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AN OPERATOR L=qal—D{D;’"*—D;’Di** AND
ITS NATURE IN GEVREY FUNCTIONS

By

Masatake MIYAKE

1. Introduction.

In this paper, we shall study some spectral properties on the parameter

a=C of the following Goursat problem :
1.1 {aD{DE—D}*DE~7-«— DI~/ DE** ) y(t, x) = f(t, x),
1)
ut, x)—w(, x) = 0@F'xF) (=1, B=0),
where x, teC, 1</</ and —f—j<a<B—].

In the case =0, the problem (1.1) was studied in an extremely precise
form by Leary and Yoshino [5, 6] in the space of holomorphic functions
at the origin. Let a=2coszf=(—2, 2) (0<f<1). Leray introduced an
auxiliary function p(@#) by

(1.2) 0(0) = lim inf |sin(hz)|*/".
N>Sh-oo

Here and in what follows, N and Z denotes the set of non negative integers
and integers, respectively. They proved that the problem (1.1) is uniquely
solvable in the space of holomorphic functions at the origin if and only if

(1.3) acsCN\(—2,2) or a==x2 or p(0)>0.

Moreover, Leray-Pisot proved that the set of zero points of p(#) is un-
countable with Lebesgue measure zero.

On the other hand, in the case a0 the problem (1.1) is not solvable in
the space of local holomorphic functions, and we have to study the problem in
the space of formal or convergent power series with Gevrey estimate for the
coefficients according as a>0 or a<0 (see Miyake-Hashimoto [4, Theorem B]).
In this paper, we shall prove that the spectral properties on the parameter a
distinguish the case a+;>0 from the case a+;7<0. In the former case the
meaning of the condition will be understood clearly.
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In order to proceed our study, we shall study the resolvent sets of the fol-
lowing integro-differential operator in Banach spaces of Gevrey functions,

1.4) A=D]{D;’-*+Dy’Di** G=1, acsZ).

Because the problem (1.1) is reduced to an integro-differential equation, (al—
AU, x)=F(t, x), by changing the unknown function u(t, x) to U(t, x) by u=
D;'D;fU+w. Here, D;'U(¢, x) is defined formally by

DU, x):= l"'zjl Uit/ for U, x)= é}, Ux)ti/l.

We shall state main results in § 2 which will be proved in §4 under some
preparative considerations given in §3. A stability of resolvent sets by small
perturbations will be proved in §5.

The author would like to express his thanks to Mr. Hashimoto for his
suggestion of the decomposition of a matrix C,(a) given in §3.

2. Statement of results.

Let U(t, x)=3U,st'x#/11 B! (I, B=N) be a formal power series. Then we
define Banach spaces of Gevrey functions as follows:

(i) U, x)EG*R; k) (s, R>0, keN) if
RBl+ﬁ
(si+p+R)!
(ii) U, x)eGLR; k) (s=0, R>0, k=N, n=1) if

{(n—s)l+nB+k}!
i+t DBtk !

2.1) IO & 2= Slug U1l <+oo

(2.2) NU R v := SIUE |Uzﬁ|R”+B < oo

The index s is called Gevrey index from the reason below.

Let U(t, x)= G*(R; k) or G4(R; k), and put Uux):= XU,pxf/B1(U=N).
Then U,(x) are holomorphic in a common neighbourhood of x=0 for all /leN
and there are positive constants X and 7 such that

an
Tl

2.3) max [U(x)|=C (leN)

holds for some non negative constant C. Precise properties of these spaces
are given in Miyake [3] and Miyake-Hashimoto [4].

In [4], we have proved that the Gevrey index s to the Goursat problem
(1.1) is given by

2.4) s=1+% (= itay
J 7
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In what follows we fix s to this number.
Let A be the integro-differential operator given by [I.4). We denote by
Or; :(A) (resp. pa;r;:(A)) the resolvent set of the bounded mapping,

A: GX(R; k) —> G*(R; k) (resp. A: Gi(R; k) —> Gu(R; k).
Now the main theorem in this paper is the following,
THEOREM A. (i) Let s>0, that is, j+a>0. Then
2.5) Or: :(A)=C~\[—2, 2] for any R>0 and 2&N.

