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ON TUBES OF NONCONSTANT RADIUS

By

Naoyuki KOIKE

Abstract. One purpose of this paper is to obtain formulae for the
shape operators of tubes, whose radius is not necessarily constant,
over Riemannian submanifolds. Another purpose of this paper is
to define the notion of the natural lift of a distribution on a Rie-
mannian submanifold to a tube over the submanifold and investigate
its integrability. Also, we shall construct models of certain kind
of Riemannian hypersuface in terms of the formulae for the shape
operators of tubes.

Introduction.

Tubes of constant radius over Riemannian submanifolds have been studied
by many geometricians. For example, T.E. Cecil and P.]. Ryan obtained
formulae for their shape operators (cf. [2]). In this paper, we will investigate
tubes of which radius is not necessarily constant. For its purpose, in §1, we
will define the notion of the natural lift of a tangent vector field on a Rieman-
nian submanifold to a tube over the submanifold and investigate its properties.
In §2, we will obtain formulae for the shape operators of tubes over a Rie-
mannian submanifold in an Euclidean space, which are generalizations of some
of those given by T.E. Cecil and P.]. Ryan. In §3, we will define the notion
of the natural lift of a distribution on a Riemannian submanifold to a tube
over the submanifold and investigate its integrability. As an application of
results in §2, 3, we will construct soft models of Riemannian hypersurfaces
in an Euclidean space of which the number of mutually distinct principal cur-
vatures is constant on the hypersurface or a dense subset of the hypersurface
(see §4).

§1. Preliminaries.

Throughout this paper, unless otherwise mentioned, we assume that all
objects are smooth and all manifolds are connected. Let M” be an n-dimensional
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Riemannian manifold isometrically immersed by an immersion f into an (n+47)-
dimensional Riemannian manifold M»*". Then we call (M™*, f) a Riemannian
submanifold in M™*7. Especially, in case of r=1, we call it a Riemannian
hypersurface in M™*7.  Denote by p the bundle projection of the normal
bundle T*M of (M, f). Set W:= {EeT*Mlaé?{p(e*(E))}, where é;{p is the ex-
ponential map of M and ¢* is the natural imbedding of T+M into TM. 1t is
clear that W is a neighbourhood of 0O-section in T*M. Define a map exp*: W
—M by exp*:=expect. For a positive function ¢ on M, set N.(M):={¢c
TM| & <e(p®)} and ¢t (M):=dN.(M), where |&]| is the norm of & and dN,(M)
is the boundary of N.(M). If t.(M)cW, then we set f.:=exp*|,w>. Denote
by F(M, f) the focal set of (M, f). If ¢ satisfies exp*(N.MNNF(M, /)=,
then (t.(M), f.) is a Riemannian hypersurface in M™7", where we give t.(M)
the metric induced from that of M by f.. This hypersurface is called the
tube of radius ¢ over (M, f). In the sequel, we shall call it an e-tube for
simplicity. We shall suppress fx, fex, ¢t and the natural imbedding ¢; of
T+*t.(M) into TM. Denote by V (resp. V) the Levi-Civita connection of M
(resp. A7I) and V*+ the normal connection of (M, f). Also, denote by A and A
the shape operators of (M, f) and (t.(M), f.), respectively. Let @ be a hori-
zontal distribution on 7*M induced from V+ and denote by XZ the horizontal
lift of X&T M to & with respect to Q.

Xe

L
LEMMA L1 For XeT oM EStM), Xk+ o

to t(M).

§(e&T(T*M)) is tangent

ProoF. Let x(t) (¢<[0, 1]) be an integral curve of X&T o, M, &) (t<[0,1])
a normal vector field along the curve x(t) given by parallel translating § along
the curve x(¢) with respect to V+ and %(t) (t<[0, 1]) a curve in ¢t,(M) defined
by %(t):= E(P(cf(t)) . Xe

1l sh =XE4+—=
e(p(®) @), We shall show £(0)=X¢+ o l’(&))s Denote by #(0)q (resp.

%(0)y) the Q-component (resp. the V-component) of %(0) with respect to the

decomposition T(T*M)=Q®V, where V is the tangent bundle of fibres of T+ M.
Xe

e(p(§)
=X and hence £(0)q=X§. Let d:[0, 1IX[0, 1J-T*M be the rectangle with

respect to Q and V of which diagonal is %(t), that is, for each s<[0, 1],
0.5(t—d(, s)) is a Q-curve, for each t<[0, 1], 9,.(s—0d(t, s)) is a V-curve and

at, H)=%@) (¢<[0, 1]). It is clear that #(0)y=4,.(0) and &,. (s)=s~(e‘?—l()%§)—;)$. There-

We have only to show x(0),=X# and £(0)y=——7x36. Easily we have pyi(0)

fore, we have %(0)y=———=¢&. This completes the proof. =

(P(E))
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Now we shall define new terminologies.

