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1. Introduction

We study the asymptotic distribution near the origin of negative eigenvalues
for two dimensional Pauli operators with nonconstant magnetic fields. The Pauli
operator describes the motion of a particle with spin in a magnetic fields. It acts
on the space $L^{2}(R^{3})\otimes C^{2}$ and is defined as

$H_{P}=(-i\nabla_{x}-A)^{2}-\sigma\cdot B$

under a suitable normalization of units, where $A:R^{3}\rightarrow R^{3}$ is a magnetic
potential, $\sigma=(\sigma_{1}, \sigma_{2}, \sigma_{3})$ with components

$\sigma_{1}=\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right)$ , $\sigma_{2}=\left(\begin{array}{ll}0 & -i\\i & 0\end{array}\right)$ , $\sigma_{3}=\left(\begin{array}{ll}1 & 0\\0 & -1\end{array}\right)$

is the vector of $2\times 2$ Pauli matrices and $B=\nabla\times A$ is a magnetic field. If
$A(x)=(a_{1},a_{2},0)$ with components $a_{j}=a_{j}(x_{1}, x_{2}),$ $x=(x_{1}, x_{2})\in R^{2}$ , then the
magnetic field $B(x)=(0,0, b(x))$ is directed along the $x_{3}$ axis and is identified
with the function $b(x)=\partial_{1}a_{2}-\partial_{2}a_{1},$ $\partial_{j}=\partial/\partial x_{j}$ . The Pauli operator also takes
the simple form

$H_{P}=(^{H_{+}}0^{-\partial_{3}^{2}}$ $H_{-}-\partial_{3}^{2}0$ ,

where

(1.1) $H_{\pm}=\Pi_{1}^{2}+\Pi_{2}^{2}\mp b$ , $\Pi_{j}=-i\partial_{j}-a_{j}$ .
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The magnetic field $b$ is represented as the commutator $b=i[\Pi_{2}, \Pi_{1}]$ and hence
$ H\pm$ can be rewritten as

(1.2) $H_{\pm}=(\Pi_{1}\pm t\Pi_{2})^{*}(\Pi_{1}\pm i\Pi_{2})$ .

This implies that $H_{\pm}\geq 0$ is non-negative. If, in particular, $b(x)>c>0$ is
positive, then $H$-becomes strictly positive, while it is known ([1]) that $H+has$

zero as an eigenvalue with infinite multiplicities. Hence the operator $H+has$ the
origin as the bottom of its essential spectrum.

We consider the two dimensional Pauli operator

(1.3) $H(V)=H_{+}-V=\Pi_{1}^{2}+\Pi_{2}^{2}-b-V$

perturbed by an electric potential $V(x)$ . If $V(x)>0$ falls off at infinity, then the
operator $H(V)$ has an infinite number of negative discrete eigenvalues accu-
mulating the origin. The aim of the present work is to study the asymptotic
distribution near the origin of such negative eigenvalues. This problem has been
already discussed by $[8, 10]$ when $b(x)=b$ is a constant magnetic field. We here
deal with the case of nonconstant magnetic field $b(x)=b(r),$ $r=|x|$ , with
spherical symmetry.

We shall formulate the obtained result precisely. Let $\langle x\rangle=(1+|x|^{2})^{1/2}$ . We
first make several assumptions on the magnetic field $b(x)$ and the electric
potential $V(x)$ . The magnetic field $b(x):R^{2}\rightarrow R$ is assumed to fulfill the fol-
lowing three assumptions.

(b.1) $b(x)>c>0$ is strictly positive.

(b.2) $b(x)=b(r)$ is spherically symmetric.

(b.3) $b(x)$ is smooth and obeys $|\partial_{x}^{\alpha}b(x)|\leq C_{\alpha}\langle x\rangle^{-|\alpha|}$ .

The potential $V(x)$ : $R^{2}\rightarrow R$ is also assumed to satisfy the following three
assumptions. There exists $d>0$ such that:

(V.1) $V(x)\geq c\langle x\rangle^{-d}$ for some $c>0$ .

(V.2) $V(x)$ is smooth and obeys $|\partial_{x}^{\alpha}V(x)|\leq C_{\alpha}\langle x\rangle^{-d-|\alpha|}$ .

(V.3) $-x\cdot\nabla_{x}V(x)=-r\partial V(x)/\partial r\geq c\langle x\rangle^{-d},$ $c>0$ , for $|x|>R\gg 1$ .

Under these assumptions, the operator $H(V)$ formally defined by (1.3) admits
a unique self-adjoint realization in the space $L^{2}=L^{2}(R^{2})$ with natural domain
$\mathscr{D}=\{u\in L^{2} : H(V)u\in L^{2}\}$ . We denote by the same notation $H(V)$ this self-
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adjoint realization. Let $N(H(V)<-\lambda)$ , $\lambda>0$ , be the number of negative
eigenvalues less than $-\lambda$ of operator $H(V)$ . We study the asymptotic behavior as
$\lambda\rightarrow 0$ of this quantity. The main theorem is formulated as follows.

THEOREM 1.1. Let the notations be as above. Assume that $(b.1)\sim(b.3)$ and
(V.1) – (V.3) are fulfilled. Then

$N(H(V)<-\lambda)=(2\pi)^{-1}\int_{V(x)>\lambda}b(r)dx(1+o(1))$ , $\lambda\rightarrow 0$ .

The proof is based on the min-max principle and the perturbation theory for
singular numbers of compact operators. The idea, in principle, is the same as that
in Sobolev [8] where the asymptotic formula above has been obtained in the case
of constant magnetic fields as stated above. However the argument there does
not apply directly to the case of nonconstant magnetic fields, even if magnetic
fields are assumed to be spherically symmetric. We require several technical
improvements. As previously stated, the operator $H+$ has zero as an eigen-
value with infinite multiplicities. The proof relies on the fact that the spectral
function $P(x,y)$ associated with this zero eigenvalue has the rapidly decreasing
property

$P(x,y)=O((|x|+|y|)^{-N})$ , $|x|+|y|\rightarrow\infty$ ,

for any $N\gg 1$ , provided that $x/|x|\neq y/|y|$ . This is proved by use of the Poisson
summation formula. If magnetic fields are constant, then $P(x,y)$ can be explicitly
calculated and the decaying property is easily checked from this representation.
This is one of main technical improvements. The theorem above is expected to
remain tme for a class of magnetic fields without spherical symmetry and it seems
to be an interesting open problem. The present method makes an essential use of
spherical symmetric property at many stages in the proof and it does not extend
to such a general case. Roughly speaking, the difficulty comes from the fact that
magnetic potentials which actually appear in Pauli operators undergo a nonlocal
change even under a local perturbation of magnetic fields. This makes it difficult
to control magnetic fields by an approximate method.

Recently several works have been done on the spectral problems of Pauli
operators with nonconstant megnetic fields. For example, the Lieb-Thirring
inequality for negative eigenvalues has been discussed in $[5, 9]$ and the asymptotic
behavior of ground state densities in the strong field limit has been studied in [4].

The present work is motivated by these works.
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2. Perturbation theory for singular numbers

As stated above, we use the perturbation theory for singular numbers of
compact operators as a basic tool to prove the main theorem. We here make a
brief review on several important properties of singular numbers. We refer to [6]
for details.

