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Abstract. Letx : M™ — S" be a submanifold in the-dimensional spher8” without
umbilics. Two basic invariants of under the Mébius transformation group$f are a 1-form
@ called the M6bius form and a symmetii@, 2) tensorA called the Blaschke tensok is
said to be Mobius isotropic i" if ® = 0 andA = Adx - dx for some smooth functioh.
An interesting property for a Mobius isotropic submanifold is that its conformal Gauss map is
harmonic. The main result in this paper is thassification of M6bius isotropic submanifolds
in S". We show that (i) ifA > 0, thenx is Mdbius equivalent to a minimal submanifold
with constant scalar curvature 8Y; (i) if A = 0, thenx is Mobius equivalent to the pre-
image of a stereographic projection of a minimal submanifold with constant scalar curvature
in the n-dimensional Euclidean spa&¥; (iii) if » < 0, thenx is Mobius equivalent to the
image of the standard conformal map H" — S|} of a minimal submanifold with constant
scalar curvature in the-dimensional hyperbolic spa¢¢#. This result shows that one can use
Mobius differential geometry to unify the threéferent classes of minimal submanifolds with
constant scalar curvature 81, R" andH".

1. Introduction. Letx : M — S' be anm-dimensional submanifold in the-
dimensional spher&" without umbilics. Lete;} be a local orthonormal basis for the first fun-
damental fornY = dx - dx with dual basiq6;}. LetI] = ZU& h?}eiejea be the second fun-
damental form ok andH = )", H%e, the mean curvature vector of where{e, } is a local
orthonormal basis for the normal bundlexofWe defingo? = m/(m — 1)- (|11 ||2—m| H|/?),
where| || is the norm with respect to the induced met#ic - dx on M. Then two ba-
sic Mobius invariants oft, the Mébius form® = 3}, C6;e, and the Blaschke tensor
A = p?Y,; Aij6:6;, are defined by (cf. [W])

(1.1) Y =— ,0_2<H°‘,i +> (- H“5ij)€j(|09,0)> :
J

(1.2) Ajj =— ,0_2<Hes$;;' (logp) —ei(logp)e;(logp) — Z H“’ﬁ;)

o

1
—~ §/>*2(||Vlogp||2 —1+H|?8;
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where Hess and V are the Hessian-matrix and the gradient with respeetxso dx. A
submanifoldx : M — S* is called Mobius isotropic it = 0 andA = Adx - dx for some
functiona.

Let H”" be then-dimensional hyperbolic space defined by

H" = {0, y1, .- »y) | = Y8 +¥i+---y2=~1, yo> 0}.

LetS} be the hemisphere ' whose first coordinate is positive. Let: R" — S'\{(—1, 0)}
andr : H" — S| be the following conformal diffeomorphisms:

1—|ul? 2u
1.3 = , , R",
13 oW (1+|u|2 1+|u|2) ‘e

1 »n

(1.4) f(y)=(—,y—) . y0>0, —y3+yi-y1=-1, yeR".
Yo Yo

Then we can state our main result as follows:

CLASSIFICATION THEOREM.  Any Mdbiusisotropic submanifoldin S* isMdbius equiv-
alent to one of the following M&bius isotropic submanifolds:
() minimal submanifoldswith constant scalar curvaturein S”;
(i) theimages of o of minimal submanifolds with constant scalar curvaturein R”;
(i)  theimages of ¢ of minimal submanifolds with constant scalar curvaturein H”.

This paper is organized as follows. In Section 2 we give Mobius invariants and structure
equations for submanifolds i®'. In Section 3 we show that the conformal Gauss map of
an isotropic submanifold 8" is harmonic. In Section 4 we give conformal invariants for
submanifolds irR" andH”" and relate them to the Mobius invariants of submanifoldS'in
Using these relations we show that all submanifolds in (i), (i) and (iii) of the classification
theorem are Mobius isotropic submanifolds . Then in Section 5 we prove the classification
theorem for Mébius isotropic submanifolds.

We would like to thank Professor U. Simon for his hospitality during our research stay
at the TU Berlin.

