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POSITIVE TOEPLITZ OPERATORSFROM
A HARMONIC BERGMAN SPACE INTO ANOTHER
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Abstract. On the setting of bounded smooth domains, we study positive Toeplitz oper-
ators between the harmonic Bergman spaces. We give characterizations of bounded and com-
pact Toeplitz operators taking one harmonic Bergman space into another in terms of certain
Carleson and vanishing Carleson measures.

1. Introduction. Throughout this paper, we |2 be a fixed smooth bounded domain
in R" forn > 2. For 1< p < oo, the harmonic Bergman spab® is the set of all complex-
valued harmonic functiong on £2 such that

1/p
”f”p:{/ Ifl”dV} < 00,
Q

whereV denotes the Lebesgue volume measureg2onNe will also use the notatiody =
dV (y) for simplicity. Also,b*° denotes the space of all bounded harmonic function® ol
is known that*>° is dense in each”.

As is well-known, the spack? is a closed subspace & = L”(£2, V) and hence a
Banach space. In particuldr? is a Hilbert space. Each point evaluation is easily verified to
be a bounded linear functional 3. Hence, for each € £2, there exists a unique function
R(x, -) € b2 which has the following reproducing property:

fx) = /ﬂ FOIR(x, y)dy, x €82

forall f € b2.

Let O be the Hilbert space orthogonal projection frdrf onto b2. The reproducing
kernelsR(x, -) are known to be symmetric and real-valued. Hence, the reproducing property
mentioned above yields the following integral representatio@ :of

(1.1) oY (x) =/9Wy)R(x,y)d% x €

for functionsy € L2. See [2] for more information and related facts.
For each fixedt € £2, the functionR(x, -) is known to be bounded of?. Thus, the
projectionQ naturally extends to an integral operator via (1.1) frbfinto the space of all
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harmonic functions on2. Moreover, for 1< p < oo, it is known thatQ is a bounded
projection fromL?” ontob”. The integral transforn® even extends td1(£2), the space of all
complex Borel measures gb. Namely, for eactu € M (£2), the integral

Oun(x) =/{2R(x,y)du(y), x €82

defines a function harmonic an. See [4] or [6] for details.
Foru € M(£2), the Toeplitz operataf,, with symbolu is defined by

T f=0Q(fdn)

for f € b™. In caseu = ¢ dV, we will write 7, = T,. Note thatT}, is densely defined on
bP for each 1< p < oo.

Toeplitz operators acting on holomorphic Bergman spaces have been well studied. Espe-
cially, positive symbols of bounded and compageplitz operators are completely character-
ized in terms of Carleson type measures as [n[[3B] and references therein. Recently, the
analogous characterizations for harmonergdnan spaces have been obtained in [10], [11]
on the ball and then in [4] on smooth bounded domains; these results are all concerned with
Toeplitz operators from a Bergman space into itself.

In a recent paper [3] where the setting is the half-space, Toeplitz operators from a
Bergman space into another are considered and positive symbols of bounded and compact
Toeplitz operators are characterized. In théer, we prove analogous results on general
smooth bounded domains. Our results show that known results as in [3] continue to hold in
this general setting.

In Section 2, we collect some preliminary results related to certain averaging functions
and Berezin transforms. In Section 3, we characterize Carleson measures in terms of the
averaging functions and Berezin transformse3é results will be used to prove our charac-
terizations of Toeplitz operators in Section 4.

2. Averaging functions and Berezin transforms. Throughout this paper, we will
often abbreviate inessential constants involved in inequalities by writirfg B for positive
quantitiesA and B if the ratio A/B has a positive upper bound. Also, we writex B if
A < BandB < A.

Forx € 2, we letr(x) = dist(x, 0£2) and

Es(x) ={y € 2;|x —yl <ér(x)}
for0 < § < 1. One can easily see that
(2.1) A=8rx)<r@y) < @A+8rx)

forx € 2 andy € Es(x). Sinces < 1, we note thats(x) is the euclidean ball with center
atx and radiusir (x). So, we have/ (Es(x)) ~ r(x)" forx € £2.
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Lets € (0,1). Givenu € M(£2), the averaging functiof; of . over the ballsEs(x) is
defined by
p(Es(x))
V(Es(x))
Also, for 1 < ¢ < oo, we define the Berezintransformg, on £2 by

fis(x) = € 8.

i (x) = /ﬂ ke DI'du(y), x €2,

where
R(x,y)

IRG, e
is the L’-normalized reproducing kernel. In cagp = fdV for f e L1, we will write
fis = f3 andji, = £, for simplicity.

