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THE PRIME k-TUPLETS IN ARITHMETIC PROGRESSIONS

By

Koichi KAwADA

§1. Introduction and notation.

In this paper we discuss a problem on the distribution of prime multiplets
in arithmetic progressions. Before mentioning our problem we need to introduce
the following notation. (In connection with our problem, see also the introduc-
tion of Balog’s tract [1].)

For an integer k=2, we let a;(0<j<k—1) be non-zero integers, and let
b;(0<j<k—1) be integers, and put a=(a,, ay, =+, Gr_1, bo), b=(by, -+, bs_1),
(Later, we will fix all the coordinates of a, and treat an average over b. This
is why the unsymmetry of the definitions of @ and b occurs.),

k-
R®=R@ b)=T1 1o, _II_lab—abl,

0stljs k-~
N(x; B)=N(x; a, b)={n; 1<a;n+b;=<x for all 0=5;<k—1},
and define

U(x; b, a g=%(x; a, b; a, 9= 1/l(ajn-HJj),

neN (z; b) j=0

where /4 denotes the von Mangoldt function. And, we let, for any prime p,
o(p)=p(p; a, b) be the number of solutions of the congruence

b -

1 (a;n+b)=0  (mod ),

j=0

and set, if R(b)+0, po(p)<p for all prime p, and (a;a+b;, ¢)=1 for all 0<;<
k—1,

e oeo@ b @ ook 11 (1— LY p(1— LB Y Ly
G'(b, a9 Q)—U(a, b, a) CI)—- q l]’:}lltl(l p ) l;[(l p )(1 p)
and a(b; a, 9)=0 otherwise. Further, we put

Z(x)y=Z(x; a)=1{b; |N(x; b)|#0},

where |N(x; b)| denote the length of the interval N(x; b).
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By a heuristic arguement due to Bateman and Horn [2], it is expected that
if a(b; a, ¢+0 then

U(x; b, a, 9~ ab; a, ¢)|N(x; b)l.
Now we consider the inequality

(1.1) X max X |¥(x; b, a, ¢9g—a(b; a, @I N(x; b)|| L x*(log x)™4,

gsQ 1sasq beZ(x)

for fixed a, and for any fixed positive constant A. Recently, Maier and
Pomerance treated the inequality (1.1), for the case £#=2, in order to apply
their arguement concerning with the difference between consecutive prime
numbers, and showed the validity for Q< x° with some (small) positive constant
0. Later, Balog proved that the inequality (1.1) holds for the general case
k=2, and for a wider range of Q, namely Q<x'*(log x)~® with some positive
constant B depending on A.

Very recently, Mikawa extend the range of validity of (1.1), for the
case k=2, to Q= x'"*(log x)"2 with some positive constant B depending on A,
by means of the dispersion method. Mikawa’s result seems best possible, for
the present, by contrast with the Bombieri-Vinogradov theorem.

In this paper, we give a proof, owing to the traditional circle method, for
the validity of (1.1), in the general case £=2, for Q<x'?(log x)"2 with a
positive constant B depending on %, and A.

THEOREM 1. Let k=2, a and A>0 be fixed. Then the inequality (1.1) is

valid for
Q=x'"*(log x)72,

where B is some positive constant depending on k and A.
Moreover, we shall prove a short interval version of [Theorem 1. For 0<
y=x, we reset

N(x, y; b)=N(x; a, b)={n; x—y<ajn+b;<x for all 0<;<k—1},

k-1
Vx, ;05 0, 9=¥(x, y; a b; a. 9= _ > Il Aan+b),
n=a(mod @) =

Z=Z(x, y; a)=1{b; |N(x, y; b)| #0},

and write N=|N(x, y; b)| the length of the interval N(x, y; b), for simplicity.
Trivially, we see that

N<«y and #Z<y* !,

where #Z means the number of elements of Z.
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THEOREM 2. Let k=2, a and A>0 be fixed, and assume that
x*3(log x)o<y< x,
with some positive constant C, depending on k and A. Then we have

1.2) > max 3 |¥(x, y; b, a, 9g—a(b; a, )N | Ly*(log x)™4,

qsQ 1sasq beZ

providing that
Q=yx'*(log x)°2,

where B is a positive constant depending on k and A.

