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ALGEBRAIC INDEPENDENCE OF MODIFIED
RECIPROCAL SUMS OF PRODUCTS OF FIBONACCI
NUMBERS*

By

Taka-aki TANAKA

Abstract. In this paper we establish, using Mabhler’s method, the
algebraic independence of reciprocal sums of products of Fibonacci
numbers including slowly increasing factors in their numerators (see
Theorems 1, 5, and 6 below). Theorems 1 and 4 are proved by using
Theorems 2 and 3 stating key formulas of this paper, which are
deduced from the crucial Lemma 2. Theorems 5 and 6 are proved
by using different technique. From Theorems 2 and 5 we deduce
Corollary 2, the algebraic independence of the sum of a certain series
and that of its subseries obtained by taking subscripts in a geometric
progression.

1 Introduction
Let {F,},-, be the sequence of Fibonacci numbers defined by
Fr=0, Fi=1, Fp=Fu+F, (n=x=0).
Brousseau [2] proved that for every k e N

& D1 (K1=V3) K F
Gk_;FnEz+k_Fk 2 +Z F, )

n=1

Rabinowitz [8] proved that for every ke N

8

11 z": 1
FoFoior Fa = Foy1Fa

n=1
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In this paper we consider the arithmetic nature of the sums of similarly con-
structed series such as

ZM (deN\{1},keN)

and

s loga N1 ke N,

where [x] denotes the largest integer not exceeding the real number x. These sums
are not only transcendental but also algebraically independent in contrast with the
sums ox and o} which are algebraic numbers.

In what follows, let {R,},., be the binary linear recurrence defined by

Ryo = AiR1 + AR, (n>0), (2)

where A;, A, are nonzero integers with A = A12 +4A4; > 0 and Ry, R; are integers
with RyR, # Rf and A Ro(A1Ry —2R;) <0. We can express {R,},., as fol-
lows:

R, =an" +bp" (n>0),

where o, f (|«| > |B|) are the roots of ®(X) = X2 — 4, X — 4, and a,b € Q(/A).
It is easily seen that |o| > |f] > 0. Since RyR, — R% =abA and A, Ry(A1Ry — 2R))
= (2> — B*)(b* — a?), we see that |a| > |b| > 0. Therefore {R,},., is not a ge-
ometric progression and R, # 0 for any n > 1.

THEOREM 1. The numbers

< )"[log, 1]
Z R R (d e N\{1},k eN)

n=1
are algebraically independent and so are the numbers

i%“"gd " @eN\{1},keN).

“~ RyRy ik

ExampLE 1. Let {F,},., be the sequence of the Fibonacci numbers defined
by (1). Then the numbers
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Z%ﬁ” (d e N\{1},k eN)

n=1

are algebraically independent and so are the numbers

i logan] 4o N\{1}.k eN).

ExampLE 2. Let {L,},., be the sequence of Lucas numbers defined by
Lo = 2, Ll = 1, Ln+2 = Ln+1 + Ln (I’l > 0) (3)

Then the numbers

~ (=1)"[log, n]
ZTH: (d e N\{1},k eN)

n=1

are algebraically independent and so are the numbers

-~ [log, 7]
deN\{l},keN).
1 LnLn+2k ( \{ } )

Theorem 1 is deduced from Theorems 2 and 3 below. The proof will be given
in Section 3.

Let f(x) be a real-valued function on x >0 such that f’(x) > 0 for any
x>0 and f(N) = N. Let f~!(x) be the inverse function of f(x). For any k e N
we put

i l(n)]7 SF— i A3 ()]

n=/(1) R11Rn+k n=f(1) Ran+k
i "I ()]
Wy Rk an+k ’
and
0 (_Az)f(")

U, = ‘
— R Ry(ny+k

Let {F;},., be the Fibonacci type sequence defined by

FO* =0, Fl* =1, =A\F n+1 +A2Fn* (n > 0)
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THEOREM 2. For any ke N

1 & _
Sk :F*Z(—Az)] 'T,
k 1=1

and
1

bk
—F;(Tl (—A42)" Tiey1).

Uy

Hence the sets of the numbers {Si,...,Sk+1}, {T1,...,Tes1}, and {Si(=T)),
Ui,..., U} generate the same vector space over Q.

THEOREM 3. If f(n) = f(1) (mod2) for any n > 1, then

(_1)1"(1) 2k

. AT
Fy 1221:

* o
S2k_

for any k € N. Hence the numbers {Sy |1 <1 < k} are expressed as linearly inde-
pendent linear combinations over Q of the numbers {T;|1 <[ < 2k}.