2. Mobbius invariants for submanifolds in S*.  In this section we define M&bius in-
variants and recall structure equations for submanifoldS*inFor more detail we refer to

[W]

Let R’{*Z be the Lorentzian space with inner product
(2.1) (x, w) = —xowo + x1w1 + -+ + Xp41Wn+1,

wherex = (xg, x1,...,X;+1) andw = (wg, w1, ..., wy+1). Letx : M — S' be am-
dimensional submanifold @ without umbilics. We define the Mdbius position vector:
M — R’1’+2 of x by

(2.2) Y =p(L,x)=(p,px), p>=m/(m—1)-(I1|>—-m|H|? > 0.

Then we have the following
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THEOREM 2.1 ([W]). Two submanifoldsx, X : M — S" are Mobius equivalent if and
onlyif thereexists T inthe Lorentzgroup O (n + 1, 1) in erz+2 suchthatY = YT.

As a matter of fact, the Mobius group$1 is isomorphic to the subgroup™ (n+1, 1) of
O (n+1, 1) which preserves the positive part of the light conR]ﬁz. It follows immediately
from Theorem 2.1 that

(2.3) g=(dY,dY) = p%dx -dx
is a Mobius invariant (cf. [CH]). We call it the induced Mdbius metric forNow let A be
the Laplace operator gf Then there is an identity given by
(AY, AY) = 1+ m?,
wherex is the normalized scalar curvature gfcf. [W]). We define

1 1 2
(2.4) N=——AY - —A+m)Y.
m 2m?
Then we have
(2.5) (YY) =(N,N)=0, (Y,N)=1.

Moreover, if we take a local orthonormal bas$is;} for the Mdbius metrigg with dual
basis{w;}, then we have

(2.6) (Ei(Y), Ej(Y)) =6ij, (Ei(Y),Y)=(Ei(Y),N)=0, 1<i,j<m.

LetV be the orthogonal complement to the subspacRi{frn2 spanned byY, N, E;(Y)}.
Then we have the following orthogonal decomposition:
2.7) RiT2 = sparfY, N} @ spaiE1(Y), ..., En(Y)} ® V.

V is called the Mdbius normal bundle ef A local orthonormal basi$E,} for V can be
written as

(2.8) E,=(H* H*c+ey), m+l<a<n.

Now, let G,J{,m(RTFZ) be the Grassmannian manifold consisting of all positive definite ori-
ented(n — m)-planes in the Lorentz spad%{*z. The conformal Gauss map : M —
G,_,(RiT?) ¢ \""™(Ri*?) is then defined by

n—m

(2.9 f=Epnt1 ANEpi2 A~ NE,.

Since{Y, N, E1(Y), ..., En(Y), Ep1, ..., E,} are MObius invariant moving frame Rt_[*z
alongM, we can write the structure equations as

(2.10) Ei((N)=Y AjE;(Y)+) CiEq,
j o
(2.11) Ej(Ei(Y)) = —AyjY =8N + ) TE(Y) + ) BfEa.,

k o
(2.12) Ei(Eoz)Z_C?Y_ZBEXJ'E](Y)-'_ZFOEE/S’
f B
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Where{Fi’;} is the Levi-Civita connection of the Mdbius metrjc {Fﬁ} is the normal con-
nection forx : M — S', which is a Mébius invariantA = 3, Ajjo; ® wj and® =

> iq C¥wi(p~tey) are called the Blaschke tensor and the MObIUS form, respectively; and
B =2 Bljwio; (p~Ley) is called the Mobius second fundamental formxofThe rela-
tions betweer, @, B and the Euclidean invariants ofare given by (1.1), (1.2) and

(2.13 B = pH(hf; — H*8y)) .

The integrability conditions for the structurgueations (2.10) through (2.12) are given by (cf.
\))

(2.14) Aijk — Aij = Z(Bf‘kc;f - B CY).,

(2.15) Z(B Aij — B Awi) .

(2.16) B, — Bf = 5,,Ck 8ikCY

(2.17)  Riju = Z(B — BB + GikAji + 8j1Aik — SitAjk — 8jxAir)
(2.18)  Rypij = Z(B Bl B) .

o _ aZ_m_l _ o 1 2
(2.19) ZBii_O, Z(B,.j) =—, trA_ZA,,_E(l—i-mK),

ijo
wherex is the normalized scalar curvature ofFrom (2.16) and (2.19) we get

(2.20) ZBU, 1—m)Cy.

DEFINITION 2.2. Letx : M — S" be a submanifold ir8" without umbilics. We call
x a Mobius isotropic submanifold i* if @ = 0 and there exists a function: M — R such
thatA = Ag.

