MÖBIUS ISOTROPIC SUBMANIFOLDS IN Sⁿ

Huili Liu*, Changping Wang† and Guosong Zhao‡

(Received January 5, 2000, revised February 5, 2001)

Abstract. Let $x: \mathbf{M}^m \to S^n$ be a submanifold in the n-dimensional sphere S^n without umbilics. Two basic invariants of x under the Möbius transformation group in S^n are a 1-form Φ called the Möbius form and a symmetric (0,2) tensor \mathbf{A} called the Blaschke tensor. x is said to be Möbius isotropic in S^n if $\Phi \equiv 0$ and $\mathbf{A} = \lambda dx \cdot dx$ for some smooth function λ . An interesting property for a Möbius isotropic submanifold is that its conformal Gauss map is harmonic. The main result in this paper is the classification of Möbius isotropic submanifolds in S^n . We show that (i) if $\lambda > 0$, then x is Möbius equivalent to a minimal submanifold with constant scalar curvature in S^n ; (ii) if $\lambda = 0$, then x is Möbius equivalent to the preimage of a stereographic projection of a minimal submanifold with constant scalar curvature in n-dimensional Euclidean space n if n if n of a minimal submanifold with constant scalar curvature in the n-dimensional hyperbolic space n of a minimal submanifold with constant scalar curvature in the n-dimensional hyperbolic space n of a minimal submanifold with constant scalar curvature in the n-dimensional hyperbolic space n in this result shows that one can use Möbius differential geometry to unify the three different classes of minimal submanifolds with constant scalar curvature in n i

1. Introduction. Let $x: M \to S^n$ be an m-dimensional submanifold in the n-dimensional sphere S^n without umbilics. Let $\{e_i\}$ be a local orthonormal basis for the first fundamental form $I = dx \cdot dx$ with dual basis $\{\theta_i\}$. Let $II = \sum_{ij\alpha} h_{ij}^{\alpha} \theta_i \theta_j e_{\alpha}$ be the second fundamental form of x and $H = \sum_{\alpha} H^{\alpha} e_{\alpha}$ the mean curvature vector of x, where $\{e_{\alpha}\}$ is a local orthonormal basis for the normal bundle of x. We define $\rho^2 = m/(m-1) \cdot (\|II\|^2 - m\|H\|^2)$, where $\|\cdot\|$ is the norm with respect to the induced metric $dx \cdot dx$ on M. Then two basic Möbius invariants of x, the Möbius form $\Phi = \sum_i C_i^{\alpha} \theta_i e_{\alpha}$ and the Blaschke tensor $\mathbf{A} = \rho^2 \sum_{ij} A_{ij} \theta_i \theta_j$, are defined by (cf. [W])

(1.1)
$$C_{i}^{\alpha} = -\rho^{-2} \left(H^{\alpha},_{i} + \sum_{j} (h_{ij}^{\alpha} - H^{\alpha} \delta_{ij}) e_{j} (\log \rho) \right),$$
(1.2)
$$A_{ij} = -\rho^{-2} \left(\operatorname{Hess}_{ij} (\log \rho) - e_{i} (\log \rho) e_{j} (\log \rho) - \sum_{\alpha} H^{\alpha} h_{ij}^{\alpha} \right)$$

$$-\frac{1}{2} \rho^{-2} (\|\nabla \log \rho\|^{2} - 1 + \|H\|^{2}) \delta_{ij},$$

Key words and phrases. Möbius geometry, isotropic submanifold, minimal submanifold, scalar curvature.

²⁰⁰⁰ Mathematics Subject Classification. Primary 53A30; Secondary 53B25.

^{*} Partially supported by TU Berlin, SRF for ROCS, SEM; the SRF of Liaoning and the Northeastern U.

[†] Partially supported by DFG and NSFC, Qiushi Award, 973 Project, RFDP and Jiechu Grant.

[‡] Partially supported by DFG and NSFC, Qiushi Award.

where Hess_{ij} and ∇ are the $\operatorname{Hessian-matrix}$ and the gradient with respect to $dx \cdot dx$. A submanifold $x : M \to S^n$ is called Möbius isotropic if $\Phi \equiv 0$ and $\mathbf{A} = \lambda dx \cdot dx$ for some function λ .

Let \mathbf{H}^n be the *n*-dimensional hyperbolic space defined by

$$\mathbf{H}^n = \{(y_0, y_1, \dots, y_n) \mid -y_0^2 + y_1^2 + \dots y_n^2 = -1, y_0 > 0\}.$$

Let S^n_+ be the hemisphere in S^n whose first coordinate is positive. Let $\sigma: \mathbb{R}^n \to S^n \setminus \{(-1,0)\}$ and $\tau: \mathbb{H}^n \to S^n_+$ be the following conformal diffeomorphisms:

(1.3)
$$\sigma(u) = \left(\frac{1 - |u|^2}{1 + |u|^2}, \frac{2u}{1 + |u|^2}\right), \quad u \in \mathbb{R}^n,$$

(1.4)
$$\tau(y) = \left(\frac{1}{y_0}, \frac{y_1}{y_0}\right), \quad y_0 > 0, \quad -y_0^2 + y_1 \cdot y_1 = -1, \quad y_1 \in \mathbf{R}^n.$$

Then we can state our main result as follows:

CLASSIFICATION THEOREM. Any Möbius isotropic submanifold in S^n is Möbius equivalent to one of the following Möbius isotropic submanifolds:

- (i) minimal submanifolds with constant scalar curvature in S^n ;
- (ii) the images of σ of minimal submanifolds with constant scalar curvature in \mathbb{R}^n ;
- (iii) the images of τ of minimal submanifolds with constant scalar curvature in \pmb{H}^n .

This paper is organized as follows. In Section 2 we give Möbius invariants and structure equations for submanifolds in S^n . In Section 3 we show that the conformal Gauss map of an isotropic submanifold in S^n is harmonic. In Section 4 we give conformal invariants for submanifolds in R^n and H^n and relate them to the Möbius invariants of submanifolds in S^n . Using these relations we show that all submanifolds in (i), (ii) and (iii) of the classification theorem are Möbius isotropic submanifolds. Then in Section 5 we prove the classification theorem for Möbius isotropic submanifolds.

We would like to thank Professor U. Simon for his hospitality during our research stay at the TU Berlin.

2. Möbius invariants for submanifolds in S^n . In this section we define Möbius invariants and recall structure equations for submanifolds in S^n . For more detail we refer to [W].

Let \mathbf{R}_1^{n+2} be the Lorentzian space with inner product

$$\langle x, w \rangle = -x_0 w_0 + x_1 w_1 + \dots + x_{n+1} w_{n+1},$$

where $x = (x_0, x_1, \dots, x_{n+1})$ and $w = (w_0, w_1, \dots, w_{n+1})$. Let $x : M \to S^n$ be a m-dimensional submanifold of S^n without umbilies. We define the Möbius position vector $Y : M \to R_1^{n+2}$ of x by

$$(2.2) Y = \rho(1, x) = (\rho, \rho x), \rho^2 = m/(m-1) \cdot (\|II\|^2 - m\|H\|^2) > 0.$$

Then we have the following

THEOREM 2.1 ([W]). Two submanifolds $x, \tilde{x} : M \to S^n$ are Möbius equivalent if and only if there exists T in the Lorentz group O(n+1,1) in \mathbb{R}^{n+2}_1 such that $Y = \tilde{Y}T$.

