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§1. Introduction.

Let M and N be two compact connected Riemannian manifolds. A smooth
mapping F: M—N is called harmonic if it is an extremal of the energy. More-
over, if harmonic mapping F: M—N is an isometric immersion, then F is called
minimal. The existence and construction of minimal immersions and harmonic
mappings are interesting and important problems in various situations. T.
Takahashi proved the following theorem.

THEOREM (T. TAKAHASHI [5]). A compact homogeneous Riemannian mani-
fold with irreducible linear isotropy group admits a minimal immersion in a

Euclidean sphere.

In § 3, we construct minimal immersions and harmonic mappings of com-
pact Riemannian homogeneous spaces into Grassmann manifolds (Theorem 3.1)).
Applying this, we prove

THEOREM A.

1) A compact Riemannian homogeneous space of dimension=2 with irre-
ducible linear isotropy group admits an equivariant minimal immersion into a
Grassmann manifold.

(2) There exists a nonconstant equivariant harmonic mapping from a compact
Riemannian homogeneous space with non trivial isotropy group into a Grassmann
manifold.

In A, we can restrict ambient manifolds to projective spaces or
G, »(R) if the domain manifolds are compact irreducible symmetric spaces.
More precisely,
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THEOREM B.
(1) Let M be a compact irreducible Riemannian symmetric space of dimen-
sion=2.
(i) M admits an equivariant minimal immersion into a real projective
space or G, .(R). |
(ii) M admits an equivariant minimal immersion into a complex pro-
jective space.
(iii) M admits an equivariant minimal tmmersion into a quaternion pro-
jective space.
(2) Let M be a compact Riemannian symmetric space with non trivial iso-
tropy group.
(i) There exists a nonconstant equivariant harmonic mapping from M
into a real projective space or G, ,(R).
(ii) There exists a nonconstant equivariant harmonic mapping from M
into a complex projective space.
(iii) There exists a nonconstant equivariant harmonic mapping from M
tnto a quaternion projective space.

On the other hand, it is an important problem to know whether a given
minimal submanifold is stable or not. Simons [4] proved that there are no
stable minimal submanifolds in S®. Nagura studied on the spectra of the
Jacobi differential operator for minimally immersed spheres into spheres. In
§ 4, the problem of computing the spectra of the Jacobi differential operator of
equivariant minimal immersions of compact Riemannian homogeneous spaces
into compact Riemannian homogeneous spaces is reduced to the eigenvalue
problems for certain linear mappings of finite dimensional vector spaces apply-
ing the representation theory of compact Lie groups (Theorem 4.2).

In §5, applying the results in § 3 and § 4, we study the equivariant minimal
immersions of S? into Grassmann manifolds.

The author would like to express his hearty thanks to Professors Tsunero
Takahashi and Hiroyuki Tasaki who gave him valuable advice during the pre-
paration of this note.

§2. Preliminaries.

2.1. Let G (resp. U) be a compact connected Lie group with Lie algebra
g (resp. u) and K (resp. L) be a closed subgroup of G (resp. U) with Lie alge-
bra t (resp. I). Then M=G/K (resp. N=U/L) is a compact Riemannian homo-
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geneous space with G (resp. U)-invariant Riemannian metric. Since K (resp.
L) is compact, M (resp. N) is reductive, that is, there exist an Ad(K) (resp.
Ad(L))-invariant subspace m (resp. ») such that

g=f+m (direct sum) (resp. u=I[(+p).

We call m (resp. p) a Lie subspace of M (resp. N). We identify the tangent
space T M) (resp. TN)) at o=mn(e) with m (resp. p) in a natural manner,
where 7 is the natural projection of G (resp. U) onto M (resp. N). The dif-
ferential mapping k4«(k=K) (resp. Ix({= L)) acting on T, (M) (resp. T,(N)) cor-
responds to Ad(k) (resp. Ad(l)) on m (resp. p), that is,

ks X=msx Ad(R)X for each X=m.

Hence we have
2.1) ‘dd—t(eXptY)*”*Xu=o:ﬂ*[Y, X] for Yei, Xem.,

Let F: M—N be an equivariant mapping, that is, there exists an analytic

homomorphism p: G—U with p(K)c L such that F(gK)=p(g)L for each g&G.
We get

(2.2) FyX=(pxX), for each Xem.

2.2. In this subsection, we review some elementary results on representa-
tion theory of compact connected Lie groups without proof. Let G be a com-
pact connected Lie group. The following lemmas are well-known.

LEMMA 2.1. Let (p, V) be a real irreducible representation of G. (p€, V©)
is not a complex irreducible representation of G if and only if there exists a
complex irreducible representation (v, W) of G such that (o, V)=(tgr, Wg) where
we denote (o€, VE) (resp. (tr, Wg)) the complex (resp. real) representation of G

obtained by extension (resp. restriction) of the coefficient field of (p, V) (resp.
(r, W)) to C (resp. R).