We start with thel.”-boundedness of the averaging operator.

kxt(y) = yef

PROPOSITION 2.1. The averaging operator f ﬁ; is bounded on L? for each 1 <
p<ocand0<é < 1.

ProoFk Clearly, the averaging operator is bounded/éf. So, we now assume %
p <ooandletO< § < 1. Fory € Es(x) we notex € D(y) by (2.1), where

D(y) ={x e R";|x =yl < ér(y)/(1—=8)}.

Thus, forf € L?, we have by Jensen’s inequality and (2.1) that

n 1 P
’d _— d d
KJﬁ@N xSL{Vw%w)&mUUNy} x
1
5./’ ",/ )| dydx
2 ()" JEs ()
1
~[ [ | £(y)IPdydx
2 JEso) T(Y)

1
< [ 1o [ sdxay
2 rO" Jpey)

w/ﬁf@wwy 0
2

We also need the following submean-value type inequality for averaging functions of
positive finite Borel measurgson 2 (we simply writex > 0).

LEMMA 2.2. Let§, e € (0,1). Then there exist constants Cs . such that

. Cs, N
fls(x) < vt d fLe dV

Es(x)) JEs00)
forall w > 0andx € £2.

PROOF. See Lemma 3.2 of [4]. O
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Combining the above with Proposition 2.1, we see th&tbehavior of/is of a given
measurg: > 0 is independent of.

PROPOSITION 2.3. Letl < p <ocoandu > 0. If 1, € L? for somee € (0, 1), then
s € LP for all § € (0, 1).

PROOF. By Lemma 2.2, we hav@s < [{i.]s for each fixeds, e € (0,1). Thus, the

result follows from Proposition 2.1. m]
Givené € (0, 1) and a sequencg,,} in £2, we say thafx,,} is §-separated if the sets
Es(x,,) are pairwise disjoint. Next, we need the following covering lemma whose proof is

essentially the same as that in [7] or [12]. So, we omit the detalils.

LEMMA 2.4. Let § € (0,1). Then there exists a sequence {a,,} in £2 satisfying the
following conditions:

(@) {an}isan§/6-separated sequence.

() U, Esjzlam) = £2.

(c) Thereisa positive integer N = N(n, §) such that each point in £2 belongs to at
most N of theballs Es(a;,).

Note thata,, — 3£ asm — oo. Whenever we use expressions likg(a,;) in what
follows, the sequencé,} = {a,(8)} will always refer to the sequence chosen in Lemma
2.4.

PROPOSITION 2.5. Letl < p < o0 ande, § € (0,1). Then, for any u > 0, we have
fe € LP ifandonlyif " |fs(am)|Pr(an)" < oo.

PROOF. First, assumé, € L?. By Lemma 2.2 and Jensen’s inequality, we have

D Is@n)|Pram)" S Z/ |el? dV < N/ |el? dV < oo,
m 'm Y Es(am) 2

whereN is the positive integer provided by Lemma 2.4.
Conversely, supposg’,, |fis(am)|’r(am)" < oo. Fora € §2 andx € Es/3(a), we note
thatEs/3(x) C Es(a). It follows from (2.1) that

V(Es(am)) <

m S fislam) ., x € Egzz(am)

fsy3(x) < fis(am)

form=1,2,....Thus, we have
[arav =3 [ jpacorave
£2 m ¢ Esjz(am)

S liis(@n) 1PV (Esya(am))

m

~ Y 1iks(am)|Pram)"

m

So, we haveis/z € LP. Now, by Proposition 2.3, we haye € L”. O
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Next, we prove thd.”-boundedness of Berezin transforms. Before doing this, we first
need a couple of lemmas. In what follows, giverIp < oo, p’ always denotes the conjugate
exponent ofp. Also, we letd(x, y) = |x — y| +r(x) +r(y) forx,y € 2.

LEMMA 2.6. Thereexistsa constant C,, such that

Cn

(2.2) RO = 5o

forx,y € £2.
PROOF See Theorem 1.1 of [6]. O
LEMMA 2.7. Letl < p < oo. Thenthereisa constant C, such that
C,t < IRG, )l rn)™? < ¢,
for every x € 2.
PROOF. See Lemma 2.4 of [4]. O

LEMMA 2.8. Fors,tr > Owiths +¢ > Oandt < 1, there exists a constant C;, such
that

dy Cs
- ,
2 dx, y)"r(y) T r(x)sH
for x € £2.

