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GLOBAL HYPOELLIPTICITY AND CONTINUED FRACTIONS

By

Masafumi YOSHINO

\S 1. Introduction.

In this paper, we are concerned with differential operators which are not
hypoellipitic, that are globally hypoelliptic. Let $T^{d}=R^{d}/2\pi Z^{d}(d\geqq 2)$ be a d-
dimensional torus. We denote by $\mathcal{D}^{\prime}(T^{d})$ and $C^{\infty}(T^{d})$ the sets of distributions
and smooth functions on $T^{d}$ , respectively. For a pseudodifferential operator $P$

on $T^{d},$ $P$ is said to be hypoelliptic in $T^{d}$ if, for any domain $\Omega\subset T^{d}$ and $ u\in$

$\mathcal{D}^{\prime}(\Omega),$ $Pu\in C^{\infty}(\Omega)$ implies $u\in C^{\infty}(\Omega)$ . We say that $P$ is globally hypoelliptic in
$T^{d}$ , if every distribution $u$ such that $Pu\in C^{\infty}(T^{d})$ is smooth on $T^{d}$ . Clearly,

hypoelliptic operators are globally hypoelliptic.
We know that there is much difference between these notions (cf. [2]).

One trend in the study is, as to second order equations, characterizing global

hypoellipticity by properties of certain vector fields determined by equations,

which would be the same way as to the famous work of Hormander (cf. [2]).

But this way cannot explain all globally hypoelliptic operators because we have
Greenfield’s example; $Q=(\partial/\partial x_{1}-\tau\partial/\partial x_{2})^{2}$ with $\tau>0$ , irrational. $Q$ is globally
hypoelliptic in $T^{2}$ if and only if $\tau$ satisfies a Siegel condition (cf. [1]).

In [4] we investigated operators for which the global hypoellipticity is
equivalent to a Siegel condition. Indeed, let us consider the operators

$P=\sum_{|\alpha|gm}a_{\alpha}D^{\alpha}+\sum_{|\beta|\leqq m-s}b_{\beta}(x)D^{\beta}$ on $T^{d}$

where $m\geqq 1,$ $s\geqq 0$ are integers, $a_{\alpha}\in C$, $b_{\beta}\in C^{\infty}(T^{a})$ , and $ D^{a}=(-i\partial/\partial x_{1})^{\alpha_{1}}\cdots$

$(-i\partial/\partial x_{d})^{\alpha_{d}}$ . We define the cone $\Gamma_{p}$ as the convex hull of the closure of the
set { $t\gamma;t\geqq 0,$ $b_{\beta,\gamma}\neq 0$ for some $\beta$ in $P$ } $\cup\{0\}$ , where $b_{\beta}(x)=\sum b_{\beta,\gamma}e^{i\gamma x}$ . Then
the class of operators for which the global hypoellipticity is equivalent to a
Siegel condition is, roughly speaking, characterized by the properness of $\Gamma_{p}$ ,
$i.e.,$ $\Gamma_{p}$ contains no ray. (For the detail we refer [4]).

If we drop the properness of $\Gamma_{p}$ , a Siegel condition is no longer adequete

to describe the global hypoellipticity. (cf. [4]). Indeed, the operater $Q=$

$-(\partial/\partial x_{1})^{2}+1$ on $T^{2}$ satisfies a Siegel condition, and $\Gamma_{Q}=\{0\}$ . $Q$ is globally
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hypoelliptic on $T^{2}$ . On the other hand, the Mathieu operator $M=-(\partial/\partial x_{1})^{2}+$

$2\sin x_{1}$ on $T^{2}$ does not satisfy a Siegel condition, but it is globally hypoelliptic.
(cf. [4]). We note that though the operators $Q$ and $M$ give examples of glo-

bally hypoelliptic operators which do not satisfy the Hormander condition in [2],

they are quite different, because $Q$ is controled by a Siegel condition, and $M$

by a different principle. (cf. Theorem 2.1 which follows.)

We shall study global hypoellipticity of Mathieu-type pseudodifferential
operators from the viewpoints of eigenvalue problems. We express necessary
and sufficient conditions for global hypoellipticity in terms of Hill’s infinite
determinants and continued fractions, which make clear why a Mathieu operator

is globally hypoelliptic in $T^{2}$ . Our theorem is applied to the distribution of
eigenvalues for pseudodifferential Mathieu-type operators.