LEMMA 2.2. Let (p, V) be a complex irreducible representation of G. (ogr, Vr)
is not a real irreducible representation of G if and only if there exisis a real
irreducible representation (v, W) of G such that (o, V)=(z¢, W°).

LEMMA 2.3. Let (p, V) be a complex irreducible representation of G. (p®, V*H#)
is not a quaternion irreducible representation of G if and only if there exists a
quaternion irreducible representation (tr, W) of G such that (p, V)=(t¢, W), where

we denote (pf, V) (resp. (¢, W¢)) the quaternion (resp. complex) representation
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of G obtained by extension (resp. restriction) of the coefficient field of (p, V)
(resp. (z, W)) to H (resp. C).

LEMMA 2.4. Let (p, V) be a quaternion irreducible representation of G.
(pe, V) is not a complex irreducible representation of G if and only if there
exists a complex irreducible representation (r, W) of G such that (p,V)=(" WH).

§3. A construction of equivariant minimal immersions and
harmonic mappings of compact Riemannian homogeneous
spaces into Grassmann manifolds.

3.1. Let G be a compact connected Lie group and K be a closed subgroup
of G. Then M=G/K is a compact Riemannian homogeneous space with G-
invariant Riemannian metric {,>. For a field E=R, C or H, put

O(n) (E=R),
Un, E)=y U(n) (E=0),
Sp(ny (E=H).

Let F: M=G/K—G, (E)=Un+m, E)/U(n, E)YxU(m, E) (n=1, m=1) be an
equivariant mapping. Then there exists an analytic homomorphism p: G—U
(n+m, E) with p(K)cU(n, E)yxU(m, E) such that F(gK)=p(g)U(n, E)xU(m, E)
for each g=G. We shall call G, ,(E) E-Grassmann manifold. Put V=E"*™,
Vi=FE", V,=E™ Then V=V,4+V, (direct sum) and the Lie algebra u of
U(n+m, E) acts on V, naturally. Put {=Lie(U(n, E)xU(m, E)) and

p={Acu; AV, cV,, AV,cV,}.

Then u=I[+p is the canonical decomposition of u. Put
Homg(V,, Vy)={A=Hom(V,, V,); p(k)A=Ap(k) for each k= K}.

We explain that F is E-full. Let Viand V; be subspaces of V, and V, respec-
tively. Put n’=dimg V{ and m’'=dimg V;. Then Un’+m’, E) is considered as
a closed subgroup of U(n+m, E) in a natural manner. So G, » (E) is a totally
geodesic submanifold of G, ,(/). The mapping F is said to be E-full when
the image F(M) is not contained in these totally geodesic submanifolds
Gu w(E) with n/4+m’<n-+m.

THEOREM 3.1. If Homg(V,y, Vo)={0} and V; (i=1, 2) is not G-tnvariant,
then F is a nonconstant harmonic mapping. Furthermore, if G acts on V irre-
ducibly, then F is E-full. Moreover, if K acts on T (M) irreducibly, then F is
a minimal immersion of a multiple of the G-invariant Riemannian metric <,)
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on M.

PROOF. Let Hep denote the tension field of F at 0. Then Hp(k)=p(k)H
for each k=K. From assumption, we have H=0. So F is a nonconstant har-
monic mapping.

We assume that K acts on T(M) irreducibly. We define a symmetric
linear transformation A of T,(M) by

<X, .4Y>=(F*X, F*Y) for X, YETO(M) s

where (,) denote a U(n+m, E)-invariant Riemannian metric on G, »(E). Since
A is a K-homomorphism, A is a scalar operator by the irreducibility of K.
The scalar is clearly nonnegative. So if F were not an isometric (more pre-
cisely, homothetic) immersion, then Fy=0. Thus V; is G-invariant from
and the connectedness of G. So F is an isometric minimal immersion. If G
acts on V irreducibly, then F is clearly E-full. Q.E.D.

Example (Equivariant minimal immersion of S2 into Grassmann manifold)
Let (p, V) be any SU(2)-E-irreducible representation. Put K=SU1)XU(1)).
Let V=X); W, be a K-E-irreducible decomposition of V. We have

(3.1 W.=W, (K-isomorphic) & i=7 (see §5, Lemma 5.1)).

