VERY AMPLE INVERTIBLE SHEAVES OF NEW TYPE ON ABELIAN VARIETIES

By

Ryuji Sasaki

Introduction.

In 1919 Comessatti [1] proved the following theorem, which we learned by Lange's paper [2].

THEOREM (Comessatti). Let Jac(C) denote the Jacobian variety of a smooth projective curve C of genus 2. If an ample divisor D on Jac(C) satisfies $(D^2)=2$ and $(C \cdot D)=n$ for $n \ge 3$, then the divisor C+D is very ample.

The aim of the present paper is to generalize this theorem. Our result is

THEOREM. Let A be an abelian variety defined over an algebraically closed field of any characteristic. Let L and M be ample invertible sheaves on A with $h^{\circ}(A, L) = h^{\circ}(A, M) = 1$. Let D and E be positive divisors such that $L = \mathcal{O}_A(D)$ and $M = \mathcal{O}_A(E)$. Assume that any component of D is not algebraically equivalent to a component of E. Then $L \otimes M$ is very ample.

We prove the theorem in $\S1$. In $\S2$ we show that the Commessatti's theorem is a special case of ours. In the last $\S3$ we discuss projective embeddings of abelian varieties with real multiplication.

At first I set up unnecessary assumption in the theorem. I could find the above theorem as a result of the referee's pertinent suggestion. Here I thank the referee for his kind advice.

1. Proof of theorem.

We shall use the following notation. For details we refer to [4]. Let A be an abelian variety of dimension g defined over an algebraically closed field k of arbitrary characteristic and let $\hat{A} = \operatorname{Pic}^{0}(A)$ denote its dual variety. The translation $x \to x+a$ by a point a of A is denoted by T_{a} . We denote by P the

Received May 20, 1991, Revised Norvember 5, 1991.

Ryuji Sasaki

Poincaré invertible sheaf on the product $A \times \hat{A}$ and by P_{α} the restriction $P|_{A \times \{\alpha\}}$. For an invertible sheaf L on A, the homomorphism $a \to T_a^*(L) \otimes L^{-1}$ of A to \hat{A} is denoted by φ_L and its kernel by K(L). When L is ample, we have $P_{\varphi_L(\alpha)} \cong T_a^*(L) \otimes L^{-1}$. The Riemann-Roch theorem asserts $\deg \varphi_L = \chi(L)^2$ and $\chi(L) = (L^g)/g!$ where $\chi(L)$ is the Euler-Poincaré characteristic of L and (L^g) is the g-fold self-intersection number of L. If L is ample and $h^0(A, L) = 1$, then φ_L is an isomorphism and $(L^g) = g!$.

Now we shall prove the theorem. Let

$$\boldsymbol{\Phi} = \boldsymbol{\Phi}_{|\boldsymbol{L} \otimes \boldsymbol{M}|} \colon \boldsymbol{A} \longrightarrow \boldsymbol{P}(\boldsymbol{\Gamma}(\boldsymbol{A}, \boldsymbol{L} \otimes \boldsymbol{M}))$$

be the rational map associated with the complete linear system $|L \otimes M|$. What we should do is to establish the following statements:

- (1.1) Given $a, b \in A$ with $a \neq b$, there is a divisor $F \in |L \otimes M|$ such that $a \in \text{Supp}(F)$ and $b \notin \text{Supp}(F)$.
- (1.2) Given any tangent t to A at a, there is a dividor $F \in |L \otimes M|$ such that $a \in \text{Supp}(F)$ and t is not tangential to F.