Let $T:X\rightarrow X$ be a compact operator (not necessarily self-adjoint) acting on
a separable Hilbert space $X$. We write $|T|$ for $\sqrt{TT^{*}}$ . The singular numbers $s_{n}(T)$ ,
$n\in N$, of $T$ are defined as the non-increasing sequenoe of eigenvalues of $|T|$ and
they have the following properties: $s_{n}(T)=s_{n}(T^{*})$ and

$s_{n+m-1}(T_{1}+T_{2})\leq s_{n}(T_{1})+s_{m}(T_{2})$ ,
(2.1)

$s_{n+m-1}(T_{1}T_{2})\leq s_{n}(T_{1})s_{m}(T_{2})$

for two compact operators $T_{1}$ and $T_{2}$ . We now define

$n(\lambda;T)=\#\{n\in N : s_{n}(T)>\lambda\}$ , $\lambda>0$ .

The next proposition is obtained as an immedaite consequence of (2.1) and is
repeatedly used in proving the main theorem.

PROPOSITION 2.1. (1) If $\lambda_{1},$ $\lambda>0$ with $\lambda_{1}+\lambda_{2}=\lambda$ , then

$n(\lambda;T_{1}+T_{2})\leq n(\lambda_{1}; T_{1})+n(\lambda_{2};T_{2})$ .

(2) If $\lambda_{1},$ $\lambda_{2}>0$ with $\lambda_{1}\lambda_{2}=\lambda$ , then

$n(\lambda;T_{1}T_{2})\leq n(\lambda_{1} ; T_{1})+n(\lambda_{2};T_{2})$ .

(3) Let $g(\lambda),$ $\lambda>0$ , be a function such that $\lambda^{-\sigma}/c\leq g(\lambda)\leq c\lambda^{-\sigma},$ $c>1$ , for
some $\sigma>0$ . If $\lim_{\lambda\rightarrow 0}n(\lambda;T_{2})/g(\lambda)=0$ , then one has

$\lim_{\lambda\rightarrow}\sup_{0}n(\lambda;T_{1}+T_{2})/g(\lambda)\leq\lim_{\epsilon\downarrow 0}\lim_{\lambda\rightarrow}\sup_{0}n((1-\epsilon)\lambda;T_{1})/g(\lambda)$ ,

$\lim_{\lambda\rightarrow}\inf_{0}n(\lambda;T_{1}+T_{2})/g(\lambda)\geq\lim_{\epsilon\downarrow 0}\lim_{\lambda\rightarrow}\inf_{0}n((1+\epsilon)\lambda;T_{1})/g(\lambda)$ .

We end the section by introducing another new notation. Let $T:X\rightarrow X$ be
a compact self-adjoint operator. We denote by $N(T>\lambda)$ and $N(T<\lambda)$ the
number of eigenvalues greater than $\lambda$ and less than $\lambda$ , respectively. By definition,
it immediately follows that

$n(\lambda;T)=N(T>\lambda)+N(T<-\lambda)$ , $\lambda>0$ .

If, in particular, $T\geq 0$ is non-negative, then $n(\lambda;T)=N(T>\lambda)$ .
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3. Spectral properies of Pauli operators

Let $H_{\pm}$ be defined by (1.1). In this section, we mention some basic spectral
properies of these operators, which are also required to prove the main theorem.
In particular, the important property is that the spectral function associated with
zero eigenvalue of $H_{+}$ decreases rapidly (Proposition 3.1).

We can choose the magnetic potential to be divergenceless, so that it takes
the form

(3.1) $ a_{1}(x)=-\partial_{2}\varphi$ , $ a_{2}(x)=\partial_{1}\varphi$ ,

where $\varphi(x)=\varphi(r)$ satisfies $\Delta\varphi=b$ and is given as

(3.2) $\varphi(r)=\int_{0}^{r}r^{-1}a(r)dr$ , $a(r)=\int_{0}^{r}rb(r)$ dr.

The function $\varphi$ is smooth and obeys the estimates

(3.3) $r^{2}/c\leq\varphi(r)\leq cr^{2}$ , $|\partial_{x}^{\alpha}\varphi(x)|\leq C_{\alpha}\langle x\rangle^{2-|\alpha|}$

for some $c>1$ , which follows from assumptions $(b.1)\sim(b.3)$ . Throughout the
entire discussion, we fix the magnetic potential as in (3.1) and use the notations
$\varphi(r)$ and $a(r)$ with the meanings ascribed in (3.2).

We denote by $(r, \theta)$ the polar coordinate system and we often identify the
unit circle with $[0,2\pi]$ . Let $\Pi_{1}$ and $\Pi_{2}$ be as in (1.1). lf the magnetic potential is
chosen as above, then it follows that

$\Pi_{1}+i\Pi_{2}=-i\exp(-\varphi(r))(\partial_{1}+i\partial_{2})\exp(\varphi(r))$

and hence we see from (1.2) that the eigenspace associated with zero eigenvalue
of $H+is$ spanned by the family of functions

(3.4) $u_{m}(x)=r^{m}\exp(im\theta)\exp(-\varphi(r))$ , $m\in N_{*}=N\cup\{0\}$ .
This is known as Aharonov-Casher theorem ([1]).

Let $P:L^{2}\rightarrow L^{2}$ be the eigenprojection associated with the zero eigenspace of
$ H+\cdot$ We write $Q$ for Id–P, $Id$ being the identity operator. It is also known (see,

for example, [3]) that the non-zero spectra of the operators $H+andH$-coincide
with each other. Since $H_{-}$ is strictly positive, we have

(3.5) $QH_{+}Q\geq\beta_{0}Q$ $\beta_{0}=\inf b(r)>0$ ,

in the form sense. The family of eigenfunctions $\{u_{m}\}$ forms an orthogonal system
and hence the integral kemel $P(x,y)$ of the eigenprojection $P$ is given by

(3.6) $P(x,y)=\sum_{m=0}^{\infty}v_{m}(x)\overline{v}_{m}(y)$ , $v_{m}(x)=u_{m}(x)/\sqrt{e_{m}}$,
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where

(3.7) $e_{m}=\int|u_{m}(x)|^{2}dx=2\pi\int_{0}^{\infty}r^{2m+1}\exp(-2\varphi(r))$ dr.

PROPOSmON 3.1. Let $x=(r, \theta)$ and $y=(r^{\prime}, \theta^{\prime})$ . If $|\theta-\theta^{\prime}|>\delta>0$, then

$|\partial_{X}^{\alpha}\oint_{y^{P(x,y)|}}\leq C_{\alpha\beta N}(1+|x|+|y|)^{-N}$

for any $N\gg 1$ large enough, where $C_{\alpha\beta N}$ also depends on $\delta$ .

The proof is rather long. We will prove this proposition in section 8. The
proof uses the Poisson summation formula. If $b(r)=b>0$ is constant, then
$\varphi(r)=br^{2}/4$ and $e_{m}$ is calculated as $e_{m}=(2\pi/b)m!(2/b)^{m}$ , so that $P(x,y)$ has the
explicit representation

$P(x,y)=(b/2\pi)\exp(-(b/4)(|x|^{2}+|y|^{2}-2|x||y|\exp(i(\theta-\theta^{\prime})))$ .

Thus the proposition follows at once in the case of constant magnetic fields. The
lemma below is obtained as a simple application of Proposition 3.1.

LEMMA 3.2. Let $\Gamma_{j}\subset[0,2\pi],$ $1\leq j\leq 2$ , and let $S_{j}=\{x:x/|x|\in\Gamma_{j}\}$ be the
sector generated by $\Gamma_{j}$ . Denote by $\chi_{j}(x)$ the characteristic function of $S_{j}$ . If the
distance $d(\Gamma_{1}, \Gamma_{2})$ between $\Gamma_{1}$ and $\Gamma_{2}$ is strictly positive, then

$n(\lambda;\chi_{1}P\chi_{2})=O(\lambda^{-\sigma})$ , $\lambda\rightarrow 0$ ,

for any $\sigma>0$ small enough.