Let V; (z=1, 2) be a K-E-invariant subspace of V such that V,# {0}, V and
V=V,+V, (direct sum). Put n=dimgV,, m=dimgV,. If we put F:S5*=
SUQR)/ K—Ga n(E); gK—p(@U(n, EyxU(m, E) for g&G, then F is a full
minimal immersion from and [Theorem 3.1. m

3.2. In this subsection, we apply [Theorem 3.1. Let M (+ {single point})
be a compact Riemannian homogeneous space. The identity component G of
the group of all isometries of M is compact. The action of G on M is effec-
tive and transitive. The subgroup K= {g&=G ; g-0=o0} of G is closed and called
isotropy group of M at o.

A G-E-irreducible representation (p, V) is called an E-spherical representa-
tion of the pair (G, K), if Vg={weV; p(klv=v for each k=K}+ {0} (E=
R, C, H). The dimension of V and Vg is called the degree and the multiplicity
of (p, V), respectively.

LEMMA 3.1. If K+ {e}, then there exists an E-spherical representation (p, V)
such that Vg+V.

PROOF. We may assume that E=C by [Lemma 2.2 and Lemma 2.3, Let
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L*G/K) denote the space of complex valued functions f on G/K with
S | () dx<oo .
GIK

Put
L¥G, K)={f=L¥G/K); f(kx)=f(x) for each k=K, xcM}.

Since K+ {e}, we get L¥G/K)*L¥G, K). If V=V for each C-spherical
representation (p, V), then we have L*G/K)=L*G, K) from Peter-Weyl theo-
rem (see [6], p. 20). This is a contradiction. Q.E.D.

The manifold M is said to have irreducible linear isotropy group, if K acts
on T, M) irreducibly.

LEMMA 3.2. We assume that M has irreducible linear isotropy group.
(1) The degree of any mnontrivial R-spherical representation of (G, K) is

greater than or equal to dim M+-1.
(2) If dim M =2 then the degree of any nontrivial C-spherical representation

is greater than or equal to 2.

PrROOF. (1) is obtained from of T. Takahashi [5]. But, for the
sake of completeness, we give a proof. For each nontrivial R-spherical repre-
sentation (p, V) of (G, K) put

Fi:M=G/K—V; gK— p(gw,

where v=Vg and |v||=1 with respect to a G-invariant inner product on V.
Then we can prove that F is an immersion in the same way in the proof of

[Theorem 3.1. Clearly the image F(M) is contained in the unit hypersphere in
V. So we get the conclusion. (2) is obtained from (1) and Lemma 2.2. Q.E.D.

PoprosITION 3.1. (1) A compact Riemannian homogeneous space of dimension
=2 with irreducible linear isotropy group admits an equivariant minimal immer-
sion into an E-Grassmann manifold.

(2) There exists a nonconstant equivariant harmonic mapping from a compact
Riemannian homogeneous space with non trivial isotropy group into an [£-Grass-

mann manifold.

Proor. (1) Take (p, V) as in Lemma 3.1. Put V,=Vx and V,=V% with
respect to a G-invariant inner product on V. Then the assertion follows from
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(2) It is obtained from and in the same way of
(1). Q.E.D.

If M is a compact Riemannian symmetric space, then (G, K) is a compact
symmetric pair (see §4 for definition).

LEMMA 3.3. Let (G, K) be a compact symmetric pair.

(1) The multiplicity of any C-spherical representation of (G, K) equals to 1.

(2) The multiplicity of any R-spherical representation of (G, K) equals to 1
or 2.

(3) Any H-spherical representation of (G, K) is obtained from the extension

of coefficient field of a G-C-irreducible representation to H and the multiplicity
is equal to 1.

PrROOF. (1) We refer to [6], p.104, Theorem 5.5. (2) is obtained from (1)
and Cemma 2.1. (3) is obtained from (1) and Lemma 2.4l Q.E.D.

LEMMA 3.4. Let M be a compact irreducible Riemannian symmeiric space
of dimension=2. Then the degree of any nontrivial H-spherical representation
of (G, K) is greater than or equal to 2.

PrROOF. It is obtained from Lemma 3.2(2) and Lemma 3.3(3). Q.E.D.

PROPOSITION 3.2. (1) Let M be a compact irreducible Riemannian sym-
metric space of dimension=2.

(i) M admits an equivariant minimal immersion into a real projective
space or G (R).

(i) M admits an equivariant minimal immersion into a complex pro-
jective space.

(iii) M admits an equivariant minimal immersion into a quaternion pro-
jective space.
(2) Let M be a compact Riemannian symmetric space with non trivial iso-

tropy group.

(i) There exists a nonconstant equivariant harmonic mapping from M
into a real projective space or G, ,(R).

(ii) There exists a nonconstant equivariant harmonic mapping from M
into a complex projective space.