As a matter of fact, the Möbius group in S^n is isomorphic to the subgroup $O^+(n+1, 1)$ of O(n+1, 1) which preserves the positive part of the light cone in R_1^{n+2} . It follows immediately from Theorem 2.1 that

$$(2.3) g = \langle dY, dY \rangle = \rho^2 dx \cdot dx$$

is a Möbius invariant (cf. [CH]). We call it the induced Möbius metric for x. Now let Δ be the Laplace operator of g. Then there is an identity given by

$$\langle \Delta Y, \Delta Y \rangle = 1 + m^2 \kappa$$
,

where κ is the normalized scalar curvature of g (cf. [W]). We define

(2.4)
$$N = -\frac{1}{m}\Delta Y - \frac{1}{2m^2}(1 + m^2\kappa)Y.$$

Then we have

(2.5)
$$\langle Y, Y \rangle = \langle N, N \rangle = 0, \quad \langle Y, N \rangle = 1.$$

Moreover, if we take a local orthonormal basis $\{E_i\}$ for the Möbius metric g with dual basis $\{\omega_i\}$, then we have

$$(2.6) \langle E_i(Y), E_j(Y) \rangle = \delta_{ij}, \langle E_i(Y), Y \rangle = \langle E_i(Y), N \rangle = 0, 1 \le i, j \le m.$$

Let **V** be the orthogonal complement to the subspace in \mathbb{R}_1^{n+2} spanned by $\{Y, N, E_i(Y)\}$. Then we have the following orthogonal decomposition:

(2.7)
$$\mathbf{R}_{1}^{n+2} = \operatorname{span}\{Y, N\} \oplus \operatorname{span}\{E_{1}(Y), \dots, E_{m}(Y)\} \oplus \mathbf{V}.$$

V is called the Möbius normal bundle of x. A local orthonormal basis $\{E_{\alpha}\}$ for **V** can be written as

(2.8)
$$E_{\alpha} = (H^{\alpha}, H^{\alpha}x + e_{\alpha}), \quad m+1 \le \alpha \le n.$$

Now, let $G_{n-m}^+(R_1^{n+2})$ be the Grassmannian manifold consisting of all positive definite oriented (n-m)-planes in the Lorentz space R_1^{n+2} . The conformal Gauss map $f: M \to G_{n-m}^+(R_1^{n+2}) \subset \bigwedge^{n-m}(R_1^{n+2})$ is then defined by

$$(2.9) f = E_{m+1} \wedge E_{m+2} \wedge \cdots \wedge E_n.$$

Since $\{Y, N, E_1(Y), \ldots, E_m(Y), E_{m+1}, \ldots, E_n\}$ are Möbius invariant moving frame in \mathbb{R}_1^{n+2} along M, we can write the structure equations as

(2.10)
$$E_i(N) = \sum_j A_{ij} E_j(Y) + \sum_{\alpha} C_i^{\alpha} E_{\alpha},$$

(2.11)
$$E_j(E_i(Y)) = -A_{ij}Y - \delta_{ij}N + \sum_k \Gamma_{ij}^k E_k(Y) + \sum_\alpha B_{ij}^\alpha E_\alpha,$$

(2.12)
$$E_i(E_\alpha) = -C_i^\alpha Y - \sum_j B_{ij}^\alpha E_j(Y) + \sum_\beta \Gamma_{\alpha i}^\beta E_\beta,$$

where $\{\Gamma_{ij}^k\}$ is the Levi-Civita connection of the Möbius metric g; $\{\Gamma_{\alpha i}^\beta\}$ is the normal connection for $x: \mathbf{M} \to \mathbf{S}^n$, which is a Möbius invariant; $\mathbf{A} = \sum_{ij} A_{ij} \omega_i \otimes \omega_j$ and $\Phi = \sum_{i\alpha} C_i^\alpha \omega_i (\rho^{-1} e_\alpha)$ are called the Blaschke tensor and the Möbius form, respectively; and $\mathbf{B} = \sum_{ij\alpha} B_{ij}^\alpha \omega_i \omega_j (\rho^{-1} e_\alpha)$ is called the Möbius second fundamental form of x. The relations between \mathbf{A} , $\mathbf{\Phi}$, \mathbf{B} and the Euclidean invariants of x are given by (1.1), (1.2) and

$$(2.13) B_{ij}^{\alpha} = \rho^{-1} (h_{ij}^{\alpha} - H^{\alpha} \delta_{ij}).$$

The integrability conditions for the structure equations (2.10) through (2.12) are given by (cf. [W])

(2.14)
$$A_{ij,k} - A_{ik,j} = \sum_{\alpha} (B_{ik}^{\alpha} C_j^{\alpha} - B_{ij}^{\alpha} C_k^{\alpha}),$$

(2.15)
$$C_{i,j}^{\alpha} - C_{j,i}^{\alpha} = \sum_{k} (B_{ik}^{\alpha} A_{kj} - B_{kj}^{\alpha} A_{ki}),$$

$$(2.16) B_{ij,k}^{\alpha} - B_{ik,j}^{\alpha} = \delta_{ij} C_k^{\alpha} - \delta_{ik} C_j^{\alpha},$$

(2.17)
$$R_{ijkl} = \sum_{\alpha} (B_{ik}^{\alpha} B_{jl}^{\alpha} - B_{il}^{\alpha} B_{jk}^{\alpha}) + (\delta_{ik} A_{jl} + \delta_{jl} A_{ik} - \delta_{il} A_{jk} - \delta_{jk} A_{il}),$$

(2.18)
$$R_{\alpha\beta ij} = \sum_{k} (B_{ik}^{\alpha} B_{kj}^{\beta} - B_{ik}^{\beta} B_{kj}^{\alpha}),$$

(2.19)
$$\sum_{i} B_{ii}^{\alpha} = 0, \quad \sum_{ij\alpha} (B_{ij}^{\alpha})^{2} = \frac{m-1}{m}, \quad \text{tr } \mathbf{A} = \sum_{i} A_{ii} = \frac{1}{2m} (1 + m^{2} \kappa),$$

where κ is the normalized scalar curvature of g. From (2.16) and (2.19) we get

(2.20)
$$\sum_{i} B_{ij,i}^{\alpha} = (1 - m)C_{j}^{\alpha}.$$

DEFINITION 2.2. Let $x : \mathbf{M} \to \mathbf{S}^n$ be a submanifold in \mathbf{S}^n without umbilics. We call x a Möbius isotropic submanifold in \mathbf{S}^n if $\mathbf{\Phi} \equiv 0$ and there exists a function $\lambda : \mathbf{M} \to \mathbf{R}$ such that $\mathbf{A} = \lambda g$.

PROPOSITION 2.3. Let $x : M \to S^n$ be a Möbius isotropic submanifold in S^n . Then the function λ in Definition 2.2 has to be constant.

PROOF. Since $\Phi \equiv 0$ and $\mathbf{A} = \lambda g$, we can write (2.10) as $dN = \lambda dY$, which implies that $d\lambda \wedge dY = 0$. Since $\{E_1(Y), \dots, E_m(Y)\}$ are linearly independent, we get $\lambda = \text{constant}$.

3. Conformal Gauss map of submanifolds in S^n . Let $x: M \to S^n$ be a submanifold in S^n . We assume that M is oriented. Then we can give the normal bundle N(M) of x an orientation. Let $\{e_\alpha\}$ be a local orthonormal basis for N(M) which gives the orientation. Using the bundle isometry $\tau: N(M) \to V$ defined by $e_\alpha \to (H^\alpha, H^\alpha x + e_\alpha)$, we can give V an orientation. We define the conformal Gauss map $f: M \to G^+_{n-m}(R_1^{n+2}) \subset \bigwedge^{n-m}(R_1^{n+2})$ by

$$(3.1) f = E_{m+1} \wedge E_{m+2} \wedge \cdots \wedge E_n,$$

where $\{E_{\alpha}\}$ is an oriented orthonormal basis for **V**. We denote by I_G the induced metric of the standard embedding of $G_{n-m}^+(R_1^{n+2})$ in $\bigwedge^{n-m}(R_1^{n+2})$. Our goal in this section is to prove the following

THEOREM 3.1. Let $x : \mathbf{M} \to \mathbf{S}^n$ be a Möbius isotropic submanifold in \mathbf{S}^n . Then its conformal Gauss map $f : (\mathbf{M}, g) \to (\mathbf{G}_{n-m}^+(\mathbf{R}_1^{n+2}), I_G)$ is harmonic.

