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§0. Introduction.

Let M be a compact Riemann surface of genus g=2 and T be a conformal
automorphism of order N with ¢ fixed points. We denote <7T> the cyclic group
generated by 7 and M/<T) the surface by identifying the equivalent points on
M under the elements of <T). M is considered as a covering surface of M/ <T>
and the behavior of ramifications depends on the gap sequences of the fixed
points.

Lewittes proved that if ¢=5, then every fixed point of T is 1-Weier-
strass point, and Guerrero proved that if =1 and the fixed point is not a
1-Weierstrass point, then 7° has order 6, g=1 (mod 6) and the fixed point is a
g-Weierstrass point for all ¢=2. Guerrero also gave examples of Riemann sur-
faces with automorphisms of prime order N whose two fixed points are not ¢-
Weierstrass points. Furthermore several authors considered some cases for the
relation of the fixed points and ¢-Weierstrass points.

Duma [2] proved that if N=2 and t=3, then every fixed point of T is a
g-Weierstrass point for all ¢=2, and that if N=3 and =3, then every fixed
point of T is a ¢g-Weierstrass point for ¢=2 (¢#2 (mod3)). Farkas and Kra
proved that if T is of prime order N and ¢t=3, then every fixed point is
a ¢g-Weierstrass point for ¢=2 (¢=1 (mod N)). Accola proved that if T is
of prime order N and t=3, then every fixed point is a N-Weierstrass point.
Recently Horiuchi and Tanimoto gave a sufficient condition for fixed points
to be g-Weierstrass point (¢=2) and showed that the results mentioned above
are obtained by using the condition and studied the case where t=3 and T is
of order 5.

Almost all of the results mentioned above, however, are obtained under the
condition that T is of prime order. In this paper we investigate the properties
of automorphisms without the condition that 7 is of prime order. In the first
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section we collect for reference the terms and theorems useful for our purposes.
In the second section we discuss the cases where automorphism 7 has a fixed
point of which gap sequence is specified. We classify automorphisms according
to the number of fixed points, show the relations of genera of M and M/<{T>,
and determine the rotation constants of the fixed points. In the third section,
we investigate a condition for fixed points to be g-Weierstrass point (g=2) in
some cases classified in §2. Furthermore we give some typical examples for
the theorems. In the fourth section, we compute the dimension n% of HY,
where H{ is the vector space of all holomorphic g-differentials # such that 7°(8)
=¢*f@, e=exp (2ni/N). In the fifth section we give some miscellaneous results.
In the sixth section we give some examples of certain construction of Riemann
surfaces. Finally we compute the integral solution of some trigonometric
“diophantine” equations in §2 and § 3 as appendix.

The author wishes to express his gratitude to Professor R. Tsuji for his
kind advice and encouragement. Also the author would like to thank Professor
T. Kato for his useful advice.

§1. Notations, preliminary and key lemmas.

Let M be a compact Riemann surface of genus g=2 and Aut (M) be the
group of conformal automorphisms of M. Let TcAut (M) be of order N with
t fixed points. Let M—M/<T) be an analytic N-sheeted branched covering,
M/<T> having genus g’, then the Riemann-Hurwitz relation states that 2g—2
=N(2g’'—2)+3B where B is the sum of the orders of all branch points on M.

We denote H? the complex vector space of holomorphic g-differentials. It
is known that dim H'=n'=g and any < H', not identically zero, has 2g—2
zeros, while for ¢>1, dim H?=(2¢—1)(g—1) and any 8 < H?, not identically zero,
has ¢(2g—2) zeros. div(#) denotes the divisor of zeros and poles of <= He.
Concerning divisors on M the Riemann-Roch theorem states r(b~!)=deg (b)+i(b)
+1—g where r(b~') is the dimension of the space of functions whose divisors
are multiples of b-!, deg (b) is the degree of b, and (b) is the dimension of the
subspace of meromorphic differentials consisting of multiples of b.

For each point P=M, there are d=d(g) integers 1=7,<7.,< -+ <T@ <
2q(g—1)+2 such that there exist a g-differential § = H¥(M) with a zero of order
7v;—1 at P, where d=d(¢)=dim H?, i.e., d(1)=g, d(gg=2q—1)(g—1) if ¢g=2.

The sequence 7,< -+ 74 is called the g-gap sequence at P, and the non-negative
g

integer wo(P)= X (y;—J) is called the ¢-th weight at P. P=M is called a ¢-
Jj=1
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Weierstrass point on M if w,(P)>0. Then W,(g9)= ¥ w.(P)=(g—1g(g+1) or
PeM
Wq(g)=PEqu(P)=(2q-—l)zg(g—l)z if g=2.
(=

T<=Aut (M) acts on H? and has a matrix representation which is diagonal
form for suitable choice of basis in H%. Then a diagonal element is a power
of N-th root of unity e=exp (2z7/N).

LEMMA A. (Lewsttes) [3] [7] The representation of T on the space H? is
the d(q)xd(q) diagonal matrix

diag (e1171+9, g727149 ... gTa@ -1+
For 0<k<N—1, n?% denotes the number of &* in the diagonal elements,
N-1 N-1
naturally we have 3 nf=dim H'=(2¢g—1)(g—1) for ¢>1 we have 3} ni=dim H'
k=0 k=0
=g for g=1. Furthermore, denoting H¢={0<H?| T(0)=¢c*6}, we have ni=
dim H¢, particularly, ni=dim Hi=g’.
For each m=1, 2, ---, t, we choose a local coordinate z at P, and an integer
vm such that 77! is given by T ': z—e&*mz near P, (note that v, must be rela-
tively prime to N). The integer v, is called the rotation constant of 7 at Pp.
Then we have the following important lemmas.

LEMMA B. (Eichler trace formula) As above notations, we have

tr (T)=1+ 3 en/(1—em)  for g=1

tr (T)= Elemr/u—sw) for ¢>1

where 0<r< N—1 is chosen as the unige integer such that q=dN-+r with d=N.
In each case the sum is taken to be zero whenever t=0.

As a corollary we have

LEMMA C. (Lefschetz fixed point formula) For ¢=1,
tr (T)+tr (T)=2—t.

§2.
1. Automorphisms with a fixed point which is not 1-Weierstrass point.

Let P, ---, P, be the fixed points of T=Aut (M) and v, be the rotation
constant of P,. First we assume that P=P, is not 1-Weierstrass point and we
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may assume that y,=1. Put g=IN+s (0<s<N—1). Then, from Lemma A,
we have /=g’ and

tr M)y=e+e*+ - +eb=¢g+e’+ - +ef=(e—e**)/(1—e¢).

On the other hand, from Lemma C, we have

(e—e**Y)/(1—e)+(e—e**N)/(1—e)=2—t or 14+e+e’+ - +e¥=(3—1)e.
From e=cos (2n/N)+1i sin 2z/N) and the above equation, we have
sin ((s+1)x/N) cos (sm/N)=((4—1)/2) sin (x/N) .

Namely, sin (2s+1)x/N)=(3—1) sin (z/N).

For t=1, we have s=1, N=6.

For t=2, we have s=0 or s+1=N/2.

For t=3, we have s=(N—1)/2.

For t=4, we have s=N—1 or s=N/2.
But we can exclude the case t=4, s=N/2. Because from the Riemann-Hurwitz
relation (hereafter we say the R-H relation), s=N—1, consequently we have
N=2 and this case is contained in the case s=N—1. The case =5 does not
occur [7]. Indeed from the R-H relation, $=2g—2—-N(2g’—2)=2N+2s. On
the other hand B=5(N—1). Hence we have 2s=3(N—1), which contradicts
sEN—1.

We will investigate the above cases in detail.

(a) Case t=1 [4]. In this case, N=6, g=6g’+1.
From the R-H relation, we have 3=12. On the other hand the branch number
must be of the form 5+3x+4y, where x (resp. y) denotes the-number of points
in M/{T) whose fibre consists of fixed of T° (resp. 7%. The only posibility
is that x=y=1.

(b) Case t=2. g=Ng’.
From Lemma B, tr (T)=1+4¢/(1—¢)+e*2/(1—e*2)=(1—e*2)/(1—e)(1—¢*2), while
from Lemma A, tr (T)=0. Cosequently we have v,=N—1. From the R-H rela-
tion we have B=2(N—1), so there is no branch point except P; and P,.

(¢) Case t=2. g=Ng’+(N/2—1) (N is even).
From Lemma B, tr (T)=(1—¢"2*")/(1—¢)(1—¢*?), while from Lemma A, tr (T)=
(1+¢)/(1—e). Consequently we have v,=1. From the R-H relation B=2(N—1)
+ N—2, so there is one point in M/<{T) whose fibre consists of fixed points Q,,
Q. of T2.