PROPOSITION 2.3. Letx : M — S' be a Mobius isotropic submanifold in S*. Then
the function A in Definition 2.2 hasto be constant.

PROOFE Since® = 0 andA = Ag, we can write (2.10) a8 N = AdY, which implies
thatdi AdY = 0. Since{E1(Y), ..., E,(Y)} are linearly independent, we get= constant.

3. Conformal Gauss map of submanifoldsir§”. Letx : M — S’ be a submanifold
in S". We assume tha¥l is oriented. Then we can give the normal bundigv) of x an
orientation. Let{e,} be a local orthonormal basis f&(M) which gives the orientation.
Using the bundle isometry : N(M) — V defined bye, — (H*, H*x + ¢,), We can giveV/
an orientation. We define the conformal Gauss rfiapgM — G m(R”JFZ) c A" ’”(R”+2)
by

3.1 f=EntiNEpi2 Ao NEy,
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where{E,} is an oriented orthonormal basis fdr We denote by the induced metric of
the standard embedding 6f_,, (Ri %) in A"~ (Ri2). Our goal in this section is to prove
the following

THEOREM 3.1. Letx : M — S be a Mdbius isotropic submanifold in S*. Then its
conformal Gaussmap f : (M, g) — (G, (Ri), I) is harmonic.

Let (M, g) and(N, k) be two semi-Riemannian manifolds. We assume ghatpositive
definite andr is a metric of typgr, s). Then locally we can write

m r r+s
(3.2) g=> 07 h=-) 02+ > 02
i=1 a=1 A=r+1

We denote byo;;} the connection forms afwith respect tdd;} and denote by, 6u ., 01}
the connection forms df with respect td{6,, 6, }. Here we use the following ranges of the

indices:
3.3) 1<i,j<m, l<a,B=<r, r+1<i,u<r+s.

Then we have

(3.4) do; = ZGU VAN 9.,' s
J

(35) da=— bupAbOp+ Y Our AO, doh=—) Oipnbg+Y OOy
B Iz

B A
Now, let f : M — N be a smooth map. We defifig,;, f1:} by
(3.6) [ Ou =) faibi, [*0=)_ fiibi.

1 1

The second fundamental forfify; ;. f.i,;} of f : M — Nis defined by
(3.7) dfei + Z fajfji — Z fgi [ 0pa + Z frif O = Z fairj0;
j B A j

J

(3.8) dfyi + Z f1j0ji — Z Sai [ Our + Z fui [ 0. = Z f2i,j0; -
J o H J

Thenf : M — N is harmonic if and only if
(3.9) Y faii=0. Y fui=0. l<a<r, r+l<i<r+s.
i i

To prove Theorem 3.1 we study first the geometry of the Grassmannian manifold
G/, (Ri™) as a submanifold in the pseudo-Euclidean spA¢e” (R} ) with the inner
product induced bYR’l’JFZ, (,)). Let O(n + 1, 1) be the manifold defined by

(3.10) On+11)={TeGLn+2,R)|'ThT = J},
wherel; = diag{—1,1,...,1}andJ = (2 é) @ diag(l, ... ,1}. Then

T =(51,60,61,...,6) € 0O(n+1,1)
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if and only if

(3.11) (6-1,6-1) = (60, %0) =0, (£-1,%0) =1,

(3.12) (6a,6-1) = (6a,60) =0, (&4,8p) =8ap, 1=<a,b=<n.
Letr : O(n+1,1) — Gj{_m(R’l’*Z) be the fibre bundle defined by

(313 T(T) =&mi1 N Nén.

Then around each point i8,_,,(Ri2) there exists an open set C G,_,, (Ri™?) such that
we have a local section

(3.14) T=(6_1,60.61,....6):U—> O(n+11).

Thus the embedding c@j{,m(R’frz) in /\"’m(R’l’Jrz) can be written locally by the position
vector

(3.15) E=Enii A AU~ NTRT).

Since{&_1, £o, £1, - - - , &) is @ moving frame iR 2 alongU ¢ G,_,,, (Ri™), we can write
the structure equations as

(3.16) déx =) 6apép, —1<A,B<n,
B

whered stands for the differential operator G’f{_m(R’{*z) and{64p} are local 1-forms on

G/, (Ri*?) . The integrability conditions for (3.16) are given by

n—m

(3.17 deAB=29AC ANOcg, —-1<A,B,C<n.
C

Since (3.11) and (3.12) hold dn, we get from (3.16) that

(3.18) fo-1) =0-10=0, 6boo= —O1(-1),
(3.19) 0oa = —0u-1), O1a =040, 6Oab=—6pa, 1=<a,b=<n.