Finally, the author would like to give sincere thanks to the referee for
giving the author useful suggestions in preparing this paper.

\S 2. Notations and results.

Let $p(\eta_{1}),$ $\eta\in R$ be a smooth function on $R$, and let us consider the pseudo-

differential equation.

(2.1) $Pu\equiv(p(D_{1})+2\cos x_{1})u=f(x)$ on $T^{d},$ $D_{1}=-i\partial/\partial x_{1}$ .
We say that $P$ is of Mathieu-type if $p(\eta_{1})$ satisfies the following conditions.

(2.2) $p(t)=p(-t)$ for all $t\in R$ .
(2.3) There exist $\epsilon>0$ such that $|p(t)t^{1+\epsilon}|-\infty$ $(t\rightarrow\infty)$ .

For $z\in C$ we define an infinite matrix $H$ by

(2.4) $H\equiv(H_{n,m})_{-\infty}^{\infty}=((z-p(n))^{-1}g_{n-m}+\delta_{n.m})_{-\infty}^{\infty}$ ,

that is, the $(n, m)$-component is given by $g_{n-m}/(z-p(n))+\delta_{n.m}$ , where

$g_{n-m}=\left\{\begin{array}{l}1 (ifn-m=\pm 1)\\0 (ifotherwise)\end{array}\right.$ $\delta_{n.m}=\{01$

(
$if(if0therwn=m)$

ise)

We denote by $(H_{n,m})!_{l}$ the l-th section of $H$. We define the infinite deter-
minant, $\det H$ by

$\lim_{l\rightarrow\infty}\det(H_{n.m})_{\leftarrow l}^{l}$

if the limit exists. Hill’s determinant exists under the condition (2.3) (cf. Pro-
position 3.2 which follows). We set

(2.5) $D(z)=\det H$ .
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We define a meromorphic function $T(z)$ by continued fraction

(2.6)
$T(z)=n^{\infty}1K_{=}(\frac{-1}{z-p(n)})=\frac{-1}{z-p(1)+\frac{-1}{z-p(2)+.\underline{-1}}}$

’

or equivalently, by

(2.7) $T(z)=\lim_{n\rightarrow\infty}A_{n}/B_{n}$

where $\{A_{n}\}$ and $\{B_{n}\}$ are solutions of the difference equation

(2.8) $y_{n}=(z-p(n))y_{n-1}-y_{n-2}$

for $n=1,2,$ $\cdots$ , with the initial conditions, $A_{-1}=1,$ $A_{0}=0;B_{-1}=0,$ $B_{0}=1$ , re-
spectively (cf. [3]). Then we have

THEOREM 2.1. Suppose that $P$ satisfies (2.2) and (2.3). Then the followings

are equivalent.
(a) $ P-\lambda$ is globally hypoelliptic in $T^{d}$ .
(b) $P-\lambda:C^{\infty}(T)\rightarrow C^{\infty}(T)$ is injective.
(c) $\lambda$ is not a pole of $T(z)$ and $ 2T(\lambda)\neq p(0)-\lambda$ .
(d) $D(\lambda)\neq 0$ .

REMARKS 2.2. (i) Theorem 2.1 is valid if we replace $C^{\infty}(T)$ in (b) with
any one of $C^{\omega}(T),$ $C^{\infty}(T^{d})$ and $C^{\omega}(T^{d})$ , where $C^{\omega}(T)$ denotes the space of analytic

functions on the torus $T$ and so on. Theorem 2.1 is still valid if we replace
(a) with the following:

$(a)^{\prime}$ $ P-\lambda$ is globally analytically hypoelliptic in $T^{d}$ .

Here $ P-\lambda$ is said to be globally analytically hypoelliptic if $u\in \mathcal{D}^{\prime}(T^{d})$ and $ Pu\in$

$C^{\omega}(T^{d})$ implies $u\in C^{\omega}(T^{d})$ . All these results follows by modifications of the
proof of Theorem 2.1.

(ii) If we replace (2.4) with

(2.3) $|p(t)|-\Rightarrow\infty$ as $|t|\rightarrow\infty$ .
then $T(z)$ is still well-defined, but Hill’s determinant does not have a sense in
general. Nevertheless, the equivalence of (a), (b) and (c) in Theorem 2.1 is
valid.

