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POSITIVE TOEPLITZ OPERATORS FROM
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Abstract. On the setting of bounded smooth domains, we study positive Toeplitz oper-
ators between the harmonic Bergman spaces. We give characterizations of bounded and com-
pact Toeplitz operators taking one harmonic Bergman space into another in terms of certain
Carleson and vanishing Carleson measures.

1. Introduction. Throughout this paper, we letΩ be a fixed smooth bounded domain
in Rn for n ≥ 2. For 1≤ p < ∞, the harmonic Bergman spacebp is the set of all complex-
valued harmonic functionsf onΩ such that

‖f ‖p =
{∫

Ω

|f |pdV
}1/p

< ∞ ,

whereV denotes the Lebesgue volume measure onΩ . We will also use the notationdy =
dV (y) for simplicity. Also,b∞ denotes the space of all bounded harmonic functions onΩ . It
is known thatb∞ is dense in eachbp.

As is well-known, the spacebp is a closed subspace ofLp = Lp(Ω,V ) and hence a
Banach space. In particular,b2 is a Hilbert space. Each point evaluation is easily verified to
be a bounded linear functional onb2. Hence, for eachx ∈ Ω , there exists a unique function
R(x, ·) ∈ b2 which has the following reproducing property:

f (x) =
∫
Ω

f (y)R(x, y)dy , x ∈ Ω

for all f ∈ b2.

Let Q be the Hilbert space orthogonal projection fromL2 onto b2. The reproducing
kernelsR(x, ·) are known to be symmetric and real-valued. Hence, the reproducing property
mentioned above yields the following integral representation ofQ:

Qψ(x) =
∫
Ω

ψ(y)R(x, y)dy , x ∈ Ω(1.1)

for functionsψ ∈ L2. See [2] for more information and related facts.
For each fixedx ∈ Ω , the functionR(x, ·) is known to be bounded onΩ . Thus, the

projectionQ naturally extends to an integral operator via (1.1) fromL1 into the space of all
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harmonic functions onΩ . Moreover, for 1< p < ∞, it is known thatQ is a bounded
projection fromLp ontobp. The integral transformQ even extends toM(Ω), the space of all
complex Borel measures onΩ . Namely, for eachµ ∈ M(Ω), the integral

Qµ(x) =
∫
Ω

R(x, y)dµ(y) , x ∈ Ω

defines a function harmonic onΩ . See [4] or [6] for details.
Forµ ∈ M(Ω), the Toeplitz operatorTµ with symbolµ is defined by

Tµf = Q(f dµ)

for f ∈ b∞. In caseµ = ϕ dV , we will write Tµ = Tϕ. Note thatTµ is densely defined on
bp for each 1< p < ∞.

Toeplitz operators acting on holomorphic Bergman spaces have been well studied. Espe-
cially, positive symbols of bounded and compact Toeplitz operators are completely character-
ized in terms of Carleson type measures as in [9], [13] and references therein. Recently, the
analogous characterizations for harmonic Bergman spaces have been obtained in [10], [11]
on the ball and then in [4] on smooth bounded domains; these results are all concerned with
Toeplitz operators from a Bergman space into itself.

In a recent paper [3] where the setting is the half-space, Toeplitz operators from a
Bergman space into another are considered and positive symbols of bounded and compact
Toeplitz operators are characterized. In this paper, we prove analogous results on general
smooth bounded domains. Our results show that known results as in [3] continue to hold in
this general setting.

In Section 2, we collect some preliminary results related to certain averaging functions
and Berezin transforms. In Section 3, we characterize Carleson measures in terms of the
averaging functions and Berezin transforms. These results will be used to prove our charac-
terizations of Toeplitz operators in Section 4.

2. Averaging functions and Berezin transforms. Throughout this paper, we will
often abbreviate inessential constants involved in inequalities by writingA � B for positive
quantitiesA andB if the ratioA/B has a positive upper bound. Also, we writeA ≈ B if
A � B andB � A.

Forx ∈ Ω , we letr(x) = dist(x, ∂Ω) and

Eδ(x) = {y ∈ Ω ; |x − y| < δr(x)}
for 0< δ < 1. One can easily see that

(1 − δ)r(x) < r(y) < (1 + δ)r(x)(2.1)

for x ∈ Ω andy ∈ Eδ(x). Sinceδ < 1, we note thatEδ(x) is the euclidean ball with center
atx and radiusδr(x). So, we haveV (Eδ(x)) ≈ r(x)n for x ∈ Ω.
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Let δ ∈ (0,1). Givenµ ∈ M(Ω), the averaging function̂µδ of µ over the ballsEδ(x) is
defined by

µ̂δ(x) = µ(Eδ(x))

V (Eδ(x))
, x ∈ Ω.