We make the following convention on the range of indices:
1<i,j,k=m, m+1l<oaB,y<n, —-1<A B C=<n.
Then from (3.15) we get

(3.20) d‘?:Zéerl/\'“AdéaAmAén
=Y (D" MupE A NG A AE A A
+ ) (DT M Oa0bo A A A A A

+Z(—1)a_m_19ai§i TN .../\gx A ANE, .

o,
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Thus the induced metrik; of G/_,, (Ri™2) in \"~"(Ri*?) is given by

(321 I = (d&.d&) = (Bu(-1) ® 020 + 000 ® bu(—1) + »_ 05 -
o ol
If we define
1 1
(3.22 Pu(-1) = 72(%(—1) —640), Pa0 = 72(%(-1) + 640) ,
then we can write
(3.23 Io ==Y 5 1)+ 2+ > 0.
o o ol
Thus{¢y(-1). $«0, 6ri} is @ local orthonormal basis (Zf“Gj{,m(R’ffz), which implies thati

is a semi-Riemannian metric @j_,, (Ri ™) of type ((n —m), (n —m)(m+1)). From (3.22),
(3.17), (3.18) and (3.19) we get

1
(3.24) dpa-1) =) 0up A bp—1) + 000 A pa0+ ) 72(9;(0 — Ok(-1)) A Oak »

[ k
(3.25) a0 =000 A Gu(—1) + Y _Oup N po— Y %(Gk(l) + 0k0) A Ouk ,
B k 2
(3.26) dOuk =i(9k0 — Ok(-1) A fa(-1) + i(9k(71) + 6k0) A a0
V2 V2
+ ) (—0kup + Oupdjt)0p) -
B

By (3.5) we obtain the following connection forms kf with respect to the orthonormal basis
{Pa(-1)5 Pa0, Ouil:

1
(8.27) Ru(—1p-1) = —0up, Ra(-1)p0 = 0008ap, La(-1)pk = 72(9k0 — Ok(=1))8ap »
1
(3.28)  R408(-1) = — 0000w, Ra0po=0up. u0pk = 5
1 1
(3.29) Qurp(-1) =ﬁ(9k(71) — 6k0)ap . Rakpo = 72(91«71) + 0k0)8ap »

(Ok(=1) + 0k0)dup

Qarpj = — Ojkdap + Oupdjk -

Now, let f : M — G,_,, (Ri2) be the conformal Gauss map of a submanifoldVl —
S'. Let{Y,N,E1(Y),..., En(Y), Eny1, ..., En} be the Mébius moving frame iR}
alongM. Then we can find a local sectidhof 7 : O(n + 1,1) — Gf{_m(R’l’*Z) given by
(3.14) such that

(3.30 (Y,N,E1(Y), ... ,En(¥Y), Ep1, ..., Ex) =T o f=(f*€_1,..., [&).
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It follows from (2.10), (2.11), (2.12) and (3.16) that

(3.31) f*000=0, [ Ok1=— Z Ajwj, [T = —wx,
J

(3.32) f*e,'j = wjj = Z Flia)k , f*ea/g = Wqp ‘= Z Ffia)[ ,
k i
(3.33) FOun == Cloi, f*0u0=0, f*ar=-Y Bfow;.
i J

If we define{ fy(—1)i, fais faki} DY

B34  [fTpu1 = Z fa=vivi, [ Pa0= Z faviwi s fTOuk = Z fakiow; .
i i i
Then by (3.22) and (3.33) we have

1 1
(3.35 Sa—ni = —TZC,‘X, Ja0i = —TZC,‘X, faki = —By; .