4. Proof of Theorem 1.1

The theorem below plays a basic role in proving the main theorem. We here
complete the proof of Theorem 1.1, accepting this theorem as proved.

THEOREM 4.1. Let $P$ again denote the eigenprojection associated with zero
eigenspace of $ H+\cdot$ Assume that $W(x)$ fulfills (V.1) – (V.3). Then

$\lim_{\lambda\rightarrow 0}N(PWP>\lambda)/Z(\lambda;W)=1$ ,

where

$Z(\lambda;W)=(2\pi)^{-1}\int_{W(x)>\lambda}b(r)dx$ .
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PROOF OF THEOREM 1.1. We first note that

$\lambda^{-2/d}/c\leq Z(\lambda;W)\leq c\lambda^{-2/d}$

for some $c>1$ and that

(4.1) $Z((1\pm\epsilon)\lambda;W)=Z(\lambda;W)(1+O(\epsilon))$ , $\epsilon\rightarrow 0$ ,

uniformly in $\lambda>0$ small enough. These properties follow from (V.1) $\sim$ (V.3). Let
$Q=Id-P$ and $\beta_{0}=\inf b(r)$ again. The operator $H(V)$ under consideration
satisfies the form inequalities

(4.2) $H(V)\lessgtr Q(H_{+}-V\pm c)Q-P(V\mp V^{2}/c)P$

for any $c>0$ . We now choose $c$ as $0<c<\beta_{0}$ and define

$\tau_{\pm}=P(V\pm V^{2}/c)P$ , $S_{\pm}=Q(H_{+}-V\mp c)Q$ .

Then it follows from (4.2) that

$N(H(V)<-\lambda)$ ; $N(T\pm>\lambda)+N(S\pm<-\lambda)$ .

The multiplication operator $V$ is relatively compact with respect to $ H+\cdot$ Hence we
have by (3.5) that the number $N(S\pm<0)$ of negative eigenvalues of $s_{\pm}$ is finite.
We shall show that

(4.3) $\lim_{\lambda\rightarrow}\sup_{0}N(T_{+}>\lambda)/Z(\lambda;V)\leq 1$ .

To prove this, we decompose $\tau_{+}$ into $\tau_{+}=T_{1}+T_{2}$ and use Theorem 4.1 with
$W=V$ or $W=V^{2}$ , where $T_{1}=PVP$ and $T_{2}=PV^{2}P/c$ . Since

$\lim_{\lambda\rightarrow 0}N(T_{2}>\lambda)/Z(\lambda;V)=0$

by Theorem 4.1, (4.3) is obtained from Proposition 2.1 and (4.1). By Proposition
2.1 again,

$N(T_{1}>(1+\epsilon)\lambda)\leq N(T_{-}>\lambda)+N(T_{-}<-\lambda)+N(T_{2}>\epsilon\lambda)$

for any $\epsilon>0$ small enough. Since $T_{-}=T_{1}-T_{2}\geq-T_{2}$ in the form sense, it
follows that $N(T_{-}<-\lambda)\leq N(T_{2}>\lambda)$ . Hence the lower bound

$\lim_{\lambda\rightarrow}\inf_{0}N(T_{-}>\lambda)/Z(\lambda;V)\geq 1$

can be also proved in a similar way. Thus the proof is complete. $\square $
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The main body of the present work is devoted to proving Theorem 4.1. Let
$\{v_{m}\}$ be as in (3.6) and let $(, )$ denote the $L^{2}$ scalar product. Then the operator
$PWP$ in Theorem 4.1 is represented as the infinite matrix with components
$(Wv_{m}, v_{l})$ . Thus the proof of the main theorem is reduced to the study on the
asymptotic distribution of eigenvalues of such an infinite matrix.

5. Spherically symmetric potentials

In this section, we first prove Theorem 4.1 for the special case that $W=$

$W(r)$ is spherically symmetric.

LEMMA 5.1. Assume that $W=W(r)$ is spherically symmetric and satisfies the
same assumptions as in Theorem 4.1. Then

$\lim_{\lambda\rightarrow 0}N(PWP>\lambda)/Z(\lambda;W)=1$ .

As an immediate consequence, we can obtain the following lemma, which is
used to prove Theorem 4.1 for the general case.

LEMMA 5.2. Assume that $W(x)\leq c\langle x\rangle^{-d}$ for some $c>0$ . Then

$\lim_{\lambda\rightarrow}\sup_{0}\lambda^{2/d}N(PWP>\lambda)\leq C$

for some constant $C>0$ .

PROOF OF LEMMA 5.1. Let $e_{m}$ be defined by (3.7). If $W$ is spherically
symmetric, then $PWP$ is represented as a diagonal matrix and it has $\lambda_{m}=\alpha_{m}/e_{m}$

as eigenvalues, where

$\alpha_{m}=(Wu_{m}, u_{m})=2\pi\int_{0}^{\infty}\mu+\iota_{W(}r)\exp(-2\varphi(r))$ dr.

Hence we have

$N(PWP>\lambda)=\#\{m\in N_{*} : \alpha_{m}/e_{m}>\lambda\}$ .

We study the asymptotic behavior as $ m\rightarrow\infty$ of $e_{m}$ and $\alpha_{m}$ . If we make a change
of variable $r\rightarrow m^{1/2}t$, then

$e_{m}=2\pi m^{m+1}\int_{0}^{\infty}t\exp(-2mg(t;m))dt$ ,
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where

(5.1) $g(t;m)=\varphi(m^{1/2}t)/m-\log t$ .

Let $a(r)$ be as in (3.2). By definition, $a(r)$ is a monotone increasing function and
hence it has the inverse function $a^{-1}(r)$ . Since $\varphi^{\prime}(r)=a(r)/r$, the stationary point
$\tau_{m}$ of phase function $g(t;m)$ is defined as a root to the equation $a(m^{1/2}\tau_{m})=m$ .
The root $\tau_{m}$ to this equation uniquely exists and it is represented as

(5.2) $\tau_{m}=m^{-1/2}a^{-1}(m)$ .

As is easily seen, $\tau_{m}$ satisfies $1/c\leq\tau_{m}\leq c$ with some $c>1$ independent of $m\gg 1$ .
The function $\varphi(r)$ obeys $\Delta\varphi=b$ , so that $\varphi^{\prime\prime}(r)=b(r)-a(r)/r^{2}$ . Hence the value
$g^{\prime\prime}(t;m)$ at point $\tau_{m}$ is calculated as

$g^{\prime/}(\tau_{m};m)=b(m^{1/2}\tau_{m})\geq\beta_{0}>0$ ,

so that $g(t;m)$ attains a minimum at $t=\tau_{m}$ . Let $I_{m}=[\tau_{m}-\delta, \tau_{m}+\delta]\subset(0, \infty)$ ,
$0<\delta\ll 1$ , be a small interval around $\tau_{m}$ . The family of phase functions $\{g(t;m)\}$

depends on the parameter $m$ . It follows from (3.3) that this family is bounded in
$C^{\infty}(I_{m})$ and $|t-\tau_{m}|/g^{\prime}(t;m),$ $t\in I_{m}$ , is also bounded uniformly in $m\gg 1$ . This
enables us to apply the stationary phase method (Theorem 7.7.5 in [7]) and we
obtain that

(5.3) $e_{m}=F_{m}\tau_{m}(1+O(m^{-1}))$ , $ m\rightarrow\infty$ ,

where

(5.4) $F_{m}=(2\pi)^{3/2}(2b(m^{1/2}\tau_{m}))^{-1/2}m^{m+1/2}\exp(-2mg(\tau_{m};m))$ .