Xe
(p(g))é (eT:(t(M))) the

natural lift of X to & and denote it by Xve. Also, for YelI'(TM), we call
V(eI (T(t.(M))) defined by ¥(€):= Y (p@): for £<t.(M) the natural lift of Y.

DEFINITION 1.1. For X&T,eM, we call Xi+

Denote by ﬁa the parallel translation from a(0) to a(l) along a curve a in
M with respect to V, and Py the parallel translation from B(0) to B(1) along a
curve 8 in M with respect to V*. For é=7*M and X&T ,yM, let J¢ x be
the Jacobi field along 7 with J x(0)=X and Ji x(0)=—A.X, where 7; is a
geodesic in M with 7:(0)=p(§) and 7:(0)=¢, and Jg,X:ﬁféjf,X.

LEMMA 1.2. Let é=t(M) and XET,,(@M. Then

fexXe=J e x(1) + = Te(l)

&( 1)(5))
holds.

ProOF. From the definition of X, and f., we have

Xe
fexXe=exp(XEH) + - T6) expx(§)

Xe
e(p(&)
Hence we have only to show expi(Xf)=/: x(1). Let a(®) ¢<[0, 1]) be a suf-
ficiently small curve in M with a(0)=X, B (¢<[0, 1]) a curve in T+M defined
by BO)=Pz ., ,35 and 8: [0, 11X [0, 1]—M a map defined by (¢, s) 1=exp*(sB({)).
Since ,@(O) £, we have 5.,0)= exp*(ﬁ(O)) exp#(X#). On the other hand, since
each curve d.. is a geodesic in M, J(s):=6.5(0) is a Jacobi field along 7. It is
clear that J(0)=X. Moreover, we have

=expx(X§) + ——== 7:(1).

J(0)=V:] =3 9

s 0
=Va/asé-s'

~

0
:vxa_S:_AEX

0, 0)

because of V}{%zO. Thus it follows from the uniqueness of the Jacobi field

that =/, x. Therefore, we obtain exp4(X£)=4.,(0)=/1)=/., x(1). This com-
pletes the proof. m
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........................

fe(te(M))

g
focal point
Fig. 1.1.

Easily we have the following lemma.

LEMMA 1.3. For X,YeT, oM Est(M)), <X. Vo=<UexQ), Jer)>+
(Xe)Y &) holds.

PROOF. By we have

<X5, )75>=<fs*)?e, fs*?$>

Xe . Ye
T D=2 d(D), Je (D)t 1>.
(Je.x+ 574D, TerW s oD
Since both J. x(0) and J% x(0) are orthogonal to 7:(0), J¢ x(1) is orthogonal to
7¢(1). Similarly, J¢y(1) is orthogonal to 7¢(1). Hence we obtain the desired

equality.
In the case where M is flat, we have the following lemma.

LEMMA 1.4. For XeTpeoM ESt(M)), Je x(1)=PLr (X — A:X) holds.

PROOF. Since M is flat, J¢x=0 holds. By solving JZ x=0 under the
initial conditions J;, x(0)=X and J¢ x(0)=— A:X, we have J, X(t)=ﬁry[o, (X —tA:X)
and hence J; x()=P (X—A4:X). m

From this lemma, we have the following result.

PROPOSITION 1.5. Assume that M is flat. For X&T pe;M and Y €Tt (M)
ND(PE)) EStdM)), <X, Y>=0 holds.
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From and 1.4, we obtain the following result.

PROPOSITION 1.6. Assume that M is flat. Let X, YET oM such that
(X,Y>=0. If either X or Y is a eigenvector of A and either X or Y is
orthogonal to grad e, then <)?5, Ye>=0 holds.

§2. Shape operators of tubes.

In this section, we shall investigate the shape operator of the e-tube over
an n-dimensional Riemannian submanifold M in an (n+7)-dimensional Euclidean
space R**". For its purpose, we shall calculate the inward unit normal vector
field of the e-tube. In the sequal, we identify T.R™*" with R™*" under the
natural correspondence for every x&R"™7. Define EcT(f*TR™*") by

E(E)::——T% for &<t.(M), where f*TR™*" is the bundle induced from

TR by f.. Let {A,> - >21,} be the set of all the mutually distinct eigen-
values of A: (§=t.(M)). Note that a(p(&))<—|ﬁl/lélv,

1, ---, g) because exp*(N. MNZNF(M, f)=¢@ and the ambient space is R™*7,
Then we denote by X;, the Ker(As—A,I)-component of X (ET M) with
respect to the decomposition T, M=Ker (A:—A,1)D --- DKer (A:—2,1) (=1,
e g).

that is, |4;1<1l (=

LEMMA 2.1. The inward unit normal vector field E of (t.(M), f.) is given by

ég_ggf_ﬂ%ﬁny +E@®)
E@)=—= 1

¢ |grade(p(&))1;1®
Ji+3 a=i)°

for &t (M).