Also, for 1< t < ∞, we define the Berezint-transformµ̃t onΩ by

µ̃t (x) =
∫
Ω

|kx,t (y)|tdµ(y) , x ∈ Ω,
where

kx,t (y) = R(x, y)

‖R(x, ·)‖t , y ∈ Ω
is theLt -normalized reproducing kernel. In casedµ = f dV for f ∈ L1, we will write
µ̂δ = f̂δ andµ̃t = f̃t for simplicity.

We start with theLp-boundedness of the averaging operator.

PROPOSITION 2.1. The averaging operator f �→ f̂δ is bounded on Lp for each 1 ≤
p ≤ ∞ and 0< δ < 1.

PROOF. Clearly, the averaging operator is bounded onL∞. So, we now assume 1≤
p < ∞ and let 0< δ < 1. Fory ∈ Eδ(x) we notex ∈ D(y) by (2.1), where

D(y) = {x ∈ Rn ; |x − y| < δr(y)/(1 − δ)} .
Thus, forf ∈ Lp, we have by Jensen’s inequality and (2.1) that∫

Ω

|f̂δ(x)|p dx ≤
∫
Ω

{
1

V (Eδ(x))

∫
Eδ(x)

|f (y)|dy
}p
dx

�
∫
Ω

1

r(x)n

∫
Eδ(x)

|f (y)|pdydx

≈
∫
Ω

∫
Eδ(x)

1

r(y)n
|f (y)|pdydx

≤
∫
Ω

|f (y)|p 1

r(y)n

∫
D(y)

1dxdy

≈
∫
Ω

|f (y)|pdy . �

We also need the following submean-value type inequality for averaging functions of
positive finite Borel measuresµ onΩ (we simply writeµ ≥ 0).

LEMMA 2.2. Let δ, ε ∈ (0,1). Then there exist constants Cδ,ε such that

µ̂δ(x) ≤ Cδ,ε

V (Eδ(x))

∫
Eδ(x)

µ̂ε dV

for all µ ≥ 0 and x ∈ Ω .

PROOF. See Lemma 3.2 of [4]. �
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Combining the above with Proposition 2.1, we see thatLp-behavior ofµ̂δ of a given
measureµ ≥ 0 is independent ofδ.

PROPOSITION 2.3. Let 1 ≤ p ≤ ∞ and µ ≥ 0. If µ̂ε ∈ Lp for some ε ∈ (0,1), then
µ̂δ ∈ Lp for all δ ∈ (0,1).

PROOF. By Lemma 2.2, we havêµδ � [̂µ̂ε]δ for each fixedδ, ε ∈ (0,1). Thus, the
result follows from Proposition 2.1. �

Givenδ ∈ (0,1) and a sequence{xm} in Ω , we say that{xm} is δ-separated if the sets
Eδ(xm) are pairwise disjoint. Next, we need the following covering lemma whose proof is
essentially the same as that in [7] or [12]. So, we omit the details.

LEMMA 2.4. Let δ ∈ (0,1). Then there exists a sequence {am} in Ω satisfying the
following conditions:

(a) {am} is an δ/6-separated sequence.
(b)

⋃
m Eδ/3(am) = Ω.

(c) There is a positive integer N = N(n, δ) such that each point in Ω belongs to at
most N of the balls Eδ(am).

Note thatam → ∂Ω asm → ∞. Whenever we use expressions likeµ̂δ(am) in what
follows, the sequence{am} = {am(δ)} will always refer to the sequence chosen in Lemma
2.4.

PROPOSITION 2.5. Let 1 ≤ p < ∞ and ε, δ ∈ (0,1). Then, for any µ ≥ 0, we have
µ̂ε ∈ Lp if and only if

∑
m |µ̂δ(am)|pr(am)n < ∞.

PROOF. First, assumêµε ∈ Lp. By Lemma 2.2 and Jensen’s inequality, we have∑
m

|µ̂δ(am)|pr(am)n �
∑
m

∫
Eδ(am)

|µ̂ε|p dV ≤ N

∫
Ω

|µ̂ε|p dV < ∞ ,

whereN is the positive integer provided by Lemma 2.4.
Conversely, suppose

∑
m |µ̂δ(am)|pr(am)n < ∞. Fora ∈ Ω andx ∈ Eδ/3(a), we note

thatEδ/3(x) ⊂ Eδ(a). It follows from (2.1) that

µ̂δ/3(x) ≤ µ̂δ(am)
V (Eδ(am))

V (Eδ/3(x))
� µ̂δ(am) , x ∈ Eδ/3(am)

form = 1,2, . . . . Thus, we have∫
Ω

|µ̂δ/3|pdV ≤
∑
m

∫
Eδ/3(am)

|µ̂δ/3(x)|pdV (x)

�
∑
m

|µ̂δ(am)|pV (Eδ/3(am))

≈
∑
m

|µ̂δ(am)|pr(am)n .