Similarly we can get

$\alpha_{m}=F_{m}\tau_{m}W(m^{1/2}\tau_{m})(1+O(m^{-1}))$ .

Hence the eigenvalue $\lambda_{m}$ behaves like

$\lambda_{m}=W(m^{1/2}\tau_{m})(1+O(m^{-1}))$ , $ m\rightarrow\infty$ .

Let $\epsilon>0$ be small enough. Then it follows from (5.2) that there exists $m_{\epsilon}\gg 1$

such that

$(1+\epsilon)^{-1}W(a^{-1}(m))\leq\lambda_{m}\leq(1-\epsilon)^{-1}W(a^{-1}(m))$

for $m\geq m_{\epsilon}$ . By assumption (V.3), $W$ also has the inverse function $W^{-1}(r)$ for
$0<r\ll 1$ small enough and we have $a(W^{-1}(\lambda))=Z(\lambda;W)$ for $\lambda>0$ small
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enough. We now define

$l_{\pm\epsilon}(\lambda)=\#\{m\in N_{*} : m\geq m_{\epsilon}, m<Z((1\mp\epsilon)\lambda;W)\}$ .

Then the quantity $N(PWP>\lambda)$ in question obeys the estimate

$l_{-\epsilon}(\lambda)\leq N(PWP>\lambda)\leq l_{+e}(\lambda)+m_{\epsilon}$ .

This, together with (4.1), proves the theorem.

For later references, we make further comments on the asymptotic behavior
of $e_{m}$ . We consider the continuous version of $e_{m},$ $m\geq 1$ . We define $e(\sigma)$ as

(5.5) $e(\sigma)=2\pi\sigma^{\sigma+1}\int_{0}^{\infty}t\exp(-2\sigma g(t;\sigma))dt$ , $\sigma\geq 1$ ,

where

$g(t;\sigma)=\varphi(\sigma^{1/2}t)/\sigma-\log t$ .

As is easily seen, $e(m)$ coincides with $e_{m}$ for integer $m\geq 1$ and also the stationary
point $\tau(\sigma)$ of phase function $g(t;\sigma)$ is given by a unique root to the equation

(5.6) $ a(\sigma^{1/2}\tau(\sigma))=\sigma$ , $a(r)=r\varphi^{\prime}(r)$ .

The stationary point $\tau(\sigma)$ is smooth as a function of $\sigma$ and it has the properties
$1/c\leq\tau(\sigma)\leq c,$ $c>1$ , and

$(d/d\sigma)^{k}\tau(\sigma)=O(\sigma^{-k})$ , $\sigma\rightarrow\infty$ .

By repeating an argument similar to that used in the proof of Lemma 5.1, we
obtain the lemma below, which is used for the proof of Proposition 3.1.

LEMMA 5.3. Let $e(\sigma)$ be defined above. Then $1/e(\sigma)$ takes the form
$1/e(\sigma)=\sigma^{-1/2}G(\sigma)e^{-\sigma\log\sigma}\exp(2\sigma g(\tau(\sigma);\sigma))$ , $\sigma\geq 1$ ,

where $G(\sigma)$ is a smooth function and satisfies
$(d/d\sigma)^{k}G(\sigma)=0(\sigma^{-k})$ , $\sigma\rightarrow\infty$ .

If we further set $E=\sup_{\sigma\geq 1}\exp(2g(\tau(\sigma);\sigma))$ , then $1/e(\sigma)$ obeys

$1/e(\sigma)\leq c\sigma^{-(\sigma+1/2)}E^{\sigma}$

for some $c>1$ .
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6. Min-max principle

The proof of Theorem 4.1 is done by localizing the potential over small
sectors with vertex at the origin. In this section we study a bound as $\lambda\rightarrow 0$ of the
quantity $n(\lambda;W^{1/2}P)$ for a class of non-negative potentials $W(x)$ with support in
such sectors by use of the min-max principle. The aim is to prove the following
lemma.

LEMMA 6.1. Let $\Gamma\subset[0,2\pi]$ and let $\chi(\theta;\Gamma)$ be the chatacteristic function of F.
Assume that $W(x)\geq 0$ is non-negative and obeys $W(x)\leq\chi(\theta;\Gamma)\langle x\rangle^{-d}$ for some
$d>0$ . Then there exists $C>0$ indenpendent of $\Gamma$ such that

$\lim_{\lambda\rightarrow}\sup_{0}\lambda^{4/d}n(\lambda;W^{1/2}P)\leq C|\Gamma|^{p}$

with $\rho=\min(1,1/2d)$ , where $|\Gamma|$ denotes the length of $\Gamma$ .

The proof relies on the lemma below. We accept this lemma as proved and
complete the proof of Lemma 6.1.

LEMMA 6.2. Let $\chi(\theta)>0$ be a positive smooth function over $[0,2\pi]$ . Assume
that $W(x)>0$ is also a positive smooth function and takes the form

$W(x)=\chi(\theta)\langle x\rangle^{-d}$ , $|x|\gg 1$ ,

for $0<d<2$ . Let $K_{0}=H(W)=H_{+}-W$ . Then

$\lim_{\lambda\rightarrow}\sup_{0}\lambda^{2/d}N(K_{0}<-\lambda)\leq C\int_{0}^{2\pi}\chi(\theta)^{2/d}d\theta$

for another $C>0$ independent of $\chi(\theta)$ .

PROOF OF LEMMA 6.1. The proof is divided into three steps.
(1) Let $W(x)$ fulfill the assumption in Lemma 6.2. Then we show that

(6.1) $\lim_{\lambda\rightarrow}\sup_{0}\lambda^{2/d}N(PWP>\lambda)\leq C\int_{0}^{2\pi}\chi(\theta)^{2/d}d\theta$ .

This is proved in the same way as in the proof of Theorem 1.1. We define

$T=P(W-W^{2}/c)P$ , $T_{1}=PWP$ , $T_{2}=c^{-1}PW^{2}P$
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for $0<c<\beta_{0}=\inf b(r)$ . Then $T_{1}=T+T_{2}$ and it follows from Proposition 2.1
that

$N(T_{1}>\lambda)=n(\lambda;T_{1})\leq n((1-\epsilon)\lambda;T)+n(\epsilon\lambda;T_{2})$

for any $\epsilon>0$ small enough. Hence we have by Lemma 5.2 that

$\lim_{\lambda\rightarrow}\sup_{0}\lambda^{2/d}N(T_{1}>\lambda)\leq\lim_{\epsilon\rightarrow 0}\lim_{\lambda\rightarrow}\sup_{0}\lambda^{2/d}n((1-\epsilon)\lambda;T)$ .

Since $N(T>\lambda)\leq N(K_{0}<-\lambda)$ by (4.2) and since $N(T<-\lambda)\leq N(T_{2}>\lambda)$ , we
obtain

$n(\lambda;T)=N(T>\lambda)+N(T<-\lambda)\leq N(K_{0}<-\lambda)+N(T_{2}>\lambda)$ .