Of course, is a special case of so we prove only
in the sequel.

I would like to thank Professor S. Uchiyama for encouragement and for
careful reading of the manuscript of this paper. I would also like to thank
Dr. H. Mikawa for stimulating discussions and advice.

§2. Preliminaries.

We use a standard notation in number theory, especially, we denote the
greatest common divisor and the least common multiple by (, ) and [, ], res-
pectively. (We use the square bracket [, ] also to denote intervals, but one
may not be confused.) And throughout the paper, we let a;(0=<;<k—1) be fixed
non-zero integers, and let b, be a fixed integer which is prime to a, (if (a., bo)
>1 then our theorem is trivial), and assume that

(2.1) x?3(log x)*°* <y < x,

with some positive constant C. Later, C will be chosen in terms of 2 and A.
Our proof is based on the circle method. We use the functions,

el@=et,  P@=Pla; x y)=_3 Ane(na),

Poyla)=Pyola; x, y)= py A(aon+by)e(na),
L et

and define the major and minor arcs,
c c
M, —_-[——A, —+A],
(¢, 9) P 7
M: U U M(C, q)y
5@ 150sq

m=[x""¢ 14+x""]—M
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where
le(log x)C’ A:y—l(log x)2.4+2C(k—1)+2.

Now we note that M(c, ¢)’s are disjoint for ¢<Q,, 1=¢<gq, (¢, ¢)=1. We also
note that if a=m then there exist co-prime natural numbers ¢ and ¢ such that
¢<Q, and A<|a—-;—|§q-lx-w

or

Qx<q_§x”6 and la__z_‘gq-lx—lls_
Our proof is also based on following results.

LEMMA 1. Assume that a=M(c, q), ¢=Q,, 1=c<q, (¢, ¢9)=1, and write a=
(¢/@)+B. Then we have

_ ¢ _ 176
Pla)= 3@ T(B)+O(y exp(—0dq(log x)'*)),

where 8, is a positive constant and T(B)= ‘Z_‘, e(nfB), and as usual, ¢ and p
r-y<nszx

denote the Euler totient function and the Mdibius function, respectively.

LEMMA 2.
meale(a)I < y(log x)~C+*t.
LEMMA 3. Let °
E(x, y; 9= max max 3 A(n)—l—”—
dgage Ictz-v. =l Aer, ¢(a)

where I runs over all intervals in [x—y, x], and |I| denote the length of the
interval I. Then, for any positive constant A,, we have

(2.2) S E(x, y; < y(log x)™41,

qs

where ézyx‘”z(log x)"B1 with a positwwe constant B, depending on A,.

Lemma 1l and Lemma 2 are minor modifications of Pan and Pan [5, Theorem
3 and p. 146]. Their proofs are based on the results about the zeros of Diriclet’s
L functions, and is still true for y>x"/'?*¢ with any positive constant
e, but holds only for y satisfying [2.1).

is a Bombieri-Vinogradov theorem for short intervals, and Perelli,
Pintz and Salerno proved for y> x*/%*¢ with any &>0.
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§3. Proof of the Theorem 2.

At first, we note that we have an admissible bound in the case a(b; a, g)=0.

Indeed, if (aj;a+b;, g99>1 for some 0<j<k—1, or if p(p)=p for some
prime p, then we have ¥'(x, y; b; a, g9)<(log x)**!. So these caseS contribute
to the left-hand side of at most O(y*~'Q(log x)**!), since the number of
elements of Z is O(y*™).

As for the case R(b)=0, we see that the number of b’s is O(y*~%). Thus,
using a trivial bound ¥'(x, y: b; a, q)<(v/g)(log x)*, this case contributes to the
left side of at most O(y*~'(log x)**).

So, in what follows, we consider only the case (b, a, ¢)+0, that is,

3.1 (a;a+by, ¢)=1  for all 0<j<k-—1,
(3.2) p(P)<p for all prime number p,
3.3) R(b)+0.