Proor. It is clear that Tfsce)R””:Tp(@M@Te(te(M)f\p“(p(é))@(E(&))
(orthogonal direct sum), where (E(&)> is the l-dimensional subspace spanned

by E(&). Hence E(&) can be expressed as E(§)= H};igigg% for Ye

TprexM and ZeT(.(M)Np ' (p©&)). It follows from T . (M)Np ' (p(E)) <
Te(t.(M)) that

2,2y  _
Y+Z+E®|

that is, Z=0. Take any X&T p¢,M. It follows from and 1.4 that

E®), Z>= 0,

2.1 fesxXe=X—AX—(Xe)E®).

Hence we have
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Y +EE), X—AX—(X)E©)>

:<Y,X—A5X>—Xe
Y +E@)|
_ ¥, X—AX)—<grad (p(§)), X>
Y +E©&)|
_ <Y —AY —grad e(p(@), X>
Y +E@®)]

=0.
From the arbitrarity of X, Y —A.Y —grad (p(£))=0 is deduced. Therefore, we
obtain Y;i:g%j;@)“, that is, Y = éﬂ% After all we obtain

3, 8rade®ic 4 By
E®=—7 ’

Tgrad €@ 1*"
I+ 2 =gy

For X=R™*", denote by Xr, (resp. X,,) the T.M-component (resp. the
T ;M-component) of X with respect to the decomposition R "=T.M®PT:iM
and XTe (resp. X Le) the T.(t.(M))-component (resp. the T&(t.(M))-component) of
X with respect to the decomposition R™7T=T (t.(M)PT#t.(M)). Define E=

A E(S)T &
% n+r o— __ 277 Pt
JETR™") by E):= E®, o] for &=t (M).

Fig. 2.1.

For the shape operator A° of the e-tube, we have the following formulae.
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THEOREM 2.2. (i) For X&T (t.(M)Np~'(p&))), the following equality holds :
1 1 R
2.2 Ag e X= X—(NxE .
(ii) Let 2 be an eigenvalue of A (§<t.(M)). Then, for X&Ker (A—1l),
the following equality holds :

& 1 A &~ = 5 o
Ao o= sp@aD KX 9P~ Tl

(2.3)

Proor. (i) Let &@) (¢<[0, 1]) be a curve in t.(M) with é(O):X. Then
we have

~ E&@t
ApX =~ E=EED)

t=0

d 1 o "
=—— E E
v sa B+ e,

_dIEED)Y  _E@+E®
dt =21+ E®1%

1
V1+[E@®dt
_dIEE@)® E®+E®
dt le=02/(1 +|E©)P)
R S
V1+|E@®)*
It follows from this equality and E(&)+E(@E)=TE(¢.(M)) that
1
VI+IE@)

(E(E(t))—I-E(S(t))) | =0

VxE4+V3E).

(2.4) Ag e X= (Vx +VXE)T$

On the other hand, we have

5 g dEC®)| _ L@
2.5) VeE=—r""| _ =~ dt 1801
}__é_
[&]  dt
_ 1

t=0 <dt|E(t)|

1 dIEw)
AP = PEON et T 5 |, f

&I&

1€]

B (peX)e
= e(p(&))“ 2=y E®

1 —
== @) K DX (X EE).
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Since pxX=0, VXE~——(I)(—€))X holds. Therefore, we obtain

1 1 ~
AoX = G m@ T

(ii) It is clear that the same equalities as [(2.4) and [(2.5) hold :
1
V1+|E@®)?

Ai‘(e))?e (Vi E+V2 E)Te

and
= 1

erE:‘—m {Xe— ps X+ {(psXe)e} E(G)}.

Hence, since psX.=X, we have

e 1 1
Aok e @ KX EIEO I},
Moreover, since X= I—l——l {)?ﬁ—(Xs)E(E)} by and A.X=AiX, we obtain

Apeor X Ret XOE@)—xek},

T Vit E(s) | 2{ s(p(S))(Z 1)
_ 1 [
T VL E@) L G(P(E))(Z—l)

(ReHXOE@r)—TaeBre} .

In the case where ¢ is constant, we have the following result.

COROLLARY 2.3. (i) For X eT(t.(M)N\p~(p&)), the following equality

holds :
1

A%(e)X: ?X .
(ii) Let 2 be an eigenvalue of A; (§&t.(M)). Then, for X<Ker (A.—Al),
the following equality holds :
i o~

A;J(E)XE: ‘;(XTI) X

PROOF. Since ¢ is constant, £=0 holds. Hence, the statements (i) and (ii)
are deduced from the previous theorem. m

REMARK. The results in this corollary are stated in [2, Theorem 3.2 of
P 131].

Let 7 be a function on ¢,(M) defined by assigning the number of the mutually
distinct eigenvalues of A; to each é<t.(M) and G,,(M) the Grassmann bundle
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of m-planes over M. It is easy to show the following lemma.