(ii) Let s<0. Let C=max{e’* ¢ %}. Then

2.6) U pns@{acC; (5se) Heme) >

for any R>0 and k<N, where Rea (resp. Im a) denotes the real (resp. imaginary)
part of a<=C.

We remark that in Miyake-Hashimoto [4, Lemma 3.3], we proved the fol-
lowing facts:

(i) In the case s>0, the operator norm of A in G*(R; k) is estimated by
| A2, and hence pg,:(A)D{asC; |a|>2}.

(ii) In the case s<0, the operator norm of A in G%(R; k) is estimated
by Al ZA+1/n)7" % *+(1—s/n)7~%**, and hence Unz10n; ;2 (4A) D {a€C;
la| >e *+e*?}.

In the case where a=[—2, 2], the spectral set of the mapping A: G*(R; k)
—G*R; k) (s>0), we can prove the following result corresponding to the
result in Introduction.

PROPOSITION B. Let s>0and a=2cos 76 (0<0<1). Then the problem (1.1)
is uniquely solvable in G*:=\Ug>G*R; 0) for any f(t, x), w(t, x)G* if and
only if a=+2 or p(6)>0.

3. Preliminary.

We shall study in this section some properties of a special matrix of finite
or infinite order of the form:
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3.1) C.la) = . . . , (n+1)** matrix,
0 -1 ?
— a —_—
0
0 —1 a

where C,(a)=a.

3.2) Cu.(a)= , infinite matrix.

We shall construct their inverse matrices in exact form.

Let acC\[—2, 2] and A, p(=2"") (|A|>1) be the roots of the quadratic
equation, z*—az+1=0. We define sequences {a,}%-, and {b,}%-, by b,=a3"
and the formula,

3.3) a,=a, a,=a—b,_, (n=1).
It is easily proved that

Ant2__ n+2
(34) anz—iﬁ%-——»/i (Tl—*OO)

The following decomposition of C,(a) (1<n<oo) is useful to write down the
inverse matrix exactly.

1 a, —1
—b, 1 a, —1

—b, 1 a, —1
Cnala) = —b, 1 a; —1

0 . . O Qnoq —1

—bn—l 1 ap,

This decomposition implies the following,
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LEMMA 3.1. Let a, 2 and p be as above. Then we have:
(i) The inverse matrix C7*(a)=(Cpglosp,qsn (1=n< o) is given by

(zq+1_ﬂq+l)(2n—p+1_#n—p+l)
(2—;:)(2"*2——;1””) ’

(2p+1___ﬂp+1)(xn-q+l_pn—q+1)
(2_#)(2n+z_ﬂn+2) ’ =

(ii) Let C3'(@)=(Cpg)p,qz0- Then

0<g<p=n.

(3.5) Cpg =

/‘tq+1__#q+1

p+1 , 0<g< p.
36 o jZ g g=p
: pg oot XPH—/,!I’“

PROOF. (i) The above decomposition of C,(a) implies,
bo boby bobibs - beby - ba (1
b, bibg -+ by by bo 1
Cal(a)=| by - by b || bobs b,
0 . I
bn )\ bobuoy by baoy - baoy 1

Let 0=¢<p<n. Then we have
L‘pq:bq bp {1+bpbp+1+bp(bp+1)2bp+2+ +bp(bp+1 bn—l)zbn} .
Since b,=@A**'—p**1)/(A***—pu*+*), we have

2q+1____‘uq+l
= Zp+2_‘up+2 .

be -+ by

By the relation by'=a,=a—b.-,, we get

bk+1’_bk .——
b (bai=0).

bkbk+1:

Indeed, it is sufficient to notice bz'—bz}i=br—b:_,. Hence we have

bp+l——bp+l—l

bp(bp+1 bp+l-1)2bp+l= bp'_bp—]

This implies

bn—bp..l—‘

1+bpbp+l+bp(bp+l)2bp+2+ +bp(bp+1 bn—-l)zbn: .
bp_'bp—l

By using the relation Ap¢=1, we have
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(zn—p+1_.#n—p+l)(x__#)

bn—bl’-lz (Z"*z——p"”)(lpﬂ—ﬂpﬂ)

and

(A—p)*
(lp+2__yp+2)(2p+l_ﬂp+l) .

bp—bp_lz

Summing up these results we obtain the expression of ¢,, for 0=¢=<p=n. It
is the same in the case 0< p<q<n.