(d) Case t=3. g=Ng’'+(N—1)/2 (N is odd).
From Lemma B, tr (T)=1+¢/(1—¢)+¢2/(1—¢e*2)+¢*3/(1 —¢*3), while from Lemma
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A, tr(T)=e(l—e¥-b/%)/(1—¢). By simple and concrete calculations we can
show that v,=1, v,=(N—1)/2 (assuming v,<y;) (c.f., Appendix 1). From the
R-H relation B=3(N—1), so there is no branch point except P,, P,, P..

(e) Case t=4. g=Ng'+(N—-1).
From Lemma B, tr (T)=1+¢/(1—¢)+e*2/(1—e*2)+¢*3/(1—e*3)+e*s/(1—e¥), while
from Lemma A, tr (T)=(¢—e")/(1—e¢)=—1. Then by simple and concrete cal-
culations we can show that v,4v;=N, v,=N—1 (assuming y,<y;<y,) (c.f.,
Appendix 2). From the R-H relation, $=4(N—1), so there is nn branch point
except P, P, P, P,.

We summarize the above results in the following theorem:

THEOREM 1. If T<=Aut (M) has a fixed point which is not 1-Weierstrass
point, then there are only five possible cases;

(@) t=1, g=6g’+1 (N=6)

(b) t=2, g=Ng’ (vy, vo)=1, N-1)

() t=2, g=Ng’'+(N/2—1) (v, v)=(1, 1)
@) t=3, g=Ng'+(N—-1)/2 (vy, s, va)=(1, 1, (N—1)/2)
(e) t=4, g=Ng'+(N—1) (b1, Vs, Vs, va) =1, v, N—y, N—1)

I

I

REMARK 1. In the case (c), we consider T2 instead of 7. Then the analytic
N/2-sheeted covering M—M/{T?> has four branch points P;, P,, @,, @, and g=
(N/2)g+(N/2—1) where g=the genus of M/<T?). Therefore this case can be
reduced in the case (e¢) and we know that the rotation constants of @,, Q.
(which are the fixed points of 7T%) are 2(N/2—1)=N—2.

REMARK 2. We say that a N-sheeted covering M—M is totally ramified
provided all branch points have order N—1. Briefly M is totally ramified (over
M). Now in cases (a), (b), (d) and (e) M is totally ramified.

REMARK 3. Lewittes [7] obtained a theorem of the same type under the
condition that N is prime number.

2. Automporphisms with a fixed point which is normal Weierstrass
point. (i.e., gas sequence 1, 2, 3, ---, g—1, g+1)

We put g=IN+s (0<s<N-1). If s=0, then g'=[—1. If 1<s<N-2
(N=3), then g’=[. If s=N—1 (N=3), theu g’'=[+1.

(1) If s=0, g=Ng’+N. From the R-H relation $=4N—2 and B8>(N—-1),
we have t<4+4-2/(N—1). So if N=2, then t=6 and if N=3, then {=5 and if
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N=4, then t<4.

2) If 1=s=N—-2, g=Ng’+s. From the R-H relation B=2N+2s—2 we
have t<2+42(N—2)/(N—1), hence t<3.

3) If s=N—1, g=Ng’—1. From the R-H relation 3=2N—4 we have <
2—2/(N—1), hence t=1.

We investigate more detail; Put g=IN+s (0<s<N-1), then from Lemma
A, tr(T)=e+e®+ - +ef ' +ef*'=(e—e"+e'*'—¢**?)/(1—e¢). Therefore Lemma C,

tr (T)+tr (T)=(e—¢e*+e**'—e**?)/(1—e)+ (e —e*+e7 Y /(1—eY)

=2—t.
Hence
(1—e**)(1—e+e’)=@—1)e"*'(1—¢) (*)

(a) Case t=1. From Lemma B, t» (T)=1/(1—¢), so we have
(e—e'+e*'—e**Y)/(1—e)=1/(1—¢) or e&***—g**'4ef—e+1=0.

Then we have N=10 and g=10g"+2.

(b) Case t=2. From (%), 1+&2+e**24 2 2=t g** 4 g8+ 14 2843,

By the same way in Appendix, we have the following solutions (N, s)=
4, 2), 4, 3), (8, 1), 8, 2), (9, 3).

But we must exclude the two cases (4, 3), (8 1), for the contradictions occur
according to the R-H relation.

If (N, s)=4, 2), then g=4g’+2. From Lemma B, tr (T)=1+¢/(1—¢)+ &,
while tr (T)=(e—e?+¢e*—¢*')/(1—e)=0. Hence »,=3. From the R-H relation
B=10, so there are two points on M/{T> whose fibres consist of fixed points
Q. Q, and R,, R, of T? respectively.

If (N, s)=(8, 2), then g=8g’4+2. From Lemma B and tr (T)=(¢—&?+¢&*—¢*)/
(1—e), e2/(1—e*2)=(e—e®+¢%*)/(1—e¢). Hence v,=3. From the R-H relation 8=
18, so there is one point on M/{T) whose fibre consists of the fixed points
Q. -, Q, of T,

If (N, s)=(9, 3), then g=9g’43. From Lemma B and tr (T)=(s—&*+¢&*—¢%)/
(1—e), we have e2/(1—e"2)=(—14+e—e*+e*—eb)/(1—e). Hence v,=2. From the
R-H relation B=22, so there is one point on M/<T) whose fibre consists of
the fixed points @Q,, Q., Qs of T3.

(¢) Case t=3. From (x), (1—e+&*)(1—e**")=0.

(i) If 1—e+e*=0, then N=6.

Assume s=0, then g=6g’+6. From Lemma B and tr (T)=e¢—1, we have
1+e/(1—e)+e2/(1—e*2)+6*/(1—¢e*3)=e—1. Hence we have v,+vyv;—=6. There-
fore we may assume v,=1, v,=5. From the R-H relation B=22, so there are



Automorphisms with Fixed Points 227

two points on M/<{T> whose fibres consist of fixed points Q,, Q, and R, R,
R, of T* and T°® respectively.

Assume 1<s<4, then g=6g’+s. From the R-H relation B=10+s, so all
of the branch number is 2s—5 except for the fixed points P, P,, P,. Then the
possible value of s is 4, namely g=6g’+4. There is one point of M/{(T>
whose fibre consists of the fixed points Q,, Q. Qs of T: We may assume
ve.=1, vs=5 as the above case.

(ii) If e***'=1, then s=(N—1)/2 and g=Ng’'+(N—1)/2. In this case there
is no branch point except P, P,, P,. From Lemma B and tr (T)=(e—e&*+¢'*'—
ef*%)/(1—¢), we obtain

1+e/(I—e)+e2/(1—e2)+e"/(1—e"8)=(e—e'+e**'—e"?)/(1—¢) .

By the same way in Appendix, we have only the following four solutions under
the assumption v,<y,.

(Ny U27 yﬁ):(s) 3: 3)) (7; 2: 4)) (9’ 1, 7)1 (11: 2) 3)
Namely

g=5g,+2 (yly Vo, l‘J3)=(13 3; 3)’ g:7g,+3 (vly Vo, ys):(li 2) 4)!
gzgg,+4 (yl.v Y, y3):(1; 1) 7)7 gzllg/+5 (vb Vg, y3)=(1) 2} 3)'

(d) Case t=4. According to the consideration in the first step of this sub-
section, we have s=0. From (x), 1—¢&)(1—e&+¢&*)=—¢&(l—¢), so we have e?=—1.
Hence N=4 and g=4g’+4. In this case there is one point of M/{T)> whose
fibre consists of the fixed points Q,, @, of 7%, From Lemma B and ¢r (T)=
e—1, we obtain

1+e/(1—e)+e2/(1—et)+e¥3/(1—e*®)+e¥/(1—e*9)=¢e—1.

Then we obtain (v, v, v)=(1, 1, 3) under the assumption y,<y;<y,.

(e) Case t=5. According to the consideration in the first step of this
subsection, we have N=3, s=0and g=3g’+3. In this case there is no branch
point except P;, --, P,. From Lemma B and tr (T)=¢—1, we have

1+e/(1—e)+e2/(1—e)+e3/(1—e)+e/(1—e")+e%/(1—e)=e—1.

Then we obtain (v, vs, vi, vs)=(1, 1, 1, 2) under the assumption v,<y;<y,<Zy;.

(f) Case t=6. According to the first step of this subsection, we have
N=2, s=0 and g=2g’+2. In this case it is trivial that there is no branch
point except Py, ---, Ps and (v,, -+, ve)=(1, -+, 1).