So, we havêµδ/3 ∈ Lp. Now, by Proposition 2.3, we havêµε ∈ Lp. �
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Next, we prove theLp-boundedness of Berezin transforms. Before doing this, we first
need a couple of lemmas. In what follows, given 1< p < ∞,p′ always denotes the conjugate
exponent ofp. Also, we letd(x, y) = |x − y| + r(x)+ r(y) for x, y ∈ Ω .

LEMMA 2.6. There exists a constant Cn such that

|R(x, y)| ≤ Cn

d(x, y)n
(2.2)

for x, y ∈ Ω .

PROOF. See Theorem 1.1 of [6]. �

LEMMA 2.7. Let 1< p < ∞. Then there is a constant Cp such that

C−1
p ≤ ‖R(x, ·)‖p r(x)n/p′ ≤ Cp

for every x ∈ Ω .

PROOF. See Lemma 2.4 of [4]. �

LEMMA 2.8. For s, t ≥ 0 with s + t > 0 and t < 1, there exists a constant Cs,t such
that ∫

Ω

dy

d(x, y)n+sr(y)t
≤ Cs,t

r(x)s+t
for x ∈ Ω .

PROOF. See Lemma 4.1 of [6]. �

Forf ∈ L1, we define

Φf (x) =
∫
Ω

f (y)

d(x, y)n
dy , x ∈ Ω .(2.3)

LEMMA 2.9. For 1< p < ∞,Φ : Lp → Lp is bounded.

PROOF. This is implicit in the proof of Theorem 4.2 on [6]. �

PROPOSITION 2.10. Let 1 < p ≤ ∞ and 1 < t < ∞. Then the Berezin t-transform
f �→ f̃t is bounded on Lp .

PROOF. The casep = ∞ is clear. Now, letf ∈ L1. Sincer(x) ≤ d(x, y) for all
x, y ∈ Ω , we have by Lemma 2.6 and Lemma 2.7

|f̃t (x)| � r(x)tn−n
∫
Ω

|f (y)|
d(x, y)tn

dy ≤
∫
Ω

|f (y)|
d(x, y)n

dy = Φ|f |(x) , x ∈ Ω .

Thus, theLp-boundedness of the Berezint-transform is a consequence of Lemma 2.9.�

We now turn to relations betweenLp-behavior of averaging functions and Berezin trans-
forms. We first prove the following.

LEMMA 2.11. Given δ ∈ (0,1), there is a constant Cδ such that∫
Ω

f dµ ≤ Cδ

∫
Ω

f µ̂δdV
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for all f ≥ 0 subharmonic on Ω and µ ≥ 0.

PROOF. Fix δ ∈ (0,1). Letµ ≥ 0 andf be a positive subharmonic function. Note that
if y ∈ Eδ/(1+δ)(x), thenx ∈ Eδ(y). In other words, we have

χEδ/(1+δ)(x)(y) ≤ χEδ(y)(x)

for x, y ∈ Ω . Also, sincer(x) ≈ r(y) for y ∈ Eδ(x), we note∫
Eδ(y)

1

V
(
Eδ/(1+δ)(x)

)dµ(x) ≈
∫
Eδ(y)

1

r(x)n
dµ(x) ≈ µ(Eδ(y))

r(y)n
≈ µ̂δ(y)

for y ∈ Ω . Thus, it follows from subharmonicity and Fubini’s theorem that∫
Ω

f (x)dµ(x) ≤
∫
Ω

1

V
(
Eδ/(1+δ)(x)

) ∫
Eδ/(1+δ)(x)

f (y) dydµ(x)

≤
∫
Ω

∫
Ω

f (y)
1

V
(
Eδ/(1+δ)(x)

)χEδ(y)(x)dydµ(x)
=

∫
Ω

f (y)

∫
Eδ(y)

1

V
(
Eδ/(1+δ)(x)

)dµ(x)dy
≈

∫
Ω

f µ̂δdV . �

LEMMA 2.12. There exists a δ0 ∈ (0,1) such that R(x, y) ≈ r(x)−n whenever x ∈ Ω
and y ∈ Eδ0(x).

PROOF. See Lemma 2.3 of [4]. �

In what follows,δ0 will always denote the number provided in Lemma 2.12.

LEMMA 2.13. Given 0 < δ < δ0 and 1 < t < ∞, there exists a constant C = Cδ,t

such that µ̂δ ≤ Cµ̃t for any µ ≥ 0.