This, together with Lemmas 5.2 and 6.2, implies (6.1).
(2) The second step is to show the lemma for the case $0<d<2$ . It suffices

to prove the lemma for $W(x)=\chi(\theta;\Gamma)\langle x\rangle^{-d}$ with $0<d<2$ . The proof is done
by approximation. We approximate $W(x)$ by a monotone decreasing sequence
$\{W_{k}(x)\}$ of positive smooth functions. The function $W_{k}(x)$ takes the form
$W_{k}(x)=\chi_{k}(\theta)\langle x\rangle^{-d}$ for $|x|\geq 1$ and $\chi_{k}(\theta)$ converges to $\chi(\theta;\Gamma)$ as $ k\rightarrow\infty$ . Then it
follows that

$n(\lambda;W^{1/2}P)=N(PWP>\lambda^{2})\leq N(PW_{k}P>\lambda^{2})$ .

Hence the lemma follows from (6.1) for the case $0<d<2$ .
(3) The final step is to prove the lemma for the case $d\geq 2$ . We again assume

$W(x)$ to take the form as in step (2) and decompose $W$ as $W=W_{1}^{1/2}W_{2}^{1/2}$ , where

$W_{1}(x)=\chi(\theta;\Gamma)\langle x\rangle^{-1}$ , $W_{2}(x)=\chi(\theta;\Gamma)\langle x\rangle^{-2d+1}$ .

If we define $T_{1}=PW_{1}^{1/2}$ and $T_{2}=W_{2}^{1/2}P$, then

$n(\lambda;W^{1/2}P)=N(PWP>\lambda^{2})=n(\lambda^{2};T_{1}T_{2})$

and hence it follows from Proposition 2.1 that

$n(\lambda;W^{1/2}P)\leq n(\mu;T_{1})+n(v;T_{2})$ ,

where $\mu=\lambda^{1/d}/L$ and $v=L\lambda^{(2d-1)/d}$ for $L>0$ . By Lemma 5.2, we have

$\lim_{\lambda\rightarrow}\sup_{0}\lambda^{4/d}n(v;T_{2})=\lim_{\lambda\rightarrow}\sup_{0}\lambda^{4/d}N(PW_{2}P>v^{2})\leq CL^{-4/(2d-1)}$

with some $C>0$ independent of $L$ . On the other hand, we have already shown in
step (2) that
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$\lim_{\lambda\rightarrow}\sup_{0}\lambda^{4/d}n(\mu;T_{1})\leq CL^{4}|\Gamma|$

with another $C>0$ . If we take $L=|\Gamma|^{-(2d-1)/8d}$ , then

$L^{4}|\Gamma|=L^{-4/(2d-1)}=|\Gamma|^{1/2d}$

and hence the lemma is also proved for the case $d\geq 2$ . $\square $

We shall prove Lemma 6.2. The proof is based on the min-max principle and
uses the following lemma due to Colin de Verdi\‘ere [2].

LEMMA 6.3. Let $Q(R)$ be a cube with side R. Let $H_{\gamma}$ be the Schrodinger
operator with constant magnetic field $\gamma>0$ . We consider the operator $H_{\gamma}$ over the
cube $Q(R)$ under zero Dirichlet boundary conditions and denote by $ N_{D}(H_{\gamma}<\mu$ ;
$Q(R)),$ $\mu>0$, the number of eigenvalues less that $\mu$ . Then

$N_{D}(H_{\gamma}<\mu;Q(R))\leq(2\pi)^{-1}\gamma R^{2}v(\mu/\gamma)$ ,

where
$v(\mu)=\#\{n\in N_{*} : 2n+1\leq\mu\}$ .

PROOF OF LEMMA 6.2. The proof is divided into three steps. Throughout the
proof, $\lambda>0$ is assumed to be small enough and we use the notation $|G|$ to denote
the measure of $G\subset R^{2}$ .

(1) Let $W(x)$ be as in the lemma. We define

$G_{j\lambda}=\{x\in R^{2} : W(x)>\lambda/(j+1)\}$ , $1\leq j\leq 3$ .

Then $G_{1\lambda}\subset G_{2\lambda}\subset G_{3\lambda}$ in the strict sense. We introduce a smooth non-negative
partition $\{\psi_{0}, \psi_{1}\}$ with the following properties: (1) $\psi_{0}(x;\lambda)^{2}+\psi_{1}(x;\lambda)^{2}=1$ on
$R^{2}$ . (2) $\psi_{0}$ is suported in $G_{2\lambda}$ and $\psi_{0}=1$ on $G_{1\lambda}$ . (3) $\psi_{0}$ and $\psi_{1}$ obey the estimate

$|\partial_{x}^{\alpha}\psi_{0}(x;\lambda)|+|\partial_{x}^{\alpha}\psi_{1}(x;\lambda)|\leq C_{\alpha}\lambda^{|\alpha|/d}$

for $C_{\alpha}$ independent of $\lambda$ . A simple calculation shows that

(6.2) $K_{0}=H(W)=H_{+}-W=\sum_{j=0,1}\psi_{j}(K_{0}-Y_{1})\psi_{j}$

in the form sense, where

$Y_{1}=Y_{1}(x;\lambda)=\sum_{j=0,1}|\nabla_{x}\psi_{j}(x;\lambda)|^{2}=0(\lambda^{2/d})$
, $\lambda\rightarrow 0$ .
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We define

$K_{1}=H(W_{1})=H_{+}-W_{1}$ , $W_{1}(x;\lambda)=W(x)+Y_{1}(x;\lambda)$

and use the notation $N_{D}(K_{1}<-\lambda;G)$ with the same meaning as in Lemma 6.3
for domain $G\subset R^{2}$ . By relation (6.2), the min-max principle implies that

$N(Ri<-\lambda)\leq N_{D}(K_{1}<-\lambda;G_{2\lambda})+N_{D}(K_{1}<-\lambda;\Omega_{\lambda})$ ,

where $\Omega_{\lambda}=R^{2}\backslash \overline{G}_{1\lambda}$ . Since $0<d<2$ by assumption, it follows that that $W_{1}$

$(x;\lambda)<\lambda$ for $x\in\Omega_{\lambda}$ and $Y_{1}(x;\lambda)<\lambda/2$ for $x\in G_{2\lambda}$ . This yields that $N_{D}$

$(K_{1}<-\lambda;\Omega_{\lambda})=0$ and

(6.3) $N(h<-\lambda)\leq N_{D}(K_{0}<-\lambda/2;G_{2\lambda})$ .

(2) We take $M\gg 1$ large enough and denote by $Q_{k}$ the cube with center at
$z_{k}$ and side $M$. We cover $G_{2\lambda}$ with a family of such cubes

$G_{2\lambda}\subset\bigcup_{1\leq k\leq l}Q_{k}$ , $l=l_{\lambda}$ .

This can be done in such a way that $\bigcup_{1\leq k\leq l}Q_{k}\subset G_{3\lambda}$ and

(6.4) $\sum_{k=1}^{l}|Q_{k}|\leq 2|G_{3\lambda}|$ .

We further introduce a non-negative smooth partition $\{\varphi_{k}\}_{k=1}^{l}$ subject to the
covering above. The partition has the following properties: (1) $\sum_{k=1}^{l}\varphi_{k}(x)^{2}=1$

on $G_{2\lambda}$ . (2) $\varphi_{k}$ is supported in $Q_{k}$ and obeys $|\partial_{x}^{\alpha}\varphi_{k}(x)|\leq C_{\alpha}M^{-|\alpha|}$ for $C_{\alpha}$ in-
dependent of $M$. Then we again obtain the form equality

$K_{4}=\sum_{k=1}^{l}\varphi_{k}(h-Y_{2})\varphi_{k}$

in $C_{0}^{\infty}(G_{2\lambda})$ , where

$Y_{2}(x)=\sum_{k=1}^{l}|\nabla_{X}\varphi_{k}(x)|^{2}\leq CM^{-2}$ .