(iii) There exists a nonconstant equivariant harmonic mapping from M
into a quaternion projective space.
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Proor. (1) It is obtained from [Theorem 3.1, Lemma 3.2, Lemma 3.3 and

in the same way of [Proposition 3.1l.
(2) It is obtained from and in the same way of

IProposition 3.1. Q. E.D.

§4. The Jacobi differential operators of equivariant minimal immersions.

Let G (resp. U) be a compact connected Lie group with Lie algebra g (resp.
u and K (resp. L) be a closed subgroup of G (resp. U) with Lie algebra  (resp.
[). Take a bi-invariant Riemannian metric metric <,> on G (resp. U) and de-
note also by <,)> the induced Ad(K) (resp. Ad(L))-invariant inner product on
m=*%* (resp. p=I*). Thus M=(M™, {,>)=G/K (resp. N=(N*, {,»)=U/L) is a
compact Riemannian homogeneous space with Lie subspace (m, {,>) (resp. (p, <,>)).
We denote by V and R the covariant derivative and the Riemannian curvature
tensor of M, respectively. We denote by ¥ and R for N in the same way.
For each X=g, we define a Killing vector field X*=¥(M) by

Xi‘:%exth'XIlt=oETx(M)-

We have by the Koszul formula ([I], p. 48, (2))

@.1) (V¥ $y=— (X, Vel 5 (X, Yl for X, Y.

From the above equation, we have

42)  TywX= SXD(~t Ad(Q0)eXi exprvrklicot 7 G40 25" K exla
for vem, g=G, X=XM),

@3  RX, VZ=—5 (X, Vln Z1u— 30V, Z1n X

+ 500X, 21 Y1u—[0X, Y1, 2] for X, Y, Zem.

Let F: M—N be an equivariant isometric immersion. Then there exists an
analytic homomorphism p: G—U with p(K)cL such that F(gK)=p(g)L for
each g=G. Let A and B denote the shape operator and the second fundamental
form of F, respectively. Take an orthonormal basis {X:}isisp of g with
{Xihisismcm and {X;} myss, <L

PROPOSITION 4.1. (1)
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BUX, ¥)=—[(0sX e, (047 )1~ 5 (04X e, (047 e

+5(@uX, Y1) for X, Yem.

(2)  F is minimal if and only if 27.[(0xX:) (0%X:)e]=0.

PrOOF. (1) is obtained from [2.2) and [(4.1). (2) is clear from (1). Q.E.D.

From now on, we assume that F is minimal. We define symmetric linear
transformations R, and 1711 on the normal space N.(M) at x as follows:

ET(U): iél (p(ei, v)ei)-L ’ ﬁx(v)z]% B(ei, A”ei)

for ve N, (M), where {e;} cism 1S an orthonormal basis of T ,(M). Clearly, we
get A=0, if F is totally geodesic. Let N(M) denote the normal bundle of M
and I'(N(M)) denote the vector space of all C=-sections of N(M). Let A denote

the negative of the rough Laplacian of the normal connection V* of N(M),
that is,

—AV= 3 g V- 5 g9V for VEIWN(M)),

1%, jsm 159, s

Where {Ei}l§i5m iS a local fl'ame field Of M, g”:<E1, EJ> and (gij)lsi.jémz
(gis)i2i jsm- Since the Jacobi differential operator

J=A+R—A
is a strongly elliptic linear differential operator, it has discrete eigenvalues:
Spec (])-': {Zl_S_Zgé —>00} .

The minimal immersion F is said to be stable if the second variation of the
volume of F is nonnegative for every variation. The minimal immersion F is
stable if and only if 2,=>0 (see [4], pp. 73-74). Since the orthogonal comple-
ment m* in p is identified with N,(M) in a natural manner, we may consider
R and A as symmetric linear transformations on m*.

The pair (U, L) is called a compact symmetric pair, if there exists an
involutive antomorphism 6 of U such that L lies between the identity com-
ponent (Lg), of Ly and Ly,={{=U; ()=!}. In this case, an Ad(U) and 6-
invariant inner product <{,> on u naturally induces a U-invariant Riemannian
metric on N. Since p={X=u; §(X)=—X}, we have [p, p]clL.

LEMMA 4.1.
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(l) E(U):2?=1[F*Xi, [F*Xi, v:‘[]ml+(1/4)22‘n=1[F*Xi, [F*Xi, U]n]ml for veEm,
If (U, L) is a compact symmetric pair, then

Rw)= 3 [FuXs, [FaXs v]lme  for vem*.

i=1

(2) ﬁ(v):_E;";l[(p*xi)l+(1/2)(p*Xi)p; Lo+ X )i +1/2)(0xX ), v]Fam]ms
for ve=m*t,
If (U, L) is a compact symmetric pair, then

Aw)=— im% LoxXi, [04Xs, VIFm]ns  for vemt,
PRrROOF. (1) follows from (4.3).

