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SOME BOUNDS FOR THE SPECTRAL RADIUS
OF A COXETER TRANSFORMATION

By
J. A. de la PENA and M. TAKANE

Let A be a finite quiver (=oriented, connected graph) without oriented
cycles. Let k£ be any field. The path algebra k[A] is a hereditary algebra,
see [7]. The study of this kind of algebras had played a central role in the
development of the Representation Theory of Algebras, see [6, 4, 13, 117.

For a representation X of k[A], we denote by dim X=(dim,X(s)):es, the
dimension vector of X, where A, is the set of vertices of A. The Coxeter
matrix ¢ satisfies

dim X =(dim X)@a
where X denotes the Auslander-Reiten translate of the non-projective indecom-
posable representation X. The spectral radius p(¢a) of the Coxeter matrix @a,
contains relevant information about the behaviour of the translation =, see [5,
117.

In this work, we consider some elementary relations between the spectral
radii p(¢z) and p(pa) for a Galois covering z:A—A. In particular, we show
that for any covering = : A—A defined by the action of a residually finite group
and any finite subgraph F of A, we have p(¢r)=<p(da).

In [12], we have explored the relations between the spectral radii »(A) and
#(A) of the adjacency matrices Az and A, for a Galois covering = :A—A. In
section 2, we show how to use these results to get some interesting bounds for
o(Pa).

Finally, we get some applications. In relation with a problem posed by
Kerner, we show that

g8 _ 1Al
o= 2’

where g(A)=|A,| —|A,| +1 denotes the genus of the underlying graph of A.

1. Galois covering and Coxeter matrices.

1.1. Let n be the number of vertices of the quiver A.

Received October 14, 1991. Revised July 17, 1992,



194 J.A. de la PENA and M. TAKANE

For each vertex /=A,, we denote by P; the indecomposable projective 42[A]-
module associated with 7.

The Cartan matrix Ca of k[A] is the nXxn-matrix whose :-th column is
the dimension vector (dim P;)T. This matrix is invertible.

The Coxeter matrix ¢a of k[A] is defined as

da=—Ca'Ca,

where MT denotes the transpose of M. We consider ¢a as a linear map,
Pa: CPo—Cl, dr(wv)=vps. We recall that ¢, is characterized by @a(dim P,)=
—dim [;, where I; denotes the indecomposable injective 2[A]-module associated
with 7.

1.2, The spectrum Spec (¢a) of da is the set of eigenvalues of ¢a. The
spectral radius p(¢a) is

p(@a)=max{|4]; A is an eigenvalue of ¢a}.

By [5, 11], p(¢a) is an eigenvalue of ¢ and there exists a corresponding eigen-
vector y* with non-negative coordinates.
As observed in [14], given a full subquiver A’ of A, we get p(da)<p(Pa).

1.3. Let n:A—A be an onto morphism of quivers. Then =z is said to be
a Galois covering defined by the action of a group G if the following is satisfied :

i) G is a group of automorphisms of A, acting freely on A; that is, if
g(@)=1 (resp. g(a)=a) for some vertex 7 (resp. arrow a), then g=1.

ii) For any g=G, ng=r.

iii) For any vertex i (resp. arrow a) of A, #~'n(i)=G1 (resp. = 'nr(a)=GCGa).

A Galois covering «: A—4, induces a Galois covering of algebras k(r): £[A]
—k[A]. Conversely, a Galois covering functor F: k[A]—k[A] induces a Galois
covering of quivers, see [8, 2].

1.4. Let 7:A—A be a Galois covering defined by the action of a group G.
Let F=k(x): k[A]—k[A] be the induced functor. Following [8, 2], we can
define the push-down functor, F;: mod k[A]—mod £[A], and the pull-up functor,
F.: mod k[A]—Mod k[A]. In case the group G is finite, we get induced linear
maps -

fi:C% — C%  with fz(v)(ﬂr(i))=g§0v(g(i))

and
f.: CBo—— C%o with f.(2)¢)=2z(z(?)) .

We observe that
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$afr=719a [evaluate in the basis {dim P;; i=A,} ]
and
¢af.=f.¢a [evaluate in the basis {dim P;; j=A,}],

see also [2].

1.5. PROPOSITION. Let n:A—A be a Galois covering defined by the action
of a finite group G. Then Spec (¢pzs)=Spec (pa) and p(ps)=p(Pz).