REMARK 4. As a matter of fact, we are able to know that the cases g=
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6g’+4 and g=9g’+4 in the above do not happen on account of the results of
the computation n}. Indeed n} can not be obtained as integer in the two cases.
We summalize the above results in the following theorem;

THEOREM 2. If T< Aut (M) has a fixed point which is normal Weierstrass
point, then there are only 11 possible cases:

(@) =1, g=10g’+2 (N=10)

(b-1) t=2, g=4g’+2 (N=4) (v, vi)=(, 3)

(b-2) t=2, g=8g’+2 (N=8) (v, v2)=(, 3)

(b-3) t=2, g=9g’+3 (N=9) (v, v2)=(, 2)

(c-1) t=3, g=5g"+2 (N=5) (vi. v, v9)=(, 3, 3)

(c-2) t=3, g=6g"4+6 (N=6) (v1, vy, vs)=(1, 1, 5)

(c-3) t=3, g=T7g"+3 (N=7) (1, vy, v)=(, 2, 4)

(c-4) t=3, g=11g’+5 (N=11) (v, v, v3)=(1, 2, 3)

d) t=4, g=4g'+4 (N=4) (v, v5, v5, v)=(, 1, 1, 3)

() t=5, g=3g"+3 (N=3) (vi, v, vs, vs, vs)=(1,1, 1, 1, 2)

() t=6, g=2g"+2 (N=2) (vy, vs, vs, vs, vs, ve)=(1, 1,1, 1, 1, 1).

We can say briefly ;

COROLLARY 1. If T has a fixed point which is normal Weierstrass poini,
then we have t<6 and N<11.

In other words:

COROLLARY 2. If T hast=7 fixed points, every fixed point of T must be a
Weierstrass point which have weight =2. If T has of order N=12, every fixed
point of T is nol normal Weierstrass point.

REMARK 5. In cases (c-1), (c-3), (c-4), (¢) and (f), M is totally ramified.

3. Automorphisms with a fixed point which is hyperelliptic
Weierstrass point. (gap sequence 1, 3,5, ---, 2g—1)

We assume that M is hyperelliptic and that a fixed point P=P, of T <
Aut (M) is a hyperelliptic Weierstrass point. As well known, if M is hyper-
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elliptic, T= Aut (M) has strictry 2g-+2 or at most 4 fixed points. Indeed, there
is a meromorphic function f which takes any value twice and so we put F=
f—f-T. If F+0, then FF has at most 4 poles, and so T has at most 4 fixed
points. If F=0, then for any PeM, f(P)=f(Q) (Q=T(P)). That is T is an
involution of M if M is considered as 2-sheeted covering of P! by f, and the
2g+2 ramification points are fixed points of 7 clearly.

Now, from Lemma A, tr (T)=e+¢&*+ &5+ .- +¢2871,

We put

g=IN+s (0=s=N-1).

If N is even, then there is no multiple of N in {1, 3, ---, 2g—1} and so
the genus g’ of M/<T) is 0.
If N is odd, there are /+1 (resp. {) multiples of N in {1, 3, ---, 2g—1} if s=
(N+1)/2 (resp. s<(N—1)/2), and so
{ I+1  (s=(N+1)/2)
gl__: .
l (sS(N—1)/2)
If N=2, g=2/+s (g’=0), then from Lemma C,
tr (T)+tr T)=—g+(—g)=2—t or t=2g+2,

namely T is hyperelliptic involution.

If N is odd and s=(N+1)/2, then from the R-H relation,

2g—2=2(Ng’—N+s)—2=N(2g'—2)+3B,
therefore B=2(s—1)=(N—1)t. Hence t=1. If N is odd and s<(N—1)/2, then
from the R-H relation,
2g—2=2(Ng’'+s)—2=N(2g'-2)+93,

therefore B=2N+2s—2=(N—1)t. Hence ¢<3.

We will investigate the above cases in detail. tr (T)=¢e+¢&*+ - +28" 1=
e(1—e?*)/(1—¢?) and from Lemma C, we have 1—e&**=(2—1)&?*~1(1—¢?).

Case t=1. 1—e**=¢®»"'(1—e? so (1—e?*H(1+e2+)=0.

If N is even, e#**'=—1. Therefore s=N/4—1/2 or s=3N/4—1/2.

If N is odd, ¢*'=1 namely 2s—1=/N, but this case does not happen, for
the branch point is the only one point P;.

Case t=2. 1—e**=0.
From 0<4s<4(N—1), we have the following

s=0 (N: arbitrary) and s=N/4, N/2, 3N/4 (N: even).
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Case t=3. 1—e**=—g?"'(1—¢?) so (1—e&***)(1+4¢&?*"1)=0,

If Nis odd, e***'=1, hence s=(N—1)/2.

If N is even, ¢*'=—1, hence s=N/4+1/2 or s=3N/4+1/2.

Case t=4. 1—e¥*=—2¥"'(1—¢?.

From e=cos (2r/N)+isin 2n/N), we have sin (4dxs/N)+2 sin 2x/N)=0.
But this equation has no solution when N=3 by simple calculation.

Now, we will determine the rotation constants and investigate the behavior
of ramification in the above cases.

(a) case t=1.

We do not need to determine the rotation constant in this case.

If s=N/4—1/2, the branch number is (2/4+3/2)N—2 excepting the number
of P, from the R-H relation B=2g—2+2N. If s=3N/4—1/2, the branch num-
ber is (2/4+5/2)N—2 excepting the number of P, from B=2g—2+2N.

(b) case t=2.

From Lemma B, tr (T)=14+¢/(1—¢&)+e2/(1—e*2)=(1—¢e*2*")/(1—&)(1—¢&*2).

If s=0, then tr(T)=0. So we have v,=N—1. From R-H relation B=
2IN+2N—2, the branch number is 2IN except for P, P,. If s=N/2, then tr (T)
=0. So we have v,=N-—1. From the R-H relation 3=2/IN+3N—2, the branch
number is 2/N+N except for P, and P,. If s=N/4, then tr (T)=¢(1—¢"'%)/
(1—e?)=2¢/(1—¢?). So we have (1—e*2*!)/(1—e)(1—e2)=2¢/(1—e?). Therefore
g2*'=—1, hence v,=N/2—1. From the R-H relation, B=2/N+5N/2—3, so the
branch number is 2/N+N/2 except for P, and P,.

If s=3N/4, then tr (T)=e(1—e&*¥/?)/(1—e?)=2¢/(1—e?). So we have y,=
N/2—1. From the R-H relation, B=2/N+7N/2—2, so the branch number is
2IN+3N/2 except for P, and P,.

(¢) case t=3.

From Lemma B, t» (T)=1+¢/(1—¢&)+e&2/(1—¢e*2)+e"3/(1—e*3). If N is odd
and s=(N—1)/2, then tr (T)=e(1—¢&**)/(1—e®)=—1/(1+¢). Hence 14¢/(1—¢)+¢"
/(1—¢g2)te¥3/(1—e*)=—1/(14+¢). By the same way in Appendix, we have the
following solution (v, v,)=(N—2, N—2). From the R-H relation, there is no
branch point except P,, P,, P;.

If N is even and s=N/4-+1/2, then N=2 (mod4). We consider M/{T?
and denote g the genus of M/{T?). Since N/2 (=the order of T?) is odd, we
have g=(N/2)g or g=(N/2)¢+(N/2—1)/2. These, however, do not occur, be-
cause N must be 2 and T is hyperelliptic involution in these cases. Indeed,
from g=(N/2)g for example, we have §=2/+1/2+1/N, so N must be 2. Also
from g=(N/2)¢+(N/2—1)/2, we have the same. The case that N is even and
s=3N/4+1/2 is the same as above.
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We summarize the above results in the following theorem.

THEOREM 3. If T Aut (M) has a fixed point which is hpperelliptic Weier-
strass point, then there are only 8 possible cases except that T is the hyperelliptic
involution :

If N is odd, then

(a) t=2, g=Ng’ (v, vo)=(1, N—-1)

(b) t=3, g=Ng’+(N—1)/2  (vy, v,, v5)=(1, N—2, N-2)
If N is even, then g’=0 and

(c-1) t=1, g=IN+N/4—1/2

(c-2) t=1, g=IN+3N/4—1/2

(d-1) t=2, g=IN (vy, vo)=(1, N—1)
(d-2) t=2, g=IN+N/2 (vi, vo)=(1, N—1)
d-3) t=2, g=IN+N/4 (vy, vo) =1, N/2—1)
(d-4) t=2, g=IN+3N/4 (vi, vo)=@1, N/2—1).

REMARK 6. In cases (a) and (b), M is totally ramified.

REMARK 7. Horiuchi [6] investigated normal coverings of hyperelliptic
surfaces which are also hyperelliptic and obtained most part of the above in
other aspects.

§3. Higher order Weierstrass points for some cases
1. Now we give sufficient conditions for fixed points to be g¢-Weierstrass

point (¢=2) in some cases.

THEOREM 4. If T<Aut (M) is of odd order N and has three fixed points
P,, P,, P, whose rotation constants (vy, vs, vs) are (1, 1, N—1/2), then we have the

following ;

(i) P, P, are gq-Weierstrass points (g=2) except possibly for the following
cases :

(1) N=1 (mod6) and either qzﬁ;—z (mod N) or qzz—N;—l (mod N)

@) N=5 (mod6) and cither qz_f\%ﬂ (mod N) or qzzu\;“) (mod N)
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(ii) Py is g-Weierstrass point for all ¢=2.

