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Introduction.

In 1919 Comessatti [1] proved the following theorem, which we learned by
Lange’s paper [2].

THEOREM (Comessatti). Let $Jac(C)$ denote the Jacobian variety of a smooth
projective curve $C$ of genus 2. If an ample divisor $D$ on $Jac(C)$ satisfies $(D^{2})=2$

and $(C\cdot D)=n$ for $n\geqq 3$ , then the divisor $C+D$ is very ample.

The aim of the present paper is to generalize this theorem. Our result is

THEOREM. Let $A$ be an abelian variety defined over an algebraically closed
field of any characteristic. Let $L$ and $M$ be ample invertible sheaves on $A$ with
$h^{0}(A, L)=h^{0}(A, M)=1$ . Let $D$ and $E$ be positive dzvisors such that $L=\mathcal{O}_{A}(D)$

and $M=\mathcal{O}_{A}(E)$ . Assume that any component of $D$ is not algebraically equivalent
to a component of E. Then $L\otimes M$ is very ample.

We prove the theorem in \S 1. In \S 2 we show that the Commessatti’s
theorem is a special case of ours. In the last \S 3 we discuss projective embed-
dings of abelian varieties with real multiplication.

At first I set up unnecessary assumption in the theorem. I could find the
above theorem as a result of the referee’s pertinent suggestion. Here I thank
the referee for his kind advice.

1. Proof of theorem.

We shall use the following notation. For details we refer to [4]. Let $A$

be an abelian variety of dimension $g$ defined over an algebraically closed field
$k$ of arbitrary characteristic and let $\hat{A}=Pic^{0}(A)$ denote its dual variety. The
translation $x\rightarrow x+a$ by a point $a$ of $A$ is denoted by $T_{a}$ . We denote by $P$ the
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Poincar\’e invertible sheaf on the product $A\times\hat{A}$ and by $P_{\alpha}$ the restriction $P|_{Axt\alpha\}}$ .
For an invertible sheaf $L$ on $A$ , the homomorphism $a\rightarrow T_{a}^{*}(L)\otimes L^{-1}$ of $A$ to
$\hat{A}$ is denoted by $\varphi_{L}$ and its kernel by $K(L)$ . When $L$ is ample, we have $P_{\varphi L^{(a)}}$

$\cong T_{a}^{*}(L)\otimes L^{-1}$ . The Riemann-Roch theorem asserts $\deg\varphi_{L}=x(L)^{2}$ and $\chi(L)=$

$(L^{g})/g$ ! where $\chi(L)$ is the Euler-Poincar\’e characteristic of $L$ and $(L^{g})$ is the
g-fold self-intersection number of $L$ . If $L$ is ample and $h^{0}(A. L)=1$ , then $\varphi_{L}$

is an isomorphism and $(L^{g})=g$ !.
Now we shall prove the theorem. Let

$\Phi=\Phi_{|L@M|}$ : $A-P(\Gamma(A, L\otimes M))$

be the rational map associated with the complete linear system $|L\otimes M|$ . What
we should do is to establish the following statements:

(1.1) Given $a,$ $b\in A$ with $a\neq b$ , there is a divisor $F\in|L\otimes M|$ such that $ a\in$

$Supp(F)$ and $b\not\in Supp(F)$ .
(1.2) Given any tangent $t$ to $A$ at $a$ , there is a dividor $F\in|L\otimes M|$ such that

$a\in Supp(F)$ and $t$ is not tangential to $F$.

In the following we shall use the same letter for a divisor and its support.

Let

$D=\sum_{i=1}^{r}D_{i}$ and $E=\sum_{j=1}^{l}E_{j}$

be decompositions into irreducible components and $\mathcal{O}_{A}(D_{i})=L_{i},$ $\mathcal{O}_{A}(E_{j})=M_{j}$ . Since
$h^{0}(A, L)=1$ , it follows that $L_{i}$ and $L_{i^{\prime}}$ are not algebraically equivalent for $i\neq i^{\prime}$ .
We denote by $A_{i}$ the quotient of $A$ by the connected component $K(L_{i})^{0}$ of $K(L)$

containing the origin $0$ . Then there is an ample invertible sheaf $\overline{L}_{i}$ on $A_{i}$ such
that $h^{0}(A_{i},\overline{L}_{i})=1$ and $\pi^{*}(\overline{L}_{i})\cong L_{i}$ , where $\pi$ is the canonical surjection. More-
over we have