We set a=(ay, '+, ar_,), and
k-1 k-1
F@)=TI P@)-Puo — 3 a.5),
then we can write

1 1 k-1
U(x,y; b; a, Q)=So---SOF(a)e(—— Elbjaj)dal cedag -
k-1
(3.4) =1Iy+ hgl I s,

where I, is the integral on the major arcs, and I..’s are the integrals on
the minor arcs, that is,

IM-:SM--~SMF(a)e<— Z%l bja,-)da, cdag-,,

and, for 1<h<gk-—1,

k-1
Im,hzg---g Fla)e(— 3 b ) da, -+ daty .
a'jEM(lSj<h) j=1
apEmM
a;E00, 11 (R<jsk—1)

In section 4, we shall prove

(3.5) Sma= 3 qmax 3 | In x|« y*'(log x)~0*2**1,
(=4

as@Q a b

using Lemma 2. Then we have, by Cauchy-Schwartz inequality,
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illz k-1 1/2
Zmalelmnl<<(§qq) (* 'S, n)Y

95Q a

(36) <<y"(log x)—C/2+k+1'

Next we turn to Iy. For a,eM(c;, q;), we write a;=(c;/q;)+B;, then by

Lemma 1,
Pla)= “W T(B,)+O(y exp(—dq(log x)'/%).

We pUt q=(41; Tty qk—l); cz(cly ) Ck-l)y ﬂ:(‘Blr Ty ﬁk—l) and

;; ‘f‘ﬂj)),

GB; c. @e(— 2 b,8,)dps -+ By,

G@B; c, @)= ’:I:I: T(‘Bj)'Paq(_ ’;g‘ af(

e, q):SmSlﬁlsd

where |81 <A means | B,/ <A for all 1<7<k—1. Now we can express

=y CP) =TI Y _ 178
@D =3 ML Sre(— 5 -20)) T, @+0({ exp(~aiog x17),

where 0, is a positive constant and

9<Q, means ¢;<Q, for all 1<;<k—1,

q . .
>3* means the summation over all ¢ such that every coordinate
[

¢; is prime to ¢; and 1=<c¢;<g;,.

k-1
Morover, we write J(c, q)=/(c, q)—hgl]h(c, q), Where

1 1 k-1
Jole, q)-’—'S0 SoG(ﬂ; c, q)e(— Ebjﬁ;)dﬁl o dBroa,
and, for 1<h<k—1,

Tnte, a={-{ GB; ¢, are(— S b:B))dBs - s

B;EL0,11(15i<h)
nerd, 1-4
18j1sd(h<isk—1)

In section 5, we will show that, for 1<h<k—1,

A
(3°8) J§Z~|jh(c: q)] L qz A ’
and that

(3.9) J 80| N > ( 2 ajdj)

& D= Gl la, 7D 2
FOWE®, ¥; |aol[4, r])+1><log )k,
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where » denotes the least common multiple of the coordinates of ¢, and d=

q . . . . -
(dy, -+, dr-1), and >}* denotes the summation over d,’s satisfying the conditions
d

1=d;=gq; for all 1<;<k—1,
a=d; (mod(q, ¢;) for all 1<;5k—1,
d;=d; (mod (g, ¢;)) for all 1=<i<j<k—1,

and (aod;+b,, g;)=1 for all 1=<7<k—1.
(3.8) yields

k-1 u(g;) & ke
I s sre(— 5 70,) S e, @)

(quq (et ggmax £ 2T 600 S8

H
5Q1

gsQ a beZ

(3.10) L y*(log x) 4.
By (3.7), and (3.10), we have
3.11) > max 3 |Iy—a(b; a, ¢N|

gs@ a bez

= 3] max ElS(b a, ¢)la,| N—a(b; a, g)N|

gs@ a

+O0((log x)**'(»*7'QQt" 1+2 2 E(x, y; lacdllg, 7D))

7sQ4as@Q;

+O0(y*(log x)"4+y* exp(—d,(log x)'/*)(log x)),
where

1 - ﬂ(Qj) #
Sb; 0, 0= Siaita B Gy S T cofasdstb),

g m . .
and cq(n)— 2 (—q—n) is the Ramanujan sum.
m, q)

