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ON CERTAIN MIXED-TYPE BOUNDARY-VALUE
PROBLEMS OF ELASTOSTATICS

—with a simple example of Melin’s inequality for a system—

By
Hiroya ITO

Introduction.

Let 2 be a bounded domain in R”, n=2, with C~-boundary I'=0df. For a
vector function u=(u;(x)) with values in C", we introduce differential systems
A and B by

0.1) (Au);=— _; aj(aijkh(x)skh(u)) in 2,

Jj h

(0.2) (Bu>z-=j;hvj(x)aijkh(x)skn(u)Ir on I’
where 0;=0,,=0/0x;, i (u)=(0,;u;+0;u,)/2 and v=(v«(x)) denotes the unit outer
normal to I. Here we assume that a;z,(x) are real-valued C=-functions on

2 with the property of symmetry
0.3) Qijen(X)=arni;(X)=0a;ien(x) oON Q
and the property of strong convexity
(0.4) 3 auya(®)sensyZaXsi; on 2, ¢,>0: const,
t,7. &, )
for all nxXn real symmetric matrices (s;;). (Throughout this note, Latin indices
i, J, B, h take their values in the set {1, ---, n}; small letters u, ¢, etc. in
boldface represent column vectors.)

Then the fundamental equations of linear elastostatics are expressed as
follows:

(0.5) Au=f in 2
with the mixed boundary condition
(0.6) Bu=¢ on Iy, ulr=¢ on I'p

where Iy and ['p are open subsets of [’ into which [’ is divided by a 1-
codimensional C!-submanifold Y of I': I'=1"y\UX\UIl"p (disjoint union). The
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problem of seeking a solution u=(u;) of with for given data f=(f,),
¢=(¢;) and ¢=(¢:) has been studied well (see, e.g., Duvaut & Lions [2;
Théoréme 3.3, Chap. 3]).

We are concerned with the equation [0.5) not only with but also with
another boundary condition

(0.7) Bou:=a(x)Bu+(1—alx))u| r=¢ on [,
where we assume that a=a(x) is a C~-function on /" such that
0<a(x)<1 and a(x)#*l on /.
For the case a(x)=1, see [2; Théoréme 3.4, Chap. 3]. We are more interested

in the latter boundary condition [[0.7), which may possibly change its order on
I’. For the future use, we consider

(Sa)z Au=f in 2, B.u=¢ on I’

where A;=2A+ A, A=0 a parameter, I the identity. In this paper, we will study
the following problems:

(I) Is there a solution u of (S,): for given data {f, ¢}? How about the
uniqueness and regularity if there exists a solution?

(I) If problem (Ss)i-o with data {f, a¢g+(1—a)¢p} has a unique solution
u,, can we construct a weak solution u of with namely, of the
problem

(S) Au=f in @ with Bu=¢ on 'y, ulr=¢ on Il

as a limit of u, when a(x) converges to the defining function of /'y in a sui-
table sense?

We will give affirmative answers to Problems (I) and (II); they will be
stated in Theorems I (in §1) and II (in §3), respectively.

In connection with our problems, consider the dynamic problem corresponding
to (S) when a;;:, and ¥ are time-independent. I enables us to con-
struct a weak solution of this problem with {¢, ¢}={0, 0o} by the method of
Inoue [6]. Under slightly more general assumptions allowing the time-dependence
of a;;zn (but not of 2) and non-zero {¢, ¢}, Duvaut & Lions showed the exis-
tence of a unique weak solution of that problem by the Faedo-Galerkin method
in [2; Théoréeme 4.1, Chap. 3], and proposed that “L’abandon de cette hypothése
(2 ne dépend pas du temps) semble conduire a des problémes ouverts et fort
intéressants”. Subsequently, Inoue asserted in that “we may believe that
the method developed in this paper will be useful to solve the problem posed
by Duvaut & Lions”. We may say that this paper is the first step to make
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sure of his words (see Ito [9]).