By definition (cf. (3.7) and (3.8)) the second fundamental fyn_1); ;. fooi,j, foki,j} are
defined by the following formulas

Afa-1i+ ) fa-nj@ji = D fo1i [* a1 + Y f50if* 2poac-1)
(3.36) / g !
+ D foki f Rprac-1 = Y fat-ij@;
Bk J

dfuoi + Y fa0joji — Y fo-1if*2p1a0+ Y f50i f*2p0u0
(3.37) / g !
+ Z Jpki ka0 = Z Ja0i j@j »
Bk j

dfaki + Z Jakjwji — Z fB=1)i [ 2p(-1ak + Z 500 F*2p0uk
(3.38) I B B
+ ) f3jif* Rpjak =) faki jw; -
Bj j

It follows from (3.27) through (3.29) and (3.31) through (3.35) that

1
(3.39) Ja(-1)i,j = ——(Cf; — > B A+ Bﬁ'ﬁ) ’
NZ AN '
1
(3.40) favij = ——(C,‘-ﬁ‘; =D BiiAyj — Bi“;) ’
NZ AN '

(3.41) faki,j = — (B + C{'ékj) -
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Thus we know from (2.19) and (2.20) that the conformal Gauss fnap — G,_,, (Ri2)
is harmonic if and only if

342 Y CH =) BiA;=0, m—2C{=0, 1<k<m, l<a<n.
i i,j

In the casen = 2, the first equation of (3.42) is exactly the Euler-Lagrange equation for
the Willmore functional (which is the M6bius volume functional, cf. [W]). The surface¥'in
satisfying this equation are known as Willmore surfaceS"'inThe conformal Gauss map of
a surface irS" has been studied by Bryant ([BR]) far= 3 and Rigoli ([R]) forr > 3 by
using complex coordinate on the surface. It follows immediately from (3.42) that

THEOREM 3.2 ([BR], [R]). A surfacex : M — S* is WlImore if and only if its
conformal Gauss map is harmonic.

In the casen > 2, we know that the conformal Gauss maprafM — S" is harmonic
if and only if it satisfies

(3.43) Cc¥ =0, ZB,?;AUEO, l1<k<m, m+1l<a<n.
ij

Since for any Mobius isotropic submanifold we havg = 0 andA;; = Ad; for somea,
which implies (3.42). Thus we complete the proof of Theorem 3.1.

4. Conformal invariants for submanifolds in R* and H". Leto : R* — S' and
t : H" — S} be the conformal maps definded by (1.3) and (1.4). Usingndz, we
can regard submanifolds IR* andH" as submanifolds it$*. In this section we give the
conformal invariants for submanifolds Rt andH”, and relate them to the Mdbius invariants
for submanifolds inS*. By using these relations, we show that any minimal submanifolds
with constant scalar curvature Rf, H" andS" are Mobius isotropic.

Letx : M — S be a minimal submanifold with constant scalar curvatur8inThen
by the Gauss equation we know the&t= m/(m — 1) - (|| 1]|?> — m| H|/?) is a constant. Thus
from (1.1) and (1.2) we get

1
C?:O, A,’j:E,O_Z(S,'j.

By definitionx is a M6bius isotropic submanifold ig’.

Letu : M — R" be a submanifold without umbilics iR". Let {¢;} be a local or-
thonormal basis for the first fundamental foim= du - du with the dual basig6;}. Let
IT =Y, h6:6;é, be the second fundamental formwandH = Y, A&, be the mean

)
curvature vector ofi, where{e, } is a local orthonormal basis for the normal bundle:otVe
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define

(4.1) G=p%du-du, ?=m/(m—1)- (1> —m|H|?,
(4.2) By =p~ R, — H*Sy))

(4.3) Co =— ,3—2<ﬁ“,,~ + > (A, — H*8;)é;(log ,3)) :

J

Aij=— ﬁ‘2<HeS$;,' (log ) — & (log $)¢;(log ) — Y Hh,)
(4.4 L o
~—2 ~12 Fon2
—h (nv log5|1© + ;m“) )a,-,- .

We call the globally defined tensofs & = Y, C#6iéa, A := 2", Ai;6,6; and
B = /Y, BX6ifé, the Mobius metric, the Mobius form, the Blaschke tensor and the
Mobius second fundamental form of M — R", respectively.

Now, leto : R" — S be the conformal map given by (1.3). We define= cou : M —
S'. Thenx is a submanifold ir§" without umbilics. We denote bg andA the Mdbius form
and the Blaschke tensor efdefined by (1.1) and (1.2), and denote pgndB the Mébius
metric and the M6bius second fundamental form defined by (2.3) and (2.18)%o6 o u,
respectively. Our goal in this section is to prove the following

THEOREM4.1. g = §, B = do(B), @ = do(®) and A = A. In particular,
{g,B, &, A} are conformal invariants for submanifoldsin R".