In secton 6, we shall prove

3.12) Sb; a, 9)=——0b; a, 9

1
@]
+0 (;mqmue(b» (log x)7°*1),

of course, on (38.2) and (3.3). Here K is a natural number depending only
on k, and 7x(m) is the number of ways of writing m as a product of K factors,
the order of the factors being taken account. It follows, by known results
about divisor functions, that
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5 7x(q) «(log Q)X, and rx(R(B) < y*~'(log x)X1,
Q¢ REbyZ0

with a constant K, depending only on k.
Then the first term of (3.11) contributes

(3.13) < y*(log x)C+Kz,

where K, is a constant depending only on k.
Estimation of the second term of (3.11), of course, relies on Lemma 3. It
follows that

P sZ,:hE(x, v laellg, r])<<Q¥"m 2 G E(x y; m

9sQq <1a9!1Q Q)
(3.14) < y(log x)~4-*-1,
providing that |a,|QQ*'<{, that is,
Q=yx '*(log x)75.

Here § corresponds to A,=A+3k+1 in of Lemma 3, and B is a constant
depending on A and k. We observe that any other terms is admissible only
if Q<y(log x)Bo with some constant B,.

Hence, follows from [3.4), (3.7), (3.11), and with a
suitable choice of C, under assumption of [3.5), [3.8), [3.9) and [(3.12).

§4. Estimation of S, ..

In this section, we prove [3.5). We use Bessel’s inequality repeatedly to
obtain

2 | Im o |?=20 - 3
bez

b bp_1

<fiP@yirg - 2 1[P@d(] - das-s)et—buadas| da,

Sp(al)(g S o dag da,,_l>e(——b1a1)da1 i

< veeeen
k-1 k-1 2
2 — v
gs...gaheﬂ (Jl;[1 ]P(aj)l ) Paq( jz=}l ajaj)l da1 dak—l
aEM(15j<h)
ajE00,11(h<jsk-1)
@) | 1P@wIUsdas,

where, for k=3,
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U 1 1k-1 P 2| p k-1 k-1
= L 1P| P = F o) (I da)
J+h J*h
= > 2 Alagmy+by) A(agme+be)e(— anan(m,—ms,))
r—y<agmy+bg, agMmo+bosx
my=my=a(mod ¢)
k-1
XII( 2 3 An)A(ny))
J=1 r—-y<ny, ngsx
Jxh ny—ng=ajimi—my)
= 3 e(—ananr) > A(aym+be) A(ay(m—r)+bo)
Irisy r—-y<agm+boszx
r=o0(mod q) m=a (mod q)
r—-y<agm—r)+bosx
k-1
X320 2 A(n)A(n—a,;r))
J=1 x—-y<nszx
J*h z-y<n—-ajrsz
“4.2) = 2 e—aran)Ru(r; a, 9, say,
rso{mf)gq)

and, for k=2,
U,= IPaq(—'axal)|2
= > 2 A(agmy+bo) A(aemz+by)e(— a,a,(my,—m,))

r—y<aogmy+bg, agMmao+bosz
mi;=mo=a(mod ¢)

= 23  e(—aay) > A(aym—+be) A(ao(m—7r)+b,)
Irisy r—y<agm-+tboszx
r=0(mod q) m=a (mod q)
r—y<ag(Mm—T1)+bgsx
(4.3) = 2 e(—aamRi(r; a,q), say.
r=b(mod

Trivially, we have
(4.4) Ry(r; q, a)Xy* 'q '(log x)**-2,
for both cases k=2 and k=3. By [4.1), 4.2), 4.3) and [4.4),

Smas Tgmax 3 Ra(r; g, o) |P@n)®e(—ararr)dan
IP@)]*e(—anar)dal

.5) <y*iog S o(lrD)|| |P@)I"e(—anar)dal

iTISY
+5*'Qlog x|’ | P(e)|*da,

where r denotes the divisor function. It is easy to see that

51
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[1P@itda=__3 amy<yiog ),

and
7(|7])* <K y(log x)*.

<iTisy
So the second term of is admissible in [3.5), and the sum in the first term
of contributes
2)1/2

<3 (3 || 1P@Ite-aranda
irisy <irjsyiJm

1/2
<(y(log | |P(@)|*da)

1 1/2
<((log x* max | P@)|*|| |P(@)*dar)

< y*(log x)7¢**,
by virtue of a bound of Lemma 2. Now we obtain [3.5).

§ 5. Evaluation of J,(c, q).