(ii) The expression (3.6) is obtained by letting n— co in the expression
(3.5). This is only an explanation, but we can prove it precisely, so we omit
1t. J

We consider that C**! is a vector space equipped with the norm by the
maximum of absolute values of components. Let a=C\[—2, 2] and take c¢>1
such that

(3.7) () +(55) =1

Then [A|=c¢ and |u|=|A|"'=c™'. By this choice of ¢, we can prove the

following,

LEMMA 3.2. The operator norm of Crp'(a) (asC~\[—2, 2]) in C™** is esti-
mated by

c(c?+1)

(3.8) IczH (@)= C—D'exD)

PROOF. By the definition, ||C5'(a)|=max, 27| cpql. We fix p={0, 1, -,
n}. Considering (3.5), we set

n yd n
Slenl={2+ 3 Nl 1411
First, we estimate the part I.

Il_#z(n—pﬂ)l é | 2] 94| 1 — g2a+D|
1= [1— 2D = #

1=|ﬂ|p+2

(since 1—c?< |1— 2 *0 | <1+4c72, [1— 24| 21— %)

(I+c?)?
S ey S

(since 32.,c?*'<c?*?/(c—1))

(L+c o et
c—Da—cHA—c ) (=D c+17 "

<
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By the same way we can estimate the part I/ as follows.

|1__ 2(p+1)| n . i
ll_ﬂzlﬁ—pz("*%] Q=§+1|M 9+1| ] — p2n-atD
(c—1)*(c+1)*"

These estimates imply immediately. O

]I.___lﬂln~p+2

<

REMARK. Yoshino proved the similar but somewhat different estimate to
(3.8) by more complicated calculation [5, Lemma 3].

By the same way as above, we can prove the following,

LEMMA 3.3. Let I® be the Banach space of bounded sequences with supremum
norm. Then C.(a) has a bounded inverse operator in [° if and only if ac
C~\[—2, 2] and the operator norm of Cz'(a) is estimated by

c*+1

3.9 ezt (@)= Cle—1¢’

where ¢>1 is the same constant as above.
PROOF. Let a=(—2, 2) and put a=2cos 70 (0<#<1). Then it is easy to
check that a is an eigen value with an eigen function (sin 70, sin 276, sin 36,

) € [*. The inequality (3.9) is proved by the same way as above, so we omit
the proof. O

Next, we consider the case a=[—2, 2]. Let a=2cos zf (0<60=1). In this
case, {4, p}={e*’~'*% and

A"P—pm*?  sin(n+2)nd

- , 0+0, 1.
3.10)  det C,(a) = A sin 70
' " n—+2 , 6=0.
(=1)**Y(n+2) , 6=1.

Therefore, C,(a) is invertible for every n<N if and only if a=+2 or & is an
irrational. Let @ be an irrational and put C;'(@)=(Cpglesp.qsn- 1hen the ex-
pression (3.5) implies
sin(g+1)n8 sin(n— p+1)n@
sinz @ sin(n+2)x6 ’

sin(p+1)n @ sin(n—qg+1)x6
sinz @ sin(n+4-2)n6 ’

(=]
fIA
Q
A
>
A

B

GBIl cpg=

=)
IA
=
A
S
IA
3
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The inverse matrices in cases §=0, 1 are obtained by letting 6 |0 and 6 11
in this expression.