The plan of this paper is as follows: §§1, 2 are devoted to Problem (I).
To examine it we reduce problem (S,); to the study of a system of pseudo-
differential equations on I’ of non-elliptic type. And we obtain Kkey estimates
by means of Melin’s inequality for a certain system of pseudo-differential opera-
tors. That is the same manner as Fujiwara & Uchiyama [4], Taira [13], etc.,
took in studying non-elliptic boundary-value problems for the Laplacian. Although
the theorem of Melin [11; Theorem 3.1] is not fit for our matrix-valued operator
unlike their scalar cases, we can extend it to our matrix-valued operator of a
simple form (see and the note following it). After those, we
deduce I, which is a system version of Taira [13; Theorem 1], from
the key estimates using the method of Agmon & Nirenberg developed in Fuji-
wara [3], Taira [14]. In §3 we answer Problem (II). In §4 we consider a
slightly more general case. Finally, in Appendix, we prove [Theorem 2.4,

§1. Reduction to the Boundary.

The purpose of this section is to reduce problem (S,); to a system of pseudo-
differential equations on /.

Sobolev spaces and pseudo-differential operators. First, we mention the
Sobolev spaces, in the framework of which we study our problems. Let M be
R™, a bounded domain in R™ with C=-boundary, or an oriented compact C*-
Riemannian manifold. We denote by H?(M) the complex-valued Sobolev space
of order =R with norm ||-|,,». When M is an oriented compact manifold or
R™, we utilize the following particular norm on H(M):

lulz, =\, | A%ui*dvw with  Au=(1—Au)";

and the inner product (-, -)» on L} M)=H" M) can be extended to a continuous
sesquilinear form on H (M)X H’(M) by

(u, v)Mr-SMA;,"u Agvdvy  for ueH-°(M), ve H(M).

Here, Ay and dvy denote the Laplace-Beltrami operator and the volume element
on M, respectively. We will express various function spaces of (n-)vector func-
tions in boldface: C=, L? H?, etc. The same notation as above will be used
for the norm of H’(M) and the inner product on H-°(M)x H°(M).

Secondly, we shortly refer to pseudo-diffential operators. For details, see,
e. g., Hormander [5]. Let meR and let M be an oriented C>-Riemannian manifold.
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A classical pseudo-differential operator P<¥'y, (M) (regarded as acting on sections
of the half density bundle on M) has its principal symbol pn(x, &) and subprincipal
symbol p%._(x, &), invariantly defined on the cotangent bundle T*(M)\0 on M
with the zero section removed; pn(x, §) (resp. ph-i(x, §)) is homogeneous in
£+0 of degree m (resp. m—1). For example, those symbols of A% ¥, (M)
are given by |&|% and 0, respectively, where |§|y denotes the length of &<
T*(M) with respect to the metric on M.

By a matrix-valued pseudo-differential operator P¥ %, (M), we mean that
all its elements belong to ¥7,,(M). The principal and subprincipal symbols of
P are defined by the matrices of those symbols of its elements. Let Pe¥y, (M)
and Q&¥4,,(M) be [X! matrix-valued, and let p, and p%_i, g, and ¢5_, be
respectively their principal and subprincipal symbols. The adjoint and composi-
tion formulae are as follows: (i) The principal and subprincipal symbols of
the formal adjoint P*<¥%,, (M) of P are given by pn(x, §)* and pi_.(x, )%,
respectively. In particular, if P=P%*, then p, and p$_, are both Hermitian
matrices. (ii) The principal and subprincipal symbols of PQ&¥ (M) are
given respectively by pn(x, §)gu(x, & and

Pm(x, E)gh-1(x, E)+ ph-1(x, E)gulx, 5)-3%;1 {pu(x, &), gu(x, £)}

0pm 09y  Opm 6%)
0§, 0x; 0x; 0§/
Throughout this paper, by ¢, C, C(x), etc., we denote positive constants

where {-, -} denote the Poisson brackets: {pn., q,,}::E,(

independent of the various functions or variables found in given inequalities ;
they may change from line to line.

Uniqueness of solution. We state Korn’s inequality, which is useful for the
existence theorems in elasticity. For the proof, see, e.g., Duvaut & Lions [2;

Théorémes 3.1 et 3.3, Chap. 3], also Ito [8]. After that, the uniqueness of
solution of problem (S,); is proved.

