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LAGRANGIAN SURFACES OF CONSTANT CURVATURE IN
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Abstract. In this article we completely classify Lagrangidhrumbilical surfaces of
constant curvature in complex Euclidean plane.

1. Lagrangian H-umbilical surfaces with A = 2u. We follow the notation and
definitions given in [1, 2]. Professors |. Castro and F. Urbano kindly pointed out that Theorem
3.1in [1] holds only for submanifolds of dimensien3.

Forn = 2, we have the following result instead.

THEOREM 1. Thefollowing two statements hold:
(i) Let b be a nonzero number, 6(¢) a function of one variable defined on an open
interval (o, 8) 0 and z(r) a C2-valued solution of the ordinary differential equation:

(1.1) (1) — i6' ()2 (1) + b%2(1) = 0,
satisfying the two conditions: |z(1)|? = 1/(4b%) and |2/ (r)|? = 1/4. Then the map

. t .
(1.2) L(s, 1) = 2" 7(1) +/ 7 (1)e 290 gy
0

defines a Lagrangian H-umbilical surface of constant curvature 52 in C2 whose induced
metricis

(1.3) g = ds® + cof(bs + 0(1))dt?,

and whose second fundamental form satisfies

(1.4) h(e1,e1) = 2bJe1, h(e1,e2) =bJes, h(ez, e2) =bJer

with respect to e; = 9/ds and ex = sedbs + 6(t))d/dt.

(i) Conversdly, if L : M — C?isa Lagrangian H-umbilical surface whose second
fundamental form satisfies (1.4) for some function » # 0 with respect to some orthonormal
local framefield {e1, e»}, then we have:

(i-1) b isaconstant,

(ii-2) there exist a function 6(¢) and a local coordinate system {s, t} on M with ey =
d/ds such that the metric tensor is given by (1.3), and
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(ii-3) theimmersion L iscongruent to the L given in statement (i).

PROOF. Letb be a nonzero numbet(r) a function of one variable defined dm, 8) >
0 andz a C?-valued solution of (1.1) satisfyinig|2 = 1/(4b%) and|z’|2 = 1/4. Define a map
L by (1.2). Then we have

Ly = 2ibe?z(1), L, = (2% + 727 (1),
(1.5) Lgy = —4b%%Y7(1), Ly = 2ibe?b 7 (1),
Ly = (eZibs + e—ZiQ)Z//(t) _ 2ie_2i@9’(t)z’(t) )
It follows from |z|? = 1/(4b?), |Z/|> = 1/4 and (1.5) that the metric induced lyis
given by (1.3). Moreover, a direct computation shows thaatisfies
Lss = 2ibLy,
(1.6) Ly = ibseabs + 6)e' 0L,
Ly = ibcosbs + 0)e 'Ot — o' tan(bs + 6)L,,
by virtue of (1.1). ThusL is a Lagrangiari -umbilical immersion whose second fundamental
form satisfies (1.4) with respectéa = 9/ds, ex = sedbs + 6(t))d/0dt.

Conversely, assume that: M — C?is a LagrangiarH -umbilical immersion satisfying
(1.4) for some functio # O with respect to some orthonormal frame field. Then (1.4) and
the equation of Codazzi imply théatis constant and the integral curvesegfare geodesic in
M. Thus, there exists a local coordinate systena} with e; = 9/9s so that the metric tensor
of M is g = ds®+ f?(s, u)du?. Since the Gaussian curvatuteof M satisfiesk = — fs/f,
(1.4) implies thatf,; = —b2f. Solving this equation yieldg = A(x) cogbs) + B(u) sin(bs)
for some functionsi () and B(x). Thus we get

(1.7) g = ds® + r’(u) co(bs + ¢(u))du?,

whereA = r(u) cosp(u), B = r(u) sing(u) andr(u) = /A2 + B2, If we denote by =
t(u) an antiderivative of (1), then (1.7) becomes

(1.8) g = ds® + coS(bs + 0(1))d1?

for some functiord (). From (1.8) we find

0 0 0
Va/as—s =0, Vyps— =—btanlbs +9(t))5 ,

(1.9) % b o d d
Vi/9i— = = Sin(2bs + 260(1))— — 6’ (¢) tan(bs + 0(¢))— .
ey 2SI( s + ())as (t) tan(bs + ())at