COROLLARY 2.3. The Mathieu operator $-(\partial/\partial x_{1})^{2}+2\cos x_{1}$ is globally hypo-
elliptic in $T^{d}$ .
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REMARK 2.4. Theorem 2.3 can be extended to more general pseudodiffer-
ential operators. In fact, we have: Suppose (2.2) and (2.3) are satisfied. More-
over, suppose that $p(t)$ is real for all integers $t\in Z$ . Then, there exists a dis-
crete set $E\subset R$ such that $ P-\lambda$ is globally hypoelliptic if and only if $\lambda$ is not
in $E$ . The proof of this fact is given in \S 3.

We can easily see, from the proof that in the case of a Mathieu operator,
the set $E$ coincides with the characteristic values of a Mathieu operator. Hence
it does not contain $0$ . Hence, Corollary 2.3 is a special case of the above result.

COROLLARY 2.5. (Asymptotic distribution of eigenvalues). Suppose that $P$

satisfies (2.2) and (2.3). Then, for any $\delta,$ $ 0<\delta<\epsilon$ , there exists $k\geqq 0$ such that
the eigenvalues of $P$ are contained in the set

$F=\{z\in C;|z-p(n)|\leqq 2$ for some $n\in N,$ $0\leqq n\leqq k$ or

$|z-p(n)|\leqq n^{-\delta}$ for some $n\in N,$ $n\geqq k$ }.

\S 3. Proof of Theorems.

3.1. Preliminary lemmas.
Let $\{A_{n}^{*}\}_{n=-1}^{\infty}$ and $\{B_{n}^{*}\}_{n=-1}^{\infty}$ be defined by an equivalent difference equation

to (2.8),

(3.1) $y_{n}^{*}=y_{n-1}^{*}-(z-p(n))^{-1}(z-p(n-1))^{-1}y_{n-2}^{*}$ , $n=1,2,$ $\cdots$

with the initial conditions

(3.2) $A_{-1}^{*}=1$ , $A_{0}^{*}=0$ ; $B_{-\iota}^{*}=0$ , $B_{0}^{*}=1$ .
Then we have

LEMMA 3.1. The limits

$A^{*}\equiv A^{*}(z)=\lim_{n\rightarrow\infty}A_{n}^{*}$ , $B^{*}\equiv B^{*}(z)=\lim_{n\rightarrow\infty}B_{n}^{*}$

exist as meromorphic functions on C. $A^{*}$ and $B^{*}$ have poles at $z=p(n)(n=$

$1,2,$ $\cdots$ ) of degree 1, and $A^{*}$ has a pole of degree 1 at $z=p(O)$ . Moreover, $we$

have the identity

(3.3) $B^{*}(z)T(z)=(z-p(O))A^{*}(z)$ .

REMARK 3.2. We say that (2.8) and (3.1) are equivalent, because two con-
tinued fractions defined by (2.7) and by $A^{*}/B^{*}$ are identical except for the
factor $z-p(O)$ . For the detail we refer [3].
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PROOF OF LEMMA 3.1. We set $b_{n}=z-p(n)$ . Then, by adding (3.1) from
$n=1$ to $n=k$ we have

(3.4) $y_{k}^{*}=y_{0}^{*}-\sum_{n=1}^{k}y_{n-2}^{*}/b_{n}b_{n-1}$ .

If $\{y_{k}^{*}\}$ is bounded by some constant independent of $k$ , then (2.3) implies the
existence of $\lim_{k\rightarrow\infty}y_{k}^{*}$ . Let $c_{n}$ be so defined that $|y_{n}^{*}|\leqq c_{n}(k=1, \cdots, n)$ . Then,

by (3.1) and (2.3) we have

$|y_{n}^{*}|\leqq c_{n- I}(1+K(1+n)^{-2-2\epsilon})$

for some $K>0$ independent of $n$ . This implies that $c_{n}\leqq c_{n-1}(1+K(1+n)^{-2-2\epsilon})$ .
By iterating this we see that $\{c_{n}\}$ is bounded in $n$ .

