VERY AMPLE INVERTIBLE SHEAVES OF NEW TYPE ON ABELIAN VARIETIES

By
Ryuji SASAKI

Introduction.

In 1919 Comessatti [1] proved the following theorem, which we learned by Lange's paper [2].

THEOREM (Comessatti). Let $\operatorname{Jac}(C)$ denote the Jacobian variety of a smooth projective curve C of genus 2. If an ample divisor D on $\operatorname{Jac}(C)$ satisfies $\left(D^{2}\right)=2$ and $(C \cdot D)=n$ for $n \geqq 3$, then the divisor $C+D$ is very ample.

The aim of the present paper is to generalize this theorem. Our result is
Theorem. Let A be an abelian variety defined over an algebraically closed field of any characteristic. Let L and M be ample invertible sheaves on A with $h^{0}(A, L)=h^{0}(A, M)=1$. Let D and E be positive divisors such that $L=\mathcal{O}_{A}(D)$ and $M=\mathcal{O}_{A}(E)$. Assume that any component of D is not algebraically equivalent to a component of E. Then $L \otimes M$ is very ample.

We prove the theorem in §1. In §2 we show that the Commessatti's theorem is a special case of ours. In the last $\S 3$ we discuss projective embeddings of abelian varieties with real multiplication.

At first I set up unnecessary assumption in the theorem. I could find the above theorem as a result of the referee's pertinent suggestion. Here I thank the referee for his kind advice.

1. Proof of theorem.

We shall use the following notation. For details we refer to [4]. Let A be an abelian variety of dimension g defined over an algebraically closed field k of arbitrary characteristic and let $\hat{A}=\operatorname{Pic}^{\circ}(A)$ denote its dual variety. The translation $x \rightarrow x+a$ by a point a of A is denoted by T_{a}. We denote by P the

Poincaré invertible sheaf on the product $A \times \hat{A}$ and by P_{α} the restriction $\left.P\right|_{A \times(\alpha)}$. For an invertible sheaf L on A, the homomorphism $a \rightarrow T_{a}^{*}(L) \otimes L^{-1}$ of A to \hat{A} is denoted by φ_{L} and its kernel by $K(L)$. When L is ample, we have $P_{\varphi_{L}(a)}$ $\cong T_{a}{ }^{*}(L) \otimes L^{-1}$. The Riemann-Roch theorem asserts $\operatorname{deg} \varphi_{L}=\chi(L)^{2}$ and $\chi(L)=$ $\left(L^{g}\right) / g$! where $\chi(L)$ is the Euler-Poincare characteristic of L and $\left(L^{g}\right)$ is the g-fold self-intersection number of L. If L is ample and $h^{0}(A, L)=1$, then φ_{L} is an isomorphism and $\left(L^{g}\right)=g!$.

Now we shall prove the theorem. Let

$$
\Phi=\boldsymbol{\Phi}_{|L \otimes M|}: A \longrightarrow \boldsymbol{P}(\Gamma(A, L \otimes M))
$$

be the rational map associated with the complete linear system $|L \otimes M|$. What we should do is to establish the following statements:
(1.1) Given $a, b \in A$ with $a \neq b$, there is a divisor $F \in|L \otimes M|$ such that $a \in$ $\operatorname{Supp}(F)$ and $b \notin \operatorname{Supp}(F)$.
(1.2) Given any tangent t to A at a, there is a dividor $F \in|L \otimes M|$ such that $a \in \operatorname{Supp}(F)$ and t is not tangential to F.

In the following we shall use the same letter for a divisor and its support. Let

$$
D=\sum_{i=1}^{r} D_{i} \quad \text { and } \quad E=\sum_{j=1}^{3} E_{j}
$$

be decompositions into irreducible components and $\mathcal{O}_{A}\left(D_{i}\right)=L_{i}, \mathcal{O}_{A}\left(E_{j}\right)=M_{j}$. Since $h^{0}(A, L)=1$, it follows that L_{i} and L_{i}, are not algebraically equivalent for $i \neq i^{\prime}$. We denote by A_{i} the quotient of A by the connected component $K\left(L_{i}\right)^{0}$ of $K(L)$ containing the origin 0 . Then there is an ample invertible sheaf \bar{L}_{i} on A_{i} such that $h^{0}\left(A_{i}, \bar{L}_{i}\right)=1$ and $\pi^{*}\left(\bar{L}_{i}\right) \cong L_{i}$, where π is the canonical surjection. Moreover we have

$$
A \cong A_{1} \times \cdots \times A_{r} \quad \text { and } \quad L \cong p_{1} *\left(\bar{L}_{1}\right) \otimes \cdots \otimes p_{r}^{*}\left(\bar{L}_{r}\right)
$$