PROOF. (i) Assume that P; (f=1, 2) is not g-Weierstrass point, then from
Lemma A, tr(T)=e%(1+e+ - P D@D (gl_g-2-N-9/2) /(] _¢). While, from
Lemma B, tr (T)=2&%/(1—¢&)+ &V 192 /(1 —gVN-D/2),

Hence’ 611_5(1+(N-1)/2+5—211—(1‘7—3)/2__5—2Q+1+E(N-l)Q/Z__s(N-l)QIZJrl:O. Then we
can obtain the desired condition (cf., Appendix 3).

(ii) Assume that P, is not g-Weierstrass point, then from Lemma B, t7(T)
=(e2—e M~ N-91%) /(1 —¢), while from Lemma B, tr(T)=e%/(1—e)+2¢V-0e/
(1—e¥-%). Hence 2e¥*P/?=1+4¢. This equation has no integer solution N.

{q.e.d.>

THEOREM 5. [If Te<Aut (M) has four fixed points P,, P, P,, P, whose
rotation constants (vi, v, vs, vs) are (1, v, N—y, N—1), then P; (i=1, 2, 3, 4) is g-
Weierstrass point (q=2) except possibly for the following case; N is odd and
g=N+1/2 (mod N).

PROOF. Assume that P; (=1, 2, 3, 4) is not g-Weierstrass point, then from
Lemma A, tr (T)=(e?—¢&%*%)/(1—¢), while from Lemma B, tr (T)=¢%/(1—¢)+¢*
/(1—e")+eN/(1 —gN-2) L ¢¥-De/(] —¢¥-D)  Hence we have

732 /(1—e)+ /(1 —e)+ eV "1/(1 — eV~ N-D1 /(] —N-D)=(),

Then we can obtain the desired conclusion (c.f., Appendix 4). {q.e.d.>

THEOREM 6. If T<Aut (M) is of even order and has two fixed points P;,
P, where the rotation constants (v,, v,) are (1, 1), then P,, P, are qg-Weierstrass
points except possibly for

2g=1 (mod N/2).

PrROOF. Assume P, (resp. P,) is not ¢-Weierstrass point, then from Lemma
A and Lemma B, we have ¢'7=¢®. Hance 2¢=1 (mod N/2). {gq.e.d.>

2. We give the examples of the above theorems.

EXAMPLE OF THEOREM 4.
We will now consider the Riemann surfaces of the algebraic function

y¥N=x(x—1) (N: odd).

This is the surface of genus g=N—1/2 and has a representation as N-sheeted
cover of the sphere with 3 ramification points P, P, P. over 0, 1, o respec-
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tively. Also P,, P,, P. are the fixed points of the automorphism 7 :(x, y)—
(x, €v).

A basis for the complex vector space H'!' of holomorphic differentials is as
follows:

dx dx dx

N-1s . N-2> > Yy =nye

The 1-gap sequence at P, P, is 1, 2, ---, g and 1-gap sequence at P, is 1, 3, ---,
2g—1, so the surface is hyperelliptic.

Now we can compute the g-gap sequences and ¢-weights at P, P,, P. for
all ¢=2 constructing a basis for the complex vector space H? of holomorphic
g-differentials inductively. We mention the results as follows; Let [a, b] be
the set of integers n such that a<n<b.

<g-gap sequences and g-weights of P,, P,>

(I) N=6n+1 (i.e., N=1 (mod 6))

iy If ¢g=2k—1 (mod N) 1<k<n), then ¢-weight (3k—2)3n—3%k+1) and
[1, 2¢3n—1)—6n+3k—2][2¢(3n—1)—6n+6k—3, 2¢(3n—1)—3n+3k—1].

ii) If ¢g=2k (mod N) (1<k<n), then g¢-weight (B(k—1)3n—3%2+1) and
[1, 2¢3n—1)—6n+3k][2¢(3n—1)—6n+6k, 2¢9(3n—1)—3n+3%].

iii) If g=2n+2k—1 (mod N) (1<k<n), then g-weight 9(k—1)(n—£k+1) and
[1, 2¢(3n—1)—6n+3k—2][2¢(3n—1)—6n+6k—4, 29(3n—1)—3n-+3k—2].

iv) If g=2n+2k (mod N) 1<k<n), then ¢g-weight (32—1)(3n—3k+2) and
[1, 2¢83n—1)—6n+3k—2][2¢(3n—1)—6n+6k—1, 29(3n—1)—3n+3k].

v) If g=4n+2k—1 (mod N) (1<k<n), then g¢-weight 3(k—1)(3n—3k+4)
and [1, 2¢g83n—1)—6n+3,k—3][2¢(83n—1)—6n+6k—5, 2¢(3n—1)—3n+32—2].

vi) If ¢g=4n+2k (mod N) (1£k<n), then ¢g-weight (3%—2)(3n—3k+2) and
[1, 2¢3n—1)—6n+3k—1][2¢(3n—1)—6n+6k—2, 2¢(3n—1)—3n+3k—1].
(II) N=6n—1 (i.e., N=5 (mod 6))

i) If ¢g=2k—1 (mod N) 1<k<n), then ¢-weight (3k—2)(3n—3k+2) and
[1, 2¢(3n—2)—6n-+3k][2¢(83n—2)—6n+6k—1, 2¢(3n—2)—3n-+3F].

iiy If ¢=2k (mod N) 1<k<n), then g¢-weight 3@Bk—1)(n—%k) and [1,
2q(3n—2)—6n+3k+2][2¢(3n—2)—6n+6k+2, 29(3n—2)—3n+3k+1].

iii) If ¢=2n+4+2k—1 (mod N) (1<k<n), then g¢g-weight (32—2)(3n—3k+1)
and [1, 2¢(3n—2)—6n+3k+1][2¢(3n—2)—6n+6k, 2¢(3n—2)—3n+3k].

iv) If ¢g=2n42k (mod N) 1<k<n), then g¢-weight 9k(n—Fk) and [I,
2q(3n—2)—6n+3k+2][2¢(3n—2)—6n+6k+3, 2¢(3n—2)—3n+3k+2].

v) If g=4n+2k—1 (mod N) (1<k<n), then ¢-weight (3k—1)(3n—3k+1)
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and [1, 2¢g(3n—2)—6n+3k+1][2¢(3n—2)—6n+6k+1, 29g(3n—2)—3n+3k+1].

vi) If ¢g=4n+2k (mod N) (1<k=n), then g-weight 3k(3n—3%k—1) and
[1, 2¢(3n—2)—6n+3k+11[2¢(3n—2)—6n+6k+1, 29(3n—2)-—3n+3k+1].
(Il) N=6n+43 (i.e., N=3 (mod 6))

i) If ¢g=2k—1 (mod N/3) I<k=<n-+1), then g-weight (3k—2)(3n—3k-+4)
and [1, 6gn—6n+3k—4][6gn—6n+6k—5, 6gn—3n+3k—2].

ii) If ¢=2k (mod N/3) 1<k<n), then ¢-weight (32—1)(3n—3k+2) and
[1, 6gn—6n+3k—2]}[6gn—6n+6k—2, 6gn—3n+3k—1].

<g-gap sequences and q-weight of P.>

&g+l
2

and [1, 2¢(g—1)—2g+1], 29(g—1)—2g+3, 29(g—1)—2g+5, ---, 29(g—1)+1.

g-weight

EXAMPLE OF THEOREM 5.
We will now consider the Riemann surfaces of the algebraic function

yW=x(x—D(x—a)¥".

This is the surface of genus g=N—1 and has a representation as an N-sheeted
cover of the sphere with the four ramification points P,, P,, P., P. over 0, 1, a,
oo respectively. Also these points are fixed points of the automorphism
T: (x, y)—(x, &y).

A basis for the complex vector space H' of holomorphic differentials is as
follows:

(x—a)V-2 (x—a)¥-? (x—a)dx dx
e dx, e dx, -, Ty
The 1-gap sequence at P,, P, P,, P. is 1, 2, ---, g and we can easily show

that this surface is hyperelliptic. We can compute the g-gap sequences and g-
weights at these points by the same way as Example of Theorem 4. We men-
tion the results as follows;

<g-gap sequences and q-weights of P,, P,, P,, P>

(I N: odd

iy If g=k (mod N) 1=k=(N—1)/2), then g-weight (g—2k+2)(2k—1) and
[1, 2¢g—1)(g—1)—N+2k—1][(2¢g—1)(g—1)—N+4k—1, 29—1)(g—1)+2k—1].

ii) If g=(N+1)/2 (mod N), then ¢g-weight 0 and [1. 2¢—1)(g—1D].

iii) If ¢g=(N+1)/2+k (mod N) (1< R<(N-1)/2), then g-weight 2(g—2k+1)k
and [1, 2¢—1)(g—1)—N+2k][(2g—1)(g—1)—N+4k+1, 2g—1)(g—1)+2k].
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() N: even
If g=Fk (mod N/2) (1<k<N/2), then g¢-weight (g—2k+2)2k—1) and
[1, CQg—1(g—1)—N+2k—1][2g—1)(g—1)—N+4k—1, 29—1)(g—1)+2k—1].