By (2.3), $A^{*}(z)$ and $B^{*}(z)$ are meromorphic functions of $z$ . By the recur-
rence relation (3.1) $A^{*}(z)$ and $B^{*}(z)$ have poles at $z=p(n)(n=1,2, \cdots)$ of degree
1, and $A^{*}(z)$ has a pole of degree 1 at $z=p(O)$ . This implies that $A^{*}b_{0}/B^{*}$ does
not have a pole at $z=p(n),$ $n=0,1,$ $\cdots$ . If $b_{n}=z-p(n)\neq 0$ for $n=0,1,2,$ $\cdots$ ,

then we set

(3.5) $y_{n}=y_{n}^{*}b_{n}b_{n-1}\cdots b_{0}b_{-1},$ $b_{-1}=1$ , $n=0,1,2,$ $\cdots$ .
By (2.8), $y_{n}^{*}$ satisfies (3.1). Since $\{A_{n}\}$ and $\{B_{n}\}$ correspond to $\{A_{n}^{*}\}$ and $\{B_{n}^{*}/b_{0}\}$ ,

respectively, we get, from (2.7) and (3.5)

(3.6) $T(z)=\lim_{n\rightarrow\infty}A_{n}/B_{n}=\lim_{n\rightarrow\infty}(A_{n}^{*}b_{0})/B_{n}^{*}=(A^{*}b_{0})/B^{*}$ .

This proves (3.3). $\square $

PROPOSITION 3.3. (Continued fraction representation of Hill’s determinant).

Let $D(z)$ be given by (2.5), and let $A^{*}and$ $B^{*}be$ given by Lemma 3.1. Then
we have

(3.7) $D(z)=B^{*}(2A^{*}+B^{*})$ .

PROOF. We set $s_{n}=(z-p(n))^{-1}$ and

(3.8) $D_{k.\iota}(z)=\det(H_{n.m})_{n.m=-\iota}^{l}=\det[1_{-2+1}o^{S_{-l}}s1s_{-2+1}.$ . $s_{l}1^{l-1}1^{0}s$ .

Then the limit $D_{\infty,l}(z)=\lim_{k\rightarrow\infty}D_{k.l}(z)$ exists. Indeed, by (2.2), if we expand $D_{k.l}(z)$
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with respect to k-th column or l-th column, we have recurrence formulas similar
to (3.1);

(3.9) $D_{k.l}=D_{k-1.l}-s_{k}s_{k-1}D_{k-2.\iota}$ , $k=1,2,$ $\cdots$ ,

(3.10) $D_{k.\iota}=D_{k.l-1}-s_{l}s_{l-1}D_{k,l-2}$ , $1=1,2,$ $\cdots$ .
Hence, by (3.9) and the argument of Lemma 3.1 the limit $D_{\infty,l}$ exists.

Next, we shall show that

(3.11) $D(z)=\lim_{l\rightarrow\infty}D_{\infty.l}(z)$ .

Indeed, by letting $ k\rightarrow\infty$ in (3.10) we see that $\{D_{\infty.l}\}$ satisfies (3.1) with $n$ re-
placed by $l$ . Hence the limit in (3.11) exists by the arguments of Lemma 3.1

In order to prove (3.11), it suffices to prove that

(3.12) $\lim_{l\rightarrow\infty}(D_{l.l}(z)-D_{\infty.l}(z))=0$ .

By summing up (3.9) from $k=l+1$ to infinity, we have

(3.13) $D_{\iota.\iota}-D_{\infty.l}=\sum_{i=l-1}^{\infty}D_{i.l}s_{i-1}s_{i}$ .

On the other hand, it follows from (3.1), (3.2) and (3.9) that

(3.14) $D_{i.l}=D_{-1.l}A_{i}^{*}+D_{0.l}B_{i}^{*}$ , $i=-1,0,1,$ $\cdots$ ,

where $D_{-1.l}=(D_{0.l}-D_{1.l})/(s_{1}s_{0})$ . By (3.10) and the arguments of Lemma 3.1 the
sequences $\{D_{-1.l}\}$ and $\{D_{0.l}\}$ are bounded in $l$ . Because $A_{i}^{*}\rightarrow A^{*},$ $B_{i}^{*}\rightarrow B^{*}(i-\rightarrow\infty)$

it follows from (3.14) that $\{D_{i.l}\}$ is uniformly bounded in $i$ and $l$ . Hence, by
(2.3) and (3.13) we have (3.12).

We shall prove (3.7). By letting $ i\rightarrow\infty$ in (3.14) we have

(3.15) $D_{\infty.l}=D_{-1.\iota}A^{*}+D_{0.l}B^{*}$ .

Ih view of (3.10) we express $D_{0.l}$ in terms of $A_{l}^{*}$ and $B_{l}^{*}$ . By (3.8) we have

$D_{0.1}=\det\left\{\begin{array}{ll}1 & s_{0}\\s_{1} & 1\end{array}\right\}=1-s_{0}s_{1}$ .