Let (M, g) and (N, h) be two semi-Riemannian manifolds. We assume that g is positive definite and h is a metric of type (r, s). Then locally we can write

(3.2)
$$g = \sum_{i=1}^{m} \theta_i^2, \quad h = -\sum_{\alpha=1}^{r} \theta_{\alpha}^2 + \sum_{\lambda=r+1}^{r+s} \theta_{\lambda}^2.$$

We denote by $\{\theta_{ij}\}\$ the connection forms of g with respect to $\{\theta_i\}$ and denote by $\{\theta_{\alpha\beta}, \theta_{\alpha\lambda}, \theta_{\lambda\mu}\}\$ the connection forms of h with respect to $\{\theta_{\alpha}, \theta_{\lambda}\}\$. Here we use the following ranges of the indices:

$$(3.3) 1 \leq i, j \leq m, \quad 1 \leq \alpha, \beta \leq r, \quad r+1 \leq \lambda, \mu \leq r+s.$$

Then we have

$$(3.4) d\theta_i = \sum_i \theta_{ij} \wedge \theta_j ,$$

(3.5)
$$d\theta_{\alpha} = -\sum_{\beta} \theta_{\alpha\beta} \wedge \theta_{\beta} + \sum_{\lambda} \theta_{\alpha\lambda} \wedge \theta_{\lambda} , \quad d\theta_{\lambda} = -\sum_{\beta} \theta_{\lambda\beta} \wedge \theta_{\beta} + \sum_{\mu} \theta_{\lambda\mu} \wedge \theta_{\mu} .$$

Now, let $f: \mathbf{M} \to \mathbf{N}$ be a smooth map. We define $\{f_{\alpha i}, f_{\lambda i}\}$ by

(3.6)
$$f^*\theta_{\alpha} = \sum_{i} f_{\alpha i} \theta_{i} , \quad f^*\theta_{\lambda} = \sum_{i} f_{\lambda i} \theta_{i} .$$

The second fundamental form $\{f_{\alpha i,j},\,f_{\lambda i,j}\}$ of $f: \mathbf{M} \to \mathbf{N}$ is defined by

(3.7)
$$df_{\alpha i} + \sum_{j} f_{\alpha j} \theta_{j i} - \sum_{\beta} f_{\beta i} f^* \theta_{\beta \alpha} + \sum_{\lambda} f_{\lambda i} f^* \theta_{\lambda \alpha} = \sum_{j} f_{\alpha i, j} \theta_{j} ,$$

(3.8)
$$df_{\lambda i} + \sum_{j} f_{\lambda j} \theta_{ji} - \sum_{\alpha} f_{\alpha i} f^* \theta_{\alpha \lambda} + \sum_{\mu} f_{\mu i} f^* \theta_{\mu \lambda} = \sum_{j} f_{\lambda i, j} \theta_{j}.$$

Then $f: \mathbf{M} \to \mathbf{N}$ is harmonic if and only if

(3.9)
$$\sum_{i} f_{\alpha i,i} = 0, \quad \sum_{i} f_{\lambda i,i} = 0, \quad 1 \le \alpha \le r, \quad r+1 \le \lambda \le r+s.$$

To prove Theorem 3.1 we study first the geometry of the Grassmannian manifold $G_{n-m}^+(R_1^{n+2})$ as a submanifold in the pseudo-Euclidean space $\bigwedge^{n-m}(R_1^{n+2})$ with the inner product induced by $(R_1^{n+2}, \langle , \rangle)$. Let $\tilde{O}(n+1, 1)$ be the manifold defined by

(3.10)
$$\tilde{O}(n+1,1) = \{ T \in GL(n+2, \mathbf{R}) \mid {}^{t}TI_{1}T = J \},$$

where $I_1 = \text{diag}\{-1, 1, \dots, 1\}$ and $J = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \oplus \text{diag}\{1, \dots, 1\}$. Then

$$T = (\xi_{-1}, \xi_0, \xi_1, \dots, \xi_n) \in \tilde{O}(n+1, 1)$$

if and only if

(3.11)
$$\langle \xi_{-1}, \xi_{-1} \rangle = \langle \xi_0, \xi_0 \rangle = 0, \quad \langle \xi_{-1}, \xi_0 \rangle = 1,$$

$$(3.12) \langle \xi_a, \xi_{-1} \rangle = \langle \xi_a, \xi_0 \rangle = 0, \langle \xi_a, \xi_b \rangle = \delta_{ab}, 1 < a, b < n.$$

Let $\pi: \tilde{O}(n+1,1) \to G_{n-m}^+(R_1^{n+2})$ be the fibre bundle defined by

(3.13)
$$\pi(T) = \xi_{m+1} \wedge \cdots \wedge \xi_n.$$

Then around each point in $G_{n-m}^+(R_1^{n+2})$ there exists an open set $U \subset G_{n-m}^+(R_1^{n+2})$ such that we have a local section

$$(3.14) T = (\xi_{-1}, \xi_0, \xi_1, \dots, \xi_n) : U \to \tilde{O}(n+1, 1).$$

Thus the embedding of $G_{n-m}^+(R_1^{n+2})$ in $\bigwedge^{n-m}(R_1^{n+2})$ can be written locally by the position vector

(3.15)
$$\xi = \xi_{m+1} \wedge \cdots \wedge \xi_n : U \to \bigwedge^{n-m} (\mathbf{R}_1^{n+2}).$$

Since $\{\xi_{-1}, \xi_0, \xi_1, \dots, \xi_n\}$ is a moving frame in \mathbf{R}_1^{n+2} along $U \subset \mathbf{G}_{n-m}^+(\mathbf{R}_1^{n+2})$, we can write the structure equations as

(3.16)
$$d\xi_A = \sum_B \theta_{AB} \xi_B , \quad -1 \le A, B \le n ,$$

where d stands for the differential operator on $G_{n-m}^+(R_1^{n+2})$ and $\{\theta_{AB}\}$ are local 1-forms on $G_{n-m}^+(R_1^{n+2})$. The integrability conditions for (3.16) are given by

(3.17)
$$d\theta_{AB} = \sum_{C} \theta_{AC} \wedge \theta_{CB}, \quad -1 \le A, B, C \le n.$$

Since (3.11) and (3.12) hold on U, we get from (3.16) that

(3.18)
$$\theta_{0(-1)} = \theta_{(-1)0} = 0, \quad \theta_{00} = -\theta_{(-1)(-1)},$$

(3.19)
$$\theta_{0a} = -\theta_{a(-1)}, \quad \theta_{(-1)a} = -\theta_{a0}, \quad \theta_{ab} = -\theta_{ba}, \quad 1 \le a, b \le n.$$

We make the following convention on the range of indices:

$$1 \le i, j, k \le m$$
, $m+1 \le \alpha, \beta, \gamma \le n$, $-1 \le A, B, C \le n$.

Then from (3.15) we get

(3.20)
$$d\xi = \sum_{\alpha} \xi_{m+1} \wedge \cdots \wedge d\xi_{\alpha} \wedge \cdots \wedge \xi_{n}$$

$$= \sum_{\alpha} (-1)^{\alpha - m - 1} \theta_{\alpha(-1)} \xi_{-1} \wedge \xi_{m+1} \wedge \cdots \wedge \widehat{\xi_{\alpha}} \wedge \cdots \wedge \xi_{n}$$

$$+ \sum_{\alpha} (-1)^{\alpha - m - 1} \theta_{\alpha 0} \xi_{0} \wedge \xi_{m+1} \wedge \cdots \wedge \widehat{\xi_{\alpha}} \wedge \cdots \wedge \xi_{n}$$

$$+ \sum_{\alpha, i} (-1)^{\alpha - m - 1} \theta_{\alpha i} \xi_{i} \wedge \xi_{m+1} \wedge \cdots \wedge \widehat{\xi_{\alpha}} \wedge \cdots \wedge \xi_{n}.$$

Thus the induced metric I_G of $G_{n-m}^+(R_1^{n+2})$ in $\bigwedge^{n-m}(R_1^{n+2})$ is given by

$$(3.21) I_G = \langle d\xi, d\xi \rangle = \sum_{\alpha} (\theta_{\alpha(-1)} \otimes \theta_{\alpha 0} + \theta_{\alpha 0} \otimes \theta_{\alpha(-1)}) + \sum_{\alpha i} \theta_{\alpha i}^2.$$

If we define

(3.22)
$$\phi_{\alpha(-1)} = \frac{1}{\sqrt{2}} (\theta_{\alpha(-1)} - \theta_{\alpha 0}), \quad \phi_{\alpha 0} = \frac{1}{\sqrt{2}} (\theta_{\alpha(-1)} + \theta_{\alpha 0}),$$

then we can write

(3.23)
$$I_G = -\sum_{\alpha} \phi_{\alpha(-1)}^2 + \sum_{\alpha} \phi_{\alpha 0}^2 + \sum_{\alpha i} \theta_{\alpha i}^2.$$