At first, we prove [3.8). It is well known that |T(B)|<|Bl*, where ||B]l
denote the distance detween B and the nearest integer of it, as usual. So we

get
[ ir@nrap <) srapea.

4

Then, for 1<h<k—1, we repeat using Bessel’s inequality, similarly to [4.1),
to obtain

ge]zl]h(c, Q|*

<f- S);I;I:IT(ﬁf)lz-

(=G ol +0)| 4t d
(VI rearag) [ 1T@rap,

Y5 -
<2 A,

q

as required in [3.8).

Next we turn to prove [3.9). Caluculating the integrals about B,’s, we see

k-1 C;
Jole, = 3 Aaen+boe(— = —- a,.n).
nEN(x, ¥; b) i=1 qj
n=a (mod q)

We devide the above sum about residue classes of n to moduli ¢;’s, and write
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G.1) Joe, D= 5e(~La,d;)V(d, @),

where d=(d,, -+, ds-)), S;‘ means the summation over all d,’s satisfying 1<
dqu]', and
Vi, ¢)= > Aagn+b,).

neN(x, y: b)
n=a (mod ¢q)
n=d;(mod gj) (1=jsk—1)

Unless
(5.2) a=d; (mod(q, gq;)) for all 1<7<k—1,
(5.3) d:=d; (mod(q;, ¢;)) for all 1Ki<j<k—1,
the sum V(d, q) is empty. And unless
(5.4) (aod;+bo, g5)=1 for all 1</<k—1,

plainly, we get V({d, ¢)=0((log x)?).

If the conditions [5.2), [5.3) and [5.4) are satisfied, there is an integer M=
M, q; a, ¢) such that the congruence conditions apearing in the summation
of V(d, q) are equivalent to

n=M (mod [q, »])

and (aoM +b,, [q, ¥])=1. Here r=[q,, -, qr-1], that is, the least common
multiple of the all coordinates of ¢, as mentioned in section 3. Thus we can

write
Vi, q)= > Alaon—+by)
neN(x,y: b)
n=M (mod [q, 7])
= > A(m)

(m—bg) /@ gEN (x, ¥ B)
m=agM+bg(modiagilg, 1)

:m|aolN+0(E<x, y; laollg, r1).

These evaluations with yield [3.9).

§ 6. Calculation of the singular series S(b; a, ¢).

In this section, we prove [(3.12). We write

. _ pr)?® p(r)*
S50 0= B s Talle D O et gladle ) O

6.1) =S,+S,, say,

where
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[

W= 3 T £

fgl=

q
?* jl;]; qu(ajdj+bj) ,

-

g5
(g5

and W,(») is the sum with the condition ¢<@Q, added to the above sum. The
symbol [g]=7 means that the least common multiple of the all coordinates of

q is 7.

We can see that W(») is multiplicative by a simple arithmatical deduction.
Indeed, for [gl=r=rry (ry, r)=1, we put ¢;*=(g;, ;) and q.,=(g{®, ---, ¢
for i=1, 2, 1<j<k—1. Then this correspondence between q’'s satisfying [g]=r
and pairs (q., q.) satisfying [q,]J=7: (=1, 2) is one-to-one. Moreover, we can
set d;—ejVqi?+ef?qs?, where ef® runs through residue classes of modulo ¢,
for i=1, 2, 1<j<k—1. We have, for 1=4, j<k—1,

=a(mod (g, 9)) & efP ¢’ =a(mod(gf, ¢)) and ej”¢;’=a(mod(gf®, ¢)),
di=d;(mod(g;, q;) & ef’qf® =e"¢q;» (mod (¢{*, ¢;*))
and e{®¢{’=ejq;" (mod (¢, ¢;°)),
(@od;+be, ¢5)=1 & (aoe§?q5® +bo, q5°)=1 and (a,ef?q”+b,, ¢;>)=1.
Now we write djP=efV¢®, dj®=e®q", d;=(d®, ---, di?)) for i=1, 2, and get

( ¢(giP) p(gi®)
[11] T1[¢2]=7‘2 f=1 ¢(q;l)) ¢(0;2))

W(r\r)=

q

2"22" (Cq(l)(ajd(l)+b Dea(a;d;® +by))

d; dg

=W(rpW(ry).