PROOF. Let 2=Spec (4a). Let 0=x=C» be such that ¢a(x)=A4x. Consider
the vector 0#%=/f.(x)C%. By (1.4), ¢s(£)=i%. Hence, 1=Spec (¢5). In
particular, o(@a)<p)@z).

Since the eigenvector y*=C?% has non-negative coordinates, then 0= faly®)
=C%. By (l1.4), this is an eigenvector of ¢a with eignvalue p(¢z). There-
fore, p(¢a)=p(¢a). O

1.6. PROPOSITION. Let n:A—A be a Galois covering defined by the action
of a residually finite group G. Let F be any finite induced subquiver of A, then

0@ r)< p(Pha).

ProOF. First, we show the existence of a factorization of =

} A

T
K
A=A

where n” and 7 are Galois coverings, A’ is finite, #(F) is a full subquiver of
4A’, and the induced morphism #|: F—A’ is injective. Indeed, the set S—
{geG; g+1, g(FO)NFi+ @} is finite, where F’ is the full induced subquiver
of A with set of vertices F,\U{i€A,; there exists j& F, such that ; and 7 joined
by an arrow in A}. Since G acts freely on A. Hence there exists a normal
subgroup H<G with finite index and such that SNH=@. The covering 7: A
—A’ defined by the action of H satisfies the desired properties.
By (1.2) and (1.5), we have

(@D r)=p(@zr) < 0(Pa)=p(Pa).
O

1.7. COROLLARY. Let 7:A—A be the umwersal Galois covering of A. For
any finite induced subquiver F of A’, we have p(¢r)<p(pa).
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PrOOF. The universal covering = is defined by the action of a free group
II (the fundamental group). Thus = is residually finite. O

2. (Coxeter matrices and adjacency matrices.

2.1. Let A be a finite quiver as above and = : A—A be a Galois covering.
The set of vertices A, is at most countable, thus we assume that either A=
{1, ---, n} for some neN or A,=N. The adjacency matrix of A, Az=(ayy) is
the matrix whose (¢, 7)-th entry a;; is the number of edges between the vertices
i and j if i+ and ay is twice the number of loops at 7. Similarly we define
the adjacency matrix Aas. Following [10, 12], we consider Az as a linear
operator Ax: l%—»lg, where l% is the Hilbert space of all sequences (x:):ci, Of

complex numbers such that 23 | x;|% converges.
i€h,
We recall that the spectrum p(Z) of the quiver A is the set of complex
numbers A such that Az—Al is not an invertible operator, where / denotes the
identity operator in [%. The spectral radius #(A) of A is defined as r(A)=

sup{|2| : A€ a(A)}.

THEOREM [10, 12]. Let m: A—A be a Galois covering of A. Then
) r@A)=sup{r(F); F is a fimte induced subquiver of A}
i) rA)Zr). 0

2.2. We recall now a basic relation between the spectral radius p(@a) of
the Coxeter matrix and the spectral radius r(A) of the adjacency matrix Aj.

PROPOSITION [11]. Assume that A is a finite tree, whose underlying graph
is not a Dynkin type. Then there exists a real number A=1 such that

r(A)y=2+2"' and p(Ppa)=4%.
Sketch of the proof: For any p+#0, we have
det (2 I—pa)=p" det (p+p ) I—As) .

Hence g* is an eigenvalue of ¢ if and only if p+pt is an eigenvalue of
Aa. Moreover, by [T], 1<p(¢a) is an eigenvalue of @a. O

2.3. We show how to use the above results to get lower bounds for p(¢a)
for a general quiver A.

THEOREM. Let A be a finite quiver without oriented cycles, whose underly-
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ing graph is not of Dynkin type. Let m: A—A be the universal covering. Then
there is a real number A=1 such that
r(A)=A+2"' and o(da)=24%.

PrROOF. If A is a tree, the result is just (2.2). If A is a cycle, then the
underlying graph of A is of the form

Therefore, »(A)=2 and p(¢a)=1.

Assume that A is not a tree nor a cycle. Then there is a sequence (F)m
of induced finite subquivers of A, such that the underlying graph of F, is not
of Dynkin type, F, is contained in F,,, and 71;{2 r(Fn)=r(Q).