Leto : R* — S' be the conformal map given by

1— |ul? 2u
45 = = , , R".
9 r=ow (1+|u|2 1+|u|2) ‘e

Then for any vecto¥ € T,R" we have

(4.6) do (V)=

i Iulz{_(u -Vix+(—u-V,V)}.

Thus we get

4.7) dx -dx = du .

———du -
(14 |ul?)?
Now, letu : M — R" be a submanifold ilR* andx = o0 ou : M — S'. We denote by
{e;} and{e,} local orthonormal basis fafu - du and the normal bundle af respectively, and
define

1w L4 uf?

(4.8 e o G =

do(ey) .
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Then{e;} is a local orthonormal basis fatx - dx with dual basis{#;} and{e,} is a local
orthonormal basis for the normal bundlexoin S”. It follows from (4.6) that

1 2
(4.9) ei(x) = * do(ei(u)) = —(u-&(u)x + (—u-eiu),eu)),
1 2 2u - ¢
tw = 2 o @) = — 21 (1 u) + (0,20)
1+ |u|
(4.10)
=—(u-ex)x + (—u-éq,éy).
By (4.9) we get
1+ Jul? S
(4.1) eiej(x) = T((—&y, 0) + (—u-ejei(u),eje;(w)) mod(x,e;(x)).
Thus (4.10) and (4.11) yield
2 2
4.12) he = 2 e o sy, me= T e g
i 2 ij .
It follows from (4.12) and (4.7) that
1 2\2
(4.13) p? = #52,
(4.14) g=p%dx -dx = p?du -du = §.

Itis clear thatj is a conformal invariant. By (4.12) and (4.13) we get
(4.15) B = p N, — H*8ij) = p—H(h§; — H*8;j) = Bf; .
By (4.10) we get

dey = (—u-dey,dey) mod(x,dx),
which implies that
(4.16) Oup = deg - ep = déy - ép = Oyp .

Let {H,; } and{H",; } be the covariant derivatives of the mean curvature vector in the
normal bundle ok =0 ou : M — S" andu : M — R”, respectively. By definition we have

dHa+ZHﬁ9ﬁa=ZHa,,'9,', dﬁa+ZHﬁéﬁa=ZHQ,[§i.
1 i

B i B
Sinced; = ((1+ |u|?)/2)6;, from (4.12) and (4.16) we get
2
T+ 1\ -0 141 o ce rag s
(4.17) H"‘,i=< > >H°‘,,~— 5 Z(h%—Ha5ij)(€j(”)'”)~
J

By (4.13) we get

1 2
418 ej(ogp) = =11

é](logﬁ) +§j(u) ‘U
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We define{C} and{f?l.“} by (1.1) and (4.3), respectively. It follows from (4.17) and (4.18)
that

(4.19 c*=Cr.

Let {6;;} and{é,-j} be the Levi-Civita connections afx - dx anddu - du with respect to the
basis{e;} and{e;}, respectively. Then by (4.7) we have

~ 2u-ei(u) ~ 2u-ei(u) ~
4.20 e 0, — .
( ) 3] 13 + 14+ |u|2 t 1+ |u|2 J

We define the Hegglog p) and Hesg (log o) by

d (ei(logp)) + Y _ej(logp)6;i = Y Hess;(log p)6;,

J J
d (é;(logp)) + Y _¢é;(logp)fji = Y Hess;(log 5)d; .
J J

Using (4.18) and (4.20), we get

1+ |ul?
2

2
Hess; (logp) = ( ) Hess; (109 0) + (u - € (u))(u - € (u))

1—|—|Ll|2 ra s e e 0 e e 0
(4.21) > <Zhij (6o -u) + (u-€;())eé;(logp) + (u - & (u))é;(log p)>
14 1+ uf?
+ (-2 ;m-ék(u»ék(logﬁ)—;(u-ék(u»Z)an-

Using (4.12) and (4.18), we also get
ei(logp)e;j(logp) + | HA;
o

1 u2\? o
=( +'“'> (g,-(log,s)éj(logﬁ)+ZH“h§;)

2
1+ |ul?
2

(4.22) +

(e;(logp)(e;(u) - u) +e;(logp)(e;(u) - u))

1+ |ul?
2

2
+ (;(éa cu)? + H% ;(Ea - u)ﬁ“>a,;,~ :

+ (€i(u) - u)(ej(u) - u) +

h (éq - u)
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(1viog IP—14) (H*)? _ LAy’ IVlog 3>+ Y (H*)?
2 p . 2\ 2 P .
1+ |ul? 5 . -
(423)  +— <Zek(|09p)(€k(u)'”)+;H (ea-u))

k

1 ~ 1 5 1
+ > ;(u e (u))? + > ;(u 8o (u))? — >

Let {A;;} and{fi,;,'} be the tensor defined by (1.2) and (4.4), respectively. Then we get from
(4.13), (4.21), (4.22) and (4.23) that

(4.24) Ajj = Aij .