THEOREM 1.1. Let 2 be a bounded domain in R™ with C'-boundary I.
(i) For any open subset Y(#= @) of I', there exists a constant cx(7)=cx(y, £)
>0 such that

(1.1D Eggleij(u)lzdxgc,g(r)nulﬁ,g for all ue H'(2) with ul,=o.

i,7

(ii) There exists a constant cx=cx(2)>0 such that

(1.2) ZSQ\eij(u)lzdx+llull%.QZcKHulI?.g for all us H(Q).

i.j



On certain mixed-type boundary-value 137

PROPOSITION 1.2. Let 2=0. If usH?*Q) is a solution of problem (S.);
with {f, ¢}=/{o, o}, then u=o.

PrRoOF. Denoting the sesquilinear form associated with A by

a, )=, 3 | aimnern@e ) dx

L Jgawuanuk-b;mx (by [0:3)),

we have Green’s formula for A
(1.3) (Au, v)o=a(u, v)—(Bu, v)r for all usH*Q), veHY(Q).
Since 4=0 and B,u=o0 on I', we have by (1.3)

71~a(x)

— ul®dvr=alu, u).
wcerer () lul?*dvr=a(u, u)

(Aau, u)o=a(u, “)""S
And since A;u=o in 2, we have using
0=a(u, e, T\ |if)|*dx20.
o J

Hence (e;,(u))=0, so that Bou=(l—a(x))u=oon I', and u=o0 on {x1I"; a(x)<1}
#@. Thus it follows from that u=o. O

Operator 7'(1). When a(x)=0 or >0 on [I', (S,): is a boundary-value
problem of elliptic type.

LEMMA 1.3. Let 220 and 6=2. If a(x)=0 (resp. >0) on I', then for any
feH(2) and ¢=H**(I") (resp. H° ")) there exists a unique solution
ucsH(2) of problem (Sa)i. And the mapping: u—{f, ¢} is an isomorphism
between the corresponding Sobolev spaces.

PrROOF. We have by [0.4) and [1.2)

a(u, )=zCuli o—Csllulf o  for all uesHY(Q).

This inequality implies that the differential system A is strongly elliptic on 2
and the boundary-value problem {A, B} satisfies the strong complementing condi-
tion on I" (see Simpson & Spector [12]), and accordingly the boundary-value
problems {A, Dirichlet} and {A, B} are elliptic in the sense of Hoérmander [5;
Definition 20.1.1]. In addition, these are formally self-adjoint boundary-value
problems as easily seen, so that for ¢=2 the mappings
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(1 {H"(-Q)Bu—*{Au, ulr)eH QX H*XI"),
4)

H(Q)>su —> {Au, BuysH ()< H°**([")
are Fredholm operators with index 0. Therefore, we conclude from
1.2 that the following compact perturbations of [1.4):
{ H°(Q)su —> {Au, u|r}eH X)X H¥["),
g l_a(x_)_ -2 6-3/2 :
Ho(@)su — {Au, (B+ e Duje Ho (@)X Ho D), if a(x)>0,

are isomorphisms. [

Let 2=0 and ¢=2. Using the Dirichlet problem
A;u=o0 in .Q,v ulr=¢ onl’

admits a unique solution us H?(Q) for any g H’ '/*(I"). Define a mapping P(4)
by u=P(A)¢; P(A) is an isomorphism: H° *([")-»H°(f), which we call the
Poisson operator (for A;). Then T(R) := B P(X4) defines a continuous linear operator :
He-([)—H’-*%]"), which makes sense for any d<=R because T(QE¥ \», (")
as will be shown below. We now state some properties of 7(4) as a pseudo-
differential operator.

PROPOSITION 1.4. Let 2=0. The mapping T(A) is an nXn matrix-valued
pseudo-differential operator =¥, ,(I") with A-independent principal symbol t\(x, &)
and subprincipal symbol t§(x, &) defined on T*(I')\0. Moreover, T(R) is formally
self-adjoint (which implies that t,(x, &) is Hermitian) and is strongly elliptic in
the sense that there exists a constant ¢, >0 such that

(1.5) t(x, &)=c| &l 1 on T*UI')NO, I: the identity matrix.