where $p_{i}: A_{1} \times \cdots \times A_{r} \rightarrow A_{i}$ is the i-th projection; cf. [7], Lem. 1.6. The same results hold for M : there is an ample invertible sheaf \bar{M}_{j} on $B_{j}=A / K\left(M_{j}\right)^{\circ}$ such that $h^{0}\left(B_{j}, \bar{M}_{j}\right)=1$ and we have

$$
A \cong B_{1} \times \cdots \times B_{s} \quad \text { and } \quad M \cong p_{1}^{*}\left(\bar{M}_{1}\right) \otimes \cdots \otimes p_{s}^{*}\left(\bar{M}_{s}\right)
$$

Now we shall prove (1.1). Let $\psi=-\varphi_{M}{ }^{-1} \circ \varphi_{L}$, then we have

$$
T_{\psi(a)}^{*}(M) \cong M \otimes P_{\varphi_{\mathcal{M}}(\psi(a))} \cong M \otimes P_{-\varphi_{L}(a)} \cong M \otimes L \otimes T_{a} *(L)^{-1} .
$$

Hence we have

$$
\begin{equation*}
T_{a}{ }^{*}(D)+T_{\psi(a)}{ }^{*}(M) \in|L \otimes M| \quad \text { for all } \quad a \in A \tag{1.3}
\end{equation*}
$$

Let a and b be points in A. Suppose that, for any $F \in|L \otimes M|, a \in F$ implies $b \in F$. For every i, if $p \in T_{a}{ }^{*}\left(D_{i}\right)$ then $a \in T_{p}^{*}\left(D_{i}\right) \subset T_{p}{ }^{*}(D)+T_{\psi(p)}(E)$. This last divisor is a member in $|L \otimes M|$ by (1.3); hence it contains b. If $b \in T_{p}{ }^{*}(D)$, then $p \in T_{b}^{*}(D)$. If $\left.b \in T_{\psi(p)}\right)^{*}(E)$, then $\psi(p) \in T_{b}^{*}(E)$, i. e., $p \in \psi^{*}\left(T_{b}^{*}(E)\right)$. Thus we have

$$
T_{a}^{*}\left(D_{i}\right) \subset T_{b}{ }^{*}(D) \cup \psi^{*}\left(T_{b}^{*}(E)\right)
$$

Since D_{i} is irreducible, we have

$$
\begin{equation*}
T_{a}^{*}\left(D_{i}\right)=T_{b^{*}}^{*}\left(D_{i^{\prime}}\right) \quad \text { for some } i^{\prime} \tag{1.4}
\end{equation*}
$$

or

$$
\begin{equation*}
T_{a}^{*}\left(D_{i}\right)=\phi^{*}\left(T_{b}^{*}\left(E_{j}\right)\right) \quad \text { for some } j . \tag{1.5}
\end{equation*}
$$

Suppose (1.5) holds. Since $T_{b^{\circ}} \psi=\psi^{\circ} T_{\psi^{-1}(b)}$, we have

$$
T_{a}^{*}\left(D_{i}\right)=\psi^{*}\left(T_{b} *\left(E_{j}\right)\right)=T_{\psi^{-1}(b)} *\left(\psi^{*}\left(E_{j}\right)\right) .
$$