In the following we shall use the same letter for a divisor and its support. Let

$$D = \sum_{i=1}^{r} D_i$$
 and $E = \sum_{j=1}^{s} E_j$

be decompositions into irreducible components and $\mathcal{O}_A(D_i) = L_i$, $\mathcal{O}_A(E_j) = M_j$. Since $h^0(A, L) = 1$, it follows that L_i and $L_{i'}$ are not algebraically equivalent for $i \neq i'$. We denote by A_i the quotient of A by the connected component $K(L_i)^0$ of K(L) containing the origin 0. Then there is an ample invertible sheaf \bar{L}_i on A_i such that $h^0(A_i, \bar{L}_i) = 1$ and $\pi^*(\bar{L}_i) \cong L_i$, where π is the canonical surjection. Moreover we have

$$A \cong A_1 \times \cdots \times A_r$$
 and $L \cong p_1^*(\bar{L}_1) \otimes \cdots \otimes p_r^*(\bar{L}_r)$,

where $p_i: A_1 \times \cdots \times A_r \to A_i$ is the *i*-th projection; cf. [7], Lem. 1.6. The same results hold for M: there is an ample invertible sheaf \overline{M}_j on $B_j = A/K(M_j)^o$ such that $h^o(B_j, \overline{M}_j) = 1$ and we have

 $A \cong B_1 \times \cdots \times B_s$ and $M \cong p_1^*(\overline{M}_1) \otimes \cdots \otimes p_s^*(\overline{M}_s)$.

Now we shall prove (1.1). Let $\psi = -\varphi_M^{-1} \cdot \varphi_L$, then we have

$$T_{\psi(a)}^{*}(M) \cong M \otimes P_{\varphi_{M}(\psi(a))} \cong M \otimes P_{-\varphi_{L}(a)} \cong M \otimes L \otimes T_{a}^{*}(L)^{-1}.$$

Hence we have

Very ample invertible sheaves of new type

(1.3)
$$T_a^*(D) + T_{\psi(a)}^*(M) \in |L \otimes M| \quad \text{for all} \quad a \in A.$$

Let a and b be points in A. Suppose that, for any $F \in |L \otimes M|$, $a \in F$ implies $b \in F$. For every *i*, if $p \in T_a^*(D_i)$ then $a \in T_p^*(D_i) \subset T_p^*(D) + T_{\psi(p)}(E)$. This last divisor is a member in $|L \otimes M|$ by (1.3); hence it contains b. If $b \in T_p^*(D)$, then $p \in T_b^*(D)$. If $b \in T_{\psi(p)}^*(E)$, then $\psi(p) \in T_b^*(E)$, i. e., $p \in \psi^*(T_b^*(E))$. Thus we have

$$T_{a}^{*}(D_{i}) \subset T_{b}^{*}(D) \cup \psi^{*}(T_{b}^{*}(E)).$$

Since D_i is irreducible, we have

(1.4) $T_a^*(D_i) = T_b^*(D_{i'})$ for some *i*'

or

(1.5)
$$T_a^*(D_i) = \psi^*(T_b^*(E_j))$$
 for some *j*.

Suppose (1.5) holds. Since $T_b \cdot \phi = \phi \cdot T_{\phi^{-1}(b)}$, we have

$$T_a^*(D_i) = \psi^*(T_b^*(E_j)) = T_{\psi^{-1}(b)}^*(\psi^*(E_j)).$$

This implies that $\varphi_L(D_i)$ is algebraically equivalent to $\varphi_M(E_j)$. Therefore $K(\varphi_L(L_i))^0 = K(\varphi_M(M_j))^0$ and there are ample invertible sheaves $(\bar{L}_i)^{\uparrow}$ and $(\bar{M}_j)^{\uparrow}$ such that $h^0(X, (\bar{L}_i)^{\uparrow}) = h^0(X, (\bar{M}_j)^{\uparrow}) = 1$ and $\pi^*((\bar{L}_i)^{\uparrow}) \cong \varphi_L(L_i), \pi^*((\bar{M}_j)^{\uparrow}) \cong \varphi_M(M_j)$, where $X = \hat{A}/K(\varphi_L(L_i))^0$ and $\pi : \hat{A} \to X$ is the canonical surjection. Then $(\bar{L}_i)^{\uparrow}$ and $(\bar{M}_j)^{\uparrow}$ are algebraically equivalent. Moreover X is isomorphic to both of the dual abelian varieties of A_i and B_j ; hence $A_i \cong B_j$, and $(\bar{L}_i)^{\uparrow} \cong \varphi_{L_i}(\bar{L}_i), (\bar{M}_j)^{\uparrow} \cong \varphi_{\bar{M}_j}(\bar{M}_j)$. We identify A_i with \hat{A}_i via the canonical isomorphism induced by the Poincaré invertible sheaf P; cf. [4] § 13. Then $\varphi_{L_i}^{-1} = \varphi_{(L_i)^{\uparrow}}$ and $\varphi_{\bar{M}_j}^{-1} = \varphi_{(\bar{M}_i)^{\uparrow}}$. Since $\varphi_{(L_i)^{\uparrow}} = \varphi_{(\bar{M}_j)^{\uparrow}}, \varphi_{L_i} = \varphi_{\bar{M}_j}$; hence \bar{L}_i is algebraically equivalent to \bar{M}_j . It follows that L_i is algebraically equivalent to M_j . This contradicts to the assumption. Thus we see that (1.5) does not occur.

