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LAGRANGIAN SURFACES OF CONSTANT CURVATURE IN
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Abstract. In this article we completely classify LagrangianH -umbilical surfaces of
constant curvature in complex Euclidean plane.

1. Lagrangian H -umbilical surfaces with λ = 2µ. We follow the notation and
definitions given in [1, 2]. Professors I. Castro and F. Urbano kindly pointed out that Theorem
3.1 in [1] holds only for submanifolds of dimension≥ 3.

Forn = 2, we have the following result instead.

THEOREM 1. The following two statements hold :
(i) Let b be a nonzero number, θ(t) a function of one variable defined on an open

interval (α, β) � 0 and z(t) a C2-valued solution of the ordinary differential equation:
z′′(t) − iθ ′(t)z′(t) + b2z(t) = 0 ,(1.1)

satisfying the two conditions: |z(t)|2 = 1/(4b2) and |z′(t)|2 = 1/4. Then the map

L(s, t) = e2ibsz(t) +
∫ t

0
z′(t)e−2iθ(t)dt(1.2)

defines a Lagrangian H -umbilical surface of constant curvature b2 in C2 whose induced
metric is

g = ds2 + cos2(bs + θ(t))dt2 ,(1.3)

and whose second fundamental form satisfies

h(e1, e1) = 2bJ e1, h(e1, e2) = bJ e2, h(e2, e2) = bJ e1(1.4)

with respect to e1 = ∂/∂s and e2 = sec(bs + θ(t))∂/∂t .
(ii) Conversely, if L̃ : M → C2 is a Lagrangian H -umbilical surface whose second

fundamental form satisfies (1.4) for some function b �= 0 with respect to some orthonormal
local frame field {e1, e2}, then we have:

(ii-1) b is a constant,
(ii-2) there exist a function θ(t) and a local coordinate system {s, t} on M with e1 =

∂/∂s such that the metric tensor is given by (1.3), and
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(ii-3) the immersion L̃ is congruent to the L given in statement (i).

PROOF. Let b be a nonzero number,θ(t) a function of one variable defined on(α, β) �
0 andz a C2-valued solution of (1.1) satisfying|z|2 = 1/(4b2) and|z′|2 = 1/4. Define a map
L by (1.2). Then we have

Ls = 2ibe2ibsz(t) , Lt = (e2ibs + e−2iθ )z′(t) ,

Lss = −4b2e2ibsz(t) , Lst = 2ibe2ibsz′(t) ,

Ltt = (e2ibs + e−2iθ )z′′(t) − 2ie−2iθ θ ′(t)z′(t) .

(1.5)

It follows from |z|2 = 1/(4b2), |z′|2 = 1/4 and (1.5) that the metric induced byL is
given by (1.3). Moreover, a direct computation shows thatL satisfies

Lss = 2ibLs ,

Lst = ib sec(bs + θ)ei(bs+θ)Lt ,

Ltt = ib cos(bs + θ)e−i(bs+θ)Ls − θ ′ tan(bs + θ)Lt ,

(1.6)

by virtue of (1.1). Thus,L is a LagrangianH -umbilical immersion whose second fundamental
form satisfies (1.4) with respect toe1 = ∂/∂s, e2 = sec(bs + θ(t))∂/∂t.

Conversely, assume thatL̃ : M → C2 is a LagrangianH -umbilical immersion satisfying
(1.4) for some functionb �= 0 with respect to some orthonormal frame field. Then (1.4) and
the equation of Codazzi imply thatb is constant and the integral curves ofe1 are geodesic in
M. Thus, there exists a local coordinate system{s, u} with e1 = ∂/∂s so that the metric tensor
of M is g = ds2 +f 2(s, u)du2. Since the Gaussian curvatureK of M satisfiesK = −fss/f ,
(1.4) implies thatfss = −b2f . Solving this equation yieldsf = A(u) cos(bs)+B(u) sin(bs)

for some functionsA(u) andB(u). Thus we get

g = ds2 + r2(u) cos2(bs + ϕ(u))du2 ,(1.7)

whereA = r(u) cosϕ(u), B = r(u) sinϕ(u) andr(u) = √
A2 + B2. If we denote byt =

t (u) an antiderivative ofr(u), then (1.7) becomes

g = ds2 + cos2(bs + θ(t))dt2(1.8)

for some functionθ(t). From (1.8) we find

∇∂/∂s

∂

∂s
= 0 , ∇∂/∂s

∂

∂t
= −b tan(bs + θ(t))

∂

∂t
,

∇∂/∂t
∂

∂t
= b

2
sin(2bs + 2θ(t))

∂

∂s
− θ ′(t) tan(bs + θ(t))

∂

∂t
.