Using (1.4), (1.8), (1.9) and the formula of Gauss, we see that the immersion satisfies the
following system of PDEs:

Ly = 2ibLy,
(1.10) Ly = ibsedbs + 0)e! PO,
Ly =ibcogbs + 0)e " OFTOL o' tan(bs + 0)L; .
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After solving the first and the second equations in (1.10), we obtain

(1.11) L = A@)e%? + B(r)

for someC2-valued functionsA (¢), B(t). Differentiating (1.11) gives
(1.12) L= A'(1)e?" + B'(1).
Substituting this into the second equation in (1.10) gives

(1.13) B'(t)y=e29A'(1).

Combining (1.12) and (1.13) yields

(1.14) Ly = A'(1)(e?" +e7%7).

Thus, after applying a suitable translation, we discover that
. f .
(1.15) L= (A0 +0)e*” + / A'(t)e 200 gy
0

for some constant vectar. Therefore, if we put(r) = A(t) + C, we obtain (1.2).
Using (1.2), we find

(1.16) Ly = 2ibe?" (1), L, = (%" + 7297 (1),

which implies that L |? = 4b?|z(1)|? and|L;|? = 4 cog(bs + 0)|z/(1)|?. Comparing these
with (1.8) gives|z|2 = 1/(4b?) and|z’|2 = 1/4. Therefore, the immersion is congruent to the
immersionL defined in statement (i). O

Concerning statement (i) of Theorem 1 weyide the following theorem which insures
the existence of the solution of the equation (1.1) subject to the two conditions. The proof
uses the same idea as that of Theorem 4.1 in [3].

THEOREM 2. For any nonzero real number » and any differentiable function 6 of one
variable defined on an open interval I, there exists a C?-valued solution of the differential
equation:

(1.17) Z'(t) —i0' ()7 (1) + b?2(1) = 0,
that also satisfies the two conditions: |z|2 = 1/(4b%) and |Z'|2 = 1/4.

PrROOF. Letb be a nonzero number amdr) a differentiable function of one variable
defined on an open intervél Let D be a simply-connected open domainRA = {(s, 1) :
s,t € R} on which the function ca#s + 6(¢)) is nowhere zero.

Let M = (D, g) denote the Riemannian 2-manifold equipped with metric tepgiven
by (1.8). Then its Levi-Civita connection satisfies (1.9). ketlenote thel' M-valued sym-
metric bilinear form so that

d 0 0 Jd 0 0
ol—, —|=2b—, o|l—,—)=b—,
ds ds as ds Jt at

(3 3) = bcof(b +9(z))i
“Norai) = s ds

(1.18)
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Then(o(X,Y), Z)and(Vo)(X,Y, Z) :=Vxo (U, Z)—o(VxY, Z)—o (Y, Vx Z) are totally
symmetric. Moreover, a direct computation shows that the curvature tengar s#tisfies
RX,Y)Z=0(c(Y,Z2),X)—0(c(X, Z),Y). Hence, by applying Theorem A in [1], we see
that there exists a Lagrangian isometric inmersionM — C? whose second fundamental
form h = Jo satisfies (1.4). As in the proof of Theorem 1, we also see that the immersion
satisfies (1.10).

After solving the first and the second equations of (1.10) in the same way as in the proof
of Theorem 1, we obtain that

t
(1.19) L =e%Pz(0) —i—/ Z(t)e 290gt 4 ¢
0

for someC?-valued functionz(r) and constant vectar. By substituting (1.19) into the last
equation in (1.10), we discover

(1.20) (1) —i6' ()7 (1) + b%z(t) = 0.
Thus,z(¢) is a solution of (1.17). Hence, by applying (1.8) and (1.19), we see thaatisfies
the two side conditiongz|? = 1/(4b?) and|Z'|2 = 1/4 as well. ]

REMARK 1. Theorems 1and 2 imply that the class of Lagrangianmbilical surfaces
in C? satisfying (1.4) is very large.

REMARK 2. After the reparametrization = 2s, the C2-valued solutionz(s) given
in Theorem 2 is nothing but a Legendre curve in the hyperspkigre c C? with radius
r=1/(2b).

REMARK 3. If & = 0, the immersion defined by (1.2) is nothing but a Lagrangian
pseudo-sphere as introduced in [1]. However, the immersion (1.2) is not a complex extensor
in general.