4. Proofs of results.

Let U(t, x)=3U,pt'x#/11 B! and F(t, x)=2F,st'xf/11 B!. Then the equa-
tion, (al—A)U(t, x)=F(t, x), implies the following relations,

(4.1) aU;ﬂ—'U“.j,‘B-j—a"‘Ul—j,ﬂ+j+a=Fl/5 (lv BEN)'

PROOF OF THEOREM A. (i) Let s>0, 7.e., j+a>0. For (I, B=N?, we
put
4.2) di, p)=[/71+[B/G+a)],

where [//;] denotes the integral part of //j. We define a vector U,g= Ce¢+F+!
by

(4-3) CUlﬁ:t("'; Ul—j.,B+j+a’ Ulﬁ, Ul+j.ﬁ—j—ay )’
which is defined from the coefficients of U(t, x)=G*(R, k).

Bqn

'

‘ :

H ' ;

' ; ; .

] : : 5 "

! : : : : .

< A< PN 4 [}
J J J J

The relation induces the following equation
4.4) Caa, py(@)Uig=F 1= CoH P,

where &,; is defined from F(t, x) similarly to U;s. Since [Ui,pj -piisar! <
MU u(sl+B+R) Y/ RE (—[1/71S p<[B/(F+a)]), (4.4) is an equation in C2¢ A+
with the usual norm as in Lemma 3.2. Hence by Lemma 3.2, we have pg;:(A)
DCN[—2, 2] and the operator norm of (al-A)~' is estimated by

- c(c®+1)
(4.5) [(al—A) = et

Let a=2costf=(—2, 2) (0<fO<1). Then a is an eigen value if @ is a
rational number, because an equation (a/— A)U(t, x)=0 has a non trivial poly-
nomial solution since det C,(a)=0 for some n=N. This proves that [—2, 2] is
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the spectral set of A. This completes the proof of (i).

(ii) Let s<0, 7.e., j+a=<0. In this case, the situation is more complicated,
since the relation implies infinite systems of equations. We pick up such
(, B)=N*? that [—j<0 or B+j+ta=B+sj<0 (s=(G+a)//<0). For U(t, x)e=
GL(R; k), we define U,;p=C* by

(46) (Ulﬁ:t(Ul,B, Ul+j.13—sj, Y Ul+pj.ﬁ—p(sj), )

. qUEB, UEH, b, ..,
put

slope=-s ;
, ; : \
< A 4 ’
9 j J
By the definition of the norm of G&(R; k), we have
_ A
@.n U< 1UII  {nl+n+1)B+k+(n—(m+1)s)jp}!

ReE {(n—s)l4+nB+k+(n—(n+1)s)ipt !’
for every p=N. Now we define a weight function by

{(ni+n+DB+k+(n—(n+1)s)jp} !
{(n—s)l4+nB+k+(n—(n+1)s)jp}!

Then {U§Pwy, g, n(p) Y} 3=l
Let a=C~\[—2, 2] and put Cz'(@)=(Cpg)p.qz0- Then acpn g :(A) if

(4.8) wi, g;a(P)=

(p=N).

4.9) SUp SUp 3 | ¢pql e, 5; n(q) W, g3 a(D) 1 <00 .

1,8 pzo 9=0

Let us prove the following,

LEMMA 4.1. (i) Let 0=Zq<p. Then we have
4.10) Wi, g;0(Q) - Wi, g n(P) IS @ PO USRI
(ii) Let 0=<p<gqg. Then we have

4.11) Wi, g (@) Wi, g, ()P S @G- P U-sAFR)

ProOOF. (i) Let p=¢=0. Then we have



94 Masatake MIYAKE

w, ﬂ;n(Q)' wy, ﬁ'n(p)_l

-+ DO-0 (n—s)l+nf+k+(n—(n+1)s)jg+r
=i nl+m+1D+k+(n—(n+1)s)jg+r

< {(n—s)/n} (n—(n+l)c)j(p-q)Se—cu—t(lﬂln))j(p—q) .