This implies that $\varphi_{L}\left(D_{i}\right)$ is algebraically equivalent to $\varphi_{M}\left(E_{j}\right)$. Therefore $K\left(\varphi_{L}\left(L_{i}\right)\right)^{\circ}=K\left(\varphi_{M}\left(M_{j}\right)\right)^{\circ}$ and there are ample inveritible sheaves $\left(\bar{L}_{i}\right)^{\wedge}$ and $\left(\bar{M}_{j}\right)^{\wedge}$ such that $h^{0}\left(X,\left(\bar{L}_{i}\right)^{\wedge}\right)=h^{0}\left(X,\left(\bar{M}_{j}\right)^{\wedge}\right)=1$ and $\pi^{*}\left(\left(\bar{L}_{i}\right)^{\wedge}\right) \cong \varphi_{L}\left(L_{i}\right), \pi^{*}\left(\left(\bar{M}_{j}\right)^{\wedge}\right) \cong \varphi_{M}\left(M_{j}\right)$, where $X=\hat{A} / K\left(\varphi_{L}\left(L_{i}\right)\right)^{\circ}$ and $\pi: \hat{A} \rightarrow X$ is the canonical surjection. Then $\left(\bar{L}_{i}\right)^{\wedge}$ and $\left(\bar{M}_{j}\right)^{\wedge}$ are algebraically equivalent. Moreover X is isomorphic to both of the dual abelian varieties of A_{i} and B_{j}; hence $A_{i} \cong B_{j}$, and $\left(\bar{L}_{i}\right)^{\wedge} \cong \varphi_{L_{i}}\left(\bar{L}_{i}\right)$, $\left(\bar{M}_{j}\right)^{\wedge} \cong \varphi_{\bar{M}_{j}}\left(\bar{M}_{j}\right)$. We identify A_{i} with \hat{A}_{i} via the canonical isomorphism induced by the Poincaré invertible sheaf P; cf. [4] § 13. Then $\varphi_{L_{i}^{-1}}=\varphi_{\left(L_{i}\right) \wedge}$ and $\varphi_{\bar{M}_{j}}^{-1}=$ $\varphi_{(\bar{M} i) \wedge}$. Since $\varphi_{\left(L_{i}\right)^{\wedge}}=\varphi_{\left(\bar{M}_{j}\right) \wedge}, \varphi_{L_{i}}=\varphi_{\bar{M}_{j}}$; hence \bar{L}_{i} is algebraically equivalent to \bar{M}_{j}. It follows that L_{i} is algebraically equivalent to M_{j}. This contradicts to the assumption. Thus we see that (1.5) does not occur.

If (1.4) holds, then D_{i} is algebraically equivalent to $D_{i^{\prime}}$; hence $i=i^{\prime}$ and $T^{*}{ }_{a-b}\left(D_{i}\right)=D_{i}$. Therefore $T^{*}{ }_{a-b}(D)=(D)$ and $a-b \in K(L)=\{0\}$, so we have $a=b$. This completes the proof of (1.1).

Now we shall show (1.2). We shall prove this only for $a=0$, since the general case follows by applying the result to translates of L and M. Suppose (1.2) is not true (with $a=0$). Then there is a non-zero tangent vector to the origin such that, for any member $F \in|L \otimes M|$ containing $0,\langle t, d f\rangle=0$ where f is a local equation of F. If $p \in D$ then $0 \in T_{p}{ }^{*}(D)+T_{\psi(p)}{ }^{*}(E)$. This is a
 any component D_{i} does not equal to a component of $\psi^{*}(E)$ (cf. the proof of (1.1)), t is tangent to $T_{p}^{*}(D)$ at 0 for general $p \in D . V$ be the invariant vector
field defined by t. Then V_{p} is tangent to D for all i and general $p \in D_{i}$. It follows that V is tangent to D. This is equivalent to the property:
(1.6) For any open subset $U \subset A$ and any local equation f of D_{L} on U,

$$
V(f)=h \cdot f \quad \text { for some } \quad h \in \mathcal{O}_{\mathbf{A}}(U) .
$$

Let $\Lambda=\operatorname{Spec} k[\varepsilon] /\left(\varepsilon^{2}\right)$. We regard t as a Λ-valued point of A. Then the translation T_{t} on $A \times \Lambda$ induced by t is given by $(a, s) \rightarrow(a+t(s), s)$. Let L_{Λ} denote the pull-back of L via the projection $A \times \Lambda \rightarrow A$. Then we have $T_{t}{ }^{*} L_{\Lambda} \cong$ L_{Λ} by (1.6). This means that t is a Λ-valued point of $K(L)=\{0\}$. Therefore t must be 0 . This is a contradiction. Thus we have proved the theorem.

2. Proof of Comessatti's theorem.

In this section we shall show that Comessatti's theorem is a special case of the theorem proved in the previous section.

Lemma. Let L_{0} and L_{1} be ample invertible sheaves on a g-dimensional abelian variety A with $h^{0}\left(A, L_{0}\right)=h^{0}\left(A, L_{1}\right)=1$. Then the following statements are equivalent :

$$
\begin{equation*}
L_{0} \text { is algebraically equivalent to } L_{1} \text {. } \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\left(L_{0}{ }^{i} \cdot L_{1}{ }^{g-i}\right)=g!\quad \text { for } \quad i=0,1, \cdots, g . \tag{2.2}
\end{equation*}
$$

Proof. Let $P(n)=P_{L_{0} . L_{0} \otimes L_{1}{ }^{-1}}(n)=\chi\left(L_{0}{ }^{n} \otimes L_{1}{ }^{-1}\right)$. Then we have

$$
\begin{equation*}
P(n)=\frac{1}{g!}\left\{\sum_{i=0}^{g}(-1)^{i}\binom{g}{i}\left(L_{0}{ }^{g-i} \cdot L_{1}{ }^{i}\right)(n+1)^{g-i}\right\} . \tag{2.3}
\end{equation*}
$$

(2.1) is equivalent to $K\left(L_{0} \otimes L_{1}{ }^{-1}\right)=A$, and it is also equivalent to $P(n)=n^{\varepsilon}$; cf. [5] App. By (2.3), it is equivalent to (2.2).
Q. E. D.