PROOF. See Lemma 4.1 of [6]. O

For f € L1, we define
SO 4 veq.

2.3 @(mzf
23) T =g aw oy ®
LEMMA 2.9. Forl< p < oo, ® : LP — LP? isbounded.

PrROOF. This is implicit in the proof of Theorem 4.2 on [6]. O

PROPOSITION 2.10. Letl < p < ocoandl < t < oo. Then the Berezin ¢-transform
f — f;isbounded on L”.

PROOF. The casep = oo is clear. Now, letf € L. Sincer(x) < d(x,y) for all
x,y € 2, we have by Lemma 2.6 and Lemma 2.7

x - Lf O / Lf (]
< tn—n 76[ <

i) S r(x) /_Qd(x,y)f” y = o d(x, )

Thus, theL”-boundedness of the Berezitransform is a consequence of Lemma 2.9.0

dy = ®|f|(x), xe.

We now turn to relations betwedi? -behavior of averaging functions and Berezin trans-
forms. We first prove the following.

LEMMA 2.11. Givens € (0, 1), thereisa constant Cs such that

f fdp < Cs/ FlisdV
2 2
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for all f > 0 subharmonicon £2 and u > 0.

PrROOF Fix§ € (0,1). Letu > 0 andf be a positive subharmonic function. Note that
if y € Esj1+5)(x), thenx € E;s(y). In other words, we have

XEsja5 ) (Y) = XEs(y)(X)
forx, y € £2. Also, sincer(x) ~ r(y) for y € Es(x), we note

1 1 w(Es(y))
—————dux) = / dp(x) ~ ~ fs(y)
/1:55()’) V (Esja+9) () Es(y) T ()" r(y"
for y € £2. Thus, it follows from subharmonicity and Fubini’'s theorem that

1
/ FEOdRG) < / __r / FO) dydu(x)
E(S/(l+5)(x)) Esj1+s)(x)

dyd
/ / Ea/(1+5( ))XEa(y)(X) yau(x)

du(x)dy

1
B /9 T Esy) V (Esja4s)(x))
~ / fisdv . o
2

LEMMA 2.12. Thereexistsadp € (0, 1) suchthat R(x, y) ~ r(x)~" whenever x € 2
andy € E;,(x).

PROOF. See Lemma 2.3 of [4]. m]

In what follows,s8o will always denote the number provided in Lemma 2.12.

LEMMA 2.13. Given0 < § < §pand 1 < t < oo, thereexists a constant C = Cs;
suchthat 15 < Cpi; for any u > 0.

PROOF Letx € £2. Then, by Lemma 2.7 and Lemma 2.12, we have
u(Esy(x))
/ v ol ~ B2 o g )
Esy(x) r(x)
so that
o) % fing) 5 [ kel dia = i 0. 0
2

PROPOSITION 2.14. Letd € (0,1)and1 <t < oco. Supposeu > 0and1 < p < oo.
Then, (s € L? ifandonlyif i, € L?.
PROOF. First, supposégis € LP. Applying Lemma 2.11 to functiong = |k, |, we

obtainji; < [/ﬂ\,;i and thusii; € L? by Proposition 2.10. Conversely, if; € L?, then by
Lemma 2.13, we hav@s € L” for § < §p. But, Proposition 2.3 yieldgs € L? for a given
3. a
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3. Carleson measures. To characterize Toeplitz operators, we need the notion of cer-
tain Carleson measures. Leklp, ¢ < oco. Givenu > 0, we say that is a(p, ¢)-Carleson
measure if there exists a constaudt such that

1/q
{/ Iflqdu} <CIfl,
2

forall f € b?. In other wordsyu is a(p, ¢g)-Carleson measure if and only if the inclusion
ipq :b? — Li(un) is bounded. Carleson measures on various settings have been well studied
asin [1], [5], [8], [11], [13] and references therein.
In this section, we also characterige, ¢)-Carleson measures in terms of-behavior
of the averaging functions and Berezin transforms. We first consider the case pvkete
The special case gf = g was proved in [4].

THEOREM 3.1. Assumel < p < g < 00,5 = p/q,1/s <t <ocoande, s € (0,1).
Suppose i > 0. Then the following conditions are all equivalent :

(8) misa(p,g)-Carleson measure.