(ii) Let ¢>p=0. Then we have

w,, B; n(q) *Wy, B; n(p)—l

_ (n—(n+ﬁ>i<q-p> nl+(n+1)B+k+(n—(n+1)s)jp+r
- e (n—s)l+nB+k+(n—(n4+1)s)jp+r

é {(n+1)/n} (n-("+1)3)j(4—1’)Se(l—S(l*‘l/n)U(Q-P) . O

Next we shall estimate each component of Cx'(a). Let a=C\[—2, 2] and
C<'(a)=(Cpe)p.qz0- Take ¢>1 as in (3.7). Then by Lemma 3.1, we have:

2

4.12) | Cpql SctP? zf_i , p2q=0.
2

4.13) P Z:i . ¢>p20.

We are now in the final stage of the proof. We put

qgo | Cpql Wi, 8; (@) wy, 8; (D)7

=( 3+ 3 Yleod wipnl@) wipin(®) =1+ 11(n).

q=0 {=p+1

Let C=max{e!?, e~ 2} (>>1) and a<C satisfy

Rea Ima
(c+1/c) (c=ie 1/c> >1.
Then, ¢>max{e’®, ¢~} in the above inequalities. First, we examine I(n).

2 P
[(n)gc_'*__l_ S) (3Pl ti iU+ 1/m1(P-D)
—— 2 .
c?—1 ¢=o

We notice that —sj(1—s)=sa, since s=1+(a/j). Hence, c¢>e** implies that
I(n) is bounded for sufficiently large =.
Next, we examine [I(n).
II(n)S 2+1 i‘: CcP-U-lgitl-s+1/m) @~ P)
]. q=p+1
The codition ¢>e* implies that [I(n) is bounded for sufficiently large =,
since j(1—s)=—a. These prove that a=p,;r :(4) if n is sufficiently large.
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This completes the proof of (ii). O
REMARK. In the case s=0, suppose that we take the norm of G%R ; &) by
|U|| &%= sup |Ul,5[“‘ﬁ—<+°°
’ B (B+R)!

instead of (2.2). Then we can prove that pgp:(A)=C~[—2, 2]. The proof is
just the same as Lemma 3.3, but the stability of the resolvent set by small
perturbations, which will be proved in the next section, does not hold by this
choice of the norm.

PROOF OF PROPOSITION B. Instead of the problem (1.1), let us consider an
equation,

4.14) (alI— AU, x)=F(, x)eG*(R,; 0) (s>0).

First, suppose a=(—2, 2) and p(f)>0. By (4.4), the uniquenss of the solu-
tion U(t, x)SG* :=\Ug>G*(R ; 0) is trivial, since Cqqu, s5(a) is invertible because
@ is an irrational in this case. And also by (4.4), we see that the equation
(4.14) has a solution in G*® if the operator norm of Cz'(a)=(cy) in C**' is
estimated by

(4.15) ez (a)l=Cr™

for some positive constants C and r. Indeed, it is sufficient to notice the
existence of positive constants c, and ¢, such that ¢ (sl+B8)<d(l, B)+1=ci(sl+B).
By (3.11), we have

{i | cpgl E(n+1)|sinf| ! |sin(n+2)xf] .

This, together with p(8)>0, implies (4.15) by taking r>1/0(8).

The unique solvability of the equation (4.14) in the case a==+2 is also
easily proved.

Next consider the case p(8)=0. In the case where @ is a rational number,
the uniqueness of solutions of the equation (4.14) does not hold trivially. In
the case where @ is an irrational, it is easy to give F(f, x)&G*(R,; 0) such
that the formal power series solution U(¢, x) (which exists uniquely) does not
belong to G°. Indeed, it is sufficient to notice the existence of a sequence
{e,}%=; and 1 h(1)Zh(2)< -+ —oo such that

g1 > 6> —> 0,
and

Isin(h(r)+2)nf | <(&e,)", r=1,2, ---.
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For the simplicity, we consider the case s=1. Let F(t, x)=2%_,t*"e
G'(1; 0), i.e., Frery,o=h(r)! and F,5=0 otherwise. Then by (3.11) and 4.4),
we have

sinzé
sin(h(r)+2)z8 ’