(1.9)

Using (1.4), (1.8), (1.9) and the formula of Gauss, we see that the immersion satisfies the
following system of PDEs:

L̃ss = 2ibL̃s ,

L̃st = ib sec(bs + θ)ei(bs+θ)L̃t ,

L̃t t = ib cos(bs + θ)e−i(bs+θ)L̃s − θ ′ tan(bs + θ)L̃t .

(1.10)
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After solving the first and the second equations in (1.10), we obtain

L̃ = A(t)e2ibs + B(t)(1.11)

for someC2-valued functionsA(t), B(t). Differentiating (1.11) gives

L̃t = A′(t)e2ibs + B ′(t) .(1.12)

Substituting this into the second equation in (1.10) gives

B ′(t) = e−2iθA′(t) .(1.13)

Combining (1.12) and (1.13) yields

L̃t = A′(t)(e2ibs + e−2iθ ) .(1.14)

Thus, after applying a suitable translation, we discover that

L̃ = (A(t) + C)e2ibs +
∫ t

0
A′(t)e−2iθ(t)dt(1.15)

for some constant vectorC. Therefore, if we putz(t) = A(t) + C, we obtain (1.2).
Using (1.2), we find

L̃s = 2ibe2ibsz(t) , L̃t = (e2ibs + e−2iθ )z′(t) ,(1.16)

which implies that|Ls |2 = 4b2|z(t)|2 and|Lt |2 = 4 cos2(bs + θ)|z′(t)|2. Comparing these
with (1.8) gives|z|2 = 1/(4b2) and|z′|2 = 1/4. Therefore, the immersion is congruent to the
immersionL defined in statement (i). �

Concerning statement (i) of Theorem 1 we provide the following theorem which insures
the existence of the solution of the equation (1.1) subject to the two conditions. The proof
uses the same idea as that of Theorem 4.1 in [3].

THEOREM 2. For any nonzero real number b and any differentiable function θ of one
variable defined on an open interval I, there exists a C2-valued solution of the differential
equation:

z′′(t) − iθ ′(t)z′(t) + b2z(t) = 0 ,(1.17)

that also satisfies the two conditions: |z|2 = 1/(4b2) and |z′|2 = 1/4.

PROOF. Let b be a nonzero number andθ(t) a differentiable function of one variable
defined on an open intervalI . Let D be a simply-connected open domain inR2 = {(s, t) :
s, t ∈ R} on which the function cos(bs + θ(t)) is nowhere zero.

Let M = (D, g) denote the Riemannian 2-manifold equipped with metric tensorg given
by (1.8). Then its Levi-Civita connection satisfies (1.9). Letσ denote theT M-valued sym-
metric bilinear form so that

σ

(
∂

∂s
,

∂

∂s

)
= 2b

∂

∂s
, σ

(
∂

∂s
,

∂

∂t

)
= b

∂

∂t
,

σ

(
∂

∂t
,

∂

∂t

)
= b cos2(bs + θ(t))

∂

∂s
.

(1.18)
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Then〈σ(X, Y ), Z〉 and(∇σ)(X, Y,Z) := ∇Xσ(U,Z)−σ(∇XY,Z)−σ(Y,∇XZ) are totally
symmetric. Moreover, a direct computation shows that the curvature tensor ofM satisfies
R(X, Y )Z = σ(σ(Y,Z),X)−σ(σ(X,Z), Y ). Hence, by applying Theorem A in [1], we see
that there exists a Lagrangian isometric immersionL̃ : M → C2 whose second fundamental
form h = Jσ satisfies (1.4). As in the proof of Theorem 1, we also see that the immersion
satisfies (1.10).