(2) By using [4.1), we have
<A0Xiy Xj>=<v’ (v(p*xi)*(p*Xj)*)0>

=—{v, LosXb (0xX) T+ 5 [0xX ey (04X ).

Hence we have by [Proposition 4.1 (1)

A, wy=— B {[@aXdit+ 50X [(0xXit 50X 0], ] w)

for v, w=m*t, Q.E.D.

The group K acts on m* by Ad(p(k))(k=K). We denote by (Ad-p)* this
action of K on m*. We identify I'(N(M)) with

C(G; mYx={p=C=(G; m); p(gh)=(Ad-p)* (k™ )¢p(g) for g=GC, k= K}
by the following correspondence :
CG; mYx 20 —> ¢EI(NM)); ¢(gK)=p(g)sp(g)  for g=G-
We define an action L, (resp. p(x)s) of G on C=(G; m*)x (resp. ['(N(M)) as

follows:
(L:o)X@)=¢(x7'g)  for o= C=(G; m)g, x, gEG,

(V) x=p(0)xV s for VET(N(M)), x, g=G .

The action L, (x=G) on C=(G; m*)g corresponds to p(x)x on I'(N(M)). We
also denote by J, A and A the operators on C>(G; m')gx corresponding to the
operators J, A and A on I’'(N(M)), respectively. Let C=—3%_,X? denote the
negative of the Casimir differential operator of G.

LEMMA 4.2.
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P m
AGD:C(P""i_%H[P*Xi’ LoxX:, 90]]"‘2izz Lo XD, Xigplme

— S LoxX0u LoxX0 ¢1Im—A@)— 2 oK sy XigpTms

~ g S UeeX00 LosXon e1Inim g 5 [@aX LosXr ¢TIns
1 m
= [(oxXdpy [(04Xi)p, @1olmr  for o= C=(G; m*)k.

If (U, L) is a compact symmetric pair, then

P m
ASDZC(P-I—i_ZH[P*Xh [P*Xi’ ‘P]]"‘ZEE(P*XJI, Xi(P:Iml

- iz,i Lo+ X0 [(psxXi)i, ?]]ml—ﬁ(go) for o= C=(G ; m*)k .

ProoF. For V=¢=I'(N(M)), we have
—@V)O=( 2 TepuxoTepuxorV ) @+AW o).
Put W;=Y¢puxp+V (1<i<m). Then we have by (2.1) and (4.2)
Wi.exptp*XiLz"gg(eXp(“SP*Xi))*Vexp(HS)p*XiLls=o
+(exptoxX)x[(0xX )1, (€XP(—104xX)xV expipsx L]
+ 5 €XD10WX)el(px Xy XD (—104XDaV exprprraTe
In particular
W ioo= 0 (@XD(— 5 puX DV expspux ivms+ (02X 00 Vil + 3 (04X 0, Vo

Thus we have by (2.1) and (4.2)

(v(p*Xi)*v(p*Xi)*V)(o)
:(vp*X,;)*Wi)o

d 1

= a;(exp (=204 X)W i exp tprx ie=otL(0x X, Wi ol+ > (05X Do Wi o1s
o2

~ otds (exXp(—(+9)0xX))xV expctsspuxLit=s=0

+2[(P*Xi)b '(%(eXp(—tp*Xi))*Vexptp*Xith=o]+[(p*Xi)I’ [(oxX)1, Vol
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d 1
+[(0sX iy (XD (—tpeXDaV exppuritiomo | + 5 [(0xX [(0xX D0 Vo]

2 LsX 0y [(@xX0r, VoIl 3 0aXs [oaXy ValiJs-

So we get

—@p)Xe=( Z X0 )@+2 3 [(0+X0, (Xep)()Ims

-,

=1

+ 33 (04X 1, [(xX 0, (@1 Tns+A@()+ 2 (04X o)y, (Xi)(@)ms

1

3 B 0aX 0 [oaX e 9@ Tt 5 23 H0aXn, [06X D0, 9] Tns

ol

1] m
+Z 12=1 [(p*Xi)p: [(p*Xi)p: So(e)]p]ml .
Since AL.=L.A for x€G by the equivariance of F, we get the conclusion.

Q.E.D.
We define operators J;: C°(G; mY)g—C=(G; mt)g (=1, 2) by

y Y4
jlﬂD:i;l [p*Xi’ Xi?’]m-‘-"f‘ gl[p*Xb I:p*Xi) §D]ml]ml ’

Jsp= 3 [oxXy, Xiqajmﬁ,é [CoxX s LoxXi @Tms Tt

for < C=(G ; m*)k.