Using Theorem 2, we prove also the following:

THEOREM 4. The numbers
o0 Ag”
> ——2— (deN\{l},keN)

are algebraically independent.

ExamMpLE 3. The numbers
= 1

—— (deN\{l1},keN

>y @eNMhkeN)

are algebraically independent and so are the numbers
- 1
> ———— (deN\{l},keN).

Using different technique to that used in the proof of Theorem 4, we prove
the following:
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THEOREM 5. Let d be an integer greater than 1. Then the numbers

* ’é” Az)d" _ )"[log, n]
E €Q*,/>0,keN) and E = = 4
n=1 dnRanyk (é Q Ran+l ( )

are algebraically independent.
As a special case of Theorem 5 we have the following:

COROLLARY 1. Let d be an integer greater than 1. Then the numbers

0 d" 0 d"
—42) n(—4s) )"[log, 7]
—_— ke N and
Z andn+k ; RduRd}x+k ( Z R RVH—]

are algebraically independent.

Combining Corollary 1 and Theorem 2 with f(x) = d¥, we immediately have
the following:

COROLLARY 2. Let d be an integer greater than 1. Then the numbers

I (—Ao)"[logg ] En(—Ax)"
2 RRe ;RanM (ken)

n=1

are algebraically independent.

It is interesting that the second series of Corollary 2 is regarded as a subseries
of the first one obtained by replacing n by d”. It seems difficult to find in
literature the results which assert the algebraic independence of the sum of a
certain series and that of its subseries with subscripts taken in a geometric
progression. For example, the algebraic independency of the numbers >~ 1/F,
and > 7 1/Fs (d>3) is open. On the other hand, Lucas [3] showed that
3% 1/Fan = (5 —+/5)/2. André-Jeannin [1] proved the irrationality of >°° | 1/F,,
while its transcendency is open. Nishioka, Tanaka, and Toshimitsu [7] proved
that the numbers Y~ 1/F;» (d > 3) are algebraically independent.

ExampLE 4. Let {F,},., be the sequence of the Fibonacci numbers defined
by (1) and d an integer greater than 1. Then the numbers
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~(=D"[loggn] K~ m
, keN
Z FoFoik ZFd’*Fd”+k ( )

n=1 n=1

are algebraically independent.

ExampLE 5. Let {L,}
and d an integer greater than 1. Then the numbers

»>0 be the sequence of Lucas numbers defined by (3)

i(_l)n[logd I’l], i n (kGN)

=1 L, Ln+k

are algebraically independent.
If A is not a perfect square, we can prove the algebraic independence of
the sums of the series (4) of Theorem 5 without the factor (—4>)?" in their

numerators as follows:

THEOREM 6. Assume in addition that A is not a perfect square. Let d be an
integer greater than 1. Then the numbers

- on'e” = )"[log, n]
€Q*,/>0,keN) and d 5
ZRd"Rd"+k (€eQ Z R n Rt ®)

are algebraically independent.

2 Lemmas

The following lemma will be used in the proof of Theorems 1 and 4.

Lemma 1 (Tanaka [9]). Let {R,},>, be as in Section 1. Then the numbers

f: = )'Hoga ]y N\ (1) K eN)

= Rupi-1Rupk

are algebraically independent.
The following lemma plays an essential role in the proof of Theorems 2 and 3.

LemMmA 2. Let f(x) be a real-valued function on x >0 such that f'(x) >0
for any x >0 and f(N) = N. Let f~(x) be the inverse function of f(x). Let K
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be any field of characteristic 0 endowed with an absolute value | |,. Let {a,},-, be
a sequence in K with |ay|, = o(1/f~(n)). Suppose the sum 3" | |a,|, converges in
R. Then in the completion K, of K we have

S ) — i) = 3 - ©)
) h=1

©
n=f(1

Proor. Let e N and neN. Since f/(x) >0 for any x >0, (f~!(x))' >0
for any x > f(1). Hence, if f(h) <n < f(h+1), then h < f~'(n) < h+ 1 and so
[f~!(n)] = h. Therefore, letting

= {1} s

0 (otherwise)

and s, = Z;{(k),
k=1

we see that s, = [f~!(n)] for n > f(1). Then, letting H e N and N = f(H), we
have

M=

H
> arm = x(n)ay
h=1 n=/1)
N-1
= Su(an — ani1) + snan
n=/(1)
N—-1
= > U mlan = awer) + [fH(WV)]a. (7)
n=/(1)

Since |a,|, = o(1/f~'(n)), [f~"(N)lay tends to 0 as N — oo. Since >, |anl,
converges in R, the sum of the subseries ), ag(p also converges in K,. Letting
H — oo in (7), we have (6). This completes the proof of the lemma.