$A\cong A_{1}\times\cdots\times A_{r}$ and $L\cong p_{1^{*}}(\overline{L}_{1})\otimes\cdots\otimes p_{r^{*}}(\overline{L}_{r})$ ,

where $p_{i}$ : $A_{1}\times\cdots\times A_{r}\rightarrow A_{i}$ is the i-th projection; cf. [7], Lem. 1.6. The same
results hold for $M$ : there is an ample invertible sheaf $\overline{M}_{j}$ on $B_{j}=A/K(M_{j})^{O}$

such that $h^{0}(B_{j},\overline{M}_{j})=1$ and we have

$A\cong B_{1}\times\cdots\times B_{\epsilon}$ and $M\cong p_{1^{*}}(\overline{M}_{1})\otimes\cdots\otimes p_{s^{*}}(\overline{M}_{*})$ .
Now we shall prove (1.1). Let $\psi=-\varphi_{M}^{-1}\circ\varphi_{L}$ , then we have

$\mathcal{T}_{\psi^{(a)^{*}}}(M)\cong M\otimes P_{\varphi u^{(\psi^{(a))}}}\cong M\otimes P_{-\varphi L^{(a)}}\cong M\otimes L\otimes T_{a}^{*}(L)^{-1}$ .
Hence we have
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(1.3) $T_{a}^{*}(D)+T_{\psi^{(a)^{*}}}(M)\in|L\otimes M|$ for all $a\in A$ .
Let $a$ and $b$ be points in $A$ . Suppose that, for any $F\in|L\otimes M|,$ $a\in F$ implies

$b\in F$. For every $i$ , if $p\in T_{a}^{*}(D_{i})$ then $a\in T_{p^{*}}(D_{i})\subset T_{p^{*}}(D)+T_{\psi^{(p)}}(E)$ . This
last divisor is a member in $|L\otimes M|$ by (1.3); hence it contains $b$ . If $b\in T_{p}^{*}(D)$ ,

then $p\in T_{b^{*}}(D)$ . If $b\in T_{\psi^{(p)^{*}}}(E)$ , then $\psi(p)\in T_{b^{*}}(E),$ $i$ . $e.,$ $p\in\psi^{*}(T_{b^{*}}(E))$ . Thus
we have

$T_{a}^{*}(D_{i})\subset T_{b^{*}}(D)\cup\psi^{*}(T_{b^{*}}(E))$ .

Since $D_{i}$ is irreducible, we have

(1.4) $T_{a}^{*}(D_{i})=T_{b^{*}}(D_{t^{\prime}})$ for some $i^{\prime}$

or

(1.5) $T_{a}^{*}(D_{i})=\psi^{*}(T_{b^{*}}(E_{j}))$ for some $j$ .
Suppose (1.5) holds. Since $T_{b}\circ\psi=\psi\circ T_{\psi^{-1(b)}}$ , we have

$T_{a}^{*}(D_{i})=\psi^{*}(T_{b^{*}}(E_{j}))=T_{\psi^{-1(b)^{*}}}(\psi^{*}(E_{j}))$ .
This implies that $\varphi_{L}(D_{i})$ is algebraically equivalent to $\varphi_{M}(E_{j})$ . Therefore
$K(\varphi_{L}(L_{i}))^{0}=K(\varphi_{M}(M_{j}))^{0}$ and there are ample inveritible sheaves $(\overline{L}_{i})^{\wedge}$ and $(\overline{M}_{j})^{\prime}$

such that $h^{0}(X, (\overline{L}_{i})^{\wedge})=h^{0}(X, (\overline{M}_{j})^{\wedge})=1$ and $\pi^{*}((\overline{L}_{i})^{\wedge})\cong\varphi_{L}(L_{i}),$ $\pi^{*}((\overline{M}_{j})^{\wedge})\cong\varphi_{M}(M_{j})$ ,
where $X=\hat{A}/K(\varphi_{L}(L_{i}))^{0}$ and $\pi;\hat{A}-\rightarrow X$ is the canonical surjection. Then $(\overline{L}_{i})^{\wedge}$