Thus $\{\phi_{\alpha(-1)}, \phi_{\alpha 0}, \theta_{\alpha i}\}$ is a local orthonormal basis of $T^*G_{n-m}^+(R_1^{n+2})$, which implies that I_G is a semi-Riemannian metric on $G_{n-m}^+(R_1^{n+2})$ of type ((n-m), (n-m)(m+1)). From (3.22), (3.17), (3.18) and (3.19) we get

$$(3.24) d\phi_{\alpha(-1)} = \sum_{\beta} \theta_{\alpha\beta} \wedge \phi_{\beta(-1)} + \theta_{00} \wedge \phi_{\alpha 0} + \sum_{k} \frac{1}{\sqrt{2}} (\theta_{k0} - \theta_{k(-1)}) \wedge \theta_{\alpha k},$$

$$(3.25) d\phi_{\alpha 0} = \theta_{00} \wedge \phi_{\alpha(-1)} + \sum_{\beta} \theta_{\alpha\beta} \wedge \phi_{\beta 0} - \sum_{k} \frac{1}{\sqrt{2}} (\theta_{k(-1)} + \theta_{k0}) \wedge \theta_{\alpha k},$$

(3.26)
$$d\theta_{\alpha k} = \frac{1}{\sqrt{2}} (\theta_{k0} - \theta_{k(-1)}) \wedge \phi_{\alpha(-1)} + \frac{1}{\sqrt{2}} (\theta_{k(-1)} + \theta_{k0}) \wedge \phi_{\alpha 0} + \sum_{j\beta} (-\theta_{jk} \delta_{\alpha\beta} + \theta_{\alpha\beta} \delta_{jk}) \theta_{\beta j}.$$

By (3.5) we obtain the following connection forms of I_G with respect to the orthonormal basis $\{\phi_{\alpha(-1)}, \phi_{\alpha 0}, \theta_{\alpha i}\}$:

$$(3.27) \quad \Omega_{\alpha(-1)\beta(-1)} = -\theta_{\alpha\beta} , \quad \Omega_{\alpha(-1)\beta0} = \theta_{00}\delta_{\alpha\beta} , \quad \Omega_{\alpha(-1)\beta k} = \frac{1}{\sqrt{2}}(\theta_{k0} - \theta_{k(-1)})\delta_{\alpha\beta} ,$$

$$(3.28) \qquad \Omega_{\alpha 0\beta(-1)} = -\theta_{00}\delta_{\alpha\beta} \,, \quad \Omega_{\alpha 0\beta 0} = \theta_{\alpha\beta} \,, \quad \Omega_{\alpha 0\beta k} = -\frac{1}{\sqrt{2}}(\theta_{k(-1)} + \theta_{k0})\delta_{\alpha\beta} \,,$$

(3.29)
$$\Omega_{\alpha k\beta(-1)} = \frac{1}{\sqrt{2}} (\theta_{k(-1)} - \theta_{k0}) \delta_{\alpha\beta} , \quad \Omega_{\alpha k\beta 0} = \frac{1}{\sqrt{2}} (\theta_{k(-1)} + \theta_{k0}) \delta_{\alpha\beta} ,$$
$$\Omega_{\alpha k\beta j} = -\theta_{jk} \delta_{\alpha\beta} + \theta_{\alpha\beta} \delta_{jk} .$$

Now, let $f: \mathbf{M} \to \mathbf{G}_{n-m}^+(\mathbf{R}_1^{n+2})$ be the conformal Gauss map of a submanifold $x: \mathbf{M} \to \mathbf{S}^n$. Let $\{Y, N, E_1(Y), \dots, E_m(Y), E_{m+1}, \dots, E_n\}$ be the Möbius moving frame in \mathbf{R}_1^{n+2} along \mathbf{M} . Then we can find a local section T of $\pi: \tilde{O}(n+1,1) \to \mathbf{G}_{n-m}^+(\mathbf{R}_1^{n+2})$ given by (3.14) such that

$$(3.30) (Y, N, E_1(Y), \dots, E_m(Y), E_{m+1}, \dots, E_n) = T \circ f = (f^* \xi_{-1}, \dots, f^* \xi_n).$$

It follows from (2.10), (2.11), (2.12) and (3.16) that

(3.31)
$$f^*\theta_{00} = 0, \quad f^*\theta_{k(-1)} = -\sum_j A_{kj}\omega_j, \quad f^*\theta_{k0} = -\omega_k,$$

(3.32)
$$f^*\theta_{ij} = \omega_{ij} := \sum_{k} \Gamma^{j}_{ik} \omega_k, \quad f^*\theta_{\alpha\beta} = \omega_{\alpha\beta} := \sum_{i} \Gamma^{\beta}_{\alpha i} \omega_i,$$

(3.33)
$$f^*\theta_{\alpha(-1)} = -\sum_{i} C_i^{\alpha} \omega_i, \quad f^*\theta_{\alpha 0} = 0, \quad f^*\theta_{\alpha k} = -\sum_{i} B_{kj}^{\alpha} \omega_j.$$

If we define $\{f_{\alpha(-1)i}, f_{\alpha0i}, f_{\alpha ki}\}$ by

(3.34)
$$f^*\phi_{\alpha(-1)} = \sum_i f_{\alpha(-1)i}\omega_i$$
, $f^*\phi_{\alpha 0} = \sum_i f_{\alpha 0i}\omega_i$, $f^*\theta_{\alpha k} = \sum_i f_{\alpha ki}\omega_i$.

Then by (3.22) and (3.33) we have

(3.35)
$$f_{\alpha(-1)i} = -\frac{1}{\sqrt{2}}C_i^{\alpha}, \quad f_{\alpha 0i} = -\frac{1}{\sqrt{2}}C_i^{\alpha}, \quad f_{\alpha ki} = -B_{ki}^{\alpha}.$$

By definition (cf. (3.7) and (3.8)) the second fundamental form $\{f_{\alpha(-1)i,j}, f_{\alpha 0i,j}, f_{\alpha ki,j}\}$ are defined by the following formulas

$$(3.36) df_{\alpha(-1)i} + \sum_{j} f_{\alpha(-1)j}\omega_{ji} - \sum_{\beta} f_{\beta(-1)i}f^{*}\Omega_{\beta(-1)\alpha(-1)} + \sum_{\beta} f_{\beta0i}f^{*}\Omega_{\beta0\alpha(-1)}$$

$$+ \sum_{\beta k} f_{\beta ki}f^{*}\Omega_{\beta k\alpha(-1)} = \sum_{j} f_{\alpha(-1)i,j}\omega_{j},$$

$$df_{\alpha0i} + \sum_{j} f_{\alpha0j}\omega_{ji} - \sum_{\beta} f_{\beta(-1)i}f^{*}\Omega_{\beta(-1)\alpha0} + \sum_{\beta} f_{\beta0i}f^{*}\Omega_{\beta0\alpha0}$$

$$+ \sum_{\beta k} f_{\beta ki}f^{*}\Omega_{\beta k\alpha0} = \sum_{j} f_{\alpha0i,j}\omega_{j},$$

$$df_{\alpha ki} + \sum_{j} f_{\alpha kj}\omega_{ji} - \sum_{\beta} f_{\beta(-1)i}f^{*}\Omega_{\beta(-1)\alpha k} + \sum_{\beta} f_{\beta0i}f^{*}\Omega_{\beta0\alpha k}$$

$$+ \sum_{\beta j} f_{\beta ji}f^{*}\Omega_{\beta j\alpha k} = \sum_{j} f_{\alpha ki,j}\omega_{j}.$$

$$(3.38)$$

It follows from (3.27) through (3.29) and (3.31) through (3.35) that

(3.39)
$$f_{\alpha(-1)i,j} = -\frac{1}{\sqrt{2}} \left(C_{i,j}^{\alpha} - \sum_{k} B_{ik}^{\alpha} A_{kj} + B_{ij}^{\alpha} \right),$$

(3.40)
$$f_{\alpha 0i,j} = -\frac{1}{\sqrt{2}} \left(C_{i,j}^{\alpha} - \sum_{k} B_{ik}^{\alpha} A_{kj} - B_{ij}^{\alpha} \right),$$

$$(3.41) f_{\alpha ki,j} = -(B_{ki,j}^{\alpha} + C_i^{\alpha} \delta_{kj}).$$

Thus we know from (2.19) and (2.20) that the conformal Gauss map $f: \mathbf{M} \to \mathbf{G}_{n-m}^+(\mathbf{R}_1^{n+2})$ is harmonic if and only if

(3.42)
$$\sum_{i} C_{i,i}^{\alpha} - \sum_{i,j} B_{ij}^{\alpha} A_{ij} = 0, \quad (m-2)C_{k}^{\alpha} = 0, \quad 1 \le k \le m, \quad 1 \le \alpha \le n.$$

In the case m=2, the first equation of (3.42) is exactly the Euler-Lagrange equation for the Willmore functional (which is the Möbius volume functional, cf. [W]). The surfaces in S^n satisfying this equation are known as Willmore surfaces in S^n . The conformal Gauss map of a surface in S^n has been studied by Bryant ([BR]) for n=3 and Rigoli ([R]) for n>3 by using complex coordinate on the surface. It follows immediately from (3.42) that

THEOREM 3.2 ([BR], [R]). A surface $x : M \to S^n$ is Willmore if and only if its conformal Gauss map is harmonic.