PROOF. Applying Theorem 20.1.5 in to our case and using the existence
of a unique solution for (S,-¢)1s0, We can show that: (i) P(4) admits an ex-
tension to a continuous linear operator: H? '*(I")->H°(2) for any g=R; (ii)
BP(2) is a pseudo-differential operator =¥ },,(/") with A-independent principal
and subprincipal symbols.

Putting u=P(A)¢, v=P(A)¢ in (1.3) for ¢, p=C=("), we obtain

(1.6) (T(Ag, P)r=a(P(Ag, P(AP)+AP(g, P(A)p)a,

which implies the formal self-adjointness of 7(4). And if ¢=¢ in parti-
cularly, we have by and

(1.7) (T, ¢)r=cicklPAB3 o+ (A—c)IP(DPIIE, o
.\2-_6'2"95”%/2, P_C”¢”E1/2. r,
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where the last inequality is due to the trace theorem and the property (i) of
P(4). Since the principal symbol of A¥? is |&|H2, we conclude from that
t(x, Ey-p=c.|&lrinl® for all (x, &) eT*U')N0, p=C™.

This indicates the strong ellipticity of T'(1). [

EXAMPLE. When an elastic body is homogeneous and isotropic, the elasticity
coefficients a;;., are given by

(1.8) aijkn:-—/wijakn+#(5ik51h+5ih5jk)
where 4, u<R are the Lamé moduli, 3;; the Kronecker delta. The condition

£>0 and nd+2p>0 is equivalent to condition (0.4):
2 aijkhskhsijgmin{Zp, nl+2y}2831 for all (Sij) as in ;
L

i, 5.k, h

and the associated A of (0.1) is strongly elliptic if >0 and A+2¢>0; in fact,
the symbol a(§)=(X; na:;:16,61):,» of A satisfies

(1.9) a(&)p-p=min{y, 2+2p}&|%9|? for all £=R" »=C™.

Consider a homogeneous isotropic elastic body occupying R7. Let P be the
Poisson operator which assigns to ¢<=C%(R™™!) the bounded solution ue C=(R?")
of the Dirichlet problem

Au=o0 in R7, ulorn=¢ on OR?=R""!.

Then, T :=BP belongs to ¥}, (R""') and its symbol is calculated as

M 8 & Efns 2V lp
e e el & SR
&6 At . & ‘ ‘
GEEEY L o
A+3p 11 :
sl‘fn—l _________ En 2&7}. 1 2+3ﬂ 5%—1 —2\/:Iﬂ
e T R
e VI 2Ty, 2042
2+# 1 2_*_# Sn-1 2+#
where §=(&,, -+, £,_.1)#0 (see Ito [8; Theorem 4.4]). Since the eigenvalues of

this Hermitian matrix are given by

plgl, . il 2ul6), B e,

n—2
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it is positive definite if p#>0 and A+p¢>0, when the sesquilinear form a(-, -)
associated with [(I.8) is coercive on H'(R%) in view of ; more precisely, we
have

4p(A
(31+5p+x7£§,12“__|_#1)41”+gﬂ2) g[lajuillz%g for all usH'(R?Y),

where the constant is best possible (see Ito [8; Theorem 4.6]).

a(u, u)=

Reduction to the boundary. Define a function space H%,(I") by
Hoy(D)={p=a(x)¢+(1—a(x))po; pr=H "), po=H**(I")}.
The following lemma, whose proof we leave to the reader, is fundamental con-
cerning this space.
LEMMA 1.5. The H%,I") is a Banach space equipped with the norm
I@lla; o. r :=inf{ll@sllo. r+IBollosr. r; p=al(x)g+(1—alx))p
with ¢, <H(I"), go=H**'(I")}.
And we have the continuous inclusion relations
H Y =H%=0(I") C Hiax(I') C Hla= (I =H(I");
if a(x)>0 on I', then Hio,(I')=H°(I") as Banach spaces.

Now we can answer Problem (I) by means of the space H%,(I").