and $(\overline{M}_{j})^{\wedge}$ are algebraically equivalent. Moreover $X$ is isomorphic to both of
the dual abelian varieties of $A_{i}$ and $B_{j}$ ; hence $A_{i}\cong B_{j}$ , and $(\overline{L}_{i})^{\wedge}\cong\varphi_{L_{i}}(\overline{L}_{i})$ ,
$(\overline{M}_{j})^{\wedge}\cong\varphi_{\overline{M}_{j}}(\overline{M}_{j})$ . We identify $A_{i}$ with $\hat{A}_{i}$ via the canonical isomorphism induced
by the Poincar\’e invertible sheaf $P$ ; cf. [4] \S 13. Then $\varphi_{L_{i}^{-1}}=\varphi_{(L_{i})\wedge}$ and $\varphi_{\overline{M}_{j}}^{-1}=$

$\varphi_{(\overline{M}i)\wedge}$ . Since $\varphi_{(L_{i})\wedge}=\varphi_{(\overline{M}_{j})\wedge},$ $\varphi_{L_{i}}=\varphi_{\overline{M}_{j}}$ ; hence $\overline{L}_{i}$ is algebraically equivalent to
$\overline{M}_{j}$ . It follows that $L_{i}$ is algebraically equivalcnt to $M_{j}$ . This contradicts to
the assumption. Thus we see that (1.5) does not occur.

If (1.4) holds, then $D_{i}$ is algebraically equivalent to $D_{i^{\prime}}$ ; hence $i=i^{\prime}$ and
$T_{a-b}^{*}(D_{i})=D_{i}$ . Therefore $T_{a-b}^{*}(D)=(D)$ and $a-b\in K(L)=\{0\}$ , so we have
$a=b$ . This completes the proof of (1.1).

Now we shall show (1.2). We shall prove this only for $a=0$ , since the
general case follows by applying the result to translates of $L$ and $M$. Suppose
(1.2) is not true (with $a=0$). Then there is a non-zero tangent vector to the
origin such that, for any member $F\in|L\otimes M|$ containing $0,$ $\langle t, df\rangle=0$ where
$f$ is a local equation of $F$. If $p\in D$ then $0\in T_{p}^{*}(D)+T_{\psi^{(p)^{*}}}(E)$ . This is a
member of $|L\otimes M|$ , so $t$ is tangent to it. $0\in T_{\psi^{(p)^{*}}}(E)$ means $p\in\psi^{*}(E)$ . Since
any component $D_{i}$ does not equal to a component of $\psi^{*}(E)$ (cf. the proof of
(1.1)), $t$ is tangent to $T_{p}^{*}(D)$ at $0$ for general $p\in D$ . $V$ be the invariant vector
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field defined by $t$ . Then $V_{p}$ is tangent to $D$ for all $i$ and general $p\in D_{i}$ . It
follows that $V$ is tangent to $D$ . This is equivalent to the property:

(1.6) For any open subset $U\subset A$ and any local equation $f$ of $D_{L}$ on $U$ ,

$V(f)=h\cdot f$ for some $h\in \mathcal{O}_{A}(U)$ .
Let $\Lambda=Speck[\epsilon]/(\epsilon^{2})$ . We regard $t$ as a $\Lambda$ -valued point of $A$ . Then the
translation $T_{t}$ on $ A\times\Lambda$ induced by $t$ is given by $(a, s)\rightarrow(a+t(s), s)$ . Let $L_{\Lambda}$

denote the pull-back of $L$ via the projection $A\times\Lambda\rightarrow A$ . Then we have $ T_{c^{*}}L_{\Lambda}\cong$

$L_{\Lambda}$ by (1.6). This means that $t$ is a $\Lambda$ -valued point of $K(L)=\{0\}$ . Therefore
$t$ must be $0$ . This is a contradiction. Thus we have proved the theorem.

2. Proof of Comessatti’s theorem.

In this section we shall show that Comessatti’s theorem is a special case
of the theorem proved in the previous section.