In the case m > 2, we know that the conformal Gauss map of $x : M \to S^n$ is harmonic if and only if it satisfies

(3.43)
$$C_k^{\alpha} \equiv 0$$
, $\sum_{i,j} B_{ij}^{\alpha} A_{ij} \equiv 0$, $1 \le k \le m, m+1 \le \alpha \le n$.

Since for any Möbius isotropic submanifold we have $C_k^{\alpha} \equiv 0$ and $A_{ki} \equiv \lambda \delta_{ki}$ for some λ , which implies (3.42). Thus we complete the proof of Theorem 3.1.

4. Conformal invariants for submanifolds in \mathbb{R}^n and \mathbb{H}^n . Let $\sigma: \mathbb{R}^n \to \mathbb{S}^n$ and $\tau: \mathbb{H}^n \to \mathbb{S}^n_+$ be the conformal maps definded by (1.3) and (1.4). Using σ and τ , we can regard submanifolds in \mathbb{R}^n and \mathbb{H}^n as submanifolds in \mathbb{S}^n . In this section we give the conformal invariants for submanifolds in \mathbb{R}^n and \mathbb{H}^n , and relate them to the Möbius invariants for submanifolds in \mathbb{S}^n . By using these relations, we show that any minimal submanifolds with constant scalar curvature in \mathbb{R}^n , \mathbb{H}^n and \mathbb{S}^n are Möbius isotropic.

Let $x: M \to S^n$ be a minimal submanifold with constant scalar curvature in S^n . Then by the Gauss equation we know that $\rho^2 = m/(m-1) \cdot (\|II\|^2 - m\|H\|^2)$ is a constant. Thus from (1.1) and (1.2) we get

$$C_i^{\alpha} = 0$$
, $A_{ij} = \frac{1}{2}\rho^{-2}\delta_{ij}$.

By definition x is a Möbius isotropic submanifold in S^n .

Let $u: \mathbf{M} \to \mathbf{R}^n$ be a submanifold without umbilics in \mathbf{R}^n . Let $\{\tilde{e}_i\}$ be a local orthonormal basis for the first fundamental form $\tilde{I} = du \cdot du$ with the dual basis $\{\tilde{\theta}_i\}$. Let $\tilde{I}I = \sum_{ij\alpha} \tilde{h}_{ij}^{\alpha} \tilde{\theta}_i \tilde{\theta}_j \tilde{e}_{\alpha}$ be the second fundamental form of u and $\tilde{H} = \sum_{\alpha} \tilde{H}^{\alpha} \tilde{e}_{\alpha}$ be the mean curvature vector of u, where $\{\tilde{e}_{\alpha}\}$ is a local orthonormal basis for the normal bundle of u. We

define

(4.1)
$$\tilde{q} = \tilde{\rho}^2 du \cdot du, \quad \tilde{\rho}^2 = m/(m-1) \cdot (||\tilde{I}I||^2 - m||\tilde{H}||^2),$$

(4.2)
$$\tilde{B}_{ij}^{\alpha} = \tilde{\rho}^{-1} (\tilde{h}_{ij}^{\alpha} - \tilde{H}^{\alpha} \delta_{ij}),$$

(4.3)
$$\tilde{C}_{i}^{\alpha} = -\tilde{\rho}^{-2} \left(\tilde{H}^{\alpha}_{i,i} + \sum_{j} (\tilde{h}_{ij}^{\alpha} - \tilde{H}^{\alpha} \delta_{ij}) \tilde{e}_{j} (\log \tilde{\rho}) \right),$$

(4.4)
$$\tilde{A}_{ij} = -\tilde{\rho}^{-2} \left(\operatorname{Hess}_{ij} (\log \tilde{\rho}) - \tilde{e}_i (\log \tilde{\rho}) \tilde{e}_j (\log \tilde{\rho}) - \sum_{\alpha} \tilde{H}^{\alpha} \tilde{h}_{ij}^{\alpha} \right) \\ - \frac{1}{2} \tilde{\rho}^{-2} \left(\|\nabla \log \tilde{\rho}\|^2 + \sum_{\alpha} (\tilde{H}^{\alpha})^2 \right) \delta_{ij} .$$

We call the globally defined tensors \tilde{g} , $\tilde{\Phi} = \sum_{i\alpha} \tilde{C}_i^{\alpha} \tilde{\theta}_i \tilde{e}_{\alpha}$, $\tilde{\mathbf{A}} := \tilde{\rho}^2 \sum_{ij} \tilde{A}_{ij} \tilde{\theta}_i \tilde{\theta}_j$ and $\tilde{\mathbf{B}} = \tilde{\rho} \sum_{ij\alpha} \tilde{B}_{ij}^{\alpha} \tilde{\theta}_i \tilde{\theta}_j \tilde{e}_{\alpha}$ the Möbius metric, the Möbius form, the Blaschke tensor and the Möbius second fundamental form of $u : \mathbf{M} \to \mathbf{R}^n$, respectively.

Now, let $\sigma: \mathbf{R}^n \to \mathbf{S}^n$ be the conformal map given by (1.3). We define $x := \sigma \circ u : \mathbf{M} \to \mathbf{S}^n$. Then x is a submanifold in \mathbf{S}^n without umbilics. We denote by Φ and \mathbf{A} the Möbius form and the Blaschke tensor of x defined by (1.1) and (1.2), and denote by g and \mathbf{B} the Möbius metric and the Möbius second fundamental form defined by (2.3) and (2.13) for $x = \sigma \circ u$, respectively. Our goal in this section is to prove the following

THEOREM 4.1. $g = \tilde{g}$, $\mathbf{B} = d\sigma(\tilde{\mathbf{B}})$, $\Phi = d\sigma(\tilde{\Phi})$ and $\mathbf{A} = \tilde{\mathbf{A}}$. In particular, $\{\tilde{g}, \tilde{\mathbf{B}}, \tilde{\Phi}, \tilde{\mathbf{A}}\}$ are conformal invariants for submanifolds in \mathbf{R}^n .

Let $\sigma: \mathbb{R}^n \to \mathbb{S}^n$ be the conformal map given by

(4.5)
$$x = \sigma(u) = \left(\frac{1 - |u|^2}{1 + |u|^2}, \frac{2u}{1 + |u|^2}\right), \quad u \in \mathbf{R}^n.$$

Then for any vector $V \in T_u \mathbf{R}^n$ we have

(4.6)
$$d\sigma(V) = \frac{2}{1 + |u|^2} \{ -(u \cdot V)x + (-u \cdot V, V) \}.$$

Thus we get

(4.7)
$$dx \cdot dx = \frac{4}{(1+|u|^2)^2} du \cdot du .$$

Now, let $u: \mathbf{M} \to \mathbf{R}^n$ be a submanifold in \mathbf{R}^n and $x = \sigma \circ u: \mathbf{M} \to \mathbf{S}^n$. We denote by $\{\tilde{e}_i\}$ and $\{\tilde{e}_{\alpha}\}$ local orthonormal basis for $du \cdot du$ and the normal bundle of u respectively, and define

(4.8)
$$e_i = \frac{1 + |u|^2}{2} \tilde{e}_i , \quad e_\alpha = \frac{1 + |u|^2}{2} d\sigma(\tilde{e}_\alpha) .$$

Then $\{e_i\}$ is a local orthonormal basis for $dx \cdot dx$ with dual basis $\{\theta_i\}$ and $\{e_\alpha\}$ is a local orthonormal basis for the normal bundle of x in S^n . It follows from (4.6) that

(4.9)
$$e_i(x) = \frac{1 + |u|^2}{2} d\sigma(\tilde{e}_i(u)) = -(u \cdot \tilde{e}_i(u))x + (-u \cdot \tilde{e}_i(u), \tilde{e}_i(u)),$$

(4.10)
$$e_{\alpha} = \frac{1 + |u|^2}{2} d\sigma(\tilde{e}_{\alpha}) = -\frac{2u \cdot \tilde{e}_{\alpha}}{1 + |u|^2} (1, u) + (0, \tilde{e}_{\alpha})$$
$$= -(u \cdot \tilde{e}_{\alpha})x + (-u \cdot \tilde{e}_{\alpha}, \tilde{e}_{\alpha}).$$