EXAMPLE. Leta, b be two real numbers withad+# b2 andb # 0. If 6 = 2at, then
the solution of (1.1) is given by

(1.22) 2(t) = 9 (cre' + c2e” MYy, Yy = Va? + b2

for some constant vectors, 2 € C2. Using (1.21) and the conditidn|? = 1/(4b2), we get

1
(1.22) el + Jeal? = i (w2 =licre2) =0.
Moreover, from (1.21) and the conditiogi|*> = 1/4, we find
1
(1.23) (@+p)lerl® + (@ = y)?eal® = 3.

Solving (1.22) and (1.23) fdr1|? and|cz|? yields

Yy +a
8h2y

Yy —a

1.24 2 _ .
( ) |Cl| 8b2y

2
lca|” =
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In view of (1.21) and (1.22), we may choose

Hence, the corresponding Lagrangidrumbilical immersion is given by

ei(y—3a)t
225 /7 (b2 — 8a2)
\/m(%z + b2 _ 40)/ + (bz _ 8a2)€2i(bs+20t))e—2iyt) ,

(V7 = ada® + b? + day + (b* — 8a?)e? b +20)

y =+va?2+b2.

L=

2. Lagrangian H-umbilical surfaces of constant curvature. Due to the error, we
shall replace statement (ii-1) of Theorem 4.31hby the following result which completely
classifies Lagrangiaff -umbilical surfaces of constant curvatureGs.

THEOREM 3. Let L : M — C? beaLagrangian H-umbilical immersion of a surface
of constant curvature K into C2. Then one of the following six statements holds:

(1) K =0and M isaLlagrangian cylinder over a curve.
(2) M isaflat Lagrangian surface whose immersion is congruent to

t

(2.1) L(t,u) =uz(t) + / b(1)7 (1)dt ,
0

where b = b(t) is a real-valued function defined on an open interval 7 > Oandz : I —

$3(1) c C?isaunit speed Legendre curvein $3(1).
(3) K =b?> 0and L iscongruent to the Lagrangian immersion

t
(2.2) L(s, 1) =e2’bsz(t)+/ Z()e 29Dy
0

where b is a positive number, 6 is a function defined on an openinterval 7 > Oandz : I —
S3(1/(2b)) C C?isa Legendre curve with constant speed 1/2 in S3(1/(2b)) of radius 1/(2b)

satisfying (1.1).
(4) K = b?> 1andtheimmersionis congruent to

LGs. 1) cogbs) exp<'sin1< bsinbs > i tanl( sinbs ))
s, 1) = i _— >
Vb2 -1 vb2—-1/) b Vb2cogbs — 1
x (ic1 4 cos(vb? — 11),ic2 + sin(vb? — 11))

(2.3) (/S { . _1< bsinbs)
+ exp3 2i sin
0 b2 -1

i tan ! < sinbs )}ds) (c1,¢2)
. B e —— l? 2
b /b2coZbs — 1

for some constants cy, c».
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(5) K = b? > 0andtheimmersion is congruent to

Les.1) cogbs) exp('sin1< bsinbs > n i tanhl( sinbs ))
s, 1) = i — -
Vb2 41 Vb2 +1 b Vb2coLbs + 1
x (ic1+ cos(vVb? + 1t),ico + sin(v'b? + 11))

(2.4) s . _4{ bsinbs
+ (/0 exp{21 sin 1(7b2+1)

i sinbs
+ —tanh?! <—) }ds) (c1, ¢2)
b b2co@bs + 1 !

for some constants c1, c2.
(6) K = —b? < 0andtheimmersion is congruent to

coshbs) . . _q { bsinhbs i, 4 sinhbs
L(s, 1) = exp| i sin +Ztan —_—

V1—b? V1-b? V1= b2costt bs
x (ic1+ cos(v'1—b2t),ico +sin(v1—b21))
(2.5) N (/ exp{Zi sin-1 <bsinhbs>
0 V1-p2

i sinh(bs) )} )
+ —tan d ,
b <\/ 1 — b2 cosH(bs) AR

for some constants c1, c».
PROOF. LetL : M — C? be a LagrangiarH -umbilical immersion of a surface of
constant curvatur into C2. Then, by definition, the second fundamental forni.cfatisfies