LEMMA. Let $L_{0}$ and $L_{1}$ be ample invertible sheaves on a g-dimensional abelian
variety A $w\iota thh^{0}(A, L_{0})=h^{0}(A, L_{1})=1$ . Then the following statements are
equivalent:

(2.1) $L_{0}$ is algebraically equivalent to $L_{1}$ .
(2.2) $(L_{0^{i}}\cdot L_{1}^{g-i})=g!$ for $i=0,1,$ $\cdots,$ $g$ .

PROOF. Let $P(n)=P_{L_{0}.L_{0}\Theta L_{1}-1}(n)=x(L_{0^{n}}\otimes L_{1}^{-\iota})$ . Then we have

(2.3) $P(n)=\frac{1}{g!}\{\sum_{l=0}^{g}(-1)^{i}\left(\begin{array}{l}g\\i\end{array}\right)(L_{0^{g-i}}\cdot L_{1}^{i})(n+1)^{g-i}\}$ .

(2.1) is equivalent to $K(L_{0}\otimes L_{1}^{-1})=A$ , and it is also equivalent to $P(n)=n^{\iota}$ ;
cf. [5] App. By (2.3), it is equivalent to (2.2). Q. E. D.

COROLLARY. Let $L_{0}$ and $L_{1}$ be ample invertible sheaves on abelian surface
$A$ with $h^{0}(A, L_{0})=h^{0}(A, L_{1})=1$ . Then we have the following:

(2.4) $(L_{0}\cdot L_{1})\geqq 2$ ;

(2.5) $(L_{0}\cdot L_{1})=2$ if and only if $L_{0}$ is algebraically equivalent to $L_{1}$ .

PROOF. (2.4) Since $(L_{0^{2}})>0,$ $(L_{0}\cdot L_{1})^{2}\geqq(L_{0}^{2})(L_{1}^{2})=4$ ; hence $(L_{0}\cdot L_{1})\geqq 2$ . $(2.5)$

follows the lemma. Q. E. D.

THEOREM (Comessatti). Let $L\cong \mathcal{O}_{A}(C)$ and $M$ be ample invertible sheaves on
an abelian surface $A$ with $h^{0}(A, L)=h^{0}(A, M)=1$ , where $C$ is an irreducible curve
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on A. If $(L\cdot M)\geqq 3$ , then $L\otimes M$ is very ample.

PROOF. Combining our theorem and (2.5), we get the resul. Q. E. D.

3. Application.

Let $K$ be a totally real algebraic number field of degree $g$ and $0_{K}$ the ring

of integers of $K$. Let $\{\sigma_{1}, \sigma_{2}, \cdots , \sigma_{g}\}$ be the set of embeddings of $K$ into the
field $R$ of real numbers. Let $\Phi$ : $K\rightarrow M_{g}(C)$ denote the representation of $K$

over the field of complex numbers defined by

$\Phi(a)=\left(\begin{array}{lll}\sigma_{1}(a) & 0 & \\ & \ddots & \\0 & & \sigma_{g}(a)\end{array}\right)$ $(a\in K)$ .

Then there are a simple abelian variety $A$ over $C$ of dimension $g$ , an ample

invertible sheaf $L$ on $A$ with $h^{0}(A, L)=1$ and a ring homomorphism $\theta$ : $ K\rightarrow$

$End_{Q}(A)$ such that

(3.1) $\theta(\mathfrak{o}_{K})\subset End(A)$ ;

(3.2) $ r_{a^{o}}\theta$ is equivalent to $\Phi$ where $r_{a}$ is the analytic representation of $End_{Q}(A)$

with respect to some basis for the universal covering space of $A$ ,

(3.3) $\rho\cdot\theta=\theta$ where $\rho:End_{Q}(A)\rightarrow End_{Q}(A)$ is the Rosati involution defined by
$L,$ $i$ . $e.,$

$\rho(f)=\varphi_{L^{-1}}\cdot f\cdot\varphi_{L}$ .

For detais we refer to [8].