(b) supco () ()" 719 < 0.

(C) supco Qe (0)r ()" 19 < 0.

(d) sup, is(@m)r(am)" =) < oo.

PROOF. First, suppose (a) and show (b) with= ¢. Letx € £2. By Lemma 2.7 we
have

IR(x, g \? _
|kx_’p|‘1 = (m |kx.’q|!1 ~ r(x)”(l q/p)|kx’q|!1_
s Jlip

Integrating with respect tdu, we obtain

(3.1) Y WS
2

Sincellky »ll, = 1 andu is a(p, g)-Carleson measure, the above shows that (b) holds for
r=q.

Next, suppose (b) and show (c). By Lemma 2.13, we have (@) fardp. Thus, by an
simple application of Lemma 2.2, we see that (c) also holds for a given

The implication (c)}= (d) can also be easily seen from Lemma 2.2 again and (2.1).

Now, suppose (d) and show (a). Lte b”. The proof of Theorem 3.5 of [4] shows that
there is a constar® = Cs such that

C
sup £ ()| < / 717 dv
xeEs3(a) r(a) Es(a)

foralla € £2. Hence, we have

(Es(a)) arr
Tdp < “7{/ Pdv}
/Em(a)m K @ Es(a)|f|

q/p
ws(a)r(a)"“—q/m{/ Ifl”dV}
Es(a)
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fora € 2. Note thatg/p > 1. LetM = sup, fts(an)r (a,)"*=9). It follows from Lemma
2.4 that

1 dp < / 17 dp
].;2 Z Esz(am)
< ~ n(1-1/s)
<57 2 (am) { /
Z m m E

q/p
<M / IfI”dV}
Z{ Es(am)
q/p
sM{ / IfI”dV}
ZEé(am)

< NYPM|£19,

q/p
Ifl”dV}

s(am)

whereN is the number provided by Lemma 2.4. Hengpds a(p, q)-Carleson measure, as
desired.

Finally, suppose (a) and show (b) for generalVe have seen that Condition (a) is equiv-
alent to Condition (c), which does not depend on particular valugsaridg, but depends
on the ratias = p/q. Therefore, we may take = st > 1 andg = ¢ in order to see that (a)
implies (b) for general. ]

Letl < p < oo and{x,,} be a sequence if2. For a sequencke = {A,,} € £, we let
S(A) be the function defined by

(3.2) S (x) = Z,\mr(xm)"ﬂ—l/l’)]e(x, Xm), X €.

PrROPOSITION 3.2. Letl < p < oo. Then S : ¢ — bP is bounded whenever {x,,} is
3-separated for some §.

PROOF. By Lemma 2.6, we see

1 . 1
d(x, xp)" ~ d(x, y)"

[R(x, Xp) 5

forall y € Es(x;,) andx € £2. It follows that

1
ISR S Y o o) YDV (Es (i)~ / d
Z m m §(Xm Eso) d(x, y)" y

for x € £2. Thus, setting

£= " nlr )" YOV (Es i) ™ XEy ) -
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we have|S(V)| < @f, whered is the operator defined in (2.3). Now, sings,} is §-
separated, we have by Lemma 2.9,
ISIp S IFID
=Y 1l r )" POV (Es (6 )) 7

~ Y Il
which shows thaf : ¢/ — L? is bounded and the series in (3.2) converges in norm. Since

each term is harmonic, the series converges uniformly on every compact subsaisitof
follows thatQ mapse? into bP. O

In order to characterizép, q)-Carleson measures fgr < p, we will utilize Lueck-
ing’s idea in [7]. To do so, we first need Khinchine’s inequality. Recall that the Rademacher
functionsy,, are defined by
1 f0<r—[t]1<1/2,
-1 ifl/2=<t—[t] <1,
andv,, (t) = Yo(2"t) for positive integers:. Then Khinchine’s inequality is the following.

Yo(t) = {

LEMMA 3.3 (Khinchine’s inequality). For 0 < p < oo, there exists a constant C,

such that
m p/2 1, m )4 m p/2
cgl(z |Ak|2) < [ 1w ar < cp<2 |Ak|2>
k=1 0 k=1 k=1
for all m > 1 and complex numbers i1, A2, ..., Ap.

We now characterizép, ¢)-Carleson measures for the case: p.