LEMMA 2.4. Assume that t is constant on an open subset U of t.(M).

(i) Let 2; (i=1, ---, @) be functions on U such that {2,(§)> -+ >A,(E)} is the
set of all mutually distinct eigenvalues of A for every §€U. Then 4, is a
smooth function and the multiplicity of the eigenvalue A,(§) of Ag is independent
of é€U (=1, -, g),

(ii) Let D;, be a section of (p|u)*Gm, (M) defined by D; (§):= Ker (A4,—4:;&)1)
for E€U (1=1, ---, g), where m;=dim Ker(A;—2,8)I). Then D;, is a smooth
section of (plv)*Gm, (M) (=1, -+, g).

Let Uct.(M). For @=I'(p|)*(T*MRQTM)), denote by @ an element of
I'(plo)*(T*R™*"QTR™")) defined by

{ DEHX XeTpeM)

POX =
(XETé(e)M)

for £&=U. Note that @ is regarded as a (R™*")*QR"*"-valued function on U.
Denote by the same symbol V the connection on (p|p)*(T*R**"@T R™*") induced
from the Levi-Civita conmection ¥ of R***. Then it is clear that V;®=

ﬁ%&;(f)) |t=o holds for every X<TU, where &) (t<[0, 1]) is a curve in U

with €0)=X. If r is constant on a neighbourhood of &<t.(M), then the
equalities and (2.3) in Proposition 2.2 are written in more detail as follows.

THEOREM 2.5. Assume that t is constant on an open subset U of t.(M).
Let A; and D,;, i=1, ---, g) be as in Lemma 2.4 and P;, an element of
LC((pip)X(T*MKTM)) defined by assigning the orthogonal projection of T peyM
onto D,,(§) to each §€U.

(i) For XT (MNP~ (p&)) (€<U), the following equality holds:

(26) AEE(‘S)X: Yf

1 1 ~
7o T

_ 1. & lgrade(p@)a;o |’
Here BO=1+ 2 ""a_2.0r

A N
Y= i e

g <VXP2 WV, Vzl(e)>
R A ET—0®)

where V .= grad e(p(§)).

and Y is an element of T ,yM given by

1-248)¢ & XNV 2501°
B@®) \i=  (1-2)
g {(ﬁXplj)V} ING)

)}Vme) +i’?41:1 A—2,8))A—2;8)"




276 Naoyuki KOIKE

(ii) For XEDMO(E) (&<l), the following equality holds:

1 { 2,-0(5) )?
VB® e(p@)(A:,©—1) °F
N A, (§)(X &)
e(p(8)) (A:,(5)—1D)
g, {(ﬁiepzi) (grad e(p(EN} Fe}
= 1—4:,(8) '
Here {(V.P:)(grad e(p@)} re 35 the Te(t (MNP~ (pE))-component of (VzePs,)
(grad e(p(&))) with respect to the decomposition R™* " =T p; MBT ¢(t(M)N p~'(p()))
D<E®Y, and Z is an element of T peyM given by
HV 2P Vo) 10 é (Vx grad &)z,
1 (1=2(8)1—24;(5) =i (1—-2,8)°
g 1 gy, 12008 K Viel
~ B T BE B (=i
<(ﬁfeplj)vy VZ k(5)>+ é <VX grad €, ij($)>
1 (1=2;(8))1—2(8)) = (1—256)*
g {(VzePa )V, E&)) )}Vmen

2.7 Afz(e))?ez

E@®rc+Z,

g
Z=— 2>
Jj=

i

g
+ >
Jok=
tETT 140
where V := grad e(p(§)).

ProoF. (i) By we have
1 1 .
AroX = f ity TP
It follows the definition of £(¢) and that 14+ | E©)|2=B(¢). Let &@¢)
¢e[0,1]) be a curve in t(M)Np ' (p®) with £0)=X. Since E@¢@®)=

e grad e(p(E))a e
i=1 1—2,(6@®)

eT oM, we have

(XA grad e(pE) 1, N %grad e(PEN a ceen | e=o

(1—2:6)* 1—2.8)

_ {(Xzi)vz,-«;) (ﬁxpli)v

=S L(1—248)  1-2(9

Therefore, (ﬁXE“)Té is orthogonal to t.(M)Np~'(p(§)) and hence there exists

Y &T peyM such that ?ez(ﬁxﬁ‘)ré by Proposition 1.5, We have only to show
Y =Y. From ((2.8), we can obtain

}ETM)M.
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(2.9) (VxE)pe=Nx E—<VyE, E()>E)

1 CEA—2:(8)
o ey =y LA

VxP: )V C(&)E@

2 1-2,6 " BE

+

where C(&) is defined by

XV ol g <TxP)V, Vaed
CO=Z 0@y T RT-LE)0—1©)
On the other hand, by Lemma 1.2 and 1.4, we have