We regard $0_{K}$ as a subring of End $(A)$ via $\theta$ . Let $\epsilon\in K$ be a unit of infinite

order. Then we have

PROPOSITION. (1) $L\otimes\epsilon^{*}(L)$ is very ample.

(2) $h^{0}(L\otimes\epsilon^{*}(L))=\sum_{i=0}^{g}s_{i}(\sigma_{1}(\epsilon^{2}), \cdots, \sigma_{g}(\epsilon^{2}))$

where $s_{i}$ is the i-th fundamental symmetric polynomial and $s_{0}=1$ .

PROOF. (1) There is a positive divisor $D$ on $A$ such that $L\cong \mathcal{O}_{A}(D)$ .
Then $D$ is irreducible. 0therwise $A$ is isomorphic to a product $B\times C$ of abelian
varieties of smaller dimension; cf. [7], Lem. 1.6. This contradicts to the fact
that $A$ is simple. If $L$ is algebraically equivalent to $\epsilon^{*}(L)$ , then $\epsilon$ is an auto-
morphism of the polarized abelian variety $(A, L)$ . Therefore the order of $\epsilon$ is
finite; cf. [4] \S 20 The. 5. This is a contradiction. By the theorem we see
that $L\otimes\epsilon^{*}(L)$ is very ample.
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(2) By the Riemann-Roch theorem, we have

(3.4) $h^{0}(A, L\otimes\epsilon^{*}(L))=x(L\otimes\epsilon^{*}(L))$

$=\frac{1}{g!}\{\sum_{i=0}^{g}\left(\begin{array}{l}g\\i\end{array}\right)(L^{g-i}\cdot\epsilon^{*}(L)^{i})\}$

and

(3.5) $\chi(L^{n}\otimes\epsilon^{*}(L)^{-1})=\frac{1}{g!}\{\sum_{l=0}^{g}(-1)^{i}\left(\begin{array}{l}g\\i\end{array}\right)(L^{g-i}\cdot\epsilon^{*}(L)^{i})n^{g-i}\}$ .

On the other hand (3.5) is equal to the characteristic polynomial $P(n)$ of the
endomorphism; cf. [2] Lem. 2.3:

$\varphi_{L}^{-1}\cdot\varphi_{\epsilon*L}=\varphi_{L}^{-1}\cdot\hat{\epsilon}\cdot\varphi_{L}\cdot\epsilon=\varphi_{L}^{-1}\cdot\varphi_{L}\cdot\epsilon\cdot\epsilon=\epsilon^{2}$

Here we used (3.3). By (3.2), we have

$P(n)=\prod_{i=1}^{g}(n-\sigma_{i}(\epsilon^{2}))$ .

Comparing (3.4) and (3.5), we get (2). Q. E. D.

EXAMPLE (Lange [2]). Let $K=Q(\sqrt{5})$ and $\epsilon=1+\sqrt{5}/2$ . Let a triplet
$(A, L, \theta)$ be as above. Then $L\otimes\epsilon^{*}L$ is very ample and

$h^{0}(A, L\otimes\epsilon^{*}L)=1+tr(\epsilon^{2})+Nm(\epsilon^{2})=5$ .

EXAMPLE. Let $K=Q(\epsilon)$ , where $\epsilon$ is a roof of $X^{3}-2X^{2}-X+1=0$ . Then
$K$ is totally real and $\epsilon$ is a unit of infinite order. Let a triplet $(A, L, \theta)$ be
as above. Then $L\otimes\epsilon^{*}L$ is very ample and

$h^{0}(A, L\otimes\epsilon^{*}L)=1+tr(\epsilon^{2})+\{\sigma_{2}(\epsilon^{2})\sigma_{3}(\epsilon^{2})+\sigma_{3}(\epsilon^{2})\sigma_{1}(\epsilon^{2})$

$+\sigma_{1}(\epsilon^{2})\sigma_{2}(\epsilon^{2})\}+Nm(\epsilon^{2})$

$=1+6+5+1=13$ .
In conclnsion we raise a qustion:

What is the smallest dimension $d(g)+1$ of the space of the global sections of
very ample invertible sheaves on abelian varieties of dimension $g^{\rho}$

It is well-known that $d(2)=4$ . Is $d(3)$ equal to 12?
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