$D_{0.2}=\det s\lfloor 0^{1}1$
$ss_{1_{2}^{0}}$

$s_{1}0_{1}]=1-s_{0}s_{1}-s_{1}s_{2}$ .

On the other hand, it follows from (3.1), (3.2) and $s_{n}=(z-p(n))^{-1}$ that $A_{1}^{*}$

$=A_{2}^{*}=-s_{0}s_{1},$ $B_{1}^{*}=1,$ $B_{2}^{*}=1-s_{1}s_{2}$ . Therefore we have

(3.16) $D_{0,\iota}=A_{\iota}^{*}+B_{l}^{*}$ .
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Similarly, we have

(3.17) $D_{-1.l}=B_{\iota}^{*}$ .
By (3.15), (3.16), (3.17) and (3.11) we have

$D(z)=\lim_{l\rightarrow\infty}(D_{-1.l}A^{*}+D_{0.l}B^{*})=B^{*}A^{*}+(A^{*}+B^{*})B^{*}=(2A^{*}+B^{*})B^{*}$ . $\square $

For $\nu\geqq 1$ we set

(3.18) $T_{\nu}(z)=n=\nu K^{\infty}(\frac{-1}{b_{n}})$ , $b_{n}=z-p(n)$ .

Then we have

LEMMA 3.4. Suppose (2.3). Then there exist $N\geqq 0$ and $\epsilon>0$ such that for
any $\nu\geqq N,$ $T_{\nu}(z)$ in (3.18) converges, and satisfies $ 0<|T_{\nu}(z)|<1-\epsilon$ for all $\nu\geqq N$.
Moreover if $ T(z)\neq\infty$ , then there exists $K>0$ such that

(3.19) $|A_{n}-T(z)B_{n}|\leqq K|B_{n}|^{-1}$ for $n=l,$ $2,$ $\cdots$ .

PROOF. By (2.3), there exists $N_{1}\geqq 0$ and $0<\eta<1$ such that $|z-p(n)|>2+\eta$

for all $n\geqq N_{1}$ . Hence, in order to show the convergence of $T_{\nu}(z)$ we may
assume that $\nu=1$ and $|b_{n}|>2+\eta$ for $n=1,2,$ $\cdots$ . Since $B_{-1}=0,$ $B_{0}=1$ , it fol-
lows from (2.8) that $|B_{1}|>2|B_{0}|>1+\eta$ . Similarly, we have $|B_{n}|>(1+\eta)|B_{n-1}|$ ,

$n=1,2,$ $\cdots$ .
On the other hand, for $m>n\geqq N$

(3.20) $\frac{A_{n}}{B_{n}}-\frac{A_{m}}{B_{m}}=\sum_{k=n+1}^{m}(\frac{A_{k}}{B_{k}}-\frac{A_{k-1}}{B_{k-I}})=\sum_{k=n+1}^{m}\frac{A_{k}B_{k-1}-A_{k-1}B_{k}}{B_{k}B_{k-1}}$ .

By the determinant formula, $A_{k}B_{k-1}-A_{k-1}B_{k}=-1$ which follows from (2.8), we
see that the limit $T_{1}(z)\equiv T(z)$ in (2.7) exists. It is also clear that $|T_{\nu}(z)|$ is
uniformly bounded in $\nu\geqq N_{1}$ . By (2.3), $|b_{\nu-1}|$ tends to infinity as $\nu-\succ$ oo. It fol-
lows that $|T_{\nu}(z)|<1-\epsilon$ for $\nu\geqq N$ if $N$ is sufficiently large and $\epsilon$ is small.

By letting $ m\rightarrow\infty$ in (3.20), we have

$|B_{n}|^{2}|\frac{A_{n}}{B_{n}}-T(\lambda)|\leqq\sum_{k=n+1}^{\infty}\frac{|B_{n}|^{2}}{|B_{k}||B_{k-1}|}$ .