Next, we attend to W(p) for a prime number p. If [q]=p then ¢,=1 or
p for all 1<;<k—1, and at least one g; is p. We denote by M the set of
subscript of ¢;’s such that ¢g;=p. Then,

S ()" 3 Heado
—_— Ccp\a

Msui k- \p—1 d=1 iex »(a;d+b)
#M21 d=a(mod(p, q))

(agd+bg, p)=1

W(p)=

- dél (Msu.z--:..k-ujle—lx(:%gli@z _1)

d=a (mod(p, q))
(agd+bg, P)=1

p

- 2 (EQ@-

d=a(mod(p, Q)
(agd+bg, P)=1

,,(a,d ‘*‘bj) 1)
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where # M denote the number of elements of M. Therefore, noticing that

(3.1), 3.2) and [3.3), we obtain

(1—5) "1 (i plg)
1\-%k+1 .
Wipy={ (r—po(1-5) > (if pqand play),
(P~ p(p))(l—* —p+l G plgand pJa)

and
(r)® 1 1\-t 1\-#+1
6D Sraits VO Tag e (75) 1(0-7) )

QL (0= 2203 1) 1 (- 50"

IT
rq
lag Y E

Further p } R(b) implies p(p)=k, so

(2o 3y e,

and, for p|R(b), the above term is «1/p, where the implied constants depend
only on k. Plainly, we also get

(1__) k+l_1 <1_%>(1_%)—k+1~1<%,

with the implied constants depending only on k.. These inequalities and (6.2)
shows

'ﬁﬁ'ﬁ

r
¥q
ap

p(r)” o1 L L
¢(l a,|lg, rD W(?’), ~ lallg p'(I;I"Q) p!(al:f,[}zlzre(b)) b pk(p()'q‘tl‘e(b)) p
6.3) < T8l g, grEn T,

laelg

where L is a (sufficiently large) natural number which depends only on k. It
is known about the divisor function z.(») that

TEStrL(r) Lt(log H)E1,

for t=2, so we have, by partial summation,

6.4) 5 oy« ’K;") £ (R(B))—(log Q).

*>o ¢(l aollg, r]) Q
with K depending only on %.2. And then, by (6.2),
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o p(r)?
2 et 7D

1 1 +1 (» 1\-k+1
- laolg Pl(l;qu)(l_E) Hz 1__> k (1__9__‘02_)(1_,;) k

< 1— L) )

W(r)

pre P P
1 (D) 1\-
~Talg mq< __> o —p—p—)(l_z) k
=T;o—|o(b; a, q).

Thus, with [6.4), we have

(6.5) S,=

—ro®; a, 9+0(TE D cu(R®B)og )7°).

Finally, we estimate S,. We let

-1 p(gy)*
m r3=i @(qy)

then we can see, at once, that W,(») is multiplicative by comparison with W(r),
and that

Wy(r)= 2*‘ H cea;di+bj)|,

p(r)?
€0 15212 o et BT aal g, 7

For a prime p, we write W,(p), similarly to W(p), as follows.

W)= 207 2 Detedirs)

MS (Lo ke 1)(1)——1 d=1
#M d=a(mod(p, )
(agd+bg, P)=1

(6.7) =S GED) W a1, say.

Mc (1, k—
#Mz1
For plq, we have |W,y(p, M)| <1 by [(3.1). For p /g, noticing that
k-
| S enasd+b)I S unless ,1.1,1 (a,d+b)=0 (mod p),
we have |Wy(p, M)| S k(p—1)*¥ +p,
Especially, we consider the case p ) (a,qR(b)). If #M =1 then
Wa(p, M)=(p—D+(—-D(p—2)=1,
and if #M =2 then
[Ws(p, MD|=(p—1)-(#M)+1-(p—1—#M)<kD.
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By these evaluations and (6.7), it follows that W,(p)<1 for any prime p, and
that Wy(p)<1/p for p ) (a,qR(b)), where the implied constants depend only on k.

Now we obtain an inequality similar to for W,(r) instead of W(r), so
the right-hand side of contributes

6.8) <<i’%@fK<R<b>><log x)-0+1,

as before. Hence, follows from (6.1), and [6.8), and our proof of
is completed.
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