element of Fix(τ ) = {g ∈ GC | τ (g) = g}.

Denoting as usual byS1 the unit circle, we set

ΛGC = {g : S1 → gC | ‖g ‖ < ∞} ,

where g is a continuous function with Fourier expansiong = ∑
n∈Z λngn and ‖g ‖ =∑

n∈Z ‖gn‖ < ∞, where

‖gn‖ = max
j∈{1,...,N}

N∑
i=1

|(gn)ij | .

ThenΛgC is a Banach Lie algebra.
Considering more generally

ΛMat(N, C) = {A : S1 → gC | ‖A‖ < ∞} ,

where‖A‖ is defined as above, we see thatΛMat(N, C) is an associative Banach algebra with
identityI andΛGC is the connected component of the Banach group

ΛGl(N, C) = (ΛMat(N, C))∗ = {g ∈ ΛMat(N, C) | g is invertible} ,

with Lie algebra LieΛGC = ΛgC.
2. The following Banach Lie subalgebras ofΛgC will be of interest:

Λ+gC = {h ∈ ΛgC | hn = 0 for n < 0} ,

Λ−gC = {h ∈ ΛgC | hn = 0 for n > 0} .

It is easy to see that

Λ+gC + Λ−gC = ΛgC .

To make this a direct sum of vector spaces it suffices to make sure that forg+
0 andg−

0 , the
λ0-coefficients inΛ+gC andΛ−gC respectively, we have

g+
0 + g−

0 = gC, g+
0 ∩ g−

0 = {0} .
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For our purposes it will also be important to extend the conjugationτ to ΛgC:

(τg)(λ) = τ (g(λ)) , λ ∈ S1 .

Then we set
Λg = {g ∈ ΛgC | τg = g} .

NOTE. The coefficients inΛg of λ0 satisfyτg0 = g0, i.e.,g0 ∈ g = Fix(τ ). It is easy
to verify thatΛg is a (real) Banach subalgebra ofΛgC and that we have

Λg + Λ+gC = ΛgC .

To make this decomposition ofΛgC unique, it suffices to find a subalgebras+
0 of g+

0 such that

g + s+
0 = gC, g ∩ s+

0 = {0} .

In [20, 1.77] it has been shown that such a (real, solvable) subalgebras+
0 can be found. Thus,

on the Lie algebra level there exists a unique Iwasawa decomposition.

3. Finally, for our purposes it will be convenient to decomposeΛ+gC andΛ−gC in a
simple fashion: denoting byc the diagonal elements ofgC, we set

b+ = c + u+ ,

b− = c + u− ,

where(u+)0 and(u−)0 consist of strictly upper and strictly lower triangular matrices, respec-
tively.

Let U± denote the connected subgroup ofΛ±GC with Lie algebra LieU± = u±. Then
U± are simply connected and connected Banach subgroups ofΛGC.

If C denotes the connected subgroup ofGC with Lie algebrac, thenC andB± = C U±
are connected Banach Lie subgroups ofΛGC.

By N we denote the normalizer ofC in ΛpolGC, the elements ofΛGC which are Laurent
polynomials. ThenW = N/C is called the Weyl group ofΛGC (relative toC).

One can show thatN can be written in the form

N = o
NΠ ,

where
o
N denotes the normalizer ofC in GC andΠ denotes the group of all homomorphisms

from S1 to T , whereT is a maximal torus inU , andU is a compact real form ofGC, and
(Lie T )C = c.
Using the notation introduced above,the Birkhoff decomposition of ΛGC is given by

ΛGC = U−NU+ =
⋃

w∈W

B−wB+ =
⋃

w∈W

U−wCU+ ,

wherew denotes simultaneously an element of the Weyl group and a representative ofw in
N ⊂ ΛGC. This union is disjoint. Forw ∈ W we have

U+ = (U+ ∩ wB+w−1)(U+ ∩ wB−w−1) ,

U− ∩ wU+w−1 = U− ∩ CwU+w−1
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and several similar relations.
4. Using the notation of the previous section, we can find roots ofgC and ofΛgC such

thatu± is spanned by the positive and negative roots ofΛGC respectively, with Cartan algebra
c.

ThenU+ = o
U+Uλ+, where

o
U+ = U+ ∩ GC andUλ+ = I + O(λ). Then for the complex

conjugationτ we haveτ (Uλ+) = Uλ−. Moreover, there exists somew0 ∈ o
W , the Weyl group

of GC relative toc such that
τ (U+) = w−1

0 U−w0 .

Then we have the modified Birkhoff decomposition

ΛGC = τ (U+)NU+ =
⋃

w∈W

τ(U+)wCU+ .

This union is disjoint. The representation ofy ∈ ΛGC as an element inτ (U+)wCU+ can be
made unique by choosings+, r+ ∈ U+ andn ∈ N such that

y = τ (s+)nr+ and nr+n−1 ∈ τ (U−) .