THEOREM 1. Let A=0 and ¢=2. For any feH’* %) and g=HG'I"),
there exists a unique solution usH(2) of problem (S.):. Furthermore, the

mapping
(1.10)  {A4, Ba}: H(Q)2u —> {Azu, Bouy € H Q) x HG3 ()
is an (algebraic and topological) isomorphism.
I will be proved in §2. Here we reduce (S,); to a system of
pseudo-differential equations on the boundary I'.
PROPOSITION 1.6. Assume that, for any ¢=<H ("), the problem
(1.11) T (ADp=¢ on I’

admits a unique solution p<H*'*(I") where T (A)=a(x)T(A)+(1—a(x)I, A=0.
Then Theorem 1 follows.
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PROOF. By definition, ¢g= H9;}'*([") can be written in the form @¢=a(x)g,
+(1—a(x))g, with some {@,, g} cH***(I")}XH*'*(I"). By the
boundary-value problem

Av=f in £, Bv+v=¢,—¢, on [’

has a unique solution ve H?(Q). Thus we see that u= H°({) is a unique solu-
tion of (Sq); if and only if w:=u—vesH’(2) is that of the boundary-value
problem

1.12) Aw=0 in £, B.w=Q2a(x)—Lv|r+¢, on I'.

Moreover, since w=P(2)¢ with ¢ :=w|, the solution we H’(Q) of cor-
responds one-to-one to the solution ¢p=H" /*(I") of

(1.13) T o(Dp=Q2a(x)—1)v| r+¢, on I'.

By assumption, (1.13) admits a unique solution ¢=H?~'/*I"), which indicates
the unique existence of solution for (S,);. That (1.10) is an isomorphism is
due to the closed graph theorem. O

§ 2. Solvability of Problem (S,);.

Operator 7. To examine the solvability of we use a method due to
Agmon & Nirenberg : we introduce an auxiliary variable yeS:=R'/2xZ, the
unit circle (see Fujiwara [3], Taira [14]). We consider the differential operator
A :=A—0} in 2x8S. The boundary operator B of is regarded as defined
on 0(2x8)=I"xS. The following lemma corresponds to Lemma 2.3.

LEMMA 2.1. Let =2, FEH  (2x8) and F<H’ *(2%xS). Then the
Dirichlet problem
(2.1) Au=F in QX8S, @|rxs=¢ on ['XS
admits a unique solution <= H°(2XS), and the mapping :
H(QxS)2ia —> { AR, | r.s} € H QX S)X H YT % S)

is an isomorphism.

By Lemma 2.1 we can define the Poisson operator P which assigns to ge
H° ("X 8S), 6=2, the unique solution uc H°(2x8) of [2.1) with f=o; Pisan
isomorphism : H*~'/%(I"x S)—H*(2xS). Then T :=BP defines a continuous linear
operator : H V*(["xS)—H***I"x8S), which makes sense for any ¢=R. The
following proposition for 7° corresponds to [Proposition 1.4] for T(4).
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PROPOSITION 2.2. The mapping T is an nX n matrix-valued pseudo-differential
operator € L, (I"XS), whose principal symbol we write {,(x, &; v, 7), (x, &; v, 9)
S(T*I X T*S)NO=T*" x S)N0. Moreover, T enjoys the property of formal
self-adjointness (which implies {,(x, &; v, ) is a Hermitian matrix) and the property
of strong ellipticity in the sense that there exists a constant ¢;>0 such that
(2.2) tx, & 3, PD=eslE Piresl  on THIXS)NO

where |(§, D) rxs=~1&1 3+ 7%

A priori estimates. We set T, =a(x)T+1—a(x)l (€¥ L, ('x8)). The
following estimates for T « and its formal adjoint T ¥ play an important role in
proving L.

PROPOSITION 2.3. Let 6= R. There exists a constant C=C(a, a)>0 such that
for all g=C=~(I"XS)
”i”o-x/z,I‘xs§c([|’ra$“a-x/2.rxs+”9§“a—x,I‘xs),
"&”-aﬂ/z.I‘xséc(”’Tia”—aH/z.I‘xS‘l‘”¢~”—a,1"xs)-

To prove Proposition 2.3, we utilize Melin’s inequality (see Melin and
Hormander [5]) in the following form.