Since A is an infinite tree, for each m<N there is a real number 4,=1
such that »(Fn)=A.+4;! and 0(@r,)=4n. By (2.1), (An)n is a bounded squence.
Let 2=sglp{lm}. Hence 7(A)=2+21"! and by (1.6)

22=s%p{p(¢pm)} =po(ga) .

2.4. We get an explicit bound for p(¢a) as an application of (2.3).

PROPOSITION. Let A be a quiver without vertices of degree 1. Let My be
the maximum of the degrees of vertices of A. Then

p(Ba)=My—1.

PROOF. Let 7:A—A be the universal covering of A. It is not hard to see
that A contains an induced subquiver with underlying graph Sy, where M=Mj,.

. L) .—-.——-./
Su: \
2 \

1/

In (2.5) we will show that r(Su)=M-—-1)"24+(M—1)"112,
By 2.1), »(Sy)<r(d). Therefore, the result follows by (2.3). O

COROLLARY. Let A be a quiver and denote by A’ the maximal induced sub-
quiver of A without vertices of degree 1. Then o(Pa)= My —1. |
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The bound of the proposition does not hold in the general situation. For
example :

SN
A: -—- - p(da)=1.8832 - <L2=M,y-—1.
N
95. LEMMA. Let S, be the infinite graph defined in (2.4), then r(S)=
(=D @E—-1)7e

PROOF. The case t=2 is well known. Assume t=3. For any ne N, con-
sider the finite star S{™

/. (1) n)

/".(1, 2)
/. (11 1)
ewTETS

.'.(2' 1) .\
(2’ 2) ..‘.'

2, n-
Let L, be the graph LT

n

Let pa(x) (resp. g.(x)) be the characteristic polynomial of the adjacency
matrix of S{™ (resp. L,). An easy calculation shows that Pa=Xq5—1tqn-1gn"""

Let x=p+p"', then ga(X)=(u—p ) (" —p™" . This can be deduced
by induction using [9]. Hence,

1
n —_ tn—l n 2 1 -n-2 1 2 1 .
pa(x)= (——__1)‘] ()™ (p*— @ N+p @—Dp )]

Let po=(—1)""* and 2<A,=po+py'. Then for any A=2,, we have p,(2)>0.
From this we deduce that

7(S)=sup{r(Si™)} <4, .

If 2<A<1, with 2=pg+p"*, then we may assume that 1<p<g,, and p.(d)
<0 for n big enough. Hence, 7(S5,)=4,. O

For results similar to this lemma see [9].
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3. A relation between g(A) and p(ga).

3.1. Let A be a finite quiver. The genus g(A) of A is the rank of the
fundamental group of A. It is well known that

gA)=1A — 1A +1,

where A, is the set of arrows of A.

Recently, O. Kerner asked if there was some constant upper bound for the
ratio g(A)/p(¢a) (in fact, he asked for a bound of the ratio dim H,(k[A])/p(@a),
where H,(k[A]) denotes the first cohomology group of k[A]. It is known that
g(A)=dim H,(k[A])). We answer this question in the negative and we give a
linear bound in the number of vertices |A,].

3.2. Consider Galois coverings m,: A,—A as follows
NV .

MU m PN

o N

where A, has 4n vertices. By (1.5), p(da,)=p(@¢s)=7+4+'3. On the other
hand g(A;)=4n+1, which shows that g(A,)/p(¢a,) grows linearly with [(A,)].

3.3. PROPOSITION. Let A be a finite quiver. Then

2@ _ |
oG = 2

PROOF. Let A’ be the maximal induced subquiver of A without vertices of
degree 1. Clearly, g(A)=g(4). By (1.2), g(4)/p(pa)=g(A")/p(¢s) and |Ag|/2
=|A,1/2.

Therefore, we may assume that A has not vertices of degree 1.

Let M, be the maximal of the degrees of vertices of A. By (2.4), o(da)=
My—1.

On the other hand, |A1|:1 Ma| 4]

—2~i€ZA}Odegree ) _S_—-—z—— .
Therefore,

(My—2)|Ao| +2

g(A)=|A11_IAo|+1§ 2

Hence
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84) _ (Ma—=2)|Acl+2 _|4]
o(da)™ 2(Ma—1) = 2 ° 0

REMARK. The bound in (3.3) is in general not optimum. Easy calculations
provide some improvements. For example, if My=3 and |A,| =6, then
g(A)/ p(Pa)=14,1/3.
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