Corollary. Let L_{0} and L_{1} be ample invertible sheaves on abelian surface A with $h^{0}\left(A, L_{0}\right)=h^{0}\left(A, L_{1}\right)=1$. Then we have the following:

$$
\begin{equation*}
\left(L_{0} \cdot L_{1}\right) \geqq 2 ; \tag{2.4}
\end{equation*}
$$

$\left(L_{0} \cdot L_{1}\right)=2$ if and only if L_{0} is algebraically equivalent to L_{1}.
Proof. (2.4) Since $\left(L_{0}{ }^{2}\right)>0,\left(L_{0} \cdot L_{1}\right)^{2} \geqq\left(L_{0}{ }^{2}\right)\left(L_{1}{ }^{2}\right)=4$; hence $\left(L_{0} \cdot L_{1}\right) \geqq 2$. (2.5) follows the lemma.
Q. E. D.

Theorem (Comessatti). Let $L \cong \mathcal{O}_{A}(C)$ and M be ample invertible sheaves on an abelian surface A with $h^{0}(A, L)=h^{0}(A, M)=1$, where C is an irreducible curve
on A. If $(L \cdot M) \geqq 3$, then $L \otimes M$ is very ample.
Proof. Combining our theorem and (2.5), we get the resul. Q. E.D.

3. Application.

Let K be a totally real algebraic number field of degree g and \mathfrak{o}_{K} the ring of integers of K. Let $\left\{\sigma_{1}, \sigma_{2}, \cdots, \sigma_{g}\right\}$ be the set of embeddings of K into the field \boldsymbol{R} of real numbers. Let $\Phi: K \rightarrow \boldsymbol{M}_{g}(\boldsymbol{C})$ denote the representation of K over the field of complex numbers defined by

$$
\Phi(a)=\left(\begin{array}{ccc}
\sigma_{1}(a) & & 0 \\
0 & \ddots & \\
\sigma_{g}(a)
\end{array}\right) \quad(a \in K) .
$$

Then there are a simple abelian variety A over C of dimension g, an ample invertible sheaf L on A with $h^{0}(A, L)=1$ and a ring homomorphism $\theta: K \rightarrow$ $\operatorname{End}_{\boldsymbol{Q}}(A)$ such that

$$
\begin{equation*}
\theta\left(\mathfrak{o}_{K}\right) \subset \operatorname{End}(A) ; \tag{3.1}
\end{equation*}
$$

(3.2) $r_{a} \circ \theta$ is equivalent to Φ where r_{a} is the analytic representation of $\operatorname{End}_{Q}(A)$ with respect to some basis for the universal covering space of A,
$\rho \cdot \theta=\theta$ where $\rho: \operatorname{End}_{Q}(A) \rightarrow \operatorname{End}_{Q}(A)$ is the Rosati involution defined by L, i. e., $\rho(f)=\varphi_{L}^{-1} \cdot \hat{f} \cdot \varphi_{L}$.

For detais we refer to [8].
We regard \mathfrak{o}_{K} as a subring of $\operatorname{End}(A)$ via θ. Let $\varepsilon \in K$ be a unit of infinite order. Then we have

Proposition. (1) $L \otimes \varepsilon^{*}(L)$ is very ample.

$$
\begin{equation*}
h^{0}\left(L \otimes \varepsilon^{*}(L)\right)=\sum_{i=0}^{g} s_{i}\left(\sigma_{1}\left(\varepsilon^{2}\right), \cdots, \sigma_{g}\left(\varepsilon^{2}\right)\right) \tag{2}
\end{equation*}
$$

where s_{i} is the i-th fundamental symmetric polynomial and $s_{0}=1$.
Proof. (1) There is a positive divisor D on A such that $L \cong \mathcal{O}_{A}(D)$. Then D is irreducible. Otherwise A is isomorphic to a product $B \times C$ of abelian varieties of smaller dimension; cf. [7], Lem. 1.6. This contradicts to the fact that A is simple. If L is algebraically equivalent to $\varepsilon^{*}(L)$, then ε is an automorphism of the polarized abelian variety (A, L). Therefore the order of ε is finite ; cf. [4] § 20 The. 5. This is a contradiction. By the theorem we see that $L \otimes \varepsilon^{*}(L)$ is very ample.
(2) By the Riemann-Roch theorem, we have