THEOREM 2.4. Let M be an oriented compact C*-Riemannian manifold. And
let P be an [X! matrix-valued pseudo-differential operator =¥, (M), meR.
Assume that the principal and subprincipal symbols pn.(x, &) and pi._(x, &) of P
satisfy respectively the following conditions:

(1) pmlx, &) is expressed as pn(x, §)=an(x, E)qo(x, &) with a real-valued symbol
an homogeneous in £+0 of degree m and an [X! matrix symbol q, homogeneous
in §#0 of degree O such that

an(x, §)=0, Regqox, £)>0 (positive definite) on T*(M))NO
where Req, denotes the Hermitian part of go: Reqgo=(qo+q%)/2;
(ii) The Hermitian part Reph_, of ph-1 salisfies

Re ph-i(x, )+ 3 (Tr*Ha (%, E)Reqi(x, H2al, co=R,

on the characteristic set X,  :={(x, §)&T*(M)N\O; an(x, §)=0} of an. Here,
H=H,k and Tr*H denotes the
sum of the positive eigenvalues, each being counted with its multiplicity, of the
Hamilton map of H/~—1 (see [5)).

Then, for any ¢>0 we have Melin’s inequality for P:

is the Hessian of a, invariantly defined on 2

am?
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(2.3) Re(Pu, u)y=(co—e)|tt|2m-i>r2 u—C@|U|im-2>r2. 4 [for all usC=(M).

Furthermore, if ¢,>0, for any ¢=(0, ¢,) and s= R we have the following estimates
with loss of one derivtive: for all usC=(M),

{ IPulls, w=(co—e)lu)lfsm-1. u—C(e, ullfsm-ss2. 5

[ P*ullg, w=(co—e)llulfsm-1, 0—C(e, S)ulfsm-srz. .

(2.4)

This simple system version of Melin’s inequality is already known (essen-
tially). When Pe¥7, (M), m>1, satisfies (i) with ¢o(x, §)=I and (ii) with
¢ >0, Iwasaki constructed the fundamental solution E(t) of (d/dt)+P in a
certain class of pseudo-differential operators with parameter t; inequality (2.3)
follows as a corollary of that. We will, however, prove [Theorem 2.4 more
directly in Appendix.

PROOF OF PROPOSITION 2.3. Using the composition formula, the principal
and subprincipal symbols p,(x, &; v, ) and pi(x, &; », n) of P:=T, are cal-
culated respectively as pi(x, &; v, p)=a(x)i,(x, &; v, 7) and

pi(x, &5 3, D=Lha@Xiix, & 3, D= Yo L, Lix & 3, )

where (x, &; y, ) is the subprincipal symbol of 7. Put

a(x, &; 3, D=aX) (& D)l rxs, ¢, &; ¥, P=1:(x, &; v, PN/1(&, Mlrxs,

then P satisfies (i) of [Theorem 2.4 by [Proposition 2.2, Since, at all zeros
(x, &5 3, ) of a, Tr*H, (x, &; y, 7)=0 by definition (=0 truth to tell) and
pix, &; v, p)=I, P satisfies also (ii) with ¢,=1. Consequently we obtain the
desired estimates from [2.4). O

Proof of [Theorem 1. Following Taira [14], we associate with equation
the closed linear operator T (1) : AT L A))CH’ V¥ I )—H° V*I") defined by

@) NG ()={p=H*"V*I"); Ta(DpsH* ¥},
(D) T DP=Ta(D)gp  for F=DTa(A)

where 9D(g,(2)) denotes the domain of I,(4). We define also a closed linear
operator I, : NG )CH* V¥ (I'XS)-H°V*¥I"'XS) by

@) DF)={@=H " "*(I'x8); T.gesH '(I"'x8S)},
(D) Tug=T.p for F=D(T.,).

Since g, is densely defined as easily seen, 9, admits its adjoint operator I%:
DIHCTH " ([XS)->H **(['xS). Similarly, 9,(4) admits its adjoint
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T (A)*.

LEMMA 2.5. The closed linear operator % is characterized by
@%) DTE={(Pp=H +*(I'x8S); Trpe H+1*(I"x8S)},
(b*) Trp=T*F  for F=DTYL).