After solving the first and the second equations of (1.10) in the same way as in the proof
of Theorem 1, we obtain that

L̃ = e2ibsz(t) +
∫ t

0
z′(t)e−2iθ(t)dt + c(1.19)

for someC2-valued functionz(t) and constant vectorc. By substituting (1.19) into the last
equation in (1.10), we discover

z′′(t) − iθ ′(t)z′(t) + b2z(t) = 0 .(1.20)

Thus,z(t) is a solution of (1.17). Hence, by applying (1.8) and (1.19), we see thatz(t) satisfies
the two side conditions:|z|2 = 1/(4b2) and|z′|2 = 1/4 as well. �

REMARK 1. Theorems 1 and 2 imply that the class of LagrangianH -umbilical surfaces
in C2 satisfying (1.4) is very large.

REMARK 2. After the reparametrizationt = 2s, the C2-valued solutionz(s) given
in Theorem 2 is nothing but a Legendre curve in the hypersphereS3(r) ⊂ C2 with radius
r = 1/(2b).

REMARK 3. If θ = 0, the immersion defined by (1.2) is nothing but a Lagrangian
pseudo-sphere as introduced in [1]. However, the immersion (1.2) is not a complex extensor
in general.

EXAMPLE. Let a, b be two real numbers with 8a �= b2 andb �= 0. If θ = 2at, then
the solution of (1.1) is given by

z(t) = eiat (c1e
iγ t + c2e

−iγ t ) , γ =
√

a2 + b2(1.21)

for some constant vectorsc1, c2 ∈ C2. Using (1.21) and the condition|z|2 = 1/(4b2), we get

|c1|2 + |c2|2 = 1

4b2
, 〈c1, c2〉 = 〈ic1, c2〉 = 0 .(1.22)

Moreover, from (1.21) and the condition|z′|2 = 1/4, we find

(a + γ )2|c1|2 + (a − γ )2|c2|2 = 1

4
.(1.23)

Solving (1.22) and (1.23) for|c1|2 and|c2|2 yields

|c1|2 = γ − a

8b2γ
, |c2|2 = γ + a

8b2γ
.(1.24)
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In view of (1.21) and (1.22), we may choose

c1 =
(√

γ − a

2b
√

2γ
, 0

)
, c2 =

(
0,

√
γ + a

2b
√

2γ

)
.

Hence, the corresponding LagrangianH -umbilical immersion is given by

L̃ = ei(γ−3a)t

2
√

2b
√

γ (b2 − 8a2)
(
√

γ − a(4a2 + b2 + 4aγ + (b2 − 8a2)e2i(bs+2at)) ,

√
γ + a(4a2 + b2 − 4aγ + (b2 − 8a2)e2i(bs+2at))e−2iγ t ) , γ =

√
a2 + b2 .

2. Lagrangian H -umbilical surfaces of constant curvature. Due to the error, we
shall replace statement (ii-1) of Theorem 4.3 in[1] by the following result which completely
classifies LagrangianH -umbilical surfaces of constant curvature inC2.

THEOREM 3. Let L : M → C2 be a Lagrangian H -umbilical immersion of a surface
of constant curvature K into C2. Then one of the following six statements holds:

(1) K = 0 and M is a Lagrangian cylinder over a curve.
(2) M is a flat Lagrangian surface whose immersion is congruent to

L(t, u) =uz(t) +
∫ t

0
b(t)z′(t)dt ,(2.1)

where b = b(t) is a real-valued function defined on an open interval I � 0 and z : I →
S3(1) ⊂ C2 is a unit speed Legendre curve in S3(1).