REMARK. It follows that 7,[p«X:, Xi@lnt, 201l 05X, [oxXs, @ImtIme,
Sl X )y Xiplme and Zi[(0xXdp [ox X, @lntln EC(G; mY)g for @<=
C>(G:; mY)x. Moreover each of the above four operators is commutative with
L, for x=G. If (U, L) is a compact symmetric pair, then J,=0. =

THEOREM 4.1.

(1) Jo=Co—2] 10+ SP-i(ad X0 Tns+J 20— S [ 05 Xs, [(04X D, @] pamms
+1/2D) 1[5 Xi)o [(0xXi)py @l ramlms for = C=(G ; mb)k.

(2) J,=0 if and only if [p+X, v]mr=0 for X=m, ve=m.

(3) J.=0 if and only if [(pxX),, VImr=0 for X=m, vEm*.

4 If (U, L) is a compact symmetric pair, then

D
jga—_—Cgo—Zjl(p-{—[iZ}:l(ad p*)('i)”(,o]ml for o= C=(G; mY)g .

Proor. (1) follows from Lemma 4.1, Lemma 4.2 and minimal condition
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(Proposition 4.1(2)). (2) and (3) are obtained in the same way of [3], I, p. 138,
Proposition 4.2.2. (4) follows from (1). Q.E.D.

REMARK. It follows that Ceo, [32,(ad pxX)?0Tms, 2Pl 0xXi, [(0xX 0y,
¢l ramIms and B2[(04xX s [(0xXe)y @1 rwmlnt = C(G; mY)g for 9= C(G; m*)k.
Moreover each of the above four operators is commutative with L, for x=G. m

Let D(G) be the set of equivalence classes of finite dimensional C-irreduci-
ble representations of G. Let ¢,(=0) be the eigenvalue of the negative of the
Casimir operator of (g, W) D(G). (By the formula of Freudenthal, we can
determine ¢, (see [6], p. 205).) For (¢, W)= D(G), put

W*Q(m4)E)y= {a=W*QRQ(m*)’ ; (6*R(Ad-p)*)k)a=a for k= K}.
Put
D(G; K, (Adep)")={(e, W)= D(G); W*Q(m*+) )+ {0}}.

For (o, W)=D(G; K, (Ad-p)*), we define a symmetric linear mapping J,=
End (W*@m*)),) as follows:

Jo=cl=2{ Z o XIRLpsXe, ¥Ius+1e® 3 [03Xe, [peXe *TmsTur}

+1W*®[ é (ad P*Xi)z*:l

mi

+{ 2 P XIRTpa Xy, ¥t 1 ® 2 [(04X sy Ko ¥Tns s}

+1W*®{%§3‘ LX)y, [(0%X0)p, *] FammL— Epl LoxXi, [(0xX1)p, *] F*m]ml}-

Clearly, if (U, L) is a compact symmetric pair, then

]a=c01—2{i2p1 0*(Xi)®[P*Xiy *]ml+1W*®ié [P*Xu [P*Xi; *]ml]ml}

+1W*®[ é (ad P*Xi)z*]ml .

By virtue of the Peter-Weyl theorem for homogeneous vector bundles, the
problem of computing the spectra of J is reduced to the eigenvalue problem of
the linear mapping J, with (¢, W)=D(G; K, (Ad-p)*) (see [3], I, §5).

THEOREM 4.2. For (o, W)ED(G; K, (Adep)), let {As1 = » Agm,} be the
eigenvalues of [, where me=dim W*RQ(m+)¢),. Then

Spec(])=U(o,W)eD(G;K, (Adop) 1) {20;1; Tty /20;1’ Tty Za;ma, Ty 2a;'m,,}:
dg dg
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where d,=dim W.

§5. Equivariant minimal immersions of S® into Grassmann manifolds.

In this section, we denote by G (resp. K) the special unitary group SU(2)
of degree 2 (resp. the closed subgroup S(U(1)xU(1)) of SU(2)). Basic notations
are same in §4. We define an Ad(G)-invariant inner product <{,> on g by

(X, Y>=—-2Tr((XY) for X,Y<=g.

We also denote by ¢, the induced G-invariant Riemannian metric on S?*=G/K.
Then the Riemannian manifold (S?, {,)) is of constant curvature 1. We choose
an orthonomal basis {e;}s:<s Of g as follows:

R A R
e = ’ €= 5 ’ @3— .
2lv=1 oo 211 o 2] o =1

First we write down all G-E-irreducible representations:

LEMMA 5.1. G-E-irreducible representation (p, V) is one of the following :
(1) The case of E=C":
There exists an orthonormal basis {fr}esesn 0f V such that

plenfo= Y (—nt2m)fs,
pledfa= Yo V=BT fri+ VEG—ETD il

ple fr = {— VA= BXET DS sort VER—EFDf 11

for OZk<n.