(2.10) Y=V - AT —ToE®).
By comparing the T ,,M-component of [2.9) and [2.10), we have

e CEO—24)
V=AY =2 T aor z(&))Z{XZ““W}V“‘“

this is,

N T R L1

=@ BE 1 ne

£ {(VXPZj)V}Z,;(e)
+f§ 1—248)

- g —
Therefore, we can obtain Y= > Y ;=Y.
i=1

(i) By [Theorem 2.2, we have

1 2, &)X+ (X ) E@ry)
V1+|E@)|? { e(pEN(A:(6)—1)
It follows from the definition of E(&) and that 14| E&)|*=B().
Let &@) (t=[0,1]) be a curve in t.(M) with é(O):)?e. Since E(&@)=
g grad e(p(ED)) e W
i=1 1—-2,(6®) ’

2.11) Apey Xe= —(ﬁfeﬁ“)m}».

e have

d
(Redd)grad e(p@) e | a1 872 EPEODaicean -

Vb= S ey ot 1—4.®
é {(Xelz)vli(E) (ﬁfepzi)v‘*‘(vx grad G)zi(e)}
D) L —4®

and hence
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(‘?i’gE)m:ﬁA’sE—<ﬁ)}5E, E@)>E©$)

! C@1—2(8)
e R AT R L AT

(VP2 )V +(xgrado),0  C(®)
1—248) B(§)

E@®),

4
+ 2]
i=1
where C(&) is defined by

e & XAVl | & V2P )V, Ve
CO=2 "1y TuR (—a@)a—14,e)

g <ngrad g, Vj‘(e)> g <(6A‘;5P11)V’ E(E)>
TR T ASa@®r & 1-4®
Therefore, we have
i e {(T2.P.)V
(2.12) @srelore=F ’f_;‘.)@} W

where W (&) is defined by
1 CE)A—4:8)
e T e LR
g {(viépli)V}Tp(E)_i_(vX grad s)lt(f)
t & 1-2.®
44 <(vfepzi)V,E($)>E(5)_5(6)
Z 1—2,8) B®
Since W) Tt (M)NTEE(M)NDP(p(E)), there exists Z=T ;M such that

Z:=W(&) by Proposition 1.5, According to [2.11) and [2.12), we have only to
show Z=—Z. By and 1.4, we have

2.13) W=

E®).

(2.14) Ze=Z—AZ—(Ze)E®).
By comparing the T ,¢,M-component of [2.13) and [2.14), we have

o ag L COU—1®)
Z-aZ=5 o artta " g e
e {(T2:P3)V} o, +(Tx grad 1,
= 1-2.@ :
that is,
. COU—1:8)
A=AV Z10=— 5 X(5))2{)@/1 Y e

B é {{(Vxepzj)_V_}ip‘@}_@;e) (Vxgrade)a, e
= 1—258) 1—4:8)
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Therefore, we can obtain Z= gE Ziwo=—2. nm
i=1

Let (M’, f’) be an n’-dimensional Riemannian submanifold in R**"" and
(RY, ¢) an [-dimensional totally geodesic Riemannian submanifold in R!**. Then
(M’ RY, f'x¢) is an n-dimensional Riemannian submanifold in R**" called a
cylinder over (M’, f’), where n=n’+[ and r=7'+s. Assume that the set of
all principal curvatures of (M’, f’) is bounded.

THEOREM 2.6. Let (M, f)=(M’'XR", f'Xc¢) and & a sufficiently small positive
function on M such that grad ecI'(T'RY), where T R' is a foliation on M of which
leaves are {-} XR'. Then

(i) For XeT (MNP (p©&)), the following equality holds:

1 X
1+ Tgrad e(p@)2e(p&)

(ii) Let A be a nonzero eigenvalue of A (§<t(M)). Then, for X<
Ker (A;—21), the following equality holds :

AgerX=

A
VI+Tgrad e(pé)*e(p(ENA—1)

(iii) For X=Ker A:NTM’, the following equality holds :

AgerXe= Xe,

Ai’ce))?e:() »

(iv) For XeTR' (cKer A;), the following equality holds:

1

2+/1+|grad e(p(®)[? {X {log (1+ |grad e|*)} grad e(p(§));—2V x grad &} .

Aper Xe=

PrROOF. (i) According to (i) of [Theorem 2.2, the following equality holds:

L1 1 o e s
X = e so@ TP

Since grad e= TR'cKer A;, we have E=grade-p and hence Vyx£=0. There-

fore, we obtain the desired equality.
(ii) According to (ii) of the following equality holds:

o1 A o e
o= e sean Kt XOP@m -~ Biref

Since grads=TR'cKer A; and XeT*R!, we have Xe=0 and
@geﬁ———ﬁjé(grad gop)=Vygrade=0.