THEOREM 3.4. Letl < g < p < 00,58 = p/g,1 <t < ocandd,e € (0,1).
Suppose 1 > 0. Then the following conditions are equivalent :

(a) wisa(p,g)-Carleson measure.

) X, s@n) r(an)" < oo.

(€) feel.

(d) frelL®.

PrROOF Assume (a) and show (b). First, consider= §o. Corresponding to each
{Am} € €7, we put
F= tnr@n)"YPRC, an).
Since{a,,} is §/6-separated, by Lemma 3.2, we hdvgll, < [(A,)lle» and hence, by As-

sumption (a),
a alp
< p
/9 dp(x) S ( E [Am | ) .

In the above inequality, replace, with v, (1)1, and then integrate with respecttdrom
0 to 1. Then, after making use of Fubini's theorem and Khinchine’s inequality, the result

Z Amr(am)n(l_l/p)R(x’ am)
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becomes
q/2 q/p
@3 [ (X halra@n® iR an?)” duew < (S )"
2
Sincexe;a,) S rlam)"|R(-, an)| for all m by Lemma 2.12, it follows from (3.3) that

>l s (@m)r (@) =1/
Z/ E |)Lm|qr(am)_nq/p XEg(am)de
2
< 1-q/2 2 —2n/p)?/?
SmaxN 121 | (3 1hn s @ ™7) " dp
2

_ q/2
S / (O 1 Pr(@n)® =P Rz, an) ) dp
2

< (X )"

whereN is the number provided in Lemma 2.4. This shows that

> lblitstanyran™ < (3 1ou) "

for all {b,,} € ¢*. Thus, a duality argument yields (b) fér= 8o. Now, an application of
Proposition 2.5 shows that (b) holds for a given

The implication (b)= (c) is also a consequence of Proposition 2.5.

Now, assume (c) and show (a). Using Lemma 2.11 and Hélder’s inequality, we have

/ﬂqlflq du S /Q | F170edV < I Il e s

for f € b? so that (a) holds.
Finally, the equivalence (& (d) is a consequence of Proposition 2.14. o

Foru > 0and 1< p, g < oo, we say thaj is avanishing (p, ¢)-Carleson measure if
the inclusioni,, , : ¥ — L9(w) is compact, or equivalently, if

/ \fldp — 0
2

wheneverf; — 0 weakly inb?. Note that the kernel&, , converge to 0 weakly ib” as
x — 042 foreach 1< p < oo; see Lemma 3.10 of [4].
We also characterize vanishirig, ¢)-Carleson measures. We first consider the case
pP=q.
THEOREM 3.5. Letu > 0. Assumel < p <g <o00,s = p/q, 1/s <t < oo, and
8, ¢ € (0, 1). Then the following conditions are equivalent :
(a) wmisavanishing (p, g)-Carleson measure.
(O s )rx)" =) 5 0asx — 982.
©) fie()r(x)"Y9) — 0asx — 952.
(d)  fs(am)r(an)" 319 - 0asm — oo.
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PROOF. First, suppose (a) and show (b) with= ¢g. Sincek, , — 0 weakly inb? as
x — 082, it follows from (3.1) that (b) holds for = g.

Next, suppose (b) and show (c). By Lemma 2.13, we have () foo. But, an simple
application of Lemma 2.2 shows that (c) holds for a given

The implication (c)= (d) follows from Lemma 2.2 and (2.1) as before, becayse>
d§2 asm — oo.

Now, assume (d) and show (a). L.} be a sequence converging to 0 weaklyih
Let M; = sup,; fs(am)r (am)" =) for positive integers. By the proof of (d)=> (a) of
Theorem 3.1, we have

(3.4) / |fk|‘1du52/ il dV + M| fill
2 m<j Es(am)

for eachj andk. Sincef; — 0 weakly inb?, one can easily see thgt — 0 uniformly on
compact subsets @2 and{ f} is bounded inL”-norm. Thus, fixingj and taking the limit
k — ooin (3.4), we obtain

imsup [ 117 dye < 1,
k Q '

for eachj. Note that we haved; — 0 asj — oo by assumption. Thus, taking the limit
Jj — oo, we conclude

lim sup/ | fil?dpn = 0.
k Q2
Namely,u is a vanishing p, ¢)-Carleson measure, as desired.
Finally, as in the proof of Theorem 3.1, one can see that (a) implies (b) for general
The casep > ¢ is a little bit more subtle and we have the following.