(3) K = b2 > 0 and L is congruent to the Lagrangian immersion

L(s, t) = e2ibsz(t) +
∫ t

0
z′(t)e−2iθ(t)dt ,(2.2)

where b is a positive number, θ is a function defined on an open interval I � 0 and z : I →
S3(1/(2b)) ⊂ C2 is a Legendre curve with constant speed 1/2 in S3(1/(2b)) of radius 1/(2b)

satisfying (1.1).
(4) K = b2 > 1 and the immersion is congruent to

L(s, t) = cos(bs)√
b2 − 1

exp

(
i sin−1

(
b sinbs√
b2 − 1

)
− i

b
tan−1

(
sinbs√

b2 cos2 bs − 1

))

× (
ic1 + cos

(√
b2 − 1 t

)
, ic2 + sin

(√
b2 − 1 t

))

+
( ∫ s

0
exp

{
2i sin−1

(
b sinbs√
b2 − 1

)

− i

b
tan−1

(
sinbs√

b2 cos2 bs − 1

)}
ds

)
(c1, c2)

(2.3)

for some constants c1, c2.
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(5) K = b2 > 0 and the immersion is congruent to

L(s, t) = cos(bs)√
b2 + 1

exp

(
i sin−1

(
b sinbs√
b2 + 1

)
+ i

b
tanh−1

(
sinbs√

b2 cos2 bs + 1

))

× (
ic1 + cos

(√
b2 + 1 t

)
, ic2 + sin

(√
b2 + 1 t

))

+
( ∫ s

0
exp

{
2i sin−1

(
b sinbs√
b2 + 1

)

+ i

b
tanh−1

(
sinbs√

b2 cos2 bs + 1

)}
ds

)
(c1, c2)

(2.4)

for some constants c1, c2.
(6) K = −b2 < 0 and the immersion is congruent to

L(s, t) = cosh(bs)√
1 − b2

exp

(
i sin−1

(
b sinhbs√

1 − b2

)
+ i

b
tan−1

(
sinhbs√

1 − b2 cosh2 bs

))

× (
ic1 + cos

(√
1 − b2 t

)
, ic2 + sin

(√
1 − b2 t

))

+
( ∫ s

0
exp

{
2i sin−1

(
b sinhbs√

1 − b2

)

+ i

b
tan−1

(
sinh(bs)√

1 − b2 cosh2(bs)

)}
ds

)
(c1, c2)

(2.5)

for some constants c1, c2.

PROOF. Let L : M → C2 be a LagrangianH -umbilical immersion of a surface of
constant curvatureK into C2. Then, by definition, the second fundamental form ofL satisfies

h(e1, e1) = λJe1 , h(e1, e2) = µJe2 , h(e2, e2) = µJe1(2.6)

for some functionsλ,µ with respect to some orthonormal frame fielde1, e2. From (2.6) and
the equation of Codazzi, we find

e1µ = (λ − 2µ)ω2
1(e2) , e2µ = 3µω2

1(e1) ,

e2λ = (λ − 2µ)ω2
1(e1) ,

(2.7)

where∇Xe1 = ω2
1(X)e2. Using (2.6) and the equation of Gauss, we find

λµ − µ2 = K = constant.(2.8)

Differentiating (2.8) with respect toe2 and applying (2.7) yieldµ(λ − 2µ)ω1
2(e1) = 0.

Thus, we have eitherµ(λ − 2µ) = 0 orω2
1(e1) = 0.

If µ(λ − 2µ) = 0, then we obtainK = 0 or λ = 2µ. Thus, by applying the Main
Theorem of [2] and Theorem 1, we have statements (1), (2) or (3).

If µ(λ − 2µ) �= 0, we getω2
1(e1) = 0. So, from (2.7), we find thate2λ = e2µ = 0.

Since∇e1e1 = 0, there is a local coordinate system{s, u} onM such that the metric tensor is



LAGRANGIAN SURFACES OF CONSTANT CURVATURE 295

given by

g = ds2 + G2(s, u)du2(2.9)

for some functionG with ∂/∂s = e1, ∂/∂u = Ge2. Frome2λ = e2µ = 0, we getλ = λ(s)

andµ = µ(s). Using (2.9), we find

∇∂/∂u

∂

∂s
= (ln G)s

∂

∂u
, ω2

1(e2) = Gs

G
.(2.10)

Now, let us assume thatλ �= 2µ. Then, by (2.7)–(2.10), we obtain

(ln G)s = µ′

λ − 2µ
= µµ′

K − µ2
.