Since $|B_{n+1}|/|B_{n}|<1+\eta$ for sufficiently large $n$ , this proves (3.19) for large $n$ .
Hence, by taking $K$ sufficiently large, we have (3.19). $\square $

3.2. Proof of Theorem 2.1.

PROOF OF THEOREM 2.1. We shall prove that (b) implies (c). Suppose that
(c) is not satisfied. We first assume that $\lambda$ is a pole of $T(z)$ . We substitute
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the Fourier expansion of $u,$ $u=\Sigma_{\eta}u_{\eta}e^{i\eta x}$ into the equation $(P-\lambda)u=0$ . Then
we have the recurrence relation (2.8) for $y_{n}=u_{(n+1.\eta^{\prime})},$ $\eta^{\prime}\in Z^{d-1}$ and $ z=\lambda$ for
$n=0,$ $\pm 1,$ $\pm 2,$ $\cdots$ . If we define $B_{n}(n=-1,0,1, \cdots)$ as in (2.7), it follows from
(2.2) that the sequence $y_{n},$ $y_{n}=B_{n}(n\geqq-1)$ , $B_{-n-2}(n<-1)$ solves (2.8) for
$n=0,$ $\pm 1,$ $\pm 2,$ $\cdots$ .

In order to show that $\{B_{n}\}$ is rapidly decreasing as $ n\rightarrow\infty$ we prove

(3.21) $B_{m}/B_{m-1}=-T_{m+1}(\lambda)$ , $m\geqq 1$ .
By (2.6) and $ T(\lambda)=T_{1}(\lambda)=\infty$ , we have that $b_{1}=-T_{2}(\lambda)$ . Since $B_{0}=1$ and $B_{1}=$

$\lambda-p(1)=b_{1}$ by definition, this implies (3.21) for $m=1$ .
Suppose that (3.21) holds for $m\leqq k$ . By (2.8) we have that $B_{k+1}=b_{k+1}B_{k}-$

$B_{k- 1}$ . If $B_{k}\neq 0$ , then (2.6) yields

$B_{k+1}/B_{k}=b_{k+1}-B_{k-1}/B_{k}=b_{k+1}-T_{k+1}(\lambda)^{-1}=-T_{k+2}(\lambda)^{-1}$ .

Hence we have (3.21) for $m=k+1$ . If $B_{k}=0$ , then $B_{k+1}B_{k-1}\neq 0$ , to yield
$ B_{k+1}/B_{k}=\infty$ and $B_{k}/B_{k-1}=0$ . By the induction hypothesis, the latter equation
is equivalent to $ b_{k+1}+T_{k+2}(\lambda)=\infty$ . Hence both sides of (3.21) for $m=k+1$

are equal to infinity. This proves (2.21).

By Lemma 3.4 the right-hand side of (3.21) is smaller than $1-e$ if $m$ is
sufficiently large. Hence $\{B_{n}\}$ is rapidly decreasing. This contradicts to (b).

In the case, $ 2T(\lambda)=p(0)-\lambda$ , we can easily see that $y_{n}=A_{n}-TB_{n}(n>-1)$ ;
$=A_{-n-2}-TB_{-n- 2}(n<-1)$ is a solution of (2.8) for $n=0,$ $\pm 1,$ $\pm 2,$ $\cdots$ . On the
other hand, by the same arguments as in the proof of (3.21), we can prove
(3.18) with $B_{m}$ replaced by $A_{m}-T(\lambda)B_{m}$ . Indeed, for $m=1(3.21)$ follows from
the identity, $1/T_{1}=-b_{1}-T_{2}$ . For general $m,$ $(3.21)$ is proved by (2.8). Hence,

we have that $\{y_{n}\}$ is rapidly decreasing as $ n\rightarrow\infty$ , a contradiction to (b).

We prove that (c) implies (d). Suppose that $D(\lambda)=0$ . Then, it follows
from Proposition 3.3 that $B^{*}(2A^{*}+B^{*})=0$ . If $B^{*}\neq 0$ , then $2A^{*}+B^{*}=0$ . By (3.3),

this implies $2T(\lambda)+\lambda-p(O)=0$ , which is impossible.

If $B^{*}=0$ , then we have $A^{*}\neq 0$ . Indeed, by (2.3), (3.1) has an exponentially
growing solution. Since $\{A_{n}^{*}\}$ and $\{B_{n}^{*}\}$ are linearly independent, it follows
that $A^{*}\neq 0$ . It follows from Lemma 3.1 that $(z-p(O))A^{*}\neq 0$ . By (3.3) this
implies $ T(\lambda)=\infty$ . This contradicts (c).