$$
\begin{align*}
h^{0}\left(A, L \otimes \varepsilon^{*}(L)\right) & =\chi\left(L \otimes \varepsilon^{*}(L)\right) \tag{3.4}\\
& =\frac{1}{g!}\left\{\sum_{i=0}^{g}\binom{g}{i}\left(L^{g-i} \cdot \varepsilon^{*}(L)^{i}\right)\right\}
\end{align*}
$$

and

$$
\begin{equation*}
\chi\left(L^{n} \otimes \varepsilon^{*}(L)^{-1}\right)=\frac{1}{g!}\left\{\sum_{i=0}^{g}(-1)^{i}\binom{g}{i}\left(L^{g-i} \cdot \varepsilon^{*}(L)^{i}\right) n^{g-i}\right\} \tag{3.5}
\end{equation*}
$$

On the other hand (3.5) is equal to the characteristic polynomial $P(n)$ of the endomorphism ; cf. [2] Lem. 2.3 :

$$
\varphi_{L}^{-1} \cdot \varphi_{\delta^{*} L}=\varphi_{L}^{-1} \cdot \hat{\varepsilon} \cdot \varphi_{L} \cdot \varepsilon=\varphi_{L}^{-1} \cdot \varphi_{L} \cdot \varepsilon \cdot \varepsilon=\varepsilon^{2}
$$

Here we used (3.3). By (3.2), we have

$$
P(n)=\prod_{i=1}^{g}\left(n-\sigma_{i}\left(\varepsilon^{2}\right)\right)
$$

Comparing (3.4) and (3.5), we get (2).
Q. E. D.

Example (Lange [2]). Let $K=\boldsymbol{Q}(\sqrt{5})$ and $\varepsilon=1+\sqrt{5} / 2$. Let a triplet (A, L, θ) be as above. Then $L \otimes \varepsilon^{*} L$ is very ample and

$$
h^{0}\left(A, L \otimes \varepsilon^{*} L\right)=1+\operatorname{tr}\left(\varepsilon^{2}\right)+N m\left(\varepsilon^{2}\right)=5 .
$$

Example. Let $K=\boldsymbol{Q}(\varepsilon)$, where ε is a roof of $X^{3}-2 X^{2}-X+1=0$. Then K is totally real and ε is a unit of infinite order. Let a triplet (A, L, θ) be as above. Then $L \otimes \varepsilon^{*} L$ is very ample and

$$
\begin{aligned}
h^{0}\left(A, L \otimes \varepsilon^{*} L\right)= & 1+\operatorname{tr}\left(\varepsilon^{2}\right)+\left\{\sigma_{2}\left(\varepsilon^{2}\right) \sigma_{3}\left(\varepsilon^{2}\right)+\sigma_{3}\left(\varepsilon^{2}\right) \sigma_{1}\left(\varepsilon^{2}\right)\right. \\
& \left.+\sigma_{1}\left(\varepsilon^{2}\right) \sigma_{2}\left(\varepsilon^{2}\right)\right\}+N m\left(\varepsilon^{2}\right) \\
= & 1+6+5+1=13 .
\end{aligned}
$$

In conclnsion we raise a qustion :
What is the smallest dimension $d(g)+1$ of the space of the global sections of very ample invertible sheaves on abelian varieties of dimension g ?

It is well-known that $d(2)=4$. Is $d(3)$ equal to 12 ?

References

[1] A. Comessatti, Sulle supperficie di Jacobi semplicemente singolari, Mem. Soc. ital. delle Szienze (dei XL) (3) 21 (1919), 45-71.
[2] H. Lange, Jacobian surfaces in \boldsymbol{P}^{4}, J. reine angew. Math. 372 (1986), 71-86.
[3] H. Lange, Abelian varieties with several principal polarizations, Duke Math. J. 55 (1987), 617-628.
[4] D. Mumford, Abelian varieties, Oxford University Press, 1970.
[5] D. Mumford, Varieties defined by quadratic equations, in Questions on Algebraic varieties, Centro Inter. Math, Estrioo, Roma, (1970), 31-100.
[6] A. Ohbuchi, Some remarks on ample line bundles on abelian varierties, Manuscripta Math., 57, (1987), 225-238.
[7] T. Sekiguchi, On the field of rationality for curves and for their Jacobian varieties, Nagoya Math. J. 88 (1982), 197-212.
[8] G. Shimura. On analytic families of polarized abelian varieties and automorphic functions, Annals of Math. 78 (1963), 149-197.

Department of Mathematics,
College of Science and Technology, Nihon University,
Chiyoda-ku, Tokyo, Japan