By the definition of & ,, Lemma 2.5 and [Proposition 2.3, we have
“55”0'—1/2,Fxséc(“ga&“a—l/z.l‘xs+“&I[U—X.I‘xs) for all &EQ(QQ),
I8l -o+1r2. rxs S CUTEB - a4172. rxsF+ Pl -a. rxs) for all g=N(T%).

Furthermore, since H*I'xS) . H* V¥ I'xS) is compact for any s=R, ¥, and
g* are, as well-known, semi-Fredholm operators (:.e., operator T with finite
dimensional kernel J32(T) and closed range R(T)).

As a result, by the same argument as in [14], we arrive at:

PROPOSITION 2.6. Let [€Z. Then mapping I.(I*): NT(ID))CTH %)~
H:-'"*(I") is a Fredholm operator with the property that there exist finite subsets
J and J* of Z such that

dimINT (PP) <o if le], =0if l€Z\],;
dimR(T(*)=dimIATEP) <o if l€]*, =0if [SZ\]*.

END OF PROOF OF THEOREM I. Let ¢=2. Since the principal and sub-
principal symbols of TY(A) are, by Proposition 1.4 independent of 41=0, so are
those of T,(4); hence T ,(A)—T«(A)ET34,(") for any 4, ,=20. Thus, D(T ,(4))
is also independent of A>0, and for any 1,, 4,==0 the mapping I .(A4)—T .(4:)
admits an extension to a compact operator: He V:([")—H*V¥[").

On the other hand, Proposition 2.6| shows that the mapping 9.(4), =2
with some l,=Z~\(J\UJ*), is a Fredholm operator with index 0. Therefore, for
any 220, T,(AD)=9 () + (T o(2)— T «(4)) is a compact perturbation of a Fredholm
operator with index 0, and hence is a Fredholm operator with index 0.

We finally show dimJi(q,(2)=0. If g=D(TL(A)TH* *(I') satisfies T o(A)¢
=0 on [, we have by putting u=P(l)¢

Au=0 in £, B,u=o0 on [I.

Thus Proposition 1.2, gives that u=o0 and ¢=ul|r=o0. It therefore follows that

codim R(T ,(2)=ind G o(A)—dimIU T ,(4))=0,
which completes the proof of [ by Proposition 1.6, O
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§3. Weak Solution of Problem (S).

In this section, we construct a weak solution to (S) using I (cf.
Duvaut & Lions [2; Théoréme 3.3, Chap. 3]).

DEFINITION. Suppose f= LY RQ), ¢<= L¥[") and ¢p=H*(I") in (S). We call
usH'($2) a weak solution of problem (S) if u|r=¢ on I, and

3.1) a(u, 9)=(f, po+(P, 2)ry for all = HY2UIl'y).

Here H{(2\UIy) denotes the closure of C(2UIy):={usC>(2); suppu C
QUIy} in HY ). Since the interface X=7yNI, between Iy and I} is of
class C!, this space is characterized as

HYQUI'M)={usHY2); ulr=0 on Ip}.

See the Proof of Lemma 10 in Browder [1].

Let fe LXQ), ¢< L¥I") and ¢p=H'*(I") be given. We begin with construct-
ing a collection of approximate solutions of (S) by means of Theorem I. We
may assume, without loss of generality, that suppgpCC /™7, with 7, an open
subset of /" such that 7,C/y. Choose sequences {¢,} in H'*I") and {¢n} in
H*'*(I") with supp¢,CI'\7, so that

(3.2) @n—>¢ in H '), ¢n—>¢ in HYY) as m—>co.

Now, let {en}5m-: be an arbitrary decreasing sequence tending to 0 such that
7.%#@ where 7,={x&Ip; distr(x, I'v)=e,}. It is easy to construct a family
{an(x)} in C(I") such that 0<a,(x)<1 on I and a,(x)=1 on Iy, =0 on 7.
We set B,=B,,.
For each m, consider the approximate problem (S), of (S) given by
(S)n Au=f in ‘Q; Bmu:am(x>¢m"}"(1’—am(x>)¢m on I
By applying Theorem I, we get the unique solutien u,< H?*£2) of (S)u.
THEOREM II. The sequence {u,} in H¥Q) obtained above is H()-weakly

convergent. The limit ucHY(Q) gives an unique weak solution of problem (S).
Moreover, it satisfies the estimate

(3.3) Il @< CUFI -y our y+ Bl -1re. r+li@Bllse, 1)
where ||-||-1, qur, denotes the norm of the dual space of H¥Q2\UI'y).

PROOF. According to I, the boundary-value problem
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Av=0 in 2, vir=¢, on [’
(resp. Aw=f in £, B,w=a,(x)¢,—Bv,) on I')

admits a unique solution v, (resp. w,)SH?* ). Since v, +w, is a solution of
(S)m, it follows from the uniqueness property that u,=v,+w,. By Green’s
formula (1.3), the solutions v, and w, satisfy

a(Um, Un)=(BUn, Un)r,
(3.4) {

a(wm; wm):(f: wm)!)'i"S —'1;%@

(%) wm)-wmdvp.

<¢m—va

@ (XTY#0

Noting that v,.|,,=o0 and w,|, =0, we obtain from [0.6) and [T.1) that a(v, v)=
Cillvl} o for v=vn, w,. Using this and the fact that BP(0)=T(0)= ¥ j» ("),
we have from (3.4)

C,
Cillonl} o= | Bonll-17e, rliiOmllise. r < —z—va 1} 0+ Cligpmllire. r,
(3.5) Cillwnl} o=(f, wn)o+U@nll-1e.r + | Bnl -1, r)Wnll1s2. 1
C1 .y 2 9 2
—g“z‘“ lwnf o+ C(”f“o.{)"f’”¢m”11/2, I‘+ ”¢m”1/2, r.

Thus (3.2) and (3.5) yield
[nl oS On o+ Wnl oS CUIF 0.0+ @l 12 r + i Pllase, 1)

This shows that, for any subsequence {u, } of {u,}, some subsequence {un-}
of {u,} has a weak limit u® in H'(2). If u® is a unique weak solution of (S),
which will be shown below, then we see from the uniqueness that the sequence
{un} itself converges weakly to u°® in H'(Q).

Now, since a,(x)=1 on [y, we have by (1.3)

(3.6) a(m-, 9)=(F, P)o+(Pn-, P)r for all = HYR2UIY).
And, for any {&C=(I") with support in ['p, we have
(um'; C)F=(¢m', C)F+(am'(¢m'_¢m""‘Bum"‘i’um'), C)P:

hence (un-, &)r=(¢pn- &)r if m” is so large that e¢,.<distr(suppg, ). Letting
m”—oo here and in [3.6), we see that u is a weak solution of problem (S).
Furthermore, the uniqueness of weak solution is shown as follows: Let u'e
H'({) be a weak solution of (S) with {f, ¢, ¢} ={0, 0, 0}. Then, by definition,
u'c H(QUl'y) and a(u!, u")=0, so that[0.6) and Korn’s inequality give us
that u'=o.

Similarly, we see that the sequences {v.}, {wn.} are also H'($2)-weakly
convergent and that their limits v°, w*s H'(2) satisfy u’=v’+w’. Since w'c
H(QUl'y), we have, as m—co,
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(f, wp)o —> (f, W) < |F -1 our yllw'li 0.

Therefore, the desired estimate follows immediately by letting m—co in
estimate (3.5). OO

COROLLARY 3.1. Let fEeH**(Q), p<H**¥I") and ¢=H*'*(I") for s=2.
And let u,=H®*8) be the unique solution of problem (S), with ¢n=¢, Pn=¢
for each m. Then th‘e sequence {u,} converges to the weak solution u of problem
(S) weakly in H3,.(0\23), that is, {un} cenverges to u weakly in H*Q') for any
subdomain 2’ of 2 (with C=-boundary) such that 2'C2~3. Furthermore, we
have the estimate

lulls, 0 = C(R2', SYUFlls-2.0F 1 @lls-s/2. 1+ Plls-1r2, 7).

PrROOF. Although the claim can be shown by the general theory of elliptic
systems, our proof is an application of L.

Let £’ be any such domain in £ as stated above. All we have to do is to
show that there exists a