Solving this equation givesG = F(u)/
√|K − µ2| for some functionF . Thus, (2.9) becomes

g = ds2 + F 2(u)

|K − µ2(s)|du2 .(2.11)

If t denotes an antiderivative ofF(u), then we obtain from (2.11) that

g = ds2 + dt2

|K − µ2(s)| , G2(s) = 1

|K − µ2(s)| .(2.12)

CASE (a) K = b2 > 0. SinceG satisfiesGss + b2G = 0 in this case, we have
G = c1 cos(bs) + c2 sin(bs) for some constantsc1, c2, not both zero. Thus, we obtainG =
r cos(bs + c) for some constantsr �= 0 andc. After applying a suitable translation ins and a
suitable dilation int , we obtainG(s) = cos(bs). Therefore, we find

g = ds2 + cos2(bs)dt2 ,

∇∂/∂s
∂

∂s
= 0 , ∇∂/∂s

∂

∂t
= −b tan(bs)

∂

∂t
,

∇∂/∂t
∂

∂t
= b

2
sin(2bs)

∂

∂s
.

(2.13)

CASE (a-1) K = b2 > µ2 andb > 0. In this case, we haveb2 = µ2 + sec2(bs) ≥ 1.
Without loss of generality, we may assume that

λ = 2b2 − sec2(bs)√
b2 − sec2(bs)

, µ =
√

b2 − sec2(bs) .(2.14)

By applying (2.6), (2.13) and (2.14), we see that the immersion satisfies

Lss = i
2b2 − sec2(bs)√
b2 − sec2(bs)

Ls,

Lst = (
i
√

b2 − sec2(bs) − b tan(bs)
)
Lt ,

Ltt = (
i
√

b2 cos2(bs) − 1 + b sin(bs)
)

cos(bs)Ls .

(2.15)
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After solving the second equation of (2.15), we get

Lt = F(t) cos(bs) exp

(
i sin−1

(
b sinbs√
b2 − 1

)
− i

b
tan−1

(
sinbs√

b2 cos2 bs − 1

))
(2.16)

for someC2-valued functionF(t). Thus, we have

L = A(s) + B(t) cos(bs) exp

(
i sin−1

(
b sinbs√
b2 − 1

)

− i

b
tan−1

(
sinbs√

b2 cos2 bs − 1

))
,

(2.17)

whereB(t) is an antiderivative ofF(t) andA(s) is aC2-valued function. From (2.17) we find

Ls = A′(s) − B(t)
(
b sinbs − i

√
b2 cos2 bs − 1

)

× exp

(
i sin−1

(
b sinbs√
b2 − 1

)
− i

b
tan−1

(
sinbs√

b2 cos2 bs − 1

))
,

(2.18)

Lss = A′′(s) − B(t)
(
√

b2 − sec2 bs + ib tanbs)(2b2 cos2 bs − 1)√
b2 cos2 bs − 1

× exp

(
i sin−1

(
b sinbs√
b2 − 1

)
− i

b
tan−1

(
sinbs√

b2 cos2 bs − 1

))
.

(2.19)

Substituting (2.18) and (2.19) into the first equation in (2.15), we find

A′′(s) = i
2b2 − sec2(bs)√
b2 − sec2(bs)

A′(s) .(2.20)

Solving this equation gives

A′(s) = C exp

{
2i sin−1

(
b sinbs√
b2 − 1

)
− i

b
tan−1

(
sinbs√

b2 cos2 bs − 1

)}
(2.21)

for some vectorC in C2. Hence, we obtain

A(s) = C

∫ s

0
exp

{
2i sin−1

(
b sinbs√
b2 − 1

)
− i

b
tan−1

(
sinbs√

b2 cos2 bs − 1

)}
ds + E(2.22)

for vectorE in C2. We may assumeE = 0 by applying a suitable translation onC2. Hence,
we obtain from (2.17) that

L = C

∫ s

0
exp

{
2i sin−1

(
b sinbs√
b2 − 1

)
− i

b
tan−1

(
sinbs√

b2 cos2 bs − 1

)}
ds

+ B(t) cos(bs) exp

(
i sin−1

(
b sinbs√
b2 − 1

)
− i

b
tan−1

(
sinbs√

b2 cos2 bs − 1

))
.