REMARK 1. The condition |a,|, = o(1/f~!(n)) of Lemma 2 is satisfied if
|an‘v = O(I/Fl)v (8)

since we have [f~!(n)] =s, <n. We shall use the condition (8) instead in the
proof of Theorems 2 and 3.

The following lemma is a special case of Theorem 3.3.2 in Nishioka [5], since
its assumption is satisfied by Masser’s vanishing theorem [4].
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Lemma 3. Let K be an algebraic number field and d an integer greater than 1.
Suppose that fij(zi,22) € K[[z1,22]] (i=1,...,m,j=1,...,n(i)) are algebraically
independent over K(z1,z) and convergent in a polydisc U = C* around the origin.
Assume that, for every i, fi1(z1,22),. .., fin(i) (21, 22) satisfy the system of functional
equations

fir(z1,22)

ﬁn(i) (Zla 22)

i 0 0 Sfa(z8,z9) bi(z1,22)
agil) a; K . : :
= . ) + ;9
: : 0 : :
() ()
iyt Duiiyn(iy—1 i Sy (28, 28) biniy (21, 22)

where ai,a§§) € K and bjj(z1,22) € K(z1,z2). If (o1, 2) € U is an algebraic point with
0 < oul, |oa] < 1 such that oy, oy are multiplicatively independent, then the values
filo, ) (i=1,....,m,j=1,...,n(i)) are algebraically independent.

REMARK 2. It is not necessary in Lemma 3 to assume that by(ad", ad")
(i=1,...,m,j=1,...,n(i)) are defined for all k > 0, which is satisfied by (9) and
the fact that f;(ad",od") (i=1,...,m,j=1,...,n(i)) are defined for all k >0
since (", ad") e U.

LeEmMA 4 (Theorem 3.2.1 in Nishioka [5]). Let C be a field of characteristic 0.
Suppose that fi(z1,22) € Cllz1,z2]] (i=1,...,m,j=1....,n(i)) satisfy the func-
tional equations of the form (9) with ai,agi) eC, a #0, ai?_l #0 (2 <s<n(i),
and bj(z1,22) € Cz1,22). If fii(z1,22) (i=1,....m,j=1,...,n(i)) are algebrai-
cally dependent over C(z1,z,), then there exists a non-empty subset {iy,...,i.} of
{1,...,m} with a;, = --- = a; such that fi,..., f;1 are linearly dependent over C

modulo C(zy,zy), that is, there exist cy,...,c, € C, not all zero, such that
afir+--+afi1€ Clz1,z2).
Lemma 5 (Nishioka [6, Lemmas 2, 3, and 6]). Let & be a nonzero complex

number and a,...,a, nonzero complex numbers satisfying l|a;| # 1, |a;| # |aj|
(i # j). Let fi(z) e C[z]] (0 <i<n) satisfy the functional equations
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r

() = ) +

(I<i<n),

where re Nand e =+1. If d = =2 and e = 1, then fi(z) (1
independent over C modulo C(z), otherwise so are fi(z) (0

REMARK 3. If d =¢ =2 and ¢ =1, then

2h ,.2/1

FIBIE g

1 —zr

o
h=0 I+:2

LemmA 6 (A special case of Theorem 3.3.10 in Nishioka [5]).

and F a subfield of C. If

e C(z).

f(Z],Zz) S C[[Zl,Zz]] ﬂF(Z],Zz),

then there exist A(zy,z2),B(z1,22) € Flz1,23] such that

A(Z],Zz)

Slanz) = B(z1,22)

3 Proof of Theorems 1, 2, 3, and 4

B(0,0) # 0.

353

< i< n) are linearly
<i<

n).

Let C be a field

PrOOF OF THEOREM 1. Let
o0 o0
(—A43)"[log, n] )"[log, n]
Sa k=
; Ran+k nZ::: R Rn+k
. Ajllogy n] = Ay[log, n]
Sd.,k B Z R,R Z ]23 ’
=1 n-+tk n—d n n+k
and
= "llogy n] <= (—A42)"[log; n
Tus = Z (-4 R g4 Z 2) g4 1]
“~ Ryik- an+k — Rupi—1Ruik

Letting f(x) =

1

k
FZFAZ)H

k =1

Sa k= Ty

(keN).