By (4.9) we get

$$(4.11) e_i e_j(x) = \frac{1 + |u|^2}{2} ((-\delta_{ij}, 0) + (-u \cdot \tilde{e}_j \tilde{e}_i(u), \tilde{e}_j \tilde{e}_i(u))) \quad \text{mod}(x, e_i(x)).$$

Thus (4.10) and (4.11) yield

(4.12)
$$h_{ij}^{\alpha} = \frac{1 + |u|^2}{2} \tilde{h}_{ij}^{\alpha} + \tilde{e}_{\alpha} \cdot u \delta_{ij} , \quad H^{\alpha} = \frac{1 + |u|^2}{2} \tilde{H}^{\alpha} + \tilde{e}_{\alpha} \cdot u .$$

It follows from (4.12) and (4.7) that

(4.13)
$$\rho^2 = \frac{(1+|u|^2)^2}{4}\tilde{\rho}^2,$$

(4.14)
$$g = \rho^2 dx \cdot dx = \tilde{\rho}^2 du \cdot du = \tilde{g}.$$

It is clear that \tilde{g} is a conformal invariant. By (4.12) and (4.13) we get

$$(4.15) B_{ij}^{\alpha} = \rho^{-1}(h_{ij}^{\alpha} - H^{\alpha}\delta_{ij}) = \tilde{\rho}^{-1}(\tilde{h}_{ij}^{\alpha} - \tilde{H}^{\alpha}\delta_{ij}) = \tilde{B}_{ij}^{\alpha}.$$

By (4.10) we get

$$de_{\alpha} = (-u \cdot d\tilde{e}_{\alpha}, d\tilde{e}_{\alpha}) \mod(x, dx),$$

which implies that

(4.16)
$$\theta_{\alpha\beta} = de_{\alpha} \cdot e_{\beta} = d\tilde{e}_{\alpha} \cdot \tilde{e}_{\beta} = \tilde{\theta}_{\alpha\beta}.$$

Let $\{H^{\alpha},_i\}$ and $\{\tilde{H}^{\alpha},_i\}$ be the covariant derivatives of the mean curvature vector in the normal bundle of $x = \sigma \circ u : M \to S^n$ and $u : M \to R^n$, respectively. By definition we have

$$dH^{\alpha} + \sum_{\beta} H^{\beta} \theta_{\beta\alpha} = \sum_{i} H^{\alpha},_{i} \theta_{i}, \quad d\tilde{H}^{\alpha} + \sum_{\beta} \tilde{H}^{\beta} \tilde{\theta}_{\beta\alpha} = \sum_{i} \tilde{H}^{\alpha},_{i} \tilde{\theta}_{i}.$$

Since $\tilde{\theta}_i = ((1 + |u|^2)/2)\theta_i$, from (4.12) and (4.16) we get

(4.17)
$$H^{\alpha}_{,i} = \left(\frac{1+|u|^2}{2}\right)^2 \tilde{H}^{\alpha}_{,i} - \frac{1+|u|^2}{2} \sum_{i} (\tilde{h}_{ij}^{\alpha} - \tilde{H}^{\alpha} \delta_{ij}) (\tilde{e}_{j}(u) \cdot u).$$

By (4.13) we get

(4.18)
$$e_j(\log \rho) = \frac{1 + |u|^2}{2} \tilde{e}_j(\log \tilde{\rho}) + \tilde{e}_j(u) \cdot u.$$

We define $\{C_i^{\alpha}\}$ and $\{\tilde{C}_i^{\alpha}\}$ by (1.1) and (4.3), respectively. It follows from (4.17) and (4.18) that

$$(4.19) C_i^{\alpha} = \tilde{C}_i^{\alpha} .$$

Let $\{\theta_{ij}\}$ and $\{\tilde{\theta}_{ij}\}$ be the Levi-Civita connections of $dx \cdot dx$ and $du \cdot du$ with respect to the basis $\{e_i\}$ and $\{\tilde{e}_i\}$, respectively. Then by (4.7) we have

(4.20)
$$\theta_{ij} = \tilde{\theta}_{ij} + \frac{2u \cdot \tilde{e}_j(u)}{1 + |u|^2} \tilde{\theta}_i - \frac{2u \cdot \tilde{e}_i(u)}{1 + |u|^2} \tilde{\theta}_j.$$

We define the $\operatorname{Hess}_{ij}(\log \rho)$ and $\operatorname{Hess}_{ij}(\log \tilde{\rho})$ by

$$\begin{split} d\left(e_i(\log\rho)\right) + \sum_j e_j(\log\rho)\theta_{ji} &= \sum_j \operatorname{Hess}_{ij}(\log\rho)\theta_j\,,\\ d\left(\tilde{e}_i(\log\tilde{\rho})\right) + \sum_j \tilde{e}_j(\log\tilde{\rho})\tilde{\theta}_{ji} &= \sum_j \operatorname{Hess}_{ij}(\log\tilde{\rho})\tilde{\theta}_j\,. \end{split}$$

Using (4.18) and (4.20), we get

$$\operatorname{Hess}_{ij}(\log \rho) = \left(\frac{1+|u|^2}{2}\right)^2 \operatorname{Hess}_{ij}(\log \tilde{\rho}) + (u \cdot \tilde{e}_i(u))(u \cdot \tilde{e}_j(u))$$

$$+ \frac{1+|u|^2}{2} \left(\sum_{\alpha} \tilde{h}_{ij}^{\alpha}(\tilde{e}_{\alpha} \cdot u) + (u \cdot \tilde{e}_j(u))\tilde{e}_i(\log \tilde{\rho}) + (u \cdot \tilde{e}_i(u))\tilde{e}_j(\log \tilde{\rho})\right)$$

$$+ \left(\frac{1+|u|^2}{2} - \frac{1+|u|^2}{2} \sum_{k} (u \cdot \tilde{e}_k(u))\tilde{e}_k(\log \tilde{\rho}) - \sum_{k} (u \cdot \tilde{e}_k(u))^2\right) \delta_{ij}.$$

Using (4.12) and (4.18), we also get

$$e_{i}(\log \rho)e_{j}(\log \rho) + \sum_{\alpha} H^{\alpha}h_{ij}^{\alpha}$$

$$= \left(\frac{1+|u|^{2}}{2}\right)^{2} \left(\tilde{e}_{i}(\log \tilde{\rho})\tilde{e}_{j}(\log \tilde{\rho}) + \sum_{\alpha} \tilde{H}^{\alpha}\tilde{h}_{ij}^{\alpha}\right)$$

$$+ \frac{1+|u|^{2}}{2} (\tilde{e}_{i}(\log \tilde{\rho})(\tilde{e}_{j}(u) \cdot u) + \tilde{e}_{j}(\log \tilde{\rho})(\tilde{e}_{i}(u) \cdot u))$$

$$+ (\tilde{e}_{i}(u) \cdot u)(\tilde{e}_{j}(u) \cdot u) + \frac{1+|u|^{2}}{2} \tilde{h}_{ij}^{\alpha}(\tilde{e}_{\alpha} \cdot u)$$

$$+ \left(\sum_{\alpha} (\tilde{e}_{\alpha} \cdot u)^{2} + \frac{1+|u|^{2}}{2} \sum_{\alpha} (\tilde{e}_{\alpha} \cdot u) \tilde{H}^{\alpha}\right) \delta_{ij},$$

$$\frac{1}{2} \left(\|\nabla \log \rho\|^{2} - 1 + \sum_{\alpha} (H^{\alpha})^{2} \right) = \frac{1}{2} \left(\frac{1 + |u|^{2}}{2} \right)^{2} \left(\|\nabla \log \tilde{\rho}\|^{2} + \sum_{\alpha} (\tilde{H}^{\alpha})^{2} \right) \\
+ \frac{1 + |u|^{2}}{2} \left(\sum_{k} \tilde{e}_{k} (\log \tilde{\rho}) (\tilde{e}_{k}(u) \cdot u) + \sum_{\alpha} \tilde{H}^{\alpha} (\tilde{e}_{\alpha} \cdot u) \right) \\
+ \frac{1}{2} \sum_{k} (u \cdot \tilde{e}_{k}(u))^{2} + \frac{1}{2} \sum_{\alpha} (u \cdot \tilde{e}_{\alpha}(u))^{2} - \frac{1}{2}.$$

Let $\{A_{ij}\}$ and $\{\tilde{A}_{ij}\}$ be the tensor defined by (1.2) and (4.4), respectively. Then we get from (4.13), (4.21), (4.22) and (4.23) that

$$(4.24) A_{ij} = \tilde{A}_{ij} .$$

Now, we come to the proof of Theorem 4.1. It follows from (4.14) that $g = \tilde{g}$. We take $\omega_i = \rho \theta_i = \tilde{\rho} \tilde{\theta}_i$. Then by (4.24) we get $\mathbf{A} = \tilde{\mathbf{A}}$. From (4.8) and (4.13) we get $d\sigma(\tilde{\rho}^{-1}\tilde{e}_{\alpha}) = \rho^{-1}e_{\alpha}$. Thus we get from (4.15) and (4.19) that $d\sigma(\tilde{\mathbf{B}}) = \mathbf{B}$ and $d\sigma(\tilde{\Phi}) = \Phi$. This completes the proof of Theorem 4.1.