Now, we come to the proof of Theorem 4.1. It follows from (4.14) that g. We take
wi = pb; = pb;. Then by (4.24) we ge = A. From (4.8) and (4.13) we gét (5 1é,) =
o~ tey. Thus we get from (4.15) and (4.19) that (B) = B anddo (®) = @. This completes
the proof of Theorem 4.1.

It follows from (4.3) and (4.4) that

THEOREM 4.2. Theimages of ¢ of minimal submanifolds with constant scalar curva-
turein R" are Mobius isotropic submanifoldsin S".

Let R’{*l be the Lorentzian space with inner product

(y, w) = —yowo + yrw1 + -+ -+ ypWp, ¥y = (Y0, ..., Yn), w = (Wo, ..., Wy).

LetH" = {y € R§+l| (v,y) = —1, yo > 0} be then-dimensional hyperbolic space. We
define now the conformal invariants for the submanifold$iih Lety : M — H” be a
submanifold inH” without umbilics. Let{¢;} be a local orthonormal basis fedy, dy) with
dual basis(f;}. LetIT = Y i) fzf;é,-éjéa be the second fundamental form pfand H =
D H%¢é, the mean curvature vector of where{ée,} is a local orthonormal basis for the
normal bundle ofy. We define

(4.25) G=p%dy,dy), pZ=m/m—1)-(I1)?-m|H|?,
(4.26) Bf =p~(hy; — H*Sy)) .
(4.27) Ce =— ;52<I‘Afa,i + Z(fl?} — ﬁ“5ij)éj(|09)5)> ,

J
i == 7% Hess;log ) — & log é;log ) — 3 i
(4.28) . @
- 5/32<||v log 411> + 1+ Z(ﬁ“)2>a,;,~ :
o
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We call § the Mébius metric ofy, B = Y, B&6;0;é, the Mobius second fundamental
formof y, & = ¥, C#6;é, the Mobius form ofy andA = ¥, 52A;;6;0; the Blaschke
tensor ofy, respectively.

SetD" = {u € R"||u|?> < 1}. Letu : D" — H”" be the conformal diffeomorphism
given by

2
(4.29) ju(u) = (H ul® - 2u ) .

1—ul?” 1~ |ul?

Thenu = u 1oy : M — D" is a submanifold inD" without umbilics. We denote by
{3, B, @, A} the basic Mébius invariants for= 1oy : M — D" c R". Using the same
method as in the proof of Theorem 4.1, we can prove that

THEOREM 4.3. § = §, B = du(B), & = du(®) and A = A. In particular,
{4, B, o, A} are conformal invariants for submanifoldsin H”.

Lett : H" — S| be the conformal diffeomorphism defined by (1.4). Then we have
T = 0 o u~ L. Thus from Theorem 4.1 and Theorem 4.3 we get

THEOREM 4.4. Lety : M — H”" be a submanifold in H” without umbilics. Let
x=toy:M— S}. Thenwe have
g=§, B=dt(B), ®=du®), A=A.
In particular, {g, B, ®, A} are conformal invariants for submanifoldsin H”.
It follows immediately from (4.27) and (4.28) that
THEOREM 4.5. Theimages of T of minimal submanifolds with constant scalar curva-
turein H" are Mobius isotropic submanifoldsin S”.

5. The classification of M6bius isotropic submanifolds inS*. In this section we
prove the classification theorem mentioned in Section 1.
Letx : M — S' be a Md6bius isotropic submanifold 8f. By definition we have

(5.1 Ajj = Adjj, C?EO.
It follows from (2.10) and Proposition 2.3 that
(5.2 dN = AdY

for some constant. Using (5.1) and the last equation in (2.19), we get
1
(5.3) Aij =51+ m?k)8;;, « = constant

wherek is the normalized scalar curvature of the Mébius metric. By (5.2) we can find a
constant vectot € R’i*z such that

1

= W(l+m2K)Y+C.