EXAMPLE OF THEOREM 6.
We consider the Riemann surface of the algebraic function

YV =x(x—1) (N: even)

This is the same equation of Example of Theorem 4 except for the difference
between even or odd. This surface is of genus N/2—1 and is hyperelliptic.
But this case can be reduced in the case of example of theorem 5. Indeed, as
we noticed in Remark 1, we can see that the analytic N/2 cover M—M/{T?*
has four ramification points P, P,, P!, P2 whose rotation constants are
(v, v, vs, va)=(1, 1, N/2—1, N/2—1). So we can see that the ¢-gap sequences
and ¢-weights at P,, P, P&, P2 is as follows;

< g-gap sequences and q-weights of P,, P, P&, P:>
(D N/2: odd

i) If g=k (mod N/2) (1<k<(N/2—1)/2), then g-weight (¢—2k+2)(2k—1) and
[1, Q¢—1)(g—1)—N/2+2k—1][(2g—1)(g—1)—-N/2+4k—1, (2¢—1)(g—D)+2k—1].

ii) If ¢g=(N/2+41)/2 (mod N/2), then g-weight 0 and [1, 2¢—1)(g—1)].

iii) If ¢g=(WN/24+1)/24+Fk (mod N/2) (1<k<(N/2—1)/2), then g-weight
2(g—2k+1k and [1, 2g—1)(g—1)—N/242k][(2q—1)(g—1)—N/2+4k+1,
(2g—1)(g—1)+2k].

dI) N/2: even

If ¢g=k (mod N/4) 1<k<LN/4), then g¢g-weight (g—2k+2)2k—1) and

[1, 2¢—1)(g—1)—N/2+2-—1][(2¢—1)(g—1)—N/2+4k—1, 29—1)(g—1)+2k—1].

§4. Differentials. (Dimension n} of HY)

We can obtain ni=dim H{ in each case of Theorem 1, 2 and 3. Methods of
computation are owed to J. Lewittes [7], essentially and Lewittes and
Duma obtained inequalities on n{. By the same way we can compute nf ex-

plicitly, because in our special cases we have known the rotation constants
exactly.

We mention the tables of nf in each case of Theorem 1.
Here we put ¢g=Nd+r (0<r<N—1) and we denote n{=n, for simplicity’s
sake.
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TABLE 1. (Case g=1)

1) t=1, g=6g’+1, N=6. Then, ny=g’ (k#1), nj=g+1
) t=2, g=Ng’. Then, ny=g’ for all £ (0<EL<N-1)
M) t=2, g=Ng’+(N/2—1). Then,
no=g’, ny=g'+1 (1=k<N/2-1), n,=g" (N/2£k<N-1).
IV) t=3, g=Ng’+(N—1)/2. Then,
ne=g’, ne=g"+1 I=k=(N-1)/2), n,=g" (N+1)/2<k<N-1).
V) t=4, g=Ng’+(N—1). Then, ne=g’', np=g'+1 (I=k<N-1).

TABLE 2. (Case ¢=2)

I) t=1, g=6g’+1, N=6. Then,
If =0, ne=02¢—Dg’'+1, n,=@2¢—1)g’ 1<k=4), n,=(2¢—1)g’—1.
If r=1, n,=Q¢—1g’'+1, n,,=QR¢g—1g’'—1, n,=Q2q¢g—1)g’ (k+r, r—1).
) t=2, g=Ng’, rotation constants (1, N—1). Then,
If r=0, ne=2¢—1)g’—2d+1, n,=Q2g—1)g’—2d (1<k<N-1).
If r=21, n,=Q¢—1)g’—2d—2 (k<r, N—k<r),
ny=02q¢q—1)g’"—2d (k=r, N—k=r)
ny,=02q—1)g’'—2d—1 (k<r, N—kZ=r or k=r, N—k<r).
) (=2, g=Ng'+(N/2—1), rotation constants (1, 1). Then,
If r=0, n,=02¢—1)g’+g9—4d+1, n,=2¢g—1)g’'+g—4d 1<kL<N/2),
ny,=02¢—1)g’'+q9g—4d—1 (N/24+1< k< N-1).
If 1<r<N/2,
ny=2q—1)g’'+q—4d (k=r, k+r=<N/2),
n,=02g—1)g’'+q—4d—1 (k=r, N/2<k+r=<N),
ny=0Q2¢g—1)g’"+q—4d—2 (k<r, k+r<N/2 or k=r, N<k+7r),
ny=2q—1)g'+q—4d—3 (k<r, N/2<k+r=<N).
If N2<r<N-1,
ny=(29—1)g’'+q—4d—2 (k=r, k+r=3N/2),
ny=02g—1)g’+9—4d—3 (k<r, k+r<N or k=r, 3N/2< k+7),
n,=2g—1)g’'+q—4d—4 (k<r, N<k4+r<3N/2),
n,=2g—1) g’ +q—4d—5 (k<r, 3N/2<k+7).
IV) t=3, g=Ng’'+(N—1)/2, rotation constants (1, 1, (N—1)/2). Then,
If »=0, ny=2¢—-1)g’+9—3d+1, n,=2¢—1)g’+q—3d 1<kL<(N—-1)/2),
ny=0C2g—1)g’+q—3d—1 (N+1)/2<k<N—-1).
If r=1, n,=02¢—1)g’+q—3d (R<(N—1)/2, b=r, N—2k=7),
n,=02¢g—1)g’+9—3d—1 (k<(N—-1)/2, N—2L<r or
k=(N+1)/2, k=r, 2N—2k=7),
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n,=02q—1)g’+q—3d—2 (k=<(N—-1)/2, k<r, N—2k=7 or
k=(N+1)/2, k=7, 2N—2k<7),
ny,=02q—1)g’+q—3d—3 (R<(N—1)/2, k<r, N—2k<r or
k=(N+1)/2, k<r, 2N—2kZ=r),
ny=0Q2q—1)g’+q—3d—4 (k=(N+1)/2, k<r, ZN—2k<7).
V) t=4, g=Ng’'+(N—1), rotation constants (1, y, N—y, N—1).
Let ., p#» be integers such that 4,-v=~k (mod N), 2e+p:=N, 1=, pr =
N-—1. Then,
If r=0, n,=02¢—1)g’+29—4d+1, n,=2q—1)g’+29g—4d—1 (1=<k<N-1).
If »=0, n,=02¢—1)g’+29—4d—3, n,=2g—1)g’+29—4d—1 (1),
ne=02gq—1)g'+2¢—4d—-2 (2), n.=Q2g—1)g’'+2¢9—4d—-3 3),
ne=02¢q—1)g’'+2¢9—4d—4 4), n.,=Q2¢g—1)g'+2¢9—4d—5 (©),
where, case (1) means that all of four integers k£, N—#k, 4, ¢, are smaller than
r, case (2) means that only one of them is lager than or equal to r», case (3)
means that just two of them are smaller than », case (4) means that only one
of them is smaller than », and case (5) means that uone of them is smaller
than r.

We have the tables in other cases of Theorem 2 and 3 but we will omit
those on account of their length.

EXAMPLE OF CALCULATION OF nf

We give an example of calculation of n} in the case Table 2 I), namely,
g=6g’+1. There are five branch points except P, which are the fixed points
of 7% and T°. We denote the fixed points of T? by @,, Q. and the fixed points
of T* by R, R, Rs. We denote n(P)=P, 7(Q)=r(Q)=0, n(R)=r(Ry)=
n(R,)=R. Considering the projection M—M/<{T%>, we see that M is covering
surface over M/{T?> with three fixed points P, ¢,, &, and M has no branch
points except P, Q,, Q.. So the rotation constants with respect to 7% are
1,1, 1) from Theorem 1 (d), i.e., (T?*: Z—e*Z at P, Q,, @,. Now we may
assume 7n,+0 for some %, namely there is a holomorphic g¢-differential § such
that T(0)=¢*0. 1f U= M, not a branch point, is a zero of # of order u, then
each of the points T*(U) 1<a<5) is a zero of order u. Thus the divisor of 4
has the form

3 5
div (0)=P" (@ Q)™ (RuRuR)™ IL (AL TW, )%, ms=0, 1,20,

where
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M+ 2m,+3ms+6( 3 u)=2q(g—1).
j=1

Note that u; may be arbitrary but not m;. Infact 7-': z—ez at P, locally and
6 is represented by 0=(a,+a,z+ - +a,z"+ ---)dz* locally, so the condition
T(0)=¢*0 says that ¢"*%a,=¢*a,, therefore a,=0 for n not satisfying n+qg==~
(mod 6). In particular the first non zero coefficient has index of the form 6hA,+
k—gq, h,=0 an integer. Similarly (T?)':z—e%z at Q, (resp. ;) and 0=
(@ay+aiz+ - +a,z"+ ---)dz? locally so the condition T?2@)=e**@ says that
gt g, —¢’*q,, therefore a,=0 for n not satisfying n+g=k (mod3). In
particular the first non zero coefficient has index of the form 3h,+k—gq, h,=0
an integer. Similarly (7% ':z—ez at R, (resp. R, and R;) locally so the con-
dition T3%(@)=¢**0 says that the first non zero coefficient has index of the form
2hs+k—q, h;=0 an integer. Therefore the divisor of # is denoted by
div ()=PM4-9(Q, Q2" =R, RoR ) o+ 4 TT (IT T*WU )" .