)

(d e N\{1},k eN).

=d* in Theorem 2, we see that for any fixed d
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Hence the sets of the numbers {S; ;|2 <d <m,1 <l <k} and {T,,|2 <d <m,
1 <1 <k} generate the same vector space over Q for any fixed m € N\{1} and
for any fixed k € N. Since the numbers Ty, (d € N\{1},k e N) are algebraically
independent by Lemma 1, the numbers S, ; (d € N\{1},k € N) are algebraically
independent.

Again letting f(x) = d* and noting that f(n) = f(1) (mod 2) for any n € N,
we see by Theorem 3 that for any fixed d

(_1)f(1) 2k o
S 2k TR ZAZ_ Ty (keN).
2k =1

Hence the numbers {S;, |2 <d <m,1 <] <k} are expressed as linearly inde-
pendent linear combinations over Q of the numbers {7, ;|2 <d <m,1 <1 <2k}
for any m € N\{1} and for any k € N. Since the numbers T, ; (d e N\{l},k e N)
are algebraically independent by Lemma 1, the numbers S;,, (d € N\{1},k € N)
are algebraically independent, which completes the proof of the theorem.

Before stating the proof of Theorems 2 and 3, we recall that {R,},., is
expressed as

R, =ad"+bp" (n=0),

where o, f3 are the roots of ®(X) = X2 — 4;X — A4, such that |x| > || > 0 and
a,b € Q(v/A) satisfy |a| > |b| > 0. Using the same o and 8, we can express the
sequence {F,},., defined before Theorem 2 by
* o — ﬂn
e L]

PROOF OF THEOREM 2. Since R, =aa" +bf" (n>0) and —A4, =of, we
have

(—A )n B 1 ﬁn B ﬁ)1+k
RyRuik  a(ak — pX) \ao™ +bp"  qomtk 4 ppth

B 1 ﬁn ﬁnJrk
a(ak — R (R_n - Rn+k>. (19

Hence, noting that n|"/R,| — 0 as n — oo, we have by Lemma 2 with Re-

mark 1
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G 1 0 - k—1 ﬁn+l k-1 ﬂn+l+1
k_a(ock—ﬁk) Z [f (l’l)] ZRn+l_Z

n=f(1) =0 =5 Rt
1 w0 k1 g+
= ) (11)
a(ak — gF) ,,Z; ,ZO: Ry
Letting k =1 and replacing » by n+/—1 in (10), we have
(_Az)n+l—l 1 ﬁn+/71 ﬁn+l
Rn+l—1Rn+1 B CI(OC _,8) Rn+l—1 - Rn+l )
Hence by Lemma 2
—Az 1-I o - ﬁanl ﬁnH
=y S ol 7
n:f(l) n+l—1 n+l
(_Az)lfl o0 ﬁf(h)+171 ( )
= . 12
a(e = B) <= Ry 411
Therefore we have
RN 1
k=1
Replacing n by f(h) in (10), we have
(_Az)f(h) 1 [))f(h) ﬂf(th )
= - . (13
Ry Ry a(ek — 5 \Rry Ry
Hence
U 1 zw: ﬁf(h) ﬂf(th
k= -
a(ak — ) 1= \Bron - R
and so
1 k
Ue = (T1 = (—42)" T11),
Fy

which completes the proof of the theorem.

Proor oF THEOREM 3. Replacing k& by 2k in (10) and multiplying its both
sides by (—1)", we have
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4 1 =B"  (=p"*
R, R0k a(OCZk — ﬂzk) R, Ry ok

- 1 %l _pgyntl 2l gyl
o a(a2k — g7 (Z R Z )

=0 =0 Rn+l+1

Hence, noting that n|"/R,| — 0 as n — oo, we have by Lemma 2 with Re-

mark 1
1 0 2k—1 (_ﬂ)}’k‘rl 2k—1 (_ﬁ)n+l+1
Sy= e Sl Y- Y
2 a(aZ —,sz) n;(l)[ (m)] <; Rt ; R4
o0 2k— 1 ﬁ f(h)+1
(“Zk )io = R
1 2k—1 ) & ﬁ/'(hm
= c (_l) ) )
a(ak — ) ,Z(; hz:; Ry(ny11

since f(h) = f(1) (mod 2) for any h > 1. Therefore we have by (12)

(71)f(1) 2k

Sy = AS'T,
2k F;k lz:; 2 Is

which completes the proof of the theorem.