THEOREM 3.6. Let u > 0Oandassume 1l < g < p < oo. Then the following condi-
tionsare equivalent :

(8 wisa(p, g)-Carleson measure.

(b) wisavanishing (p, q)-Carleson measure.

PrROOF. We only need to prove (a) (b). So assumg is a(p, ¢)-Carleson measure.
Take any sequendgf;} converging weakly to 0 ih”. Then{f;} is a bounded sequence in
bP and f; — 0 on each compact subset®@f Let K be any compact subset &f and..x be
the restriction ofu to 2 \ K. Lets = p/q and fixe € (0, 1). Then, as in the proof of (¢}
(a) of Theorem 3.4, we have

/ |fj|qd,u=/ Ifilduk SISk
2\K 2

forall j. Therefore, letting = sup; |l f; ||j{7 < 00, we have

q/p
Llfjlqduﬁ{ﬂlfjlpdu} + Mk elly -
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Take the limitj — oo. Sincef; converges to 0 uniformly o&, we have
lim SUD/ |filldu S Mk ells -
J $2

Note thatiix . — 0 asK increases t@2. Also, we have/ix .|* < |fic|* € L' by Theorem
3.4. Thus, an application of the dominated convergence theorem yields

lim sup/ |fil%du =0,
J 2
and thereforgu is a vanishing p, ¢)-Carleson measure. |

4. Toeplitz operators. In this section, we characterize Toeplitz operators with posi-
tive symbols in terms of Carleson measures.

By the theorems we have proved in Section 3, the notion of (vanisking))-Carleson
measures depend only on the rapity. Thus, in what follows, (vanishing)p, ¢)-Carleson
measures will be simply called (vanishing)Carleson measures whevre= p/q. For 0 <
s < oo, we letWs = W9(£2) denote the class of all-Carleson measures. Also, we let
Wy = W3(82) denote the class of all vanishingCarleson measures. Note tHét: c W+2
for0 < s1 < s2 < 00.

The first step towards our characterization is to justify the “formal” equality

.1) <Tuf,g>=/ﬂf§du, fogeb™,

which can be seen by formally exchanging the order of integrations after represgnjing

as an integral and then applying the reproducing property. Of course, we cannot expect that
such a formal argument applies to al> 0. So, we will letW> = W (£2) denote the class

of all u > 0 for which (4.1) holds. It turns out th&°° contains allW*, which justifies the
notationwe°.

LEMMA 4.1. Ugoyooo W* C W™

PrROOF Letu € W* for some O< s < oco. We may assume > 1. Note that the
functiony — fQ |R(x, y)|dx is subharmonic o2. Also, by Lemma 2.6, we have

f R(x, )| dx S @1,
2

whered is the operator defined in (2.3). Fixe (0, 1). Sincex € W*, we havei; € L* by
Theorem 3.4. Also, we hawel € L® by Lemma 2.9. Thus, by Lemma 2.11, we have

//|R(x,y)|dxdﬂ(y)§/(qjl)ﬂadV<oo.
2o 2
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Therefore, forf, g € b, we conclude by Fubini’s theorem that

2 Q
=/ f(y)/ R(x,y)g(x)dxdu(y)
2 7,

= /9 F»Madu(y). O

We now characterize bounded (resp. compact) Toeplitz operators in terms of (resp. van-
ishing)s-Carleson measures. We first consider the gaseq.

THEOREM 4.2. Letl < p <g <o00,1/s =1—-1/g+ 1/p and u > 0. Then the
following conditions are equivalent :

(@) Ty :bP — b7 isbounded (resp. compact).

(b) e W (resp. Wy ).

In the proof below, we will use fact that the dualiof is b”' for 1 < p < oo under the
usual pairing

(f, 9) =/Qf§dV-

See Corollary 4.3 of [6].