Jj=1 a=0

If 0*< H{ is another g-differential of which divisor is
div (0%)= P, 54 2(Q, Q)™ YR, R,R )™ 2 IT (T T*(U*)"7
j=1 a=0

then 6*/68=f is an T-invariant meromorphic function on M, for T(f)=
T@*%/T@)=¢e*0*/e*0=f. The divisor of f is

div ()= P M (Q,Q4) "2 " (R, R, Ry M5

s 1 (T T*W%)* L (T T )™ .
j=1 a=0

j=1 a=0

Then f==(f) becomes a meromorphic function on M/<T> of which divisor is

div (=BG R [0 (104
Jj=1 Jj=1
Here we consider the following 36 cases; (», £)=(0, 0), ---, (5, 5): If »=0,
k:Oy then m1:6h1—(]:6(h1—d); m2:3(h’2—2d), m2=2(h3_3d) and hlgd’ hZZZdr
hs=3d because m;=0. Let b, be negative divisor on M/<{T)> as follows, b,=

~ ~ $ ~ . . .
P a-mQra-rep3d-rs T [J-*j. Then any 6*=H? induces a meromorphic function
j=1

Ff=m(0*/6) and div (f) is a multiple of b,. On the otherhand any meromorphic
function 7 of which divisor is a multiple of &, induces a meromorphic function
f=xn"%(f) such .hat f0=0*=H{ Hence n¢ is the dimension of the space of
meromorphic function of which divisor is a multiple of 5,, namely ni=r(,).
We are now in a position to apply the Riemann-Roch theorem. Now,
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deg (50_1):h1+h2+h3_‘6d+2uj ’
while,

29(g—1)=m+2m,+3m;+6(Xu;)=6(h,— d)+6(h.—2d)+6(h:—3d)+6(Zu;),
so deg (by")=2qg’>2g"'—2. Hence i(f,"")=0. Using the Riemann-Roch theorem,
n§=rby)=deg (bs™)+1—g'+ib")=2¢—1g'+1.

In the other (r, 2) cases we can compute 7 similarly.

In all other cases in the above tables we can compute n{ by the same
routine work.

§5. Miscellaneous results.

1. We consider the case t=2. Theorem 1 asserts that, if P, is not a 1-
Weierstrass point, we have g=Ng’ and the rotation constants are (1, N—1).
Now conversely we start the following condition; g=N, g’=1 and the rotation
constants (1, N—1), i.e., we don’t assume that P, is not a 1-Weierstrass point.
Then we have the following theorem.

THEOREM 7. We assume that t=2, g=N, g’'=1 and the rotation constants
(1, N—1). Then the two fixed points P, and P, are not 1-Weierstrass points or

1-Weierstrass points with the same gap sequence of which weight are a multiple
of N.

ProoF. From Table 1, we have ni{=n}=--- =n}_,=1. Therefore there is
a basis {#,} of H! such that T(#,)=¢*6,. The condition T(8,)=80, says that
the order of the zeros of 6, at P; is h;g+g—1 (j=1, 2). The condition
T(0,)=¢c*0, (k=1) says that the order of the zeros at P, (resp. P,) is
hig+k—1 (resp. h,g+g—k—1). Since total orders are 2g—2, we observe
that div(0k):P1"“P25“k‘1gI:IlT"(Qk) or div(0,)=P,&** 1P,E~%-1  or div(f,)=
Pt-1pge-k-t "

If there is a #, such that div(8,)=P%**-'P§-*-!, then we have div (8./8,)
=P}P3*, therefore 0./6, (resp. 6,/0:) is a meromorphic function of which
poles are P% (resp. P%) so %k is a non gap of P, and P,.

If there is a #, such that div (8,)=P%*P%¢-*-! then we have div (8,/60,)
=P78**P%-* and so g—Fk is a non gap of P, and P,.

If div (ﬂk):P’f“Pi‘,’””“gIz[:T“(Ok) (=1, -+, g—1) and Q,=Q, (k+#m) for
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cirtain £ and m, then div (6,/0,)=P* ™P7* so k—m is a non gap of P, and
P,. We put 6’=(0,/0)0,, then div (§/)=P4+*-m-1pg-ck-m>-1
Therefore if P, is not 1-Weierstrass point, the divisor of #, must be

div (Bk):P{’“Pg““g]':[:T“(Q,,) for any %4 and @, are different from each other.

Also non gap k (1£k<g—1) exists if and only if there exists 8, such that
div (0,)=P%**'P4-*-! or div(0,)=P%'Pi¢-*-'. Moreover it is clear that P,
and P, have the same gap sequence and the weight is a multiple of N=g from
the form of the divisor of &,. {q.e.d.>

For example, if g=N=3, the gap sequence of P; is {1, 2, 3} or {1, 3, 5},
if g=N=4, the gap sequence is {1, 2, 3, 4} or {1, 2,4, 7} and if g=N=5, the
gap sequence is {1 ‘2, 3, 4.5} or {1, 2, 3,5, 9} or {1, 2,4,5,8} or {1, 3,5, 7, 9}
etc.

2. We consider the case t=3. Theorem 1 asserts that if P, is not a 1-
Weierstrass point we have g=Ng,+(N—1)/2 and the rotation constants are
(1, 1, (N—1)/2). Conversely we obtain the following :

THEOREM 8. We assume that t=3, g=Ng’'+(N—1)/2 and the rotation con-
stants are (1, 1, (N—1)/2).

(i) If g’=0, M is hyperelliptic.

(i) If M s hyperelliptic, P,, P, are not 1-Weierstrass points and P; is a
1-Weierstrass point and J(P,)=P,, where | is the hyperelliptic involution.

Proor. (i) If g’=0, then g=(N—1)/2. From Table 1, we have n}=0,
ni=1 1<k<(N—-1)/2=g). Therefore there is a basis {#.} of H' such that
T(8,)=¢*0,. Considering the rotation constants, the condition 7'(8,)=¢*8,
says that the divisor of @, is div (8,)=Pi 'P§{'P§¢**. Hence the gap sequence
of P, and P, is 1, 2, ---, g and the gap sequence of P; is 1, 3, ---, 2g—1, so M
is hyperelliptic.

(ii) If M is hyperelliptic, the number of 1-Weierstrass points is 2g-+2=
(2g’+1)/N+1. Hence one of the points P, P, P, is 1-Weierstrass point. If P,
(resp. P,) is a 1-Weierstrass point, then according to Theorem 3, the rotation
constants are (1, N—2, N—2), so the rotation constants of P, (resp. P,) and P;
must be the the same. It contradicts. So P; must be a 1-Weierstrass point.
Since J is in center of Aut (M), T(J(P))=J(T(P;)=J(P;) and J(P;) is also a
fixed point, hence J(P,)=PFP:,. {q.e.d.>

Lewittes [7] showed above theorem in the case that N is prime.
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3. We consider the case t=4. Theorem 1 asserts that if P, is not a 1-
Weierstrass point we have g=Ng’+N—1 and the rotation constants are (1, v,
N—y, N—1). Conversely if the rotation constants are (1, vy, N—y, N—1), is P;
(j=1, ---, 4) not a 1-Weierstrass point? It is not correct in general, however
if g’=0 we have the following :

THEOREM 9. We assume that t=4, g=N—1, g’=0. Then we have

(i) P, P, P; and P, are not 1-Weierstrass points if and only if the rotation
constants are (1, v, N—y, N—1),

(i) moreover, M is hyperelliptic if and only if v=1, namley (1,1, N—1,
N—1).

Proor. (i) If P, is not a 1-Weierstrass point, from Theorem 1 the rota-
tion constants are (1, v, N—y, N—1). Since g’=0, from Table 1, n}=0, ni=1
(k=1, ---, g). Hence there is a basis {6,} of H! such that T(8,)=¢*8, (k=1,
..., g). Considering the rotation constants, we have that the divisor of 6, is
div (0,)=P% 1P} PY-2r-1PV-% -1  \where A;,-v=1 (mod N), 1=<2,<N—1. Hence
the gap sequence of all P; is 1, -, g and so all of P, are not 1-Weierstrass
points. Conversely if the rotation constants are (1, y, N—y, N—1), then the
form of the divisor 8, is as above, therefore it is clear that all of P; are not
1-Weierstrass points.