(2) The case of E=R:
(2-a) There exists an orthonormal basis {ho}\U{fr, s} 1sksn 0f V such that

oles) ho=0,
ple)fe=kgs,
ples)gr=—Fkf:,

p(el)hoz\/n(n2+l)gl ’

P(el)fk=%\/(n—k)(n+k+1)gk+x+% Vin+kRY n—k+1)g,_,,
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ple)ge=—5 = EXAFEFD f 11— 5 VAT A= BT f e,
p(ez)ho = — \/n(n2+1)f1 s

plenfsm=— 5 VAR EFD 4 it VAFRA—EFD 51,

pe)gi=— 5 VAR ATET Dot 5 VAT EFDguos

for 1=k<n, where we put fo=+/2h,, g,=0.
(2-b) There exists an orthonormal basis {fr, Zr}osksan—y 0f V such that

1
ples)fr= '2_(_2n+1+2k)gk )

plengn=—"5 (~2n+1+2k)f+

ple) = 5 V@R =T=EXETT) gasrt 5 VECH—B) gicr,

0(e)gr=— 5 V@A T EXEF D rs — 5 VEBA= B s-1

o€ f o= VAT EXET D ros + 5 VEEA= B s

ple)gs=— 5 VBT EEF Dgess + 5 VEET= )

for 0Sk<2n-—1.
@) The case of E=H:
(3-a) There exists an orthonormal basis {fr}osrsn-y 0f V such that

ple) fr= o (~2n+1420)

p(e0f = (1= 0 ) (V@ T EF DS st VE@T— B i

ak. n-1

+ 5 An(=1"k o +iV (=D +1)f n-s},

0(en) 1= (=B, ) (— V@ T=BYEFD) f 11+ VEGH—Ef s}

+ O (1) f st VA DD f e
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for 0<k<n-—1.
(3-b) There exists an orthonormal basis {fi}osksen 0f V such that

P(ea)szi(—n-f"k)fk ,

p(e)f v= 4 (VEAEXEFD) funr+ VEGH—EFDfs-),

pedfr= 5 1= VER=RNXEFTD) fosrt VE@R—EFD S 11}

for 0=k <2n, where we denote the differential representation of the representa-

tion p of G by the same symbol p.

PROOF. (1) is obtained from Theorem 1.3, p. 599, [2]. (2) is obtained
from (1), and Lemma 2.2:
(2-a) When n=2m in (1), put
p { fk+m_f—k+m (k:Odd),
k=
fk+m+f— k+m (k-——-even),
{ \/:‘—1(](1:+m+f—k+m) (k‘:Odd), 5 \/Q—f 1 P
q = o = m= 5 .
T VI rem—fkam)  (k=even), v

and

W=Rh,+ §1<Rpk+qu>.

Then W is a G-R-irreducible representation. We rewrite m=n, pr=/f:, qr=g:
and W=V. We get (2-a).

(2-b) When n=2m—1 in (1), ((02m-1)r, (V2m-1)r) is @ G-R-irreducible repre-
sentation. Put g,=+/—1f,. We rewrite m=n. We get (2-b).

(3) is obtained from (1), Lemma 2.3 and Lemma 2.4:
(3-a) When n=2m—1 in (1), we define a conjugate G-linear mapping I by

ka:(_l)kfwn—x—k .

Since J*=—1, (Pem-1, Vim-1) is considered as a G-H-representation (¢m, Wn).
{fs}osksm-1 iS an orthonormal basis of (¢, W,) and fom_1_x=(—1)*jf.. We
rewrite m=n and (G,, W,)=(ps, V.). We get (3-a).

(3-b) When n=2m in (1), ((02n)?, (Von)¥) is a G-H-irreducible representa-
tion. We rewrite m=n. We get (3-b). Q.E.D.

For G-E-irreducible representation (p, V'), put
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{0, 1, ---, n} (if (p, V) is type (1)),

{1, ---, n} (if (p, V) is type (2-a)),
X=({0,1, -, 2n—1} (if (p, V) is type (2-b)),
{0, 1, ---, n—1} (if (p, V) is type (3-a)),

L {0, 1, -+, 2n} (if (p, V) is type (3-b)).
For subsets P(+ @), Q(#+ @) of X with X=P\UQ (disjoint union), put

2perCfp (if (p, V) is type (1)),

Vo Rho+X,er(Rfp+Rgy) (i (p, V) is type (2-2)),
Zper(Rfp+Rgp) (if (p, V) is type (2-b)),
2per Hf p (if (p, V) is type (3-a) or (3-b)),
2erCfy (if (p, V) is type (1)),

Vo Seq(Rf+Rgy  (f (p, V) is type (2-2)),
Deeq(Rfgt+Rgy)  (if (p, V) is type (2-b)),
See Hf (if (o, V) is type (3-a) or (3-b)),

a=dimg Vp, b=dimg V.