(2.6) h(ey,e1) =rJer, h(er,e2) =plez, h(ez,e2) =pley

for some functions., n with respect to some orthonormal frame field e2. From (2.6) and
the equation of Codazzi, we find

ei = O — 2Ww3(ex),  eap = 3uwi(er),

(2.7)
e2h = (A — 2p)w3(e1)

whereVyei = a)f(X)ez. Using (2.6) and the equation of Gauss, we find
(2.8) A — pu? = K = constant

Differentiating (2.8) with respect tep and applying (2.7) yielgh (A — 2/1,)0)%(61) =0.
Thus, we have eithgr(x — 21) = 0 orw?(eq) = 0.

If u(x —21) = 0, then we obtaikk = 0 orA = 2u. Thus, by applying the Main
Theorem of [2] and Theorem 1, we have statements (1), (2) or (3).

If w(r —2p) # 0, we getw(e1) = 0. So, from (2.7), we find thatph = eop = 0.
SinceV,,e1 = 0, there is a local coordinate systgsmu} on M such that the metric tensor is
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given by
(2.9 g = ds® + G?(s, u)du®

for some functionG with 9/3s = e1, 3/0u = Gez. Fromezi = eou = 0, we geth = A(s)
andu = u(s). Using (2.9), we find
S

0 d G
(2.10) Va/aug =(In G)SE: wi(e) = R

Now, let us assume that# 2. Then, by (2.7)—(2.10), we obtain

! !

W
A—2u K —p?’

(InG)s =

Solving this equation give§ = F(u)/+/|K — u?| for some functionF. Thus, (2.9) becomes

F2(u)
2.11 =ds® + ————du?
1D I K — 12(5)]
If + denotes an antiderivative &f(«), then we obtain from (2.11) that
dr? 1
2.12 =ds2+7, Gz(s) = —F.
(212) ! K — 12(s)] K — u2(5)]

CAsE (a) K = b2 > 0. SinceG satisfiesGy; + bG = 0 in this case, we have
G = c1co9bs) + ¢ sin(bs) for some constants,, c2, not both zero. Thus, we obta =
r cogbs + ¢) for some constants # 0 andc. After applying a suitable translation inand a
suitable dilation irr, we obtainG(s) = cogbs). Therefore, we find

g = ds® + coS(bs)dt?,

9 9 9
Vis— =0, Vi — = —btan(bs)— .
(2.13) s s - bs) o
Vosm > = 2 sin2ps) 2
005, T 2 o5

CASE (a-1) K = b% > p2andb > 0. In this case, we have& = p2 + se(bs) > 1.
Without loss of generality, we may assume that

2
(2.14) = % . w=/b2—se@(bs) .
— S

By applying (2.6), (2.13) and (2.14), we see that the immersion satisfies
2b% — sec(bs) .
Vb2 —se@(bs)
(2.15) Ly = (iv/b? — se@(bs) — btan(bs))L,
Ly = (iv/b2cof(bs) — 1+ bsin(bs)) cos(bs) L .

Lss =1
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After solving the second equation of (2.15), we get

(2.16) L, = F(I)COS(bs)exp<i sin1< bsinbs > B itan* (&))
vbi-1/) b VbZcoRbs — 1

for someC2-valued functionF (). Thus, we have

L = A(s) + B(t) cos(bs) exp(i sin™! < bsinbs )

2 _
(2.17) be-1

i, 4 ( sinbs >>
— —tan —_— ),
b Vb2coZhbs — 1
whereB(t) is an antiderivative of (r) andA(s) is aC2-valued function. From (2.17) we find

Ly = A'(s) — B(t)(bsinbs — iv/b?cog bs — 1)

(2.18) exp<' sin‘1< bsinbs ) i tan‘l( sinbs >>
X i - - e i—
Vb2 -1 b Vb2coLhbs — 1

(Vb2 = se@bs + ibtanbs)(2b% coL bs — 1)

Lss = A7) = B®) N
—

(2.19)

X exp(i sint ( bsinbs ) _ Lian? <le))
Vir-1) b JiZcodbs —1))
Substituting (2.18) and (2.19) into the first equation in (2.15), we find
2h? — se@(b
sec(bs) A

Vb2 — sel(bs)

(2.20) A(s) =i (s) .