Ue, ncrry=nh(r)!

and this shows that U(t, x) does not belong to G(R; 0) for any R>0. This
completes the proof of Proposition B. O

5. Stability of resolvent sets.

We shall prove that the resolvent sets given in Theorem A are stable by
small perturbations defined below.
Let

finite

G.1) B= 3 bup(xi"DiDE (0,1, HENXZ XZ),

be an integro-differential operator with holomorphic coefficients in a neigh-
bourhood of x=0. We say that the operator B is a “small perturbation” with
respect to A if

5.2) (I1—s)o+sl+B8<0  for any (o, I, B) with b, s(x)=0.

The meaning of this condition is easily understood by the Newton polygon of

the operator A+ B (see Miyake-Hashimoto [4]). We remark that in the case

s=1 we can replace byip(x) by bsip(t, x)EG* :=Up>,G*(R; 0) (see [3], [4]).
Now we can prove the following,

THEOREM C. Suppose that B is a small perturbation with respect to A. Then
there is a positive constant R, such that:

(i) U pry;r(A+B)DC\[—2, 2], U pgr(A+B)DC\[-2, 2].
kEN R>0

(D) U Y, pninga(A+B)> {aeC; (oo ima 2>1}l.

2
¥1/C +(C—1/C
Here C is the same positive constant as in Theorem A.
PROOF OF THEOREM C. We denote by O(| x| <X) (X>0) the set of holo-

morphic functions in |x| <X and continuous on |x|<X. For b(x)=0o(|x|<X)
we define

6.3 6]l x= max |b(x)| .
1z1sX
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Then we can prove the following lemmas.

LEMMA 5.1 ([4, Lemma 3.1]). (i) Let s>0 and b(x)e0(lx|=<pR) (p>1).
Then b(x) defines a bounded operator of multiplier in G*(R; k) with norm esti-
mated by

(5.4) I61=C—E7 1l om.

for some positive constant C.
(ii) Let s<0 and b(x)e0o(|x|<pR). Then if p>e~*/(n+1), b(x) defines a
bounded operator of multiplier in GL(R; k) (k=n—1) with norm estimated by

L BT

(5.9) Hbilécm

for some positive constant C.

LEMMA 5.2 ([4, Lemma 3.3]). Let (a, !, BYSNXZ XZ satisfiy
1— == —0<0.
(1—s)o+si+pB - 0=0

Then t°DiD8 defines a bounded operator in G*(R ; k) (s>0) and also in G4(R ; k)
(s=Z0) with norm estimated by

(5.6) lt*DiDE|<C(a, I, B, s, n)R"*?k2,
where C(a, [, B, s, n) does not depend on R and k.

Theorem C is now obvious from these lemmas. Indeed, let B be a small
perturbation with respect to A.

(i) Let s>0. Then there is a positive constant R, such that B is a
bounded operator in G*(R ; k) for every 0O<R=<R, and k=N. By the definition
of small perturbation, there is a positive constant 0 such that the operator
norm of B is estimated by

6.7 IB|<CR%"°,

for some positive constant C. This implies (i) immediately.

(ii) Let s<0. Then there is a positive constant R, such that B is a
bounded operator in G4(R; k) for every 0O<R<R, n=N and 2=n—1, and the
operator norm is estimated by

(5.8) IBI<CRk°

for some positive constants C and 6. This implies (ii).
This completes the proof. O



08 Masatake MIYAKE

REMARK. In the case s<0, if the coefficients of the small perturbation B
are all constants, then we have

Rea \? ( Ima \2

C—1/C >1},

Y Nemmadt+B2{a=C: (e

for any ke N.

Added in proof. After this paper was accepted for its publication, the
author and M. Yoshino generalized the results in this paper in more precise
form for general operators in the following preprint by employing the Toeplitz
operator method :

M. Miyake and M. Yoshino, Wiener-Hopf equation and Fredholm property
of the Goursat problem in Gevrey space, Preprint series, No. 13 (1992), College
of General Education, Nagoya University.
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