If (1.4) holds, then D_i is algebraically equivalent to $D_{i'}$; hence i=i' and $T^*_{a-b}(D_i)=D_i$. Therefore $T^*_{a-b}(D)=(D)$ and $a-b \in K(L)=\{0\}$, so we have a=b. This completes the proof of (1.1).

Now we shall show (1.2). We shall prove this only for a=0, since the general case follows by applying the result to translates of L and M. Suppose (1.2) is not true (with a=0). Then there is a non-zero tangent vector to the origin such that, for any member $F \in |L \otimes M|$ containing $0, \langle t, df \rangle = 0$ where f is a local equation of F. If $p \in D$ then $0 \in T_p^*(D) + T_{\psi(p)}^*(E)$. This is a member of $|L \otimes M|$, so t is tangent to it. $0 \in T_{\psi(p)}^*(E)$ means $p \in \psi^*(E)$. Since any component D_i does not equal to a component of $\psi^*(E)$ (cf. the proof of (1.1)), t is tangent to $T_p^*(D)$ at 0 for general $p \in D$. V be the invariant vector

Ryuji Sasaki

field defined by t. Then V_p is tangent to D for all i and general $p \in D_i$. It follows that V is tangent to D. This is equivalent to the property:

(1.6) For any open subset $U \subset A$ and any local equation f of D_L on U,

 $V(f) = h \cdot f$ for some $h \in \mathcal{O}_A(U)$.

Let $\Lambda = \operatorname{Spec} k[\varepsilon]/(\varepsilon^2)$. We regard t as a Λ -valued point of A. Then the translation T_t on $A \times \Lambda$ induced by t is given by $(a, s) \rightarrow (a+t(s), s)$. Let L_{Λ} denote the pull-back of L via the projection $A \times \Lambda \rightarrow A$. Then we have $T_t^*L_{\Lambda} \cong L_{\Lambda}$ by (1.6). This means that t is a Λ -valued point of $K(L) = \{0\}$. Therefore t must be 0. This is a contradiction. Thus we have proved the theorem.

2. Proof of Comessatti's theorem.

In this section we shall show that Comessatti's theorem is a special case of the theorem proved in the previous section.

LEMMA. Let L_0 and L_1 be ample invertible sheaves on a g-dimensional abelian variety A with $h^0(A, L_0) = h^0(A, L_1) = 1$. Then the following statements are equivalent:

(2.1)
$$L_0$$
 is algebraically equivalent to L_1 .

(2.2)
$$(L_0^i \cdot L_1^{g-i}) = g! \quad for \quad i=0, 1, \cdots, g.$$

PROOF. Let $P(n) = P_{L_0, L_0 \otimes L_1^{-1}}(n) = \chi(L_0^n \otimes L_1^{-1})$. Then we have

(2.3)
$$P(n) = \frac{1}{g!} \left\{ \sum_{i=0}^{g} (-1)^{i} {g \choose i} (L_{0}^{g-i} \cdot L_{1}^{i}) (n+1)^{g-i} \right\}.$$

(2.1) is equivalent to $K(L_0 \otimes L_1^{-1}) = A$, and it is also equivalent to $P(n) = n^s$; cf. [5] App. By (2.3), it is equivalent to (2.2). Q. E. D.