Proor oF THEOREM 4. Let

5
Uik=) 55—
=1 Randu+k

and

o0

Td,kziw Z J'ogs ]y e N {1}k eN).

1 Rn+k an+k n+k an+k

n= I‘l_

Letting f(x) = d* in Theorem 2 and noting that (—1)*" = (=1)? (n > 1), we see
that for any fixed d

(~1)Uq s = Y = (Ty1 — (—A2) Turs1) (keN).
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Hence the numbers {U; ;|2 <d <m,1 <[ <k} are expressed as linearly inde-
pendent linear combinations over Q of the numbers {7;,;|2 <d <m,1 <[ <
k + 1} for any m € N\{1} and for any k € N. Since the numbers 7 ; (d € N\{1},
k € N) are algebraically independent by Lemma 1, the numbers Uy ;. (d € N\{1},
k € N) are algebraically independent, which completes the proof of the theorem.

4 Proof of Theorems 5 and 6

REMARK 4. For Q(zy,z3) € C(z1,2z2) with Q(0,0) =0, we define

”l d’l
X ZlaZZ E X QZI 722 )

where x is a variable and d is an integer greater than 1. Letting D = xd/0x, we

see that
fi(x,z1,22) == D'f (x,21,20) = anx”Q(zld”,zzd") (I =0)
n=1
satisfy
fo(x Z],Zz) - Xﬁ)(x Zil722) + xQ(Zl 722!)
fl(xvzlsz) = xfl (X, Zflvzzd) + Xﬁ)(x, Zf,,sz) + XQ(Z] ) 51)
" m
twnozn) = () Vot =t + 5001, ).
=0
Hence for a complex number x, the functions fy(x,z1,z22),..., fiu(x,z1,22) satisfy

a system of functional equations of the form (9).

PROOF OF THEOREM 5. Let ¢ =a'b, y = o~ !f, and

" k_d" _
Sa(z Zn’c’ ( e nykzdn) (€eQ*,120,keN).
Then
0 _[gn d"
far(y) = a*(o* = ) ZM. (14)

Ryn Ry i

n=1
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Using (11) in the proof of Theorem 2 and letting k=1, f(x)=d*, and
g(z) =572, 27" /(1 4 cz?"), we have

ar

~ (=42)"[log, ] -
Z RRH]I alo— p g ” azoc—ﬁ)' (15)

n=1

Therefore it is enough by (14) and (15) to prove the algebraic independence
of the values fix(y) (€ Q*,/>0,keN) and g(y). We see that each fioi(z)
(¢ € Q%,k e N) satisfies the functional equation

d

) - pzd
Jeo(2) = Sfeon(29) + f(l Ted 14 cykzd>

and fix(z) (I = 0) satisfy a system of functional equations of the form (9) for
every fixed & and k& by Remark 4. We see also that g(z) satisfies the functional
equation

z d

1 +czd’

g(z) = g(z*) +

Hence by Lemma 3 the values fix(y) (€ Q*,/>0,keN) and ¢(y) are alge-
braically independent if the functions fix(z) (¢ € Q*,/ >0,k eN) and g(z) are
algebraically independent over C(z).

We assert that for every fixed & # 1 the functions fir(z) (k € N) are linearly
independent over C modulo C(z) and so are the functions fiox(z) (k € N) with
g(z), which implies by Lemma 4 that the functions fiy(z) (€€ Q*,/ >0,k e N)
and ¢g(z) are algebraically independent over C(z). Let

Then

Seok(z) = heo(z) — hex(z)

for every fixed ¢ € Q* and k e N and each hg(z) (€€ QX k >0) satisfies the
functional equation

CV z?
ha(2) = fhék(z )+ m

Suppose there exists a £ # 1 such that f:1(z),..., fzor(z) are linearly dependent
over C modulo C(z) for some k. If d =¢ =2 and ¢ =1, we see by Remark 3
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that hy(z) = 2z2/(1 — z%) € C(z) and so hy((z),...,hy(z) are linearly dependent
over C modulo C(z); otherwise, so are /iz(z), hs1(2), ..., he(z), which contradicts
Lemma 5, since Hg(z) := & 'y hg(z) satisfies the functional equation

d

_ 5 d
Hgk(Z) = ngk(Z ) +m.