We shall prove that (d) implies (b). Suppose that there exists a $u=\sum_{\eta}u_{\eta}e^{i\eta x}$

$\in C^{\infty}(T)$ such that $Pu=\lambda u$ . By substitution, we have (2.8) with $z=\lambda,$ $y_{n}=$

$u_{(n+1.\eta^{\prime})},$
$\eta^{\prime}\in Z^{d-1}$ for $n=0,$ $\pm 1,$ $\pm 2,$ $\cdots$ . By (2.4), this implies that the infinite

equation $HU=0,$ $U=(u_{(n.\eta^{\prime})})_{-\infty}^{\infty}$ has a nontrivial solution.
Let $k,$ $1\geqq 1$ . Because $D_{k,l}(\lambda)$ given by (3.8) tends to $D(\lambda)\neq 0$ , and because
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$\neg\Gamma(1+|\lambda-p(n)|^{-1})$ converges, by (2.3), all components of the cofactor matrix,

co $(H_{n,n})_{n.m=-k}^{l}\equiv\Delta_{k.l}$ are uniformly bounded in $k$ and 1. Applying $\Delta_{k,l}$ to the
finite section of $H|U=0$ ,

$(H_{n,m})_{-k}^{l}(u_{(n,\eta^{\prime})})_{k}^{\underline{\iota}}=\left\{\begin{array}{l}\mathcal{U}_{(-k- 1,\eta^{\prime})(o^{\lambda-p(k))^{-1}}}\\\vdots\\ 0\\u_{(-l- 1,\eta\prime)}(\eta-p(l))^{-1}\end{array}\right\}\equiv g$ ,

we have that

(3.22) $D_{k,l}(\lambda)(u_{(n,\eta^{l})})_{-k}^{l}=\Delta_{k,l}g$ .

The right-hand side tends to zero as $k,$ $1\rightarrow\infty$ , while the left-hand side con-
verges to $D(\lambda)U$ . Hence it follows that $D(\lambda)=0$ , a contradiction to (d).

Since (a) trivially follows from (b) by the condition $d\geqq 2$ , we shall prove
that (c) implies (a). Let $u=\Sigma_{\eta}u_{\eta}e^{i\eta x}\in \mathcal{D}^{\prime}(T^{d})$ and $(P-\lambda)u\equiv f(x)=\Sigma_{\eta}f_{\eta}e^{i\eta x}\in$

$C^{\infty}(T^{d})$ . By substitution, we have the recurrence relation

(3.23) $y_{n}-b_{n}y_{n-1}+y_{n-2}=f_{n}$ , $n=0,$ $\pm 1,$ $\pm 2,$ $\cdots$ ,

where $y_{n}=u_{(n+1.\eta^{\prime})},$ $f_{n}=f_{(n.\eta^{\prime})},$ $b_{n}=\lambda-p(n)$ .
We first solve (3.23) for $n\geqq-1$ with the initial conditions $y_{-1}=\alpha,$ $ y_{0}=\beta$ where
$\alpha$ and $\beta$ will be determined later. By (2.8) the solution is given by

(3.24) $y_{n}=\alpha A_{n}+\beta B_{n}+\varphi_{n}$ ,

where

$\varphi_{n}=-A_{n}\sum_{\nu=1}^{n1}f_{\nu}B_{\nu-1}+B_{n}\sum_{\nu=1}^{n-1}f_{\nu}A_{\nu-1}+f_{n},$ $\varphi_{-1}=\varphi_{0}=0$ .

We rewrite this as
$y_{n}=\alpha A_{n}+(\beta+\gamma_{1})B_{n}+\psi_{n}+f_{n}=(\alpha T(\lambda)+\beta+\gamma_{1})B_{n}+\alpha(A_{n}-T(\lambda)B_{n})+\psi_{n}+f_{n}$

where $\gamma_{1}=\sum_{\nu=1}^{\infty}f_{\nu}(A_{\nu-1}-T(\lambda)B_{\nu-1}),$ $\psi_{0}=\psi_{1}=0$ and, for $n\geqq 3$,

(3.25) $\psi_{n}=-(A_{n}-T(\lambda)B_{n})\sum_{\nu=1}^{n-1}f_{\nu}B_{\nu-1}-B_{n}\sum_{\nu=n}^{\infty}f_{\nu}(A_{\nu-1}-T(\lambda)B_{\nu-I})$ .

Because $\{f_{\nu}\}$ is rapidly decreasing as $\nu\rightarrow\infty$ , it follows from (3.25) and (3.19)

that $\psi_{n}$ in (3.25) is rapidly decreasing. Since $y_{n}$ is of polynomial growth as
$ n\rightarrow\infty$ , by assumption, we have

(3.26) $\alpha T(\lambda)+\beta+\gamma_{1}=0$ .