(5.4) N
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It follows from (5.4) and (2.5) that
1
(5.5) (c.0) = ——@+m%), (¥.c)=1.
m

Then we consider the following three cases: (iis timelike; (ii) ¢ is lightlike; (iii) c is
spacelike.

First, we consider the case (i) th@t c) = —r2 with r = v/1+ m2/m > 0. By (2.2)
and(Y, N) = 1 we know that the first coordinate &fis positive and ofV is negative. Thus
by (5.4) we know that the first coordinate®is negative. So there existfae O (n + 1, 1)
such that

2
(5.6) (—r.0) =cT = NT — %YT.

LetX : M — S" be the submanifold which is Mébius equivalenttsuch thatt = YT
(cf. Theorem 2.1). Then we have = NT. Since

(5.7) ¢l =(-r,0), (Y,cT)=1, Y =573,
we get
(5.8) o = r~t = constant

It follows from (5.6) and (2.4) that

2
~ ~ . 1.. 1,-
(5.9) (-0 =N-27, N=-=AF-Z/27.

2 m 2
Sincep = r~1, we know fromj = 52dx - d that the Laplace operatary of dx - d¥ is given

by Am = p2A. Thus by (5.9) we get
(5.10) AmE +mi=0.

By Takahashi's theorem ([T]) we know that: M — S' is a minimal submanifold. The
normalized scalar curvatukeof dx - dx is a constant given by

2 mZK

5.11 g = plk = .
( ) k=K 1+ m2

Next, we consider the case (ii) th@at ¢) = 0. By making use of a Mdbius transformation
if necessary, we may assume that (—1, 1, 0). Thus by (5.4) and (2.4) we have

1
(5.12) c=(-1,1,0=N=——AY.
m

We write x = (xo,x1). ThenY = (p, pxo, px1). By (5.5) and (5.12) we gett,c) =
o(1+ xp) = 1, which implies thakg # —1 andx(M) c S"\{(—1, 0)}.

Now, leto~1 : S"\{(-1,0)} — R" be the stereographic projection from the point
(—1,0) € S'. We definet = 671 o x : M — R". Then by (1.3) we have

p(L—1|ul®>)  2pu
l—i-lul2 ’1+|u|2

(5.13 Y=p1x) = (p,
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From(Y, c) = 1 we geto = (1+ |u|?)/2. Thus we get from (5.13) that

y— l+|u|2’ 1—|u|2’u _
2 2

The Mdbius metric of is given by
(5.19 g={(dY,dY)=du-du,

which is exactly the first fundamental form of= 61 o x : M — R”. In particular, the
Laplace operaton of g coincides with the Laplace operator & - du. Comparing the last
coordinate in (5.12), we getu = 0. Thusu = 0 "1ox : M — R" is a minimal submanidold.
By (5.14) and (5.4) we know that the normalized scalar curvatuteisfexactly the scalar
curvaturec of ¢. Since(c, ¢) = —(1 + m?k)/m? = 0, we getk = —1/m?.

Finally, we consider the case that c) = r2 with r = /—(1+m2)/m > 0. By
making use of a Mdbius transformation if necessary, we may assume thdo, r, 0). We
write x = (xp, x1). ThenY = (p, pxo, px1). It follows from (5.5) that(Y, c) = prxo = 1,
which implies thateo > 0 andx(M) C Si.

Now, letr : H* — S} be the conformal diffeomorphsim defined by (1.4) and=
t™lox : M — H" c Ri™. Since(Y, c) = prxo = 1, we getrg = 1/rp. By (1.4) we get
yo = 1/x0 = rp and

1
(5.15 Y = (p, pxo, px1) = <E, -, E) .
r r r

It follows that
(5.16) g=(dY,dY) =r"2(dy,dy).
The Laplace operataky of (dy, dy) is given byAy = r—2A. By (5.4) and (2.4) we have

1 2 2
(5.17) —ZAav+yv=-"v+0r0,

m 2 2

which is equivalent to the equation
(5.18 Amy —my =0.

Thusy = t=1ox : M — H" is a minimal submanifold. Since the Mébius metgibas con-
stant scalar curvature, we know from (5.16) thatM — H” has constant scalar curvature.
Thus we complete the proof of the classification theorem.
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