PROOF. Let x ∈ Ω . Then, by Lemma 2.7 and Lemma 2.12, we have∫
Eδ0(x)

|kx,t |t dµ ≈ µ(Eδ0(x))

r(x)n
≈ µ̂δ0(x)

so that

µ̂δ(x) � µ̂δ0(x) �
∫
Ω

|kx,t |t dµ = µ̃t (x) . �

PROPOSITION 2.14. Let δ ∈ (0,1) and 1 < t < ∞. Suppose µ ≥ 0 and 1 < p ≤ ∞.
Then, µ̂δ ∈ Lp if and only if µ̃t ∈ Lp.

PROOF. First, supposêµδ ∈ Lp. Applying Lemma 2.11 to functionsf = |kx,t |t , we

obtainµ̃t � [̃µ̂δ]t and thusµ̃t ∈ Lp by Proposition 2.10. Conversely, if̃µt ∈ Lp, then by
Lemma 2.13, we havêµδ ∈ Lp for δ < δ0. But, Proposition 2.3 yieldŝµδ ∈ Lp for a given
δ. �
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3. Carleson measures. To characterize Toeplitz operators, we need the notion of cer-
tain Carleson measures. Let 1< p, q < ∞. Givenµ ≥ 0, we say thatµ is a(p, q)-Carleson
measure if there exists a constantC such that{∫

Ω

|f |qdµ
}1/q

≤ C‖f ‖p
for all f ∈ bp. In other words,µ is a (p, q)-Carleson measure if and only if the inclusion
ip,q : bp → Lq(µ) is bounded. Carleson measures on various settings have been well studied
as in [1], [5], [8], [11], [13] and references therein.

In this section, we also characterize(p, q)-Carleson measures in terms ofLp-behavior
of the averaging functions and Berezin transforms. We first consider the case wherep ≤ q.
The special case ofp = q was proved in [4].

THEOREM 3.1. Assume 1 < p ≤ q < ∞, s = p/q, 1/s < t < ∞ and ε, δ ∈ (0,1).
Suppose µ ≥ 0. Then the following conditions are all equivalent :

(a) µ is a (p, q)-Carleson measure.
(b) supx∈Ω µ̃t (x)r(x)n(1−1/s) < ∞.
(c) supx∈Ω µ̂ε(x)r(x)n(1−1/s) < ∞.
(d) supm µ̂δ(am)r(am)

n(1−1/s) < ∞.

PROOF. First, suppose (a) and show (b) witht = q. Let x ∈ Ω . By Lemma 2.7 we
have

|kx,p|q =
(‖R(x, ·)‖q

‖R(x, ·)‖p
)q

|kx,q|q ≈ r(x)n(1−q/p)|kx,q |q .
Integrating with respect todµ, we obtain

µ̃q(x)r(x)
n(1−q/p) ≈

∫
Ω

|kx,p|q dµ .(3.1)

Since‖kx,p‖p = 1 andµ is a (p, q)-Carleson measure, the above shows that (b) holds for
t = q.

Next, suppose (b) and show (c). By Lemma 2.13, we have (c) forε < δ0. Thus, by an
simple application of Lemma 2.2, we see that (c) also holds for a givenε.

The implication (c)⇒ (d) can also be easily seen from Lemma 2.2 again and (2.1).
Now, suppose (d) and show (a). Letf ∈ bp. The proof of Theorem 3.5 of [4] shows that

there is a constantC = Cδ such that

sup
x∈Eδ/3(a)

|f (x)|p ≤ C

r(a)n

∫
Eδ(a)

|f |p dV

for all a ∈ Ω . Hence, we have∫
Eδ/3(a)

|f |q dµ � µ(Eδ(a))

r(a)qn/p

{∫
Eδ(a)

|f |p dV
}q/p

≈ µ̂δ(a)r(a)
n(1−q/p)

{∫
Eδ(a)

|f |p dV
}q/p
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for a ∈ Ω . Note thatq/p ≥ 1. LetM = supm µ̂δ(am)r(am)
n(1−1/s). It follows from Lemma

2.4 that

∫
Ω

|f |q dµ ≤
∑ ∫

Eδ/3(am)

|f |q dµ

�
∑

µ̂δ(am)r(am)
n(1−1/s)

{∫
Eδ(am)

|f |p dV
}q/p

≤ M
∑{∫

Eδ(am)

|f |p dV
}q/p

≤ M

{∑∫
Eδ(am)

|f |p dV
}q/p

≤ Nq/pM‖f ‖qp ,

whereN is the number provided by Lemma 2.4. Hence,µ is a (p, q)-Carleson measure, as
desired.

Finally, suppose (a) and show (b) for generalt . We have seen that Condition (a) is equiv-
alent to Condition (c), which does not depend on particular values ofp andq, but depends
on the ratios = p/q. Therefore, we may takep = st > 1 andq = t in order to see that (a)
implies (b) for generalt . �

Let 1 < p < ∞ and{xm} be a sequence inΩ . For a sequenceλ = {λm} ∈ 
p, we let
S(λ) be the function defined by

S(λ)(x) =
∑

λmr(xm)
n(1−1/p)R(x, xm) , x ∈ Ω .(3.2)

PROPOSITION 3.2. Let 1 < p < ∞. Then S : 
p → bp is bounded whenever {xm} is
δ-separated for some δ.