Therefore, if fi(z) ((€Q*,1>0,keN) and g(z) = ho(z) are algebraically
dependent over C(z), then hy(z), fio1(2),. .., fik(z) are linearly dependent over
C modulo C(z) for some k, and hence so are ho(z),%1(z),...,Mnr(z), which
contradicts Lemma 5. Therefore the functions fix(z) (€ Q*,/>0,keN)
and ¢g(z) are algebraically independent over C(z) and so the values fe(y)
(€ Q*,1>0,keN) and g(y) are algebraically independent, which completes the
proof of the theorem.

ProoF oF THEOREM 6. First we consider the case where «, f are multi-
plicatively dependent. Then there exist integers m, n, not both zero, with
a™B" =1. Since a and S are field conjugates in the quadratic number field
Q(VA), f™«" =1 must also hold. This implies

(aﬁ)ern _ (a/ﬂ)mfn -1

Since |a/f| > 1, we have m =n #0, and hence of must be a real root of
unity, i.e., —A, = off = +1. Therefore this case is proved by Theorem 5 since
(—Az)dﬂ = (—Az)d (n>=1).

Secondly we consider the case where «, f are multiplicatively independent.
Define

! Z ykZ]d" O X / 0.keN
f‘flk 21,22 Zné 1+ cz 7 _1—|-Cj/ an (éEQ =20,k e )7
2

where ¢ =a~'h and y = o~'f. Then

Sar(o?,y) = Z R

— d"Rd"+k

Using (11) in the proof of Theorem 2 and letting k=1, f(x)=d*, and
g(z1,22) = 30, 5’"/(1 +cz§’"), we have

~ (=42)"[logg n] _ B ,y)
2 RyRy1 a(e— f Z:Rdn _a —B)

n=1
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Therefore it is enough to prove the algebraic independence of the values
Sfe(e2,9) (E€eQ*,1>0,keN) and g(o~2,y). We see that each fii(z1,z22)
(¢ € Q*,k e N) satisfies the functional equation

fowter2) = owlet, ) + ¢ (o - L)

E0k\<1,42) — C0k\=1 542 1+CZ§1 1+C'}/ng
and fer(z1,22) (I =0) satisfy a system of functional equations of the form (9)
for every fixed & and k by Remark 4. We see also that ¢g(z;,z;) satisfies the
functional equation

d
Z

d .d
Z1,22) = glz7,2, ) + ——.
g(z1,22) = g(z1,23) [t

Hence, noting that o2, y are multiplicatively independent, we see by Lemma 3
that the values fiy(272,7) ((€eQ*,/>0,keN) and g(a~2,y) are algebraically
independent if the functions fiy(zi,z2) ((€Q*,1>0,keN) and g(z1,z;) are
algebraically independent over C(zy,z;). We assert that for every fixed & # 1 the
functions fzx(z1,22) (k€N) are linearly independent over C modulo C(zy,z2)
and so are the functions fio(z1,22) (ke N) with g(z1,z;), which implies by
Lemma 4 that the functions fz(z1,z22) (e Q*,1>0,keN) and g(z1,z,) are
algebraically independent over C(zj,z,).

Suppose there exists a & # 1 such that fzo1(z1,22),-. ., fzor(z1,22) are linearly
dependent over C modulo C(zj,z;) for some k. Thus there are complex numbers
ciy...,Ck, not all zero, such that

cifzo1(z1,22) + - - - + e feor (21, 22) € C(z1, 22).

Since  fzo1(z1,22), - - -, fzok(z1,22) € C|[z1, 22]], by Lemma 6 there exist A(zy,z2),
B(z1,23) € Clz1, z2] such that

A(ZhZz)

., B(0,0) #0.
B(Zl,Zz) ( )

cifeor(zi,22) + -+ + efeon(z1,22) =

Letting z; = z; = z, we have
cifeor1(z,2) + -+ + afeon(z,2) € C(2),

which contradicts Lemma 5 by the same way as in the proof of Theorem 5.
Therefore, if fix(z1,22) (€ Q*,l1>0,keN) and g(z;,z) are algebraically de-
pendent over C(zj,z2), then g(z1,22), fioi1(z1,22), ..., fiok(z1,22) are linearly de-
pendent over C modulo C(z1,z;) for some k. By the same way as above g(z,z),
Sioi(z,2), ..., fiox(z,z) are linearly dependent over C modulo C(z), which again
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contradicts Lemma 5. Therefore the functions feu(z1,z2) (& eQ*,1>0,keN)
and g¢(zi,z;) are algebraically independent over C(zj,z;) and so the values
Sfe(e2,9) (E€Q*,1>0,keN) and g(x~2,y) are algebraically independent,
which completes the proof of the theorem.

[6]
[7]
(8]

[9]
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