Therefore, we obtain the desired equality.
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(iii) According to (ii) of [Theorem 2.2, the following equality holds:

(2.15) Ao Xe= (V2eE)re .

—1
VI+IE@®)*
Since grade=TR'cKer A; and XT+*R!, we have V3.E=0. Therefore, we
obtain A;@Xe:o.

(iv) According to (ii) of [Theorem 2.2, the above equality [2.15) holds. Let
h be the second fundamental form of (M, f). It follows from A(X, grad e(p(&)))

J— A_ ° — 1 7
=0, E=grade-p and E(¢)= e E(1)("3)”2{81‘21(?1 e(pE)+E&)} that

(VeE)re=Vx grad e)r,=(Vx grad &)r,

=Vygrade—(Vygrade, EE)>E)

{Vxgrade, grad e(p(§))>
14 |grad e(p(§)1*

=Vygrade— {grad e(p(&)+E &)}

=V, grad e~ 3 X {log (1+| grad |} {grad e(p(€)+E@)

Thus since (V £¢E)reKer ADLE®), (Vi¢E)re is the natural lift of {(VzeE)rehr e,
to &, this is,

(3 3¢E)r¢="V grad s;— 5 X {I0g (1+ | grad ¢ |9} grad sCp(E)

Therefore, we obtain the desired equality. m

§3. The natural lifts of distributions.

Let (M", f) be a Riemannian submanifold in M™ and D a distribution
on M. Set D:=\Ueei,m {Xel XEDpeeo}. It is shown that D is a (smooth) dis-
tribution on ¢,(M). In fact, for a local base (X,, ---, X») of D on an open
subset U of M, (X, ---. X,) is a local base of D on p~'(U), when m=dim D.
We shall call this distribution D the natural lift of D to t.(M). We have the
following result with respect to the integrability of the natural lift.

THEOREM 3.1. Let F be a foliation on M. If the normal connection of
(M, 1) is flat along each leaf of F, then the natural lift F of Ftot{(M)isa
foliation on t.(M).

Proor. Let X, Y&I'(Fly), where U is an open subset of M. We shall
show [X, ¥1=[X, ¥]. Fix &ep'(U). Let V(cU) be a simply connected
neighbourhood about p(¢,) in a leaf of F through p(&,) and & a V*-parallel
normal vector field on V with &(p(&))=&,. Note that the existence of £ is
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assured by the flatness of V* along V. Define a normal vector field é on V by

é(x):: 8<;((2)—)§(x) for x€V. Let V*:=\U,erTéw(0, 17). It is clear that

V* is a submanifold (with boundary) in M»+7. Let X (resp. ¥) be a
vector field on V* such that Xra0)=X7e0)) and [X, 7e]=0 (resp. Y (7e(0)=
Y7:0) and [P, 7:]=0). We see that X7ew1)=Xtw and ¥(ee1)=V s
for every x&V (cf. Proof of Lemma 1.1). Hence [X, P17ecor@)=LX, Y1Fen@)
holds for every x<V. It is clear that [X, f’j()’g(O)):[X, Y ](re0)). By the
Jacobi identity, we have

[[X, V71, #1=—[L¥, 7, X1—[[7e X], ¥1=0.
Hence we see that [X', ?](Tg(z)(l))z[ﬁ]@(z) for every x<V. As a con-

sequence, [X', ?](rg(x)(l))z[ﬁ]gm is deduced for every x=V. Especially,
we obtain that [)?, ?]:[X, Y] at &. This completes the proof. m

Also, we can prove the following result.

THEOREM 3.2. Let F be a foliation on M and Fs a foliation on t.(M) of
which leaves are t(M)Np~Y(p(&) Ect(M)). If the normal connection of M, f)
is flat along each leaf of F, then FPFs is a foliation on t.(M).

ProoF. Take XeI'(F|y) and Y &l'(Fsl|y), where U is a sufficiently small
open subset of t,(M). We have only to show [X, Y]eI'(F@Fs|y) because F
and Fs are integrable, respectively. Let ()?1, e, )?m) be a local base of F on
U consisting of the natural lifts of vector fields on pU), where m=dim F.

Let X= % ai)?i. Then we have
i=1
[X, V1= 3 [a: X, Y]
i=1

=3 (—(epXitalX, Y]}

It is clear that )?i is a foliated vector field with respect to Fs, that is, [)?i, Y]
=I'(Fsly). Therefore, we obtain [X, Y1=I'(F®Fs|y). ®

§4. Applications.

We expect that various arguments for tubes of nonconstant radius contri-
bute to constructing various models of Riemannian hypersurfaces. For example,
in this section, we shall construct soft models of Riemannian hypersurfaces of
which the number of mutually distinct principal curvatures is constant on the
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hypersurface or a dense subset of the hypersurface in terms of
mainly. First we shall prepare the following two lemmas.