PROOF. By Lemma 2.6, we see

|R(x, xm)| � 1

d(x, xm)n
� 1

d(x, y)n

for all y ∈ Eδ(xm) andx ∈ Ω . It follows that

|S(λ)(x)| �
∑

|λm|r(xm)n(1−1/p)V (Eδ(xm))
−1

∫
Eδ(xm)

1

d(x, y)n
dy

for x ∈ Ω . Thus, setting

f =
∑

|λm|r(xm)n(1−1/p)V (Eδ(xm))
−1χEδ(xm) ,
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we have|S(λ)| � Φf , whereΦ is the operator defined in (2.3). Now, since{xm} is δ-
separated, we have by Lemma 2.9,

‖S(λ)‖pp � ‖f ‖pp
=

∑
|λm|pr(xm)n(p−1)V (Eδ(xm))

1−p

≈
∑

|λm|p ,
which shows thatS : 
p → Lp is bounded and the series in (3.2) converges in norm. Since
each term is harmonic, the series converges uniformly on every compact subsets ofΩ . It
follows thatQ maps
p into bp. �

In order to characterize(p, q)-Carleson measures forq < p, we will utilize Lueck-
ing’s idea in [7]. To do so, we first need Khinchine’s inequality. Recall that the Rademacher
functionsψm are defined by

ψ0(t) =
{

1 if 0 ≤ t − [t] < 1/2 ,

−1 if 1/2 ≤ t − [t] < 1 ,

andψm(t) = ψ0(2mt) for positive integersm. Then Khinchine’s inequality is the following.

LEMMA 3.3 (Khinchine’s inequality).For 0 < p < ∞, there exists a constant Cp
such that

C−1
p

( m∑
k=1

|λk|2
)p/2

≤
∫ 1

0

∣∣∣∣
m∑
k=1

λkψk(t)

∣∣∣∣
p

dt ≤ Cp

( m∑
k=1

|λk|2
)p/2

for all m ≥ 1 and complex numbers λ1, λ2, . . . , λm.

We now characterize(p, q)-Carleson measures for the caseq < p.

THEOREM 3.4. Let 1 < q < p < ∞, s = p/q, 1 < t < ∞ and δ, ε ∈ (0,1).
Suppose µ ≥ 0. Then the following conditions are equivalent :

(a) µ is a (p, q)-Carleson measure.
(b)

∑
m |µ̂δ(am)|s ′r(am)n < ∞.

(c) µ̂ε ∈ Ls ′ .
(d) µ̃t ∈ Ls ′ .
PROOF. Assume (a) and show (b). First, considerδ = δ0. Corresponding to each

{λm} ∈ 
p, we put

f =
∑

λmr(am)
n(1−1/p)R(·, am) .

Since{am} is δ/6-separated, by Lemma 3.2, we have‖f ‖p � ‖(λm)‖
p and hence, by As-
sumption (a), ∫

Ω

∣∣∣∣∑λmr(am)
n(1−1/p)R(x, am)

∣∣∣∣
q

dµ(x) �
(∑

|λm|p
)q/p

.

In the above inequality, replaceλm with ψm(t)λm and then integrate with respect tot from
0 to 1. Then, after making use of Fubini’s theorem and Khinchine’s inequality, the result
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becomes∫
Ω

(∑
|λm|2r(am)2n(1−1/p)|R(x, am)|2

)q/2
dµ(x) �

(∑
|λm|p

)q/p
.(3.3)

SinceχEδ(am) � r(am)
n|R(·, am)| for all m by Lemma 2.12, it follows from (3.3) that∑

|λm|qµ̂δ(am)r(am)n(1−q/p)

=
∫
Ω

∑
|λm|qr(am)−nq/p χEδ(am)dµ

� max{N1−q/2,1}
∫
Ω

(∑
|λm|2χEδ(am)r(am)−2n/p

)q/2
dµ

�
∫
Ω

(∑
|λm|2r(am)2n(1−1/p)|R(x, am)|2

)q/2
dµ

�
(∑

|λm|p
)q/p

,

whereN is the number provided in Lemma 2.4. This shows that∑
|bm|µ̂δ(am)r(am)n/s ′ �

(∑
|bm|s

)1/s

for all {bm} ∈ 
s . Thus, a duality argument yields (b) forδ = δ0. Now, an application of
Proposition 2.5 shows that (b) holds for a givenδ.