Next we shall solve (3.23) for $n\leqq-1$ . We note that $y_{-2}=(\lambda-p(0))y_{-1}-y_{0}+f_{0}$

$=a(\lambda-p(O))-\beta+f_{0}$ . We replace $n$ in (3.23) with $-n$ , and we set $v_{n}=y_{-n-2}$ ,
to obtain $v_{n}=b_{n}v_{n-1}-v_{n- 2}+f_{-n},$ $n=1,2,$ $\cdots$ ; $v_{-1}=\alpha,$ $v_{0}=(\lambda-p(0))\alpha-\beta+f_{0}$ . We
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make the same arguments as above. Then we have

(3.27) $\alpha T(\lambda)+(\lambda-p(0))\alpha+f_{0}-\beta+\gamma_{2}=0$ , $\gamma_{2}=\sum_{\nu=1}^{\infty}f_{-\nu}(A_{\nu-1}-TB_{\nu-1})$ .

By (3.26), (3.27) and $ 2T(\lambda)\neq p(0)-\lambda$ we can determine $\alpha$ and $\beta$ uniquely as
rapidly decreasing functions of $\eta$ as $|\eta|-\rightarrow\infty$ . Hence $u$ is smooth. This proves
(a). $\square $

3.3. Proof of Corollaries.

PROOF OF COROLLARY 2.3. We have $p(\eta_{1})=\eta_{1}^{2}$ . By Lemma 3.4 $T_{\nu}(O)$ in
(3.18) satisfies that $0<|T_{\nu}(0)|<1$ if $\nu$ is sufficiently large. Since $|p(\eta_{1})|\geqq 1$ we
see that $0<|T_{n}(0)|<1$ for all $n$ . Recalling that $T(O)=T_{1}(0)$ , we have the
corollary from (c) of Theorem 2.1.

PROOF OF COROLLARY 2.5. In view of (c) of Theorem 2.1 we show that
$g(z)\equiv 2T(z)+z-p(O)$ has no zeros or poles if $z\not\in F$. If $z$ satisfies $|z-p(n)|>2$

for $n=0,1,2,$ $\cdots$ , then the argument of Corollary 2.3 implies that $0<|T(z)|<1$ .
Since $|z-p(0)|>2,$ $g(z)$ has no zeros.

Next we consider the case $n^{-\delta}<|z-p(n)|\leqq 2$ for some $n$ . By (2.3), there
exist $c_{0}>0,$ $k\geqq 0$ such that, if $m\geqq k$ and $m\neq n$ , then $|z-p(m)|>c_{0}m^{\epsilon}$ . It follows
that $|T_{n+2}(’\wedge)|<1$ . Hence $|T_{n+1}(z)|<(c_{0}(n+1)^{\epsilon}-1)^{-1}$ , to yield

(3.28) $|T_{n}(z)|<1/(n^{-\delta}-(c_{0}(n+1)^{\epsilon}-1)^{-1})$ .

If we take $k$ sufficiently large, then, for any $n\geqq/e$ the right-hand side of (3.28)

is smaller than $2n^{\delta}$ . Since $|z-p(n-1)|>c_{0}n^{\epsilon}$ and $\epsilon>\delta$ , it follows that $|T_{n-1}(z)|$

$<1$ . This proves that $T(z)$ has no poles or zeros. $\square $

PROOF OF REMARK 2.4. We give a rough sketch of Remark 2.4. We de-
fine $E$ as the set of all poles and zeros of a meromorphic function $g(z)=$

$2T(z)+z-p(O)$ . $E$ is discrete, by definition. It follows from Theorem 4.61 of
[3] that the poles of $T(z)$ are real.

On the other hand, by (9.48) of [3] we have representations

(3.29) $T(z)=-\int_{-\infty}^{\infty}(t+z)^{-1}d\psi(t)$ ( ${\rm Im} z>0$ or ${\rm Im} z>0$ )

for some real-valued, bounded, monotone non-decreasing function $\psi(t)$ with
infinitely many points of increase on $-\infty\leqq t\leqq\infty$ . Hence the condition $g(z)=0$

implies

(3.30) 2 ${\rm Im} z\int_{-\infty}^{\infty}|t+z|^{-2}d\psi(t)+{\rm Im} z=0$ .
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(3.30) has a solution only if ${\rm Im} z=0$ . Hence we have $E\subset R$ . The result follows
from Theorem 2.1. $\square $
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