(i) If the rotation constants are (1, 1, N—1, N—1), then there is a as is
{60, with div(0,)=(P,P)* '(P;P)"**. Hence div(8./0:-1) = (PiP)(P:P)7,
therefore 6,/6,_, is a meromorphic function of order two, and so M is hyper-
elliptic.

If 2<y<N—y<N—2, we consider 0,0, 1<k, ISN—1) as above. In this
case the divisor of 6.0, is

diV (0kal):PIf+l~2P§2k+xl—2P§N—1 k—xl—ngN—k—l—z .

Then there are k., ks, [, and /, such that k,+li=Fks+1ls, Ar,+41,# A2, +4;, since
2<y<N—y<N-2, (v, N)=1. Therefore the number of independent .60, is
is larger than 2g—1, and so M is not hyperelliptic. {q.e.d>

§6. Examples of the construction of Riemann surfaces.

We consider the case t=2, g=Ng’, rotation constants (1, N—1).

EXAMPLE 1. Assume g’=1, N=3, namely g=3.
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From Table 1 of §5, there is a basis 8,, 8,, 8, of H' such that T(0.)=
e*0, (=0, 1, 2), e=exp(2wi/3). Then we obtain the following 15 differentials
of H* as products of 6,.

a5, 0360,, 030,, 00,0, 0:0i=H;
0t, 036, 036, 60,0, 0i0i=H!
5, 030, 030, 030,60, 030'<H}.
From Table 2, ni{=4, nt=5, ni=5, so there is a linear relation in the first

group.
a,04+a,030,0,+a.0,03+a.0,03+a,0%03=0.

We put 6,/0,=x, 6,/0,=y. Then
aytaxy+tax*+asy’+a,x?y*=0.

If a,=0. Then a,+a,xy+asy*+a,x?y*=0. We take birational transformation
y=Y, xy=X, then a,+a,X+a,Y*+a,X?=0. This Rieman surface is of genus
g<1. It contradicts. So we have a,#0. Similarly we have a;#0. Also, if
a,=0, then a,xy+a,x*+a,y*+a,x*y*=0. But this Riemann surface is of genus
g<2. So we have a,#0. Consequentry we can normalize;

M: x*+y3+ax®y*+bxy+1=0.

This Riemann has the group of automorphisms Aut (M) whose order siX in
general. Its generators are

T: (x, y)—>(ex, e?y) and S: (x, y) —> (¥, x).

The fixed points of T are P, and P, which lie over x=o. And we can easily
see that these points are not 1-Weierstrass points, for P, and P, correspond to
(0,1, 0) and (1, 0, 0) provided that they are considered on homogeneous coordi-
nate and the Hessian of X*Z +Y*Z +aX®*Y?*+bXY Z*+Z* is not zero at (0, 1, 0)
and (1, 0, 0).

EXAMPLE 2. Assume g’=1, N=4. Namely g=4. From Table 1, there is
a basis {6.} of H! such that T(8,)=¢*8,, (k=0,1,2,3) e=exp (2ni/4)=i. Then
we obtain the following 10 differentials of H? as product 6.

5, 0.0, 0i=H} 0,0,, 0.0,=H?
0.0, 6% 6i=H; 0,0, 0.0,=H;.

From Table 2, n2=2, n?=2, ni=3, ni=2, so there is a linear relation in the
first group. a,0%+a.0,0.+a,03=0 (x). (*) is a quadratic form with respect to
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{6,}. If all a,+0, then the rank of (x¥) is 4, and if a,=0 or a,=0, then the
rank of (%) is 3.

Case of rank 3. If a,=0, then 6.0:;=c0} (¢: const.) and div(6s;/0,)=
div (0,/6,)=P,P3*, It contradicts. So a;=0. Consequentry (x) is a,05+a.0,0,
=0 (x¥). Then we have div (#,)=6P, and div (#;)=6P,. This shows that the
1-gap sequence of P, and P, is {1, 2, 4, 7}.

Case of rank 4. We investigate the divisor of 6, and we know that 1-
gap sequence of P, and P, is {1, 2, 3, 4}.

Furthermore we know that P, and P, are the fixed points of T. So they
are 1-Weierstrass points (resp. non 1-Weierstrass point) in the case of rank 3
(resp. the case of rank 4).

Next, we obtain the following 20 differentials of H® as products of 8,.

0°, 0,0.0,, 0,03, 030, 0,05=H;
030, 0,0,0,, 030,, 0.0;, 0i=H}
036., 6,01, 0.6, 03 0,0,0.=H;
030,, 0,0.0,, 63, 0.0 0:0,=Hj.

From Table 2, ni=4, n$=4, ni=3, ni=4, so there is a linear relation in each
group. But we may consider only one linear relation in the third group from
(x) or (x¥). We have

b1000%+b2000§+b3 g+b4010203=0 (#) .

By the way we know that the canonical image of M in P? is contained in the
intersection of the quadric and cubic defined by (¥) or (xx) and (#).

(i) Case of rank 3. We put 0,=x, 0,=y, 6,=z, 6,—=u and normalize
a,=1, a,=—1 so we have

x2—zu=0 (x%) bixz*+byxu?+bsy3 +b,yzu=0 (#).

We put u=1 and we represent the surface in affine space. Then b,x5+b,x+
bsy*+b,yx*=0. Clearly b,+0 and b;+0 otherwise the genus g<4. So y®+b,yx?
+x°4+b,x=0. Namely we can normalize the equation of the surface as follows:

x*—zu=0, xz*+axu®+y*+byzu=0
or
Vi4+byxi+x*+ax=0.

(ii) Case of rank 4. We put 0,=x, 0,—y, 6,=z, 0;,=u and normalize
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alzaszl, agz_l.
xt—zu—y?=0 (%) bixzZ? +byxu®+bsy*+b,yzu=0 (&)

We put u=1 and we represent the surface in affine space. Then b,x(x*+ y?%)?*
+b,x+bsy3+b,y(x2+y%)=0. Clearly b,#0 otherwise the genus g<4. Namely
we can normalize the equation of the surface as follows;

x*—zu+y*=0, xZ2+axul+by*+cyzu=0
or
x(x2+ 92+ ax+by 4+ cy(x*+y3)=0.

Appendix (The integral solution of some trigonometric
“diophantine” equations of §2 and §3.)

1+e/(1—e)+e2/(1—e2)+e3/(1—e)=e(l—e N D7) /(1—¢), (D

Put v,=1, v;=p and assume A<pu. Here, from e=cos (2x/N)+i sin (2z/N),
we have
e/(1—e)=—1/24: sin 2x/N)/2(1—cos (2z/N))

e?/(1—e*)=—1/2+41 sin (2An/N)/2(1—cos (2An/N))
e’/(1—e*)=—1/2+17 sin Cpr/N)/2(1—cos 2puxr/N))
eV-112/(1—e)=1/2 sin (x/N) .

Hence, the above equation (1) is deformed as the following equation

sin(2Ax/N)/2(1—cos(22x/N))+sin2ux/N)/2(1—cosur/N))=1/2sin(x/N)

or
cot (Ax/N)+cot (um/N)—cosec (r/N)=0.

Step 1. Assume Z2=A=p.
Since cot x is monotone decreasing in 0<<x<m,

cot (Axr/N)-+cot (ur/N)—cosec (r/N)<2 cot (2x/N)—cosec (n/N)
=(cos 2n/N)—cos (x/N))/sin (x/N) cos (z/N)<0.

Therefore there is no solution in this case.
Step 2. We may assume A=1 from step 1.

cot (um/N)=cosec (x/N)—cot (r/N)=(1—cos (z/N))/sin (x/N)
cos (um/N) sin (z/N)+sin (un/N) cos (w/N)=sin (ux/N)
sin ((g+1)x/N)=sin (ux/N) .
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Therefore we have p=(N—1)/2.
2.
14+e/(1—e)+e*2/(1—e"2)+e¥3/(1—e*3)+e4/(1—g¥)=—1, 2)

Put v,=21, v;=pg, v,=v and assume A=p=<y. Here, from e=cos (2z/N)-+
i sin 2rn/N), (2) is deformed as below ;

sin (2x/N)/(1—cos (2r/N))+sin (24zx/N)/(1—cos )24z /N)
+sin 2pr/N)/(1—cos 2ur/N))+sin 2vr/N)/(1—cos 2vr/N))=0

or
cot (z/N)—+cot (Arx/N)+cot (un/N)+cot (vzx/N)=0.

Since the function cot x is monotone decreasing in 0<x<m,
cot (Arx/N)+cot (ux/N)+cot (vr/N)=3 cot yz/N).
Step 1. Assume ASpus<yv<N—3 (N=4). Then,
cot (m/N)—+cot (Ar/N)-+cot (ur/N)+cot (vx/N)=cot (r/N)+3 cot (vx/N)
=cot (/N)+3 cot (N—3)w/N)=cot (x/N)—3 cot (3n/N)
=(sin (83x/N)cos(x/N)—3 cos (3x/N) sin (x/N))/sin (=/N) sin (3x/N)
=(sin (3x/N)cos (x/N)—cos (3z/N) sin (x/N)
—2 cos (3z/N) sin (x/N)/sin (z/N) sin (3z/N)
= {sin 2x/N)—(sin (dx/N)—sin 2z /N))} /sin (z/N) sin (3z/N)
=(2 sin (2z/N)—sin (4z/N))/sin (z/N) sin (3x/N)
=2 sin (2x/N)(1—cos (2r/N))/sin (x/N) sin (3x/N)>0.