Solving this equation gives

bsinb ] inb
(2.21) Al@)=C exp{zz‘ sin ! ( SINos ) _Lian? <S'—S>}
b2-1) b b2coS bs — 1

for some vector in C2. Hence, we obtain

N H . .
(2.22) A(s) = C/ exp{Zi sin~t (M) ~ Ltant <Lbs) }ds + E
0 b2 —1 b Vb2cogbs — 1

for vector E in C2. We may assumé& = 0 by applying a suitable translation @f. Hence,
we obtain from (2.17) that

s . . _q1( bsinbs i, 4 sinbs
L=C [ expy2isin —— | — -tan ————— ) ¢ds
0 vb2-1) b VbZcogbs — 1

+ B(t) cogbs) exp(i sin~! ( bsinbs ) _Liam? <le)) ‘
Vb2-1) b JoZco2bs — 1

(2.23)
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Thus we have

. bsinb
Ly =(C+ivVb%2—1B) exp<2i sint < > s1>
(2.24) b -

i 1( sinbs ))
——tan | ——— —— ] |,
b /b2co2bs — 1

bsinbs i sinbs
2.25) L, = B'(t)cogbs) ex <i sin! < ) — —tan?! (—)) .
@2) L P JZ—1) b VbZcoRbs — 1
Substituting (2.24) and (2.25) into the last equation of (2.15) yields
(2.26) B"(H)+(®b% — 1)B(t) = ivb2 - 1C,
which implies that

B(t) = C1c0sv/b? — 1t + Cosinyb2 — 1t +

Substituting these into (2.23) gives

L ¢ /s exp{Z'Sin_l ( bsinbs ) i tan_l< sinbs )}d
= i —_ | — - - s
0 Vb2 -1 b Vb2co2bs — 1
I
(2.27) + (Cl cosvb2 — 1t + Cosinyb2 — 1t + C> cogbs)
RV 1

b2

C.

l
VbZ—1

5 exp(' sin‘1< bsinbs > i tan‘l( sinbs >>
1 - = —_— .
Vb2 -1 b vb2cogbs — 1
Hence, we may obtain (2.3) by choosing suitable initial conditions.
CASE (a-2) K = b < p2 andb > 0. In this case, we have? — b2 = sel(bs).
Hence, without loss of generality, we may assume that

2
(2.28) A= j%;e?é”) . w= b7+ 5e@(bs).
s

By applying (2.6), (2.13) and (2.28), we obtain
L 2b2 + se@(bs) L,
C b2+ se@(bs)
(2.29) Ly = (iv/b2 + se@(bs) — btan(bs))L, ,
Ly = (iv/b?co2(bs) + 1 + b sin(bs)) cogbs)L .

After solving this system of PDEs in the same way as in Case (a-1) and after choosing suitable
initial conditions, we conclude thatéfimmersion is congruent to (2.4).

Case (b) K = —b2 <0andb > 0. SinceG satisfiesG; —b2G = 0 in this case, we
getG = c¢1 coshbs) 4 c2 sinh(bs) for some constants, ¢z, not both zero. Thus, by applying



298 B.-Y. CHEN

a suitable translation inand a suitable dilation in, we obtain
g = ds? + costf(bs)dr?,

0 0 0
Vyes— =0 Vy/9s— = btanhbs)—
(2.30) 8/0s 3 , 8/ds 5 h(bs) 5
0 b d
Vj/9i— = ——= Sinh(2bs) — .
0/01 5 5 S 1 S)as

From (2.12) and the first equation in (2.30), we find $éeh= b2 + ;2. Thus we obtain
1 > seclbs > b? andu = +v/seclfbs — b2. Without loss of generality, we may assume
that

2
(2.31) 5 = Sectios) — 262 1w = /secR(bs) — 2.

JVsecR(bs) — b2’

By applying (2.6), (2.30) and (2.31), we see that the immersion satisfies
_secl(bs) — 2b?
Lss =l
. V'secl (bs) — b2
(2:32) Ly = (i\/secH"(bs) — b2+ btanhbs))L;
Ly = (iv/1— b2cost(bs) — bsinh(bs)) coshbs) L .

After solving this system of PDEs in the same way as in Case (a-1) and after choosing suitable
initial conditions, we conclde that the immersioh is congruent to (2.5). |
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