COROLLARY. Let L_0 and L_1 be ample invertible sheaves on abelian surface A with $h^0(A, L_0) = h^0(A, L_1) = 1$. Then we have the following:

$$(2.4) (L_0 \cdot L_1) \ge 2;$$

(2.5) $(L_0 \cdot L_1) = 2$ if and only if L_0 is algebraically equivalent to L_1 .

PROOF. (2.4) Since $(L_0^2) > 0$, $(L_0 \cdot L_1)^2 \ge (L_0^2)(L_1^2) = 4$; hence $(L_0 \cdot L_1) \ge 2$. (2.5) follows the lemma. Q. E. D.

THEOREM (Comessatti). Let $L \cong \mathcal{O}_A(C)$ and M be ample invertible sheaves on an abelian surface A with $h^0(A, L) = h^0(A, M) = 1$, where C is an irreducible curve

38

on A. If $(L \cdot M) \ge 3$, then $L \otimes M$ is very ample.

PROOF. Combining our theorem and (2.5), we get the resul. Q. E. D.

3. Application.

Let K be a totally real algebraic number field of degree g and \mathfrak{o}_K the ring of integers of K. Let $\{\sigma_1, \sigma_2, \dots, \sigma_g\}$ be the set of embeddings of K into the field **R** of real numbers. Let $\Phi: K \to M_g(C)$ denote the representation of K over the field of complex numbers defined by

$$\boldsymbol{\Phi}(a) = \begin{pmatrix} \boldsymbol{\sigma}_1(a) & 0 \\ & \ddots & \\ 0 & \boldsymbol{\sigma}_g(a) \end{pmatrix} \quad (a \in K).$$

Then there are a simple abelian variety A over C of dimension g, an ample invertible sheaf L on A with $h^{0}(A, L)=1$ and a ring homomorphism $\theta: K \rightarrow \text{End}_{Q}(A)$ such that

(3.1)
$$\theta(\mathfrak{o}_K) \subset \operatorname{End}(A);$$

- (3.2) $r_a \circ \theta$ is equivalent to Φ where r_a is the analytic representation of $\operatorname{End}_{Q}(A)$ with respect to some basis for the universal covering space of A,
- (3.3) $\rho \cdot \theta = \theta$ where $\rho : \operatorname{End}_{\boldsymbol{Q}}(A) \to \operatorname{End}_{\boldsymbol{Q}}(A)$ is the Rosati involution defined by L, i.e., $\rho(f) = \varphi_L^{-1} \cdot \hat{f} \cdot \varphi_L$.

For detais we refer to [8].

We regard \mathfrak{o}_K as a subring of $\operatorname{End}(A)$ via θ . Let $\varepsilon \in K$ be a unit of infinite order. Then we have

PROPOSITION. (1) $L \otimes \varepsilon^*(L)$ is very ample.

(2)
$$h^{0}(L \otimes \varepsilon^{*}(L)) = \sum_{i=0}^{g} s_{i}(\sigma_{1}(\varepsilon^{2}), \cdots, \sigma_{g}(\varepsilon^{2}))$$

where s_i is the *i*-th fundamental symmetric polynomial and $s_0=1$.

PROOF. (1) There is a positive divisor D on A such that $L \cong \mathcal{O}_A(D)$. Then D is irreducible. Otherwise A is isomorphic to a product $B \times C$ of abelian varieties of smaller dimension; cf. [7], Lem. 1.6. This contradicts to the fact that A is simple. If L is algebraically equivalent to $\varepsilon^*(L)$, then ε is an automorphism of the polarized abelian variety (A, L). Therefore the order of ε is finite; cf. [4] § 20 The. 5. This is a contradiction. By the theorem we see that $L \otimes \varepsilon^*(L)$ is very ample. (2) By the Riemann-Roch theorem, we have