It follows from (4.3) and (4.4) that

THEOREM 4.2. The images of σ of minimal submanifolds with constant scalar curvature in \mathbb{R}^n are Möbius isotropic submanifolds in \mathbb{S}^n .

Let \mathbf{R}_1^{n+1} be the Lorentzian space with inner product

$$\langle y, w \rangle = -y_0 w_0 + y_1 w_1 + \dots + y_n w_n, \quad y = (y_0, \dots, y_n), \quad w = (w_0, \dots, w_n).$$

Let $H^n = \{y \in R_1^{n+1} \mid \langle y, y \rangle = -1, y_0 > 0\}$ be the *n*-dimensional hyperbolic space. We define now the conformal invariants for the submanifolds in H^n . Let $y : M \to H^n$ be a submanifold in H^n without umbilics. Let $\{\hat{e}_i\}$ be a local orthonormal basis for $\langle dy, dy \rangle$ with dual basis $\{\hat{\theta}_i\}$. Let $\widehat{II} = \sum_{\alpha ij} \hat{h}_{ij}^{\alpha} \hat{\theta}_i \hat{\theta}_j \hat{e}_{\alpha}$ be the second fundamental form of y and $\hat{H} = \sum_{\alpha} \hat{H}^{\alpha} \hat{e}_{\alpha}$ the mean curvature vector of y, where $\{\hat{e}_{\alpha}\}$ is a local orthonormal basis for the normal bundle of y. We define

(4.25)
$$\hat{g} = \hat{\rho}^2 \langle dy, dy \rangle, \quad \hat{\rho}^2 = m/(m-1) \cdot (\|\widehat{II}\|^2 - m\|\hat{H}\|^2),$$

$$\hat{B}_{ii}^{\alpha} = \hat{\rho}^{-1} (\hat{h}_{ii}^{\alpha} - \hat{H}^{\alpha} \delta_{ii}),$$

$$(4.27) \qquad \hat{C}_{i}^{\alpha} = -\hat{\rho}^{-2} \left(\hat{H}^{\alpha},_{i} + \sum_{j} (\hat{h}_{ij}^{\alpha} - \hat{H}^{\alpha} \delta_{ij}) \hat{e}_{j} (\log \hat{\rho}) \right),$$

(4.28)
$$\hat{A}_{ij} = -\hat{\rho}^{-2} \left(\operatorname{Hess}_{ij} (\log \hat{\rho}) - \hat{e}_i (\log \hat{\rho}) \hat{e}_j (\log \hat{\rho}) - \sum_{\alpha} \hat{H}^{\alpha} \hat{h}_{ij}^{\alpha} \right) \\ - \frac{1}{2} \hat{\rho}^{-2} \left(\|\nabla \log \hat{\rho}\|^2 + 1 + \sum_{\alpha} (\hat{H}^{\alpha})^2 \right) \delta_{ij}.$$

We call \hat{g} the Möbius metric of y, $\hat{\mathbf{B}} = \hat{\rho} \sum_{ij\alpha} \hat{B}^{\alpha}_{ij} \hat{\theta}_{i} \hat{\theta}_{j} \hat{e}_{\alpha}$ the Möbius second fundamental form of y, $\hat{\phi} = \sum_{i\alpha} \hat{C}^{\alpha}_{i} \hat{\theta}_{i} \hat{e}_{\alpha}$ the Möbius form of y and $\hat{\mathbf{A}} = \sum_{ij} \hat{\rho}^{2} \hat{A}_{ij} \hat{\theta}_{i} \hat{\theta}_{j}$ the Blaschke tensor of y, respectively.

Set $D^n = \{u \in \mathbf{R}^n \mid |u|^2 < 1\}$. Let $\mu : D^n \to \mathbf{H}^n$ be the conformal diffeomorphism given by

(4.29)
$$\mu(u) = \left(\frac{1+|u|^2}{1-|u|^2}, \frac{2u}{1-|u|^2}\right).$$

Then $u = \mu^{-1} \circ y : \mathbf{M} \to D^n$ is a submanifold in D^n without umbilics. We denote by $\{\tilde{g}, \tilde{\mathbf{B}}, \tilde{\boldsymbol{\Phi}}, \tilde{\mathbf{A}}\}$ the basic Möbius invariants for $u = \mu^{-1} \circ y : \mathbf{M} \to D^n \subset \mathbf{R}^n$. Using the same method as in the proof of Theorem 4.1, we can prove that

THEOREM 4.3. $\hat{g} = \tilde{g}$, $\hat{\mathbf{B}} = d\mu(\tilde{\mathbf{B}})$, $\hat{\Phi} = d\mu(\tilde{\Phi})$ and $\hat{\mathbf{A}} = \tilde{\mathbf{A}}$. In particular, $\{\hat{g}, \hat{\mathbf{B}}, \hat{\boldsymbol{\phi}}, \hat{\mathbf{A}}\}$ are conformal invariants for submanifolds in \mathbf{H}^n .

Let $\tau: \mathbf{H}^n \to \mathbf{S}^n_+$ be the conformal diffeomorphism defined by (1.4). Then we have $\tau = \sigma \circ \mu^{-1}$. Thus from Theorem 4.1 and Theorem 4.3 we get

THEOREM 4.4. Let $y: \mathbf{M} \to \mathbf{H}^n$ be a submanifold in \mathbf{H}^n without umbilics. Let $x = \tau \circ y: \mathbf{M} \to S^n_+$. Then we have

$$q = \hat{q}$$
, $\mathbf{B} = d\tau(\hat{\mathbf{B}})$, $\Phi = d\tau(\hat{\mathbf{\Phi}})$, $\mathbf{A} = \hat{\mathbf{A}}$.

In particular, $\{\hat{g}, \hat{\mathbf{B}}, \hat{\boldsymbol{\Phi}}, \hat{\mathbf{A}}\}$ are conformal invariants for submanifolds in \mathbf{H}^n .

It follows immediately from (4.27) and (4.28) that

THEOREM 4.5. The images of τ of minimal submanifolds with constant scalar curvature in \mathbf{H}^n are Möbius isotropic submanifolds in \mathbf{S}^n .

5. The classification of Möbius isotropic submanifolds in S^n . In this section we prove the classification theorem mentioned in Section 1.

Let $x: M \to S^n$ be a Möbius isotropic submanifold in S^n . By definition we have

$$(5.1) A_{ij} = \lambda \delta_{ij} , \quad C_i^{\alpha} \equiv 0 .$$

It follows from (2.10) and Proposition 2.3 that

$$(5.2) dN = \lambda dY$$

for some constant λ . Using (5.1) and the last equation in (2.19), we get

(5.3)
$$A_{ij} = \frac{1}{2m^2} (1 + m^2 \kappa) \delta_{ij}, \quad \kappa = \text{constant},$$

where κ is the normalized scalar curvature of the Möbius metric. By (5.2) we can find a constant vector $\mathbf{c} \in \mathbf{R}_1^{n+2}$ such that

(5.4)
$$N = \frac{1}{2m^2} (1 + m^2 \kappa) Y + c.$$

It follows from (5.4) and (2.5) that

(5.5)
$$\langle \boldsymbol{c}, \boldsymbol{c} \rangle = -\frac{1}{m^2} (1 + m^2 \kappa), \quad \langle Y, \boldsymbol{c} \rangle = 1.$$

Then we consider the following three cases: (i) c is timelike; (ii) c is lightlike; (iii) c is spacelike.