(2.23)
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Thus we have

Ls = (C + i
√

b2 − 1B) exp

(
2i sin−1

(
b sinbs√
b2 − 1

)

− i

b
tan−1

(
sinbs√

b2 cos2 bs − 1

))
,

(2.24)

Lt = B ′(t) cos(bs) exp

(
i sin−1

(
b sinbs√
b2 − 1

)
− i

b
tan−1

(
sinbs√

b2 cos2 bs − 1

))
.(2.25)

Substituting (2.24) and (2.25) into the last equation of (2.15) yields

B ′′(t)+(b2 − 1)B(t) = i
√

b2 − 1C ,(2.26)

which implies that

B(t) = C1 cos
√

b2 − 1 t + C2 sin
√

b2 − 1 t + i√
b2 − 1

C .

Substituting these into (2.23) gives

L = C

∫ s

0
exp

{
2i sin−1

(
b sinbs√
b2 − 1

)
− i

b
tan−1

(
sinbs√

b2 cos2 bs − 1

)}
ds

+
(

C1 cos
√

b2 − 1 t + C2 sin
√

b2 − 1 t + i√
b2 − 1

C

)
cos(bs)

× exp

(
i sin−1

(
b sinbs√
b2 − 1

)
− i

b
tan−1

(
sinbs√

b2 cos2 bs − 1

))
.

(2.27)

Hence, we may obtain (2.3) by choosing suitable initial conditions.
CASE (a-2) K = b2 < µ2 andb > 0. In this case, we haveµ2 − b2 = sec2(bs).

Hence, without loss of generality, we may assume that

λ = 2b2 + sec2(bs)√
b2 + sec2(bs)

, µ =
√

b2 + sec2(bs) .(2.28)

By applying (2.6), (2.13) and (2.28), we obtain

Lss = i
2b2 + sec2(bs)√
b2 + sec2(bs)

Ls ,

Lst = (
i
√

b2 + sec2(bs) − b tan(bs)
)
Lt ,

Ltt = (
i
√

b2 cos2(bs) + 1 + b sin(bs)
)

cos(bs)Ls .

(2.29)

After solving this system of PDEs in the same way as in Case (a-1) and after choosing suitable
initial conditions, we conclude that the immersion is congruent to (2.4).

CASE (b) K = −b2 < 0 andb > 0. SinceG satisfiesGss −b2G = 0 in this case, we
getG = c1 cosh(bs)+c2 sinh(bs) for some constantsc1, c2, not both zero. Thus, by applying
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a suitable translation ins and a suitable dilation int, we obtain

g = ds2 + cosh2(bs)dt2 ,

∇∂/∂s
∂

∂s
= 0 , ∇∂/∂s

∂

∂t
= b tanh(bs)

∂

∂t
,

∇∂/∂t

∂

∂t
= −b

2
sinh(2bs)

∂

∂s
.

(2.30)

From (2.12) and the first equation in (2.30), we find sech2bs = b2 + µ2. Thus we obtain

1 ≥ sech2bs ≥ b2 andµ = ±
√

sech2bs − b2. Without loss of generality, we may assume
that

λ = sech2(bs) − 2b2√
sech2(bs) − b2

, µ =
√

sech2(bs) − b2 .(2.31)

By applying (2.6), (2.30) and (2.31), we see that the immersion satisfies

Lss = i
sech2(bs) − 2b2√

sech2(bs) − b2
Ls ,

Lst = (
i
√

sech2(bs) − b2 + b tanh(bs)
)
Lt ,

Ltt = (
i
√

1 − b2 cosh2(bs) − b sinh(bs)
)

cosh(bs)Ls .

(2.32)

After solving this system of PDEs in the same way as in Case (a-1) and after choosing suitable
initial conditions, we conclude that the immersionL is congruent to (2.5). �
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