Such choices can always be made.
5. In general terms, the generalized Iwasawa decomposition is the set of double cosets

relative to the action ofΛG × Λ+GC onΛGC given by

(h, v+) · g = hgv−1+ .

Thus

ΛGC =
⋃
x∈I

ΛG · x · Λ+GC ,

whereI parametrizes the double cosets andx is a representative for each coset.
The final goal is to make this much more explicit. To this end we start withg ∈ ΛGC

and considerx = τ (g)−1g. Thenx is an element of the set of “τ -symmetric elements"

T = {p ∈ ΛGC | τ (p) = p−1} .

Note
{τ (g)−1g | g ∈ ΛGC} ⊂ T

and the inclusion is (in general, certainly) strict.
Using the modified Birkhoff decomposition, one finds uniquen ∈ N , r+, v+ ∈ U+ such

that
τ (r+)−1xr+ = nv+ , τ (n) = n−1 , nv+n−1 = τ (v+)−1.

In particular,nv+ is splittable. One considers the connected Lie group

U++ = U+ ∩ (w0n)−1U−(w0n) .

Then there exists a uniquey = expX with

X ∈ LieU++ , dΦ(X) = −X ,
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whereΦ(g) = τ (ngn−1) such thatτ (y)−1nv+y = n. Note that this implies thatn is splittable
as well.

6. The next step is the splitting ofn ∈ N . First we note that everyn ∈ N can be written
uniquely in the form

n = q · exp(H−) · t ,

wheret ∈ Π, H− ∈ cR andq ∈ U, qtq−1 ⊂ t, wheret = Lie T . In our case we also know
τ (n) = n−1. This implies

τ (q) = q−1 , t = τ (qt−1q−1)

andH− = −τ (qH−q−1). Settingy0 = exp(−1
2H−), we obtain

τ (y0)
−1ny0 = q · t .

Of course,qt is again splittable. In [20], [9] it has been explained how to split elements of
this type and that there exist only countably many double cosets.

Let ΛmGC denote the set ofs such thatτ (s)−1s = qt for qt in a set of representatives
of the double cosets. Then altogether we have shown:

THEOREM (Generalized Iwasawa decomposition).
(1) ΛGC = ⋃

s∈ΛmGC
ΛG · s · U+. This union is disjoint.

(2) Every g ∈ ΛGC has a unique representation of the form

g = h.s y0 y r+ ,

where
(i) h ∈ ΛG,

(ii) τ (s)−1s = qt ∈ U ∩ o
N · Π ,

(iii) τ (sy0)
−1sy0 = q exp H−t = n ∈ N, y0 = exp(−1

2H−), H− ∈ cR ,
(iv) τ (sy0y)−1sy0y = nv+, nv+n−1 = τ (v+)−1,

y = exp X ∈ U+ ∩ (w0n)−1U−(w0n), y2 = v+,
dΦ(X) = −X, Φ(p) = τ (npn−1),

(v) τ (g)−1g = τ (r+)−1 · nv+ · r+, r+ ∈ U+, nr+n−1 ∈ τ (U−).

PROOF. The existence of such a decomposition has been shown in [20], [9]. Let

g = hsy0yr+ = h̃s̃ỹ0ỹr̃+
be two decompositions as in (2). Then

τ (g)−1g = τ (r+)−1nv+r+ = τ (r̃+)−1ñṽ+r̃+ .

Sincenv+ = τ (v+)−1n andñṽ+ = τ (ṽ+)−1ñ,

τ (v+r+)−1nr+ = τ (ṽ+r̃+)−1ñr̃+ .

Since also nr+n−1 ∈ τ (U−) and ñr̃+ñ−1 ∈ τ (U−), the uniqueness of the generalized
Birkhoff decomposition (see A.4.) impliesr+ = r̃+, n = ñ andv+r+ = ṽ+r̃+, whence also
v+ = ṽ+.
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Next, since the group

U+ ∩ (w0n)−1 · U− · (w0n)

is nilpotent, connected and simply connected, the equations

y2 = v+ , y = expX

definey uniquely fromv+ = exp(+2X). Moreover,

τ (y)−1ny = exp(−τX) · n · exp(X) = n · τ (n exp(−X)n−1) exp(X)

= nΦ( exp(−X)) · exp(X) = n expX · expX = nv+ ,

where we have usedτ (n) = n−1. Thusτ (sy0)
−1sy0 = n = q · expH− · t . Note thaty0 =

exp(−1
2H−) definesy0 uniquely. Altogether,v+, y andy0 have been determined uniquely.

But τ (s)−1s = qt and by definitions is a uniquely chosen representative for the double cosets.
Therefore alsos = s̃ andh = h̃ follows. �
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