First, we consider the case (i) that $\langle c, c \rangle = -r^2$ with $r = \sqrt{1 + m^2 \kappa}/m > 0$. By (2.2) and $\langle Y, N \rangle = 1$ we know that the first coordinate of Y is positive and of Y is negative. Thus by (5.4) we know that the first coordinate of C is negative. So there exists a $T \in O^+(n+1,1)$ such that

(5.6)
$$(-r,0) = cT = NT - \frac{r^2}{2}YT.$$

Let $\tilde{x}: M \to S^n$ be the submanifold which is Möbius equivalent to x such that $\tilde{Y} = YT$ (cf. Theorem 2.1). Then we have $\tilde{N} = NT$. Since

(5.7)
$$cT = (-r, 0), \quad \langle \tilde{Y}, cT \rangle = 1, \quad \tilde{Y} = \tilde{\rho}(1, \tilde{x}),$$

we get

(5.8)
$$\tilde{\rho} = r^{-1} = \text{constant}.$$

It follows from (5.6) and (2.4) that

(5.9)
$$(-r,0) = \tilde{N} - \frac{r^2}{2}\tilde{Y}, \quad \tilde{N} = -\frac{1}{m}\tilde{\Delta}\tilde{Y} - \frac{1}{2}r^2\tilde{Y}.$$

Since $\tilde{\rho} = r^{-1}$, we know from $\tilde{g} = \tilde{\rho}^2 d\tilde{x} \cdot d\tilde{x}$ that the Laplace operator $\Delta_{\mathbf{M}}$ of $d\tilde{x} \cdot d\tilde{x}$ is given by $\Delta_{\mathbf{M}} = \tilde{\rho}^2 \tilde{\Delta}$. Thus by (5.9) we get

$$\Delta_{\mathbf{M}}\tilde{x} + m\tilde{x} = 0.$$

By Takahashi's theorem ([T]) we know that $\tilde{x}: M \to S^n$ is a minimal submanifold. The normalized scalar curvature $\tilde{\kappa}$ of $d\tilde{x} \cdot d\tilde{x}$ is a constant given by

(5.11)
$$\tilde{\kappa} = \tilde{\rho}^2 \kappa = \frac{m^2 \kappa}{1 + m^2 \kappa}.$$

Next, we consider the case (ii) that $\langle c, c \rangle = 0$. By making use of a Möbius transformation if necessary, we may assume that c = (-1, 1, 0). Thus by (5.4) and (2.4) we have

(5.12)
$$c = (-1, 1, 0) = N = -\frac{1}{m} \Delta Y.$$

We write $x = (x_0, x_1)$. Then $Y = (\rho, \rho x_0, \rho x_1)$. By (5.5) and (5.12) we get $(Y, c) = \rho(1 + x_0) = 1$, which implies that $x_0 \neq -1$ and $x(M) \subset S^n \setminus \{(-1, 0)\}$.

Now, let $\sigma^{-1}: S^n \setminus \{(-1,0)\} \to \mathbb{R}^n$ be the stereographic projection from the point $(-1,0) \in S^n$. We define $u = \sigma^{-1} \circ x : \mathbb{M} \to \mathbb{R}^n$. Then by (1.3) we have

(5.13)
$$Y = \rho(1, x) = \left(\rho, \frac{\rho(1 - |u|^2)}{1 + |u|^2}, \frac{2\rho u}{1 + |u|^2}\right).$$

From $\langle Y, c \rangle = 1$ we get $\rho = (1 + |u|^2)/2$. Thus we get from (5.13) that

$$Y = \left(\frac{1 + |u|^2}{2}, \frac{1 - |u|^2}{2}, u\right).$$

The Möbius metric of x is given by

$$(5.14) g = \langle dY, dY \rangle = du \cdot du,$$

which is exactly the first fundamental form of $u = \sigma^{-1} \circ x : M \to \mathbb{R}^n$. In particular, the Laplace operator Δ of g coincides with the Laplace operator of $du \cdot du$. Comparing the last coordinate in (5.12), we get $\Delta u = 0$. Thus $u = \sigma^{-1} \circ x : M \to \mathbb{R}^n$ is a minimal submanidold. By (5.14) and (5.4) we know that the normalized scalar curvature of u is exactly the scalar curvature κ of g. Since $\langle c, c \rangle = -(1 + m^2 \kappa)/m^2 = 0$, we get $\kappa = -1/m^2$.

Finally, we consider the case that $\langle c, c \rangle = r^2$ with $r = \sqrt{-(1+m^2\kappa)}/m > 0$. By making use of a Möbius transformation if necessary, we may assume that c = (0, r, 0). We write $x = (x_0, x_1)$. Then $Y = (\rho, \rho x_0, \rho x_1)$. It follows from (5.5) that $\langle Y, c \rangle = \rho r x_0 = 1$, which implies that $x_0 > 0$ and $x(M) \subset S_+^n$.

Now, let $\tau: \mathbf{H}^n \to S^n_+$ be the conformal diffeomorphsim defined by (1.4) and $y = \tau^{-1} \circ x: \mathbf{M} \to \mathbf{H}^n \subset \mathbf{R}^{n+1}_1$. Since $\langle Y, \mathbf{c} \rangle = \rho r x_0 = 1$, we get $x_0 = 1/r\rho$. By (1.4) we get $y_0 = 1/x_0 = r\rho$ and

(5.15)
$$Y = (\rho, \rho x_0, \rho x_1) = \left(\frac{y_0}{r}, \frac{1}{r}, \frac{y_1}{r}\right).$$

It follows that

(5.16)
$$g = \langle dY, dY \rangle = r^{-2} \langle dy, dy \rangle.$$

The Laplace operator $\Delta_{\mathbf{M}}$ of $\langle dy, dy \rangle$ is given by $\Delta_{\mathbf{M}} = r^{-2}\Delta$. By (5.4) and (2.4) we have

(5.17)
$$-\frac{1}{m}\Delta Y + \frac{r^2}{2}Y = -\frac{r^2}{2}Y + (0, r, 0),$$

which is equivalent to the equation

$$\Delta_{\mathbf{M}} \mathbf{y} - m \mathbf{y} = 0.$$

Thus $y = \tau^{-1} \circ x : \mathbf{M} \to \mathbf{H}^n$ is a minimal submanifold. Since the Möbius metric g has constant scalar curvature, we know from (5.16) that $y : \mathbf{M} \to \mathbf{H}^n$ has constant scalar curvature.

Thus we complete the proof of the classification theorem.

REFERENCES

- [B] W. BLASCHKE, Vorlesungen über Differentialgeometrie, Vol. 3, Springer Berlin, 1929.
- [BR] R. BRYANT, A duality theorem for Willmore surfaces, J. Differential Geom. 20 (1984), 23–53.
- [CH] B. Y. CHEN, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Singapore, 1984.
- N. EJIRI, Willmore surfaces with a duality in $S^n(1)$, Proc. London Math. Soc. (3) 57 (1988), 383–416.
- [G-L-W] Z. Guo, H. Z. LI AND C.P. WANG, The second variation formula for Willmore submanifolds in S^n , Preprint PKU, 1999.
- [K-P] R. S. KULKARNI AND U. PINKALL, Conformal Geometry, Aspects Math. E12, Friedr. Vieweg & Son, Braunschweig, 1988.

- [L-W-W] H. Z. LI, C. P. WANG AND F. E. WU, A Möbius characterization of Veronese surfaces in S^n , Math. Ann. 319 (2001), 707–714.
- [R] M. RIGOLI, Conformal Gauss map of submanifold in the Möbius space, Ann. Global Anal. Geom. 5 (1987), 97-116.
- [S] R. SULANKE, Möbius invariants for pairs of spheres, Preprint 373, SFB 288, TU Berlin.
- T. TAKAHASHI, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18 (1966), 380–385. [T]
- [W] C. P. WANG, Möbius geometry of submanifolds in S^n , Manuscripta Math. 96 (1998), 517–534.

DEPARTMENT OF MATHEMATICS NORTHEASTERN UNIVERSITY SHENYANG 110006 P. R. CHINA

DEPARTMENT OF MATHEMATICAL SCIENCES PEKING UNIVERSITY **BEIJING 100871** P. R. CHINA

E-mail address: liuhl@ramm.neu.edu.cn E-mail address: wangcp@pku.edu.cn

DEPARTMENT OF MATHEMATICS SICHUAN UNIVERSITY CHENGDU 610064 P. R. CHINA

E-mail address: gszhao@scu.edu.cn