LEMMA 4.1. Let (M, f) be an open portion (M’ XU, f’'Xt|y) of a Riemannian
hypersurface (M’ X R, f'X¢) as in Theorem 2.6 and ¢=&-q. Here U is an open
subset of R' and q 1is the natural projection of M=M'XU onto U and € is a
positive function on U such that exp*(N(M)NF(M, f)=@ and the graph of & is
a Riemannian hypersurface which has exactly g mutually distinct principal cur-
vatures A,> -~ >2,. Then the statements (i), (ii) and (iii) in Theorem 2.6 hold
and Agel fue (T~Ue—>T~U5) has exactly g mutually distinct eigenvalues A,(q(p(§)),
E(@(PEN)> - >A,(g(p(§)), E(q(p(8))), where TU 1is a foliation on M=M’'XU
given by assigning T({x1} XU)z,, z,p to (x1, x)EM’'XU.

PrROOF. It is clear that grad e I'(TU). Hence (i), (ii) and (iii) in
2.6 hold. Fix &,=t.(M). Since the normal connection V* of (M, f) is flat
along each leaf of TU, the natural lift T7U is a foliation on t.(M) by
3.1. Let L be a leaf of TU through &,. It is easy to show that a V+-parallel
normal vector field along a curve in p(L) is parallel with respect to vV, where
V is the Levi-Civita connection of R**". Hence we see that L is congruent
to the graph of & and E|. corresponds to the unit normal vector field of the
graph of & (cf. Proof of Lemma I.1). Therefore. we see that Age,lsve, has
exactly g mutually distinct eigenvalues 2,(g(p(&0)), E(@(P(E)))> -+ >A,(q(p(&W)),
E(g(p))). m

LEMMA 4.2. Let (M, f)=(M’'XR?, f'X¢) and e=E&-q, where & is a positive
function on R* such that exp*(N.(M)NF(M, f)=@ and q is the natural projec-
tion of M=M’'XR' onto R'. Then the statements (i), (ii) and (iii) in Theorem
2.6 hold and, for X&T p,R' (cKer Ag), the following equality holds :

—e”(p) ¢

(4.4) A%(G)X:E: \F{1+€,(p(5))2}8X$ .

2

Here s’:ﬂ—-i and e”———ﬁ, where (t) is the natural coordinate of R'.
dt dt®

ProoF. It is clear that grade=I'(TR'). Hence (i), (ii), (iii) and (iv) in

hold. According to (iv) of the following equality
holds :

& é = 1
4.5) AE(&)(a_t)e_z 1+ |grade(p(8))|?

. {(% log(14|grad ¢|®)} grad’;(\j;(é))g—wa/;;ad ee} .
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. 0
Since grade=¢’ -, we have

ot
—2¢”(p(§)) 0

0 2 — Pl
(4.6) 57 {log (1+|grad e[")} grad e(p()) —2Vosa: grad e= 1= oz 57

It follows from (4.5) and (4.6) that

L (0N e (&) (b
AE‘E’(at )e' V{14 (p&)*}*\ot )s ‘

Thus the equality holds. m

First, by using Lemma 4.1, we shall construct soft models of Riemannian
hypersurfaces stated in the beginning of this section. Let (M’, f’) be a Rie-
mannian hypersurface in R™*! with exactly g, mutually distinct principal cur-
vatures 1,> --- >1,, and & a positive function on an open subset U of R"?, of
which graph is a Riemannian hypersurface with exactly g, mutually distinct
principal curvatures pg,> --- p,,. Here we assume that 2; (1=i=g,) and p;
(1=j7<g, have no zero point. Let m; (=1, ---, g;) be the multiplicity of 4;
and mj (J=1, -+, g,) that of p;. Set (M, f):=(M’'XU, f'X(tly)) and €:= &°qy,
where ¢ is the inclusion mapping of R"2 into R™*"~! and ¢y is the natural
projection of M=M'xU onto U. By letting a Riemannian hypersurface given
by homothetic transforming with a sufficiently large coefficient (M’, f’) be
(M’, ") newly, letting é—c (¢ is a positive constant with c¢<inf,cy&(x)) be &
newly and shrinking M’ and U if necessary, we may assume that

1
4.7 exp*(Ne(MDONFM, )=@, maXisise, supeldil <,
214 . .
maX;s;sg, SUp \/H_Igrad€|2\<mmlgjggzlnfmﬂ,

. 1
Max sjsg, SUp| pt;| <inf A TemTeTe

Denote by E’ the unit normal vector field of (M’, f’) and set W;:= {é=t.(M)|

s(pl(,;:)) <&, E’»>>d}, where d=(0, 1). For =W, the set of all the mutually

disinct eigenvalues of A, is {0H\U{<&, E'(qu (pENAlgu (pENIi=1, -+, g},
where A is the shape operator of (M, f) and ¢y is the natural projection of
M’xU onto M’. According to Lemma 4.1, the shape operator A of (t.(M), f.)
satisfies the following three conditions (i)~ (iii):
(D) for XeT (MNP (PEN),
1