The implication (b)⇒ (c) is also a consequence of Proposition 2.5.
Now, assume (c) and show (a). Using Lemma 2.11 and Hölder’s inequality, we have∫

Ω

|f |q dµ �
∫
Ω

|f |qµ̂εdV ≤ ‖f ‖qp‖µ̂ε‖s ′
for f ∈ bp so that (a) holds.

Finally, the equivalence (c)⇔ (d) is a consequence of Proposition 2.14. �

Forµ ≥ 0 and 1< p, q < ∞, we say thatµ is avanishing (p, q)-Carleson measure if
the inclusionip,q : bp → Lq(µ) is compact, or equivalently, if∫

Ω

|fj |qdµ → 0

wheneverfj → 0 weakly inbp. Note that the kernelskx,p converge to 0 weakly inbp as
x → ∂Ω for each 1< p < ∞; see Lemma 3.10 of [4].

We also characterize vanishing(p, q)-Carleson measures. We first consider the case
p ≤ q.

THEOREM 3.5. Let µ ≥ 0. Assume 1 < p ≤ q < ∞, s = p/q, 1/s < t < ∞, and
δ, ε ∈ (0,1). Then the following conditions are equivalent :

(a) µ is a vanishing (p, q)-Carleson measure.
(b) µ̃t (x)r(x)

n(1−1/s) → 0 as x → ∂Ω.

(c) µ̂ε(x)r(x)
n(1−1/s) → 0 as x → ∂Ω .

(d) µ̂δ(am)r(am)
n(1−1/s) → 0 as m → ∞.
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PROOF. First, suppose (a) and show (b) witht = q. Sincekx,p → 0 weakly inbp as
x → ∂Ω , it follows from (3.1) that (b) holds fort = q.

Next, suppose (b) and show (c). By Lemma 2.13, we have (c) forε < δ0. But, an simple
application of Lemma 2.2 shows that (c) holds for a givenε.

The implication (c)⇒ (d) follows from Lemma 2.2 and (2.1) as before, becauseam →
∂Ω asm → ∞.

Now, assume (d) and show (a). Let{fk} be a sequence converging to 0 weakly inbp.
LetMj = supm≥j µ̂δ(am)r(am)n(1−1/s) for positive integersj . By the proof of (d)⇒ (a) of
Theorem 3.1, we have∫

Ω

|fk|q dµ �
∑
m<j

∫
Eδ(am)

|fk |q dV +Mj‖fk‖qp(3.4)

for eachj andk. Sincefk → 0 weakly inbp, one can easily see thatfk → 0 uniformly on
compact subsets ofΩ and{fk} is bounded inLp-norm. Thus, fixingj and taking the limit
k → ∞ in (3.4), we obtain

lim sup
k

∫
Ω

|fk|q dµ � Mj

for eachj . Note that we haveMj → 0 asj → ∞ by assumption. Thus, taking the limit
j → ∞, we conclude

lim sup
k

∫
Ω

|fk|q dµ = 0 .

Namely,µ is a vanishing(p, q)-Carleson measure, as desired.
Finally, as in the proof of Theorem 3.1, one can see that (a) implies (b) for generalt . �

The casep > q is a little bit more subtle and we have the following.

THEOREM 3.6. Let µ ≥ 0 and assume 1 < q < p < ∞. Then the following condi-
tions are equivalent :

(a) µ is a (p, q)-Carleson measure.
(b) µ is a vanishing (p, q)-Carleson measure.

PROOF. We only need to prove (a)⇒ (b). So assumeµ is a(p, q)-Carleson measure.
Take any sequence{fj } converging weakly to 0 inbp. Then{fj } is a bounded sequence in
bp andfj → 0 on each compact subset ofΩ . LetK be any compact subset ofΩ andµK be
the restriction ofµ toΩ \K. Let s = p/q and fixε ∈ (0,1). Then, as in the proof of (c)⇒
(a) of Theorem 3.4, we have∫

Ω\K
|fj |qdµ =

∫
Ω

|fj |qdµK � ‖fj‖qp‖µ̂K,ε‖s ′

for all j . Therefore, lettingM = supj ‖fj‖qp < ∞, we have∫
Ω

|fj |qdµ �
{∫

K

|fj |pdµ
}q/p

+M‖µ̂K,ε‖s ′ .
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Take the limitj → ∞. Sincefj converges to 0 uniformly onK, we have

lim sup
j

∫
Ω

|fj |qdµ � M‖µ̂K,ε‖s ′ .

Note thatµ̂K,ε → 0 asK increases toΩ . Also, we have|µ̂K,ε|s ′ ≤ |µ̂ε|s ′ ∈ L1 by Theorem
3.4. Thus, an application of the dominated convergence theorem yields

lim sup
j

∫
Ω

|fj |qdµ = 0 ,

and thereforeµ is a vanishing(p, q)-Carleson measure. �

4. Toeplitz operators. In this section, we characterize Toeplitz operators with posi-
tive symbols in terms of Carleson measures.