(3.4)
$$h^{0}(A, L \otimes \varepsilon^{*}(L)) = \chi(L \otimes \varepsilon^{*}(L))$$

$$= \frac{1}{g!} \left\{ \sum_{i=0}^{g} {g \choose i} (L^{g-i} \cdot \varepsilon^* (L)^i) \right\}$$

and

(3.5)
$$\chi(L^n \otimes \varepsilon^*(L)^{-1}) = \frac{1}{g!} \left\{ \sum_{i=0}^g (-1)^i {g \choose i} (L^{g-i} \cdot \varepsilon^*(L)^i) n^{g-i} \right\}.$$

On the other hand (3.5) is equal to the characteristic polynomial P(n) of the endomorphism; cf. [2] Lem. 2.3:

$$\varphi_L^{-1} \cdot \varphi_{\varepsilon * L} = \varphi_L^{-1} \cdot \hat{\varepsilon} \cdot \varphi_L \cdot \varepsilon = \varphi_L^{-1} \cdot \varphi_L \cdot \varepsilon \cdot \varepsilon = \varepsilon^2$$

Here we used (3.3). By (3.2), we have

$$P(n) = \prod_{i=1}^{\ell} (n - \sigma_i(\varepsilon^2)).$$

Comparing (3.4) and (3.5), we get (2).

EXAMPLE (Lange [2]). Let $K = Q(\sqrt{5})$ and $\varepsilon = 1 + \sqrt{5}/2$. Let a triplet (A, L, θ) be as above. Then $L \otimes \varepsilon^* L$ is very ample and

$$h^{0}(A, L \otimes \varepsilon^{*}L) = 1 + tr(\varepsilon^{2}) + Nm(\varepsilon^{2}) = 5.$$

EXAMPLE. Let $K = Q(\varepsilon)$, where ε is a roof of $X^3 - 2X^2 - X + 1 = 0$. Then K is totally real and ε is a unit of infinite order. Let a triplet (A, L, θ) be as above. Then $L \otimes \varepsilon^* L$ is very ample and

$$h^{0}(A, L \otimes \varepsilon^{*}L) = 1 + tr(\varepsilon^{2}) + \{\sigma_{2}(\varepsilon^{2})\sigma_{3}(\varepsilon^{2}) + \sigma_{3}(\varepsilon^{2})\sigma_{1}(\varepsilon^{2}) + \sigma_{1}(\varepsilon^{2})\sigma_{2}(\varepsilon^{2})\} + Nm(\varepsilon^{2})$$
$$= 1 + 6 + 5 + 1 = 13.$$

In conclusion we raise a qustion:

What is the smallest dimension d(g)+1 of the space of the global sections of very ample invertible sheaves on abelian varieties of dimension g?

It is well-known that d(2)=4. Is d(3) equal to 12?

References

- [1] A. Comessatti, Sulle supperficie di Jacobi semplicemente singolari, Mem. Soc. ital. delle Szienze (dei XL) (3) 21 (1919), 45-71.
- $\begin{bmatrix} 2 \end{bmatrix}$ H. Lange, Jacobian surfaces in P^4 , J. reine angew. Math. 372 (1986), 71-86.

Q. E. D.

40

- [3] H. Lange, Abelian varieties with several principal polarizations, Duke Math. J. 55 (1987), 617-628.
- [4] D. Mumford, Abelian varieties, Oxford University Press, 1970.
- [5] D. Mumford, Varieties defined by quadratic equations, in Questions on Algebraic varieties, Centro Inter. Math, Estrioo, Roma, (1970), 31-100.
- [6] A. Ohbuchi, Some remarks on ample line bundles on abelian varierties, Manuscripta Math., 57, (1987), 225-238.
- [7] T. Sekiguchi, On the field of rationality for curves and for their Jacobian varieties, Nagoya Math. J. 88 (1982), 197-212.
- [8] G. Shimura. On analytic families of polarized abelian varieties and automorphic functions, Annals of Math. 78 (1963), 149-197.

Department of Mathematics, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo, Japan