Hence we have

(6.5) $N_{D}(K_{0}<-\lambda/2;G_{2\lambda})\leq\sum_{k=1}^{l}N_{D}(K_{2}<-\lambda/2;Q_{k})$ ,

where

$K_{2}=H(W_{2})=H_{+}-W_{2}$ , $W_{2}(x)=W(x)+Y_{2}(x)$ .
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(3) We now expand the magnetic potential $a_{j}(x)$ as

$a_{j}(x)=a_{j}(z_{k})+\nabla_{x}a_{j}(z_{k})\cdot(x-z_{k})+r_{jk}(x)$ , $1\leq j\leq 2$ ,

in $Q_{k}$ , where the remainder term $r_{jk}$ satisfies

$|r_{jk}(x)|\leq C\langle z_{k}\rangle^{-1}M^{2}$ , $x\in Q_{k}$ ,

for $C$ independent of $M$ and $k$. We set

$\Lambda_{jk}=-i\partial_{j}-(a_{j}-r_{jk})=\Pi_{j}+r_{jk}$ , $1\leq j\leq 2$ ,

and define $H_{k}=\Lambda_{1k}^{2}+\Lambda_{2k}^{2}$ as an operator acting on $L^{2}(Q_{k})$ . This operator has
$b_{k}=b(z_{k})>0$ as a constant magnetic field and satisfies the form inequality

(6.6) $H_{k}/2-qk\leq\Pi_{1}^{2}+\Pi_{2}^{2}$

in $C_{0}^{\infty}(Q_{k})$ , where $qk(x)=r_{1k}(x)^{2}+r_{2k}(x)^{2}$ . We may assume that $|z_{k}|\rightarrow\infty$ as
$ k\rightarrow\infty$ . Thus, if we choose $M$ large enough, then there exists $k_{M}\gg 1$ independent
of $\lambda$ such that

$2(b(x)+W_{2}(x)+qk(x)-\lambda/2)<5b_{k}/2$ , $x\in Q_{k}$ ,

for $k>k_{M}$ . Hence it follows from (6.6) that

$N_{D}(K_{2}<-\lambda/2;Q_{k})\leq N_{D}(H_{k}<5b_{k}/2;Q_{k})$

for $k$ as above. We now use Lemma 6.3 to obtain that

$N_{D}(K_{2}<-\lambda/2;Q_{k})\leq(2\pi)^{-1}b_{k}|Q_{k}|$ .

This, together with $(6.3)\sim(6.5)$ , yields that

$N(K_{0}<-\lambda)\leq 2(2\pi)^{-1}\beta|G_{3\lambda}|+C$

for $C$ independent of $\lambda$ , where $\beta=\sup b(r)$ . Since

$\lim_{\lambda\rightarrow}\sup_{0}\lambda^{2/d}|G_{3\lambda}|\leq C\int_{0}^{2\pi}\chi(\theta)^{2/d}d\theta$

for some $C>0$ , the proof is now complete. $\square $

7. Proof of Theorem 4.1

In this section we prove Theorem 4.1. The proof further uses the following
two lemmas, which are proved after completing the proof of Theorem 4.1.
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LEMMA 7.1. Assume that $W(x)$ satisfies (V.1) $\sim$ (V.3). Let $W_{j}(x),$ $1\leq j\leq 2$ ,
be defined by $W_{j}=\chi(\theta;\Gamma_{j})W(x)$ for open intervals $\Gamma_{j}\subset[0,2\pi]$ . If $\Gamma_{1}\cap\Gamma_{2}=\emptyset$ ,
then

$\lim_{\lambda\rightarrow 0}\lambda^{2/d}n(\lambda;W_{1}^{1/2}PW_{2}^{1/2})=0$ .

LEMMA 7.2. Assume that $W(r)$ is spherically symmetric and satisfies
(V.1) – (V.3). Let $\Gamma_{L}=(0,2\pi/L)$ for interger $L$ and let $W_{L}(x)$ be defined by
$W_{L}=\chi(\theta;\Gamma_{L})W(r)$ . Then

$n(\lambda;W_{L}^{1/2}PW_{L}^{1/2})=Z(\lambda;W_{L})+o(\lambda^{-2/d})$ , $\lambda\rightarrow 0$ ,

where

$Z(\lambda;W_{L})=(2\pi)^{-1}\int_{W_{L}(x)>\lambda}b(r)dx=Z(\lambda;W)/L$ .

PROOF OF THEOREM 4.1. We prove only the upper bound

(7.1) $\lim_{\lambda\rightarrow}\sup_{0}N(PWP>\lambda)/Z(\lambda:W)\leq 1$ .

A sin$\dot{u}lar$ argument shows the lower bound

$\lim_{\lambda\rightarrow}\inf_{0}N(PWP>\lambda)/Z(\lambda:W)\geq 1$ .

Let $\Gamma_{jL}=(2(j-1)\pi/L, 2j\pi/L),$ $1\leq j\leq L$, for integer $L\gg 1$ and let $W_{jL}(x)=$

$\chi(\theta;\Gamma_{jL})W(x)$ . We further define

$T_{1L}=\sum_{j=1}^{L}W_{jL}^{\iota/2}PW_{jL}^{1/2}$ , $T_{2L}=\sum_{1\leq j,k\leq Lj\neq k}W_{\dot{j}L}^{1/2}PW_{kL}^{1/2}$ .

Then we have

$N(PWP>\lambda)=n(\lambda;W^{1/2}PW^{1/2})=n(\lambda;T_{1L}+T_{2L})$ .

By Proposition 2.1, it follows from Lemma 7.1 that

$\lim_{\lambda\rightarrow 0}\lambda^{2/d}n(\lambda;T_{2L})=0$ .

Let $F_{jL}=W_{jL}^{1/2}PW_{jL}^{1/2}$ and let $S_{jL}=(0, \infty)\times\Gamma_{jL}$ be the sector generated by $\Gamma_{jL}$ .
Then $F_{jL}$ can be regarded as an operator from $L^{2}(S_{jL})$ into itself and hence

$n(\lambda;T_{1L})=\sum_{j=1}^{L}n(\lambda;F_{jL})$ .
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Thus we obtain again by Proposition 2.1 that

$\lim_{\lambda\rightarrow}\sup_{0}N(PWP>\lambda)/Z(\lambda;W)\leq\lim_{L\rightarrow\infty}\lim_{\lambda\rightarrow 0}\sup\sum_{j=1}^{L}n((1-1/L)\lambda;F_{jL})/Z(\lambda;W)$ .