Therefore, there is no solution under the assumption A< py<y<N-—3.
Step 2. Assume y=N—2. Since (N, v)=1, N must be odd. Then

cot (z/N)+cot (Ax/N)+cot (urn/N)+cot (N—2)x/N)=0
or cot (Ax/N)+cot(urn/N)—cot 2rx/N)+cot (x/N)=0
or cot (Ax/N)+cot (un/N)+cosec (2x/N)=0.
If p=N-2,
cot (Ax/N)+cot (N—2)r/N)+cosec (2x/N)=0
0 cot A/ N)—c03(2rn/N)+cosec 2r/N)=0 or cot(Ax/N)+tan(x/N)=0

or cos (Ar/N)cos (/N)+sin (Ax/N) sin (z/N)=0 or cos((A—1)x/N)=0.

-
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But since N is odd, there is no solution.
If pu<N—4,
cot (Ar/N)+cot (un/N)+cosec 2x/N)=—2 cot (4w/N)+cosec(2x/N)
=(cos (2r/N)—cos (4x/N))/(sin (2x/N)cos 2z/N))>0.

Therefore, there is no solution.
If y=N-3,

cot (Azx/N)+cot ((N—3)x/N)+cosec (2x/N)=0
or cot (Ax/N)—cot (3n/N)+cosec (2x/N)=0.

We put F(Q)=cot(Ax/N)—cot(3n/N)+cosec(2x/N). Then F(A) is monotone
decreasing function of A.

F(N—5)=—cot (5n/N)—cot (3z/N)+cosec (2x/N)

=(sin (5x) sin (3x)—sin (2x) sin (8x))/sin (2x) sin (3x) sin (6x) (x==n/N).

The numerator=(1/2)(2 cos (6x) cos (4x)—cos (6x)—cos (8x)).
Put cos (2x)=X, then

The numerator= f(X)=8X°*—4X*—12X*+4X*+(9/2)X —(1/2).

f’(X):40X‘—16X3—36X2+8X+%, £(1)=0, f’(l):%>0'

Hence f(X)<0 for X nealy equal to 1. Therefore F(N—5)<0 for large N.
F(N—6)=—cot (6x/N)—cot (3nx/N)+cosec (2x/N)
=(sin (6x) sin (3x)—sin (9x) sin (2x))/sin (2x) sin (3x) sin (6x) (x==n/N)
=4 sin (2x) sin (3x)(sin?(3x)—sin?2x))/sin (2x) sin (3x) sin (6x)
=4(sin?(3x)—sin%*2x))/sin (6x)>0.

Therefore, for large N, there is not integer solution. If N is small, we
can investigate that there is no integer solution by direct computation.
Step 3. Assume v=N—1. Then

cot(xw/N)+cot(Ax/N)+cot (ux/N)+cot (N—1)x/N)=0
cot (Ax/N)+cot (ur/N)=0 so sin((A+p)x/N)=0.

Hence we obtain that 21+4p=N.

3.

+(N-1 —-2q- - - - -
e — g2+ )/2+$ 2q-(N 3)/2_e 2q+1+s(N 1)q/2_$(1v 1)q/2+1:0‘

3)
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We may assume 0<¢<N-—1 clearly. From e=cos(2z/N)+: sin 2z/N),

eq__sq+(N—1)/2

=co0s (2gn/N)—cos ((2¢g+N—1)x/N)+i{sin (2¢gn/N)—sin (2¢g+ N—1)x/N)}
=2 sin(4+N—1)x/2N) sin (N—1)x/2N)
—i{2 cos (4g+N—1)x/2N) sin (N—1)x/2N)}.

5-211—(1\7-3)/2 —2g+1

—e
=c0s ((4g+N—3)n/N)—cos (2(2¢—1)z/N)

—1 sin (4g+N—3)r/N)—sin (2(2g—1)n/N)}
=—25sin(B¢+N—-5)x/2N) sin (N—1)x/2N)

—1{2 c0s ((8¢g+N—5)n/2N) sin (N—1)n/2N)}.
eV =1a/2 _ (N -Da/2+1
=c08 (N—1)gr/N)—cos ((N—1)g+2)n/N)

+i{sin (N—1)gn/N)—sin ((N—1)g+2)x/N)}
=2 sin ((N—1)g+1)z/N) sin (n/N)—i{2 cos ((N—1)g+1)z/N) sin (x/N)}.

Hence, (Real part of the left side of (3))/2

Since

=sin (4q+N—1)x/2N) sin (N—1)x/2N)
—sin ((8¢g+N—5)x/2N) sin (N—1)z/2N)+sin (N—1)g+1)z/N) sin (z/N)

=208 ((6g+N—3)x/2N) sin ((—g+1)z/N) sin (N—1)z/N)

+sin (((N—1)¢+1)z/N) sin (x/N)
=2 sin ((—6¢+3)x/2N) sin ((—g+1)x/N) cos (z /2N

+2 sin (g +(—g+1)n/N)sin (z/2N) cos (n/2N)
=2cos(n/2N){sin ((—6¢+3)x/2N) sin ((—g+1)x/N)

+sin (g 4(—g+1)x/N) sin (z/2N)} =0.
cos (n/2N)+0, we have

sin ((—6¢+3)x/2N) sin (—g+1)n/N)
+sin (gr4+-(—g¢+1)x/N) sin (z/2N)=0 . (3.1)

By the same way, from (Imaginary part of the left side of 3)=0,
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sin ((—6g+3)x/2N)cos (—g+1)x/N)

+cos(gn+(—g+1)n/N)sin (n/2N)=0. (3.2)

If ¢ is odd, and have the forms
sin ((—g+1)x/N) {sin (—6¢+3)n/2N)—sin (z/2N)} =0 (B.Iy
cos ((—g+1)x/N){sin ((—6¢+3)x/2N)—sin (x/2N)} =0. 3.2y

Thus
sin ((6¢—3)n/2N)+sin (x/2N)=0 or

2 sin ((3¢g—1)x/N) cos ((3¢—2)x/2N)=0 .
Hence we have
g=@N+1)/3 or q=(N+2)/3.

If ¢ is even, (3.1) and [3.2) have the forms

sin ((—g+1)x/N){sin ((—6g+3)n/2N)+sin (x/2N){=0 (3.1)
cos ((—g+1)x/N){sin ((—6¢+3)x/2N)+sin (z/2N)} =0. 3.2y

Thus
sin ((6¢g—3)m/2N)—sin (z/2N)=0 or

2 sin (3g—2)r/2N)cos ((3¢g—1)x/2N)=0.
Hence we have
g=2(N+1)/3 or ¢=(N+1)/3.

e /(1 — &)+ /(1 — &)+ eV 9 (1— eV )4 eV -D/(1—e¥"H)=0. (4)

We may assume 0<¢<N—1. By simple calculations we have (Real part of
the left side of (4))/4

=c0s ((v—49+3)n/N) sin (vr/N) sin ((—2¢+1)x/N)
+cos ((v+1)x/N) sin (x/N) sin (v2¢—1)x/N)=0, (4.1)
and (Imaginary part of the left side of (4))/4
=sin ((v—4¢+3)x/N) sin (vz/N) sin ((—2¢+1)x/N)
+sin ((v+1)x/N) sin (z/N) sin (v(2¢—1)x/N)=0. 42)
From (4.1) and (4.2), we have
sin (v—4q¢+3)x/N)cos ((v+1)x/N)—cos (v—49+3)x/N) sin ((v+1)z/N)=0.

Thus
sin 2(g—-1)x/N)=0 or
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2 sin ((2¢—1)m/N)cos ((2g—1)/N)=0.

If sin((2¢g—1)x/N)=0, then we have g=(N+1)/2.

If cos((2¢g—1)n/N)=0, we have ¢g=(N-+2)/4 or ¢g=(@BN-+2)/4 but these do
not satisfy our condition. Indeed, for example ¢=(N+2)/4, (4.1) and (4.2) have
the forms

cos ((v+1)x/N){sin (wz/N)+sin (z/N) sin (v /2)} =0,

sin ((w+1)z/N){sin (vx/N)—+sin (x/N) sin (vx/2)} =0.
Thus

sin (vz/N)+sin (z/N) sin (vn/2)=0. 4.3)

Since N is even (N=4¢-+2), v is odd. If y=1@4), then sin(vx/2)=1 and so
sin (vz/N)+sin (z/N) sin (vx/2)=sin (vx/N)+sin (z/N)>0. Hence has no
solution. Also the case ¢=(3N+2)/4 is the same as above.
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