By the theorems we have proved in Section 3, the notion of (vanishing)(p, q)-Carleson
measures depend only on the ratiop/q. Thus, in what follows, (vanishing)(p, q)-Carleson
measures will be simply called (vanishing)s-Carleson measures wheres = p/q. For 0<
s < ∞, we letWs = Ws(Ω) denote the class of alls-Carleson measures. Also, we let
Ws

0 = Ws
0(Ω) denote the class of all vanishings-Carleson measures. Note thatWs1 ⊂ Ws2

for 0< s1 < s2 < ∞.
The first step towards our characterization is to justify the “formal" equality

〈Tµf, g〉 =
∫
Ω

fḡ dµ , f, g ∈ b∞ ,(4.1)

which can be seen by formally exchanging the order of integrations after representingTµf

as an integral and then applying the reproducing property. Of course, we cannot expect that
such a formal argument applies to allµ ≥ 0. So, we will letW∞ = W∞(Ω) denote the class
of all µ ≥ 0 for which (4.1) holds. It turns out thatW∞ contains allWs , which justifies the
notationW∞.

LEMMA 4.1.
⋃

0<s<∞Ws ⊂ W∞.

PROOF. Let µ ∈ Ws for some 0< s < ∞. We may assumes > 1. Note that the
functiony �→ ∫

Ω
|R(x, y)| dx is subharmonic onΩ . Also, by Lemma 2.6, we have∫

Ω

|R(x, ·)| dx � Φ1 ,

whereΦ is the operator defined in (2.3). Fixδ ∈ (0,1). Sinceµ ∈ Ws , we haveµ̂δ ∈ Ls ′ by
Theorem 3.4. Also, we haveΦ1 ∈ Ls by Lemma 2.9. Thus, by Lemma 2.11, we have∫

Ω

∫
Ω

|R(x, y)|dxdµ(y) �
∫
Ω

(Φ1)µ̂δ dV < ∞ .
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Therefore, forf, g ∈ b∞, we conclude by Fubini’s theorem that

〈Tµf, g〉 =
∫
Ω

g(x)
∫
Ω

R(x, y)f (y)dµ(y)dx

=
∫
Ω

f (y)

∫
Ω

R(x, y)g(x)dxdµ(y)

=
∫
Ω

f (y)g(y)dµ(y) . �

We now characterize bounded (resp. compact) Toeplitz operators in terms of (resp. van-
ishing)s-Carleson measures. We first consider the casep ≤ q.

THEOREM 4.2. Let 1 < p ≤ q < ∞, 1/s = 1 − 1/q + 1/p and µ ≥ 0. Then the
following conditions are equivalent :

(a) Tµ : bp → bq is bounded (resp. compact).
(b) µ ∈ Ws (resp. Ws

0 ).

In the proof below, we will use fact that the dual ofbp is bp
′
for 1 < p < ∞ under the

usual pairing

〈f, g〉 =
∫
Ω

fḡ dV .

See Corollary 4.3 of [6].

PROOF. Assume (a) and show (b). First, assume thatTµ : bp → bq is bounded. Let
x ∈ Ω and takeδ = δ0, whereδ0 is the number provided by Lemma 2.12. Then, we have

µ(Eδ(x)) � r(x)2n
∫
Ω

|R(x, y)|2dµ(y) = r(x)2nTµ[R(x, ·)](x) ,
and therefore

µ̂δ(x) � r(x)nTµ[R(x, ·)](x) ≈ r(x)n(1−1/p′)Tµkx,p(x) .

On the other hand, we have by Proposition 8.1 of [2]

|Tµkx,p(x)| � r(x)−n/q‖Tµkx,p‖q .
Combining these estimates, we have

µ̂δ(x)r(x)
n(1−1/s) � ‖Tµkx,p‖q .(4.2)

Now, since‖kx,p‖p = 1, we see that

µ̂δ(x)r(x)
n(1−1/s) � ‖Tµ‖ ,

where‖Tµ‖ denote the operator norm ofTµ : bp → bq . This is true for allx ∈ Ω and the
constants abbreviated above are independent ofx. Hence,µ ∈ Ws by Theorem 3.1.

Recall thatkx,p → 0 weakly inbp asx → ∂Ω . Hence, ifTµ : bp → bq is compact,
then we have by (4.2)

µ̂δ(x)r(x)
n(1−1/s) � ‖Tµkx,p‖q → 0

asx → ∂Ω . Hence,µ ∈ Ws
0 by Theorem 3.5.
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Now, assume (b) and show (a). First, assumeµ ∈ Ws . Let f, g ∈ b∞. Since 1/s =
1/q ′ + 1/p, we note thatp/s is the conjugate exponent ofq ′/s. By Lemma 4.1, we have

|〈Tµf, g〉| =
∣∣∣∣
∫
Ω

fḡdµ
∣∣∣∣

≤
{∫

Ω

|f |p/sdµ
}s/p{∫

Ω

|g|q ′/sdµ

}s/q ′

(4.3)

� ‖f ‖p‖g‖q ′ .