PrRoOF. Assume (a) and show (b). First, assume Hat b7 — b? is bounded. Let
x € £2 and takeS = 8o, wheredg is the number provided by Lemma 2.12. Then, we have

u(Es(x) < r(x)z”/g |RCe, »IPdp(y) = r)? Tu[R(x, )](x),
and therefore
s (x) S ()" TR (e, )1(x) ~ r ()" TP Tk p(x)
On the other hand, we have by Proposition 8.1 of [2]
| Tk, p(| S ()™ Tuks, plg-
Combining these estimates, we have
(4.2) As(r ()" STk pllg -
Now, sincellky |, = 1, we see that
s ()r ()" Y ST

where|| T, | denote the operator norm @f, : b¥ — b?. This is true for allx € £2 and the
constants abbreviated above are independent Benceu € W* by Theorem 3.1.
Recall thatk, , — O weakly inb? asx — 9£2. Hence, ifT, : b” — b7 is compact,
then we have by (4.2)
s 0)r ()" S Tk pllg — O
asx — 0£2. Henceyu € W3 by Theorem 3.5.
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Now, assume (b) and show (a). First, assyme W?*. Let f, g € b*°. Since ¥s =
1/q’ + 1/p, we note thap/s is the conjugate exponent gf/s. By Lemma 4.1, we have

(T f, 9)| = ‘/ fsidu‘
2

s/p s/q
(4.3) s{ /_Q Iflp/‘du} { /_Q Iglq//sdu}

S pliglyr -

The last inequality holds by our assumptione W*. Now, a duality argument shows the
boundedness df, : b — b4, becausé™ is dense irb?.

Next, assume. € Wj. Let{f;} be a sequence of functions such tifat— 0 weakly in
b?. Then we have

[ 1~ o.
2

Hence, by (4.3) and a duality argument, we obtain

s/p
4.9) T filly < { /ﬂ | fjlp/sdu} S0

Therefore T, : b? — b? is compact. O

Now, we turn to the case < p. In this case we will prove that bounded Toeplitz
operators are all compact.

LEMMA 4.3. Lets > 1and u € W. Then the following conditions are equivalent:
(@ T, :b" — b7isboundedwhenever 1 <g < p <occandl/s =1-1/g+1/p.
(b) T, :b* — b*/>~D s bounded.

() news.

PROOF. The implication (a)= (b) is trivial.
Assume (b) and show (c). Lef = 25/(2s — 1) > 1. Thens; = 2s. Sincex € W™ by
assumption, it follows from (4.1) that

/Q P = [T, )] < ITullF I,

for any f € b>, where| T, || denotes the operator norm &f : »* — %/~ Hence,
we ws.

Finally, as in the proof of (b} (a) of Theorem 4.2, we have the implication €g)
(a). |

THEOREM 4.4. Lets > 1and u € W. Then thefollowing conditionsare equivalent:
(@ T, :b? — b?iscompactwhenever 1 <q < p <ooandl/s =1-1/q+1/p.
(b) T, :bP — b?isbounded whenever 1 < g < p <ocoandl/s=1—-1/q+1/p.
(€) T, :b* — b>/>~1D jscompact.

d) T, :b* — b*>/Z=D isbounded.
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(e) meWws.
M wnews.
PrRoOOF. By Lemma 4.3 we have the equivalences<b)d) < (f). By Theorem 3.6, we

have the equivalence (&} (f). The implications (a)= (c) = (d) are trivial. Also, we have
(e)= (a), as in the proof of (b} (a) of Theorem 4.2. O

We now close the paper with the following remark.

REMARK. The hypothesig. € W in Lemma 4.3 is used in the proof of the implica-
tion (b)=(c). In case the domain has enough symmetry like a ball, it turns out that Condition
(b) itself impliesu € W°. Note that Condition (b) implies

(4.5) T,.(b>®) C bt.

This weaker condition actually yields € W on the ball, as in the following.
Let 2 = B be the unit ball irR”. The advantage we will utilize is the fact that the kernel
function for B has the additional symmetry

R(tx,y) = R(x,ty), x,yeB, 0<tr<1,

which can be easily seen from the explicit faria given in Theorem 8.13 of [2]. Now, let
u > 0 and assume that (4.5) holds. ket (0, 1) and writey, for the characteristic function
of tB = {tx; x € B}. Note thatR(,-) is bounded onB x B by Lemma 2.6. Thus, for
[, g € b, we have by Fubini’s theorem

(T f. gxe) =/3m/3f(y)R(x,y)du(y)dx
t

=/ f(y)/ G R(x, y)dxdu(y)
B tB

=t”/ f(y)/ gUux)R(tx, y)dxdu(y)
B B

=t”/Bf(y)/;g(tx)R(x,ty)dxdu(y)

=t”/l;f(y)g(t2y)du(y).

Thus, taking the limit — 1, we conclude. € W by the dominated convergence theorem.
So, in the case of the ball, the hypothesis W in Lemma 4.3, and hence in Theorem
4.4, is redundant.
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