We now write $W(r, \theta)$ for $W(x)$ and denote by $\theta_{jL}=(2j-1)\pi/L$ the midpoint of
interval $\Gamma_{jL}$ . We set $\tilde{W}_{jL}(r)=W(r, \theta_{jL})$ . We further define the operator $E_{jL}$ as
$E_{jL}=U_{jL}^{1/2}PU_{jL}^{1/2}$ with $U_{jL}(x)=\chi(\theta;\Gamma_{jL})\tilde{W}_{jL}(r)$ . Then it follows from (V.1) and
(V.2) that

$W_{jL}(x)\leq(1+cL^{-1})U_{jL}(x)$ , $x\in S_{jL}$ ,

for some $c>0$ independent of $L$ and hence

$n((1-1/L)\lambda;F_{jL})\leq n((1-\epsilon_{L})\lambda;E_{jL})$

for some $\epsilon_{L}>0$ , where $\epsilon_{L}$ satisfies that $\epsilon_{L}\rightarrow 0$ as $ L\rightarrow\infty$ . By Lemma 7.2, we have

$n((1-\epsilon_{L})\lambda;E_{jL})=Z((1-\epsilon^{L})\lambda;U_{jL})+o(\lambda^{-2/d})$

and also it follows from (V.2) and (V.3) that

$\sum_{j=1}^{L}Z((1-\epsilon_{L})\lambda;U_{jL})=Z(\lambda;W)(1+o(1))$ , $ L\rightarrow\infty$ ,

uniformly in $\lambda$ small enough. Thus (7.1) is obtained and the proof of the theorem
is complete. $\square $

PROOF OF LEMMA 7.1. If the distance $d(\Gamma_{1}, \Gamma_{2})>0$ is strictly positive, then it
follows from Lemma 3.2 that

$\lim_{\lambda\rightarrow 0}\lambda^{\sigma}n(\lambda;W_{1}^{1/2}PW_{2}^{1/2})=0$

for any $\sigma>0$ small enough. If $d(\Gamma_{1}, \Gamma_{2})=0$ , then the lemma is proved by
approximation. Let $\Gamma_{\epsilon}$ be an interval such that $\Gamma_{\epsilon}\subset\Gamma_{1}$ with $d(\Gamma_{\epsilon}, \Gamma_{2})>0$ and

$|\Sigma_{\epsilon}|=|\Gamma_{1}\backslash \Gamma_{\epsilon}|\leq\epsilon$

for any $\epsilon>0$ small enough. We decompopse $W_{1}$ into

$W_{1}(x)=\chi(\theta;\Sigma_{e})W_{1}(x)+\chi(\theta;\Gamma_{\epsilon})W_{1}(x)=U_{1\epsilon}(x)+U_{2\epsilon}(x)$ .

It follows again from Lemma 3.2 that

$\lim_{\lambda\rightarrow 0}\lambda^{2/d}n(\lambda;U_{2\epsilon}^{1/2}PW_{2}^{1/2})=0$
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and also we have by Lemma 6.1 that

$\lim_{\lambda\rightarrow}\sup_{0}\lambda^{2/d}n(\lambda;U_{1\epsilon}^{1/2}PW_{2}^{1/2})=o(1)$ , $\epsilon\rightarrow 0$ .

This can be shown by repeating the same argument as used in step (3) of the
proof of Lemma 6.1. Thus the proof of the lemma is complete. $\square $

PROOF OF LEMMA 7.2. The proof is done in almost the same way as in the
proof of Theorem 4.1, so we give only a sketch for a proof. We use the notations
$S_{jL},$ $F_{jL}$ and $T_{1L}$ with the meanings ascribed in the proof of Theorem 4.1. Since
both $b(r)$ and $W(r)$ are spherically symmetric, $F_{jL}$ : $L^{2}(S_{jL})\rightarrow L^{2}(S_{jL})$ are all
unitarily equivalent to the operator $F_{L}=W_{L}^{1/2}PW_{L}^{1/2}$ and hence

$n(\lambda;T_{1L})=\sum_{j=1}^{L}n(\lambda;F_{jL})=Ln(\lambda;F_{L})$ .

We repeat the same argument as used in the proof of Theorem 4.1. Then we
obtain by Lemmas 5.1 and 7.1 that

$\lim_{\lambda\rightarrow}\sup_{0}n(\lambda;T_{1L})/Z(\lambda;W)\leq\lim_{\epsilon\downarrow 0}\lim_{\lambda\rightarrow}\sup_{0}N(PWP>(1-\epsilon)\lambda)/Z(\lambda;W)=1$ .

This implies that

$\lim_{\lambda\rightarrow}\sup_{0}n(\lambda;F_{L})/Z(\lambda;W)\leq 1/L$ .

Similarly we can show that

$\lim_{\lambda\rightarrow}\inf_{0}n(\lambda;F_{L})/Z(\lambda;W)\geq 1/L$ .

Thus the proof is complete. $\square $

8. Proof of Proposition 3.1

In this section we prove Proposition 3.1, which has played a basic role in the
proof of Theorem 4.1.

PROOF OF PROPOSITION 3.1. The proof is divided into several steps. We begin
by recalling the definition (3.6)

$P(x,y)=\exp(-\eta(r, r^{\prime}))\sum_{m=0}^{\infty}\rho^{m}\exp(im(\theta-\theta^{\prime}))/e_{m}$ ,



Asymptotic distribution of negative eigenvalues 299

where $x=(r, \theta),$ $y=(r^{\prime}, \theta^{\prime}),$ $\rho=rr^{\prime}$ and $\eta(r, r^{\prime})=\varphi(r)+\varphi(r^{\prime})$ . The function $\varphi(r)$

has the properties in (3.3) and hence $\eta(r, r^{\prime})$ satisfies

$\eta(r, r^{\prime})\geq c(r+r^{\prime})^{2}$

for some $c>0$ . Throughout the proof, we assume that $r+r‘>1$ .
(1) Assume that $\rho\leq K$ for $K\gg 1$ fixed. Then we have

$|P(x,y)|\leq\exp(-\eta(r, r^{\prime}))\sum_{m=0}^{\infty}K^{m}/e_{m}$ .

It follows from Lemma 5.3 that $\sum K^{m}/e_{m}<\infty$ . Thus $P(x,y)$ is shown to be
rapidly deceasing

$P(x,y)=O((r+r^{\prime})^{-N})$ , $N\gg 1$ ,

provided that $\rho\leq K$ .
(2) Next we assume that $\rho>K\gg 1$ . We introduce a smooth nonnegative cut-

off function $\psi\in C_{0}^{\infty}([0, \infty))$ such that $\psi(\sigma)=1$ for $0\leq\sigma\leq 1$ and $\psi(\sigma)=0$ for
$\sigma\geq 2$ . We fix $0<\delta\ll 1$ small enough and define

$\psi_{1}(\sigma;\rho)=\psi(\sigma/\delta\rho)$ , $\psi_{2}(\sigma;\rho)=\psi(\delta\sigma/\rho)-\psi(\sigma/\delta\rho)$ , $\psi_{3}(\sigma;\rho)=1-\psi(\delta\sigma/\rho)$ .

Then $P(x,y)$ is decomposed into the sum $P(x,y)=\sum_{j^{3}=1}P_{j}(x,y)$ , where

$P_{j}(x,y)=\exp(-\eta(r, r^{\prime}))\sum_{m=0}^{\infty}\psi_{j}(m;\rho)\rho^{m}\exp(im(\theta-\theta^{\prime}))/e_{m}$ .

We shall show that each function $P_{j}(x,y)$ has rapidly decreasing property.
(3) We first consider $P_{1}(x,y)$ and $P_{3}(x,y)$ . By definition, $P_{1}(x,y)$ obeys the

estimate

$|P_{1}(x,y)|\leq\exp(-\eta(r, r^{\prime}))\sum_{m=0}^{[2\delta p]}\rho^{m}/e_{m}$ ,

where $[]$ denotes the Gauss notation. By Lemma 5.3, we have

$\rho^{m}/e_{m}\leq cm^{-1/2}e^{m(\log E\rho-\log m)}$ , $m\geq 1$ .