The last inequality holds by our assumptionµ ∈ Ws . Now, a duality argument shows the
boundedness ofTµ : bp → bq , becauseb∞ is dense inbp.

Next, assumeµ ∈ Ws
0 . Let {fj } be a sequence of functions such thatfj → 0 weakly in

bp. Then we have ∫
Ω

|fj |p/sdµ → 0 .

Hence, by (4.3) and a duality argument, we obtain

‖Tµfj‖q �
{∫

Ω

|fj |p/sdµ
}s/p

→ 0 .(4.4)

Therefore,Tµ : bp → bq is compact. �

Now, we turn to the caseq < p. In this case we will prove that bounded Toeplitz
operators are all compact.

LEMMA 4.3. Let s > 1 and µ ∈ W∞. Then the following conditions are equivalent :
(a) Tµ : bp → bq is bounded whenever 1< q < p < ∞ and 1/s = 1 − 1/q + 1/p.
(b) Tµ : b2s → b2s/(2s−1) is bounded.
(c) µ ∈ Ws .

PROOF. The implication (a)⇒ (b) is trivial.
Assume (b) and show (c). Lets1 = 2s/(2s − 1) > 1. Thens′1 = 2s. Sinceµ ∈ W∞ by

assumption, it follows from (4.1) that∫
Ω

|f |2dµ = |〈Tµf, f 〉| ≤ ‖Tµ‖‖f ‖2
2s

for anyf ∈ b∞, where‖Tµ‖ denotes the operator norm ofTµ : b2s → b2s/(2s−1). Hence,
µ ∈ Ws .

Finally, as in the proof of (b)⇒ (a) of Theorem 4.2, we have the implication (c)⇒
(a). �

THEOREM 4.4. Let s > 1 andµ ∈ W∞. Then the following conditions are equivalent :
(a) Tµ : bp → bq is compact whenever 1< q < p < ∞ and 1/s = 1 − 1/q + 1/p.
(b) Tµ : bp → bq is bounded whenever 1< q < p < ∞ and 1/s = 1 − 1/q + 1/p.
(c) Tµ : b2s → b2s/(2s−1) is compact.
(d) Tµ : b2s → b2s/(2s−1) is bounded.
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(e) µ ∈ Ws
0 .

(f) µ ∈ Ws .

PROOF. By Lemma 4.3 we have the equivalences (b)⇔ (d) ⇔ (f). By Theorem 3.6, we
have the equivalence (e)⇔ (f). The implications (a)⇒ (c) ⇒ (d) are trivial. Also, we have
(e)⇒ (a), as in the proof of (b)⇒ (a) of Theorem 4.2. �

We now close the paper with the following remark.

REMARK. The hypothesisµ ∈ W∞ in Lemma 4.3 is used in the proof of the implica-
tion (b)⇒(c). In case the domain has enough symmetry like a ball, it turns out that Condition
(b) itself impliesµ ∈ W∞. Note that Condition (b) implies

Tµ(b
∞) ⊂ b1 .(4.5)

This weaker condition actually yieldsµ ∈ W∞ on the ball, as in the following.
LetΩ = B be the unit ball inRn. The advantage we will utilize is the fact that the kernel

function forB has the additional symmetry

R(tx, y) = R(x, ty) , x, y ∈ B , 0 ≤ t ≤ 1 ,

which can be easily seen from the explicit formula given in Theorem 8.13 of [2]. Now, let
µ ≥ 0 and assume that (4.5) holds. Lett ∈ (0,1) and writeχt for the characteristic function
of tB = {tx; x ∈ B}. Note thatR(·, ·) is bounded ontB × B by Lemma 2.6. Thus, for
f, g ∈ b∞, we have by Fubini’s theorem

〈Tµf, gχt 〉 =
∫
tB

g(x)
∫
B

f (y)R(x, y)dµ(y)dx

=
∫
B

f (y)

∫
tB

g(x)R(x, y)dxdµ(y)

= tn
∫
B

f (y)

∫
B

g(tx)R(tx, y)dxdµ(y)

= tn
∫
B

f (y)

∫
B

g(tx)R(x, ty)dxdµ(y)

= tn
∫
B

f (y)g(t2y)dµ(y) .

Thus, taking the limitt → 1, we concludeµ ∈ W∞ by the dominated convergence theorem.
So, in the case of the ball, the hypothesisµ ∈ W∞ in Lemma 4.3, and hence in Theorem

4.4, is redundant.
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