Then Vp(+{0}) and Vg(+ {0}) are K-E-invariant subspaces of ¥V and

V=Vp+V, (direct sum), Homgyx (Vp, Vg)={0}.
Thus

F:S*=G/K —> G, (E)=U(a+b)/U(a)xU);
gK— p(g)U(a)xU) for g=G

is a full minimal immersion by Proposition 3.1. Note that S%, G, (R), Gnn(C)
are Hermitian symmetric spaces.

PROPOSITION 5.1.

(1) The case of which (p, V) is type (1):
F is totally geodesic if and only if P={even}, Q= {odd} (or P={odd},
Q={even}),
F is a Kdihler immersion if and only if P=1{0, 1, ---, k}, Q={k+1,
ce,nt (or Q=1{0,1, -+, Rk}, P={k+1, -, n}).

(2) (2-a) The case of which (p, V) is type (2-a):
F is totally geometric if and only if P={even}, Q={odd}, F is a Kihler
tmmersion if and only if Q= {n},
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(2-b) The case of which (p, V) is type (2-b):
F is totally geodesic if and only if P= {even}, Q= {odd} (or P={odd},
Q={even}),
F is a Kdhler immersiou if and only if P=1{0} or {2n—1} (or Q={0}
or {2n—1}).

(3) (3-a) The case of which (p, V) is type (3-a):

F is not totally geodesic,

(3-b) The case of which (p, V) is type (3-b):
F is totally geodesic if and only if P={even}, Q= {odd} (or P={odd},
Q= {even}).

PRroOF. It follows from [Proposition 4.1(1). Q.E.D.

For example, when (p, V) is type (2-a) and P={l}, Q={2}, we calculate
Spec(J) by using [Theorem 4.2. In this case, since F is a Kédhler immersion, F
is stable (see [4], p. 76, Theorem 3.5.1).

THEOREM 5.1. The spectra of | is given as follows:

Spec(J)=
{(n+43)(n—2)+ v/6(n+3)(n—2) (with multiplicity 22n+1)); n=2, 3, ---}.

PrROOF. In this case,
Vp:Rho+Rf1+Rg1, VQzRf2+Rg2.

The expression matrix of p(e;) (1<7¢<3) with respect to an orthonormal basis
{ho, f1, &1, f2, g2} Of V is as follows:

0 0 —v3 0 0 0 V3 0 00
0 0 0 0 -1 —v3 0 0 10
ple)=|+3 0 0 1 0| pl=| 0 0 0 0 1f,
0 0 -1 0 0 0 -1 0 00
0 1 0 0 0 0 0 —1 00
0 0 0 0 0
0 0 -1 0 0
pled)={0 1 0 0 O
0 0 0 0 —2
0 0 0 2 0
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Hence we have

mt={v(x, 9,2z, w)y=| 0 0 0 w —z{;x,y,2z, w=R

—x —z —w 0 0

-y —w z 0 0
and
Lo(es), v(x, ¥, z, w)l=v(—2y, 2x, —3w, 32).
Put
mi={v(x, y,0,0); x, yeR}, mi={v, 0, z, w); z, w=R}.

Then we have

m=mi{+ms (K-irreducible decomposition)
and
—7id on my,

izil Lo(ey), Lo(e), *]mL]mlz{

—127d on my.
Put

v.=+2v(1, =4/—1,0, 0)=(mi)°, w.=+2v(0, 0, 1, +/—1)=m)°.
Then
Loles), v.]=F2+/—1v., [ples), wol=F3vV—1w. .
Hence we have
D(G’ Ky (Ad"P)J’):{(Pzn, Vzn); n-——2, 3} };

where we denote (p:,, V,,) the complex irreducible representation of G of de-
gree 2n+1. The expression matrix of 3., p¥.(e)R[p(e:), *Ims With respect
to an orthogonal basis {f%..Qu_, f¥.:Quw_, f¥_.Qv.,, fE_ :Quw_} of (VR(m+)¢),
is as follows:

4 a 0 0

a 9 0 0
izgl P%“n(@)@[ﬂ(ei), * L = 0 0 A g :

0 0 —a 9

where we put a=(1/2)4/6(n+3)(n—2). Since the eigenvalue of the Casimir
operator of (pzn, Vin) is n(n+1), we have
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-3 a 0 0
-3 0 0
J o, =1{n(n+1)—12}id—2
0 —3 —a

0 0 —a -3

Hence we get the conclusion by [Theorem 4.2 Q.E.D.
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