If we take $\delta$ so small that $[2\delta\rho]<E\rho/e$, then $m(\log E\rho-\log m)$ is monotone
increasing in $m,$ $1\leq m\leq[2\delta\rho]$ . Since

$[2\delta\rho](\log E\rho-\log[2\delta p])=[2\delta\rho]\log Ep/[2\delta\rho]=o(1)\rho$ , $\delta\rightarrow 0$ ,
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uniformly in $\rho>K$ , this yields that $P_{1}(x,y)$ is rapidly deceasing. It is also easy to
prove that $P_{3}(x,y)$ is rapidly deceasing. We may assume that $[p/\delta]>2E\rho$ . Then
it follows again from Lemma 5.3 that

$p^{m}/e_{m}\leq cm^{-1/2}(E\rho/m)^{m}\leq 2^{-m}$ , $m\geq[p/\delta]$ .

This shows that $P_{3}(x,y)$ is also rapidly deceasing.
(4) We shall prove that $P_{2}(x,y)$ is rapidly deceasing. The proof uses the

Poisson summation formula. Recall the definition (5.5). The function $e(\sigma)$ is
defined by

$e(\sigma)=2\pi f^{+1}\int_{0}^{\infty}t\exp(-2\sigma g(t;\sigma))dt$ , $\sigma\geq 1$ ,

where

$g(t;\sigma)=\varphi(\sigma^{1/2}t)/\sigma-\log t$ .

By definition, $\psi_{2}(\sigma;\rho)$ has support in $(\delta p, 2p/\delta)$ . If we take $ K>1/\delta$ large enough,
then $\psi_{2}(\sigma;\rho)$ vanishes over the interval $(-\infty, 1)$ for $\rho>K$ . Thus

$q(\sigma;p)=\psi_{2}(\sigma;\rho)\rho^{\sigma}e^{i\sigma(\theta-\theta^{\prime})}/e(\sigma)$

can be defined as a function of the Schwartz class over $(-\infty, \infty)$ and $P_{2}(x,y)$ is
represented as

$P_{2}(x,y)=\exp(-\eta(r, r^{\prime}))\sum_{m=-\infty}^{\infty}q(m;\rho)$ .

Hence the Poisson summation formula yields

$P_{2}(x,y)=(2\pi)^{1/2}\exp(-\eta(r, r^{\prime}))\sum_{m=-\infty}^{\infty}\hat{q}(2m\pi;p)$ ,

where

$\hat{q}(2m\pi;\rho)=\int e^{-i2m\pi\sigma}q(\sigma;\rho)d\sigma$ .

According to Lemma 5.3, $1/e(\sigma)$ takes the form

$1/e(\sigma)=G(\sigma)\sigma^{-1/2}e^{-\sigma\log\sigma}\exp(2\sigma g(\tau(\sigma);\sigma))$ ,

where $\tau(\sigma)$ is the unique root to equation (5.6). We now rewrite $\hat{q}(2m\pi;p)$ as

$\hat{q}(2m\pi;p)=\int e^{-\sigma u(\sigma;\rho)}\exp(i\sigma(\theta-\theta^{\prime}-2m\pi))v(\sigma;p)d\sigma$ ,
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where

$u(\sigma;\rho)=\log\sigma/\rho-2\varphi(\sigma^{1/2}\tau(\sigma))/\sigma+2\log\tau(\sigma)$ ,

$v(\sigma;\rho)=\sigma^{-1/2}\psi_{2}(\sigma;p)G(\sigma)$ .

We further make a change of variable $\sigma\rightarrow\rho s$ to obtain that

$\hat{q}(2m\pi;\rho)=\int e^{-\rho f(s;\rho)}\exp(i\rho(\theta-\theta^{\prime}-2m\pi)s)w(s;\rho)ds$ ,

where

$f(s;\rho)=su(\rho s;p)=s\log s-2\varphi((\rho s)^{1/2}\tau(\rho s))/\rho+2s\log\tau(\rho s)$ ,

$w(s;\rho)=\rho v(ps;p)=\rho^{1/2}s^{-1/2}\psi_{2}(\rho s;\rho)G(\rho s)$ .

The function $w(s;\rho)$ has support in the interval $(\delta, 2/\delta)$ and satisfies

$|(d/ds)^{k}w(s;\rho)|\leq C_{k}\rho^{1/2}$

for $C_{k}$ independent of $p$ . We look at the stationary point of $f(s;\rho)$ . Since

$\varphi^{\prime}((\rho s)^{1/2}\tau(\rho s))=(ps)^{1/2}/\tau(\rho s)$

by (5.6), $f^{\prime}(s;\rho)$ is calculated as

(8.1) $f^{\prime}(s;\rho)=\log s+2\log\tau(\rho s)=\log s\tau(\rho s)^{2}$ .

Hence the stationary point $s_{\rho}$ is given as a solution to equation

(8.2) $s_{p}\tau(\rho s_{\rho})^{2}=1$ .

The equation above has a unique solution. In fact, we differentiate the both sides
of (5.6)

$a(\rho^{1/2}s^{1/2}\tau(\rho s))=\rho s$

with respect to $s$ . Since $a^{\prime}(r)=rb(r)$ , we obtain

(8.3) $b(\rho^{1/2}s^{1/2}\tau(ps))(s\tau(\rho s)^{2})^{\prime}=2$ .

This implies that $s\tau(ps)^{2}$ is a monotone increasing function. Thus (8.2) has a
unique solution. We calculate the values of $f(s;\rho)$ and $f^{\prime\prime}(s;\rho)$ at stationary point
$s_{p}$ . It follows from relations $(8.1)\sim(8.3)$ that
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$f^{\prime\prime}(s_{p};\rho)=2/b(\rho^{1/2})>0$

and also we have $ f(s_{\rho};\rho)=-2\varphi(\rho^{1/2})/\rho$ by a simple calculation. Hence $f(s;\rho)$

attains the minimum $-2\varphi(\rho^{1/2})/\rho$ at $s=s_{p}$ . We asseIt that

$\exp(-\eta(r, r^{\prime})-\rho f(s_{\rho};\rho))=\exp(-\varphi(r)-\varphi(r^{\prime})+2\varphi((rr^{\prime})^{1/2}))\leq 1$ .

To see this, we set $F(t)=\varphi(e^{t})$ . Then we have

$\varphi(r)+\varphi(r^{\prime})-2\varphi((rr^{\prime})^{1/2})=F(t)+F(t^{\prime})-2F((t+t^{\prime})/2)$

with $t=\log r$ and $t^{\prime}=\log r^{\prime}$ . Sinoe $F^{\prime\prime}(t)=e^{2t}b(e^{t})>0,$ $F(t)$ is a convex function
and hence the above assertion follows at once. By assumption, $\theta\neq\theta^{\prime}$ , so that
$\theta-\theta^{\prime}-2m\pi\neq 0$ for any integer $m\in Z$ . Thus we obtain by repeated use of
partial integration that

$\hat{q}(2m\pi;\rho)=(1+|m|)^{-N}O(\rho^{-N})$ , $\rho\rightarrow\infty$ ,

for any $N\gg 1$ . This proves that $P_{2}(x,y)$ is rapidly decreasing when
$1/c\leq\gamma^{\prime}/r\leq c,$ $c>1$ . If $r\gg r^{\prime}$ or $r^{\prime}\gg r$, then

$\exp(-\varphi(r)-\varphi(r^{\prime})+2\varphi((rr^{\prime})^{1/2}))=O((r+r^{\prime})^{-N})$ .

Hence $P_{2}(x,y)$ has also rapidly decreasing property in such a case.
We can show by use of the same argument as above that $\partial_{X}^{\alpha}\mathscr{J}_{y^{P}}(x,y)$ is also

rapidly decreasing. Thus the proof of the proposition is now complete. $\square $
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