AoX = T T erad s GO P pE)
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(i) for X=Ker (A;—<&, E'(qu (pEN>A:(qn (pENT) (€W 5),

) &, E' (@ (DO Alaun (PN
/14 [grad e(p(€)) [ 2e(p(ENKE, E'(qu- (pENDAqu- (p(E))—1)"
(iii) Age |7pe has exactly g, mutually distinct eigenvalues u,(qu(p(8)),

E(qu(pEMN> -+ > pg,(qu(p(8)), E(qu(p(£)))). Define functions vy, =, Vg 410,41 ON
W,s by

Ai:(aXe:

€, E'(gu (pENNA:lgu (PE))
V1+|grad e(p@)I*e(pENKE, E'(gu (PEN>A(qu (p(6))—1

(i':ly Tty gl)’

vi(§)=

1
V14 grad e(p(E) [ 2e(p(®))

ugﬁl(&):

and
vi(§)=ptj-¢,-1(qu(p(8)), E(gu(pE)) (=g +2, -, gi+g.+1).

It is clear that v, #v,, 1<i,#4,<g)) and v, #v;, (&, +2=/,#/.5 g1+ 4&.+1) at
each point of W;. It follows from that |y <|v;| <lvg,sil AI=i=<g), g1+2
<j<g+g.+1). Thus v, -+, v 44,41 are mutually distinct at each point of
Ws. Therefore Ws, f.lw;) is a Riemannian hypersurface with mutually distinct
principal curvatures v, -, vy ,¢,+1. Note that v; /=1, ---, g:+g.+1) have no
zero point and the multiplicities of vy, -+, vz 4z, aTE MY, ---, My, r—1, MY, -+,
my,, respectively. By the way, the existence of the above Riemannian hyper-
surface (M’, f’) for g,=1, 2 (any multiplicity) and that of the above function
g for g,=1 (any multiplicity) are well-known. Hence, by the above construc-
tion, for every set {m,, ---, m,} of positive integers, we can obtain soft models
of Riemannian hypersurfaces in an Euclidean space which has exactly g mutually
distinct principal curvatures, which have multiplicities m,, ---, m, and are non-
zero, at each point.

Next, by using Lemma 4.2, we shall construct soft models of complete
Riemannian hypersurfaces stated in the beginning of this section. Let (M’, f’)
be a complete Riemannian hypersurface in R**' with exactly g mutually dis-
tinct principal curvatures 4,> --- >4, on a dense subset W’ of M’, where we
assume supli;| <o (=1, .-+, g). Let & be a positive function on R' such that

1 1&”|
212, P VaAFEHT
tion £7(a—1)+a(l1+&*)=0 is discrete for every constant a. It is clear that
such a function ¢ exists innumerably. Set (M, f)=(M’'xR!, f'Xid) and e:=
geq,, where id is the identity map of R' and ¢, is the natural projection of

M=M'xR' onto R'. Since e<min;s;s, infé—i—;—r, exp*(N(M)YNFM, /)=@,

g§<min,g;s, inf < oo and the set of all solutions of the equa-
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that is, the e-tube (t,(M), f.) is defined. According to the shape
operator A. of (t.(M), f.) satisfies the following conditions (i) and (ii):
(i) for XeKer (A:—e(pE)Aqu (pENT),

Aqu (&)
VIFEOPE(DEAulqu (PEN—1)

Aper Xe= Xe

and
(i) for X&T po,R' (=T pesM),

—e&”(p(6) be
VI pE@)?F
where ¢y is the natural projection of M=M’XR' onto M’. Define functions
L, s fgsr ON t (M) by

Ap e Xe=

Agu (p(E)))

#O= T p@ e pE)aan PEN—D b &)
and
)
e @)= o N

It is clear that g, -+, g, are mutually distinct at each point of W’XR*. Since
the set of all solutions of the equation &”(a—1)+a(1+&’?)=0 is discrete for
every constant a, p; and g,., are mutually distinct at each point of a dense
subset of t.(M) (=1, ---, g). Therefore, g, ---, ¢tg+1 are mutually distinct at
each point of a dense subset W of ¢t.(M). Thus (¢.(M), f.) is a complete Rie-
mannian hypersurface in R"*? with exactly g+1 mutually distinct principal

curvatures gy, -+, gy on W. Moreover, since sup|4;|<oco, e<minisisg
1&” |

, 1 )
mfm and SuP:/ﬁi?-’éF<oo’ we have sup|py;| <oco (z=1, -+, g+1). By the

way, the existence of the above complete Riemannian hypersurface (M’, f’)
for g=1 is well-known. Hence, by the above construction, for every positive
integer g, we can obtain soft models of complete Riemannian hypersurfaces in
an Euclidean space with exactly g mutually distinct principal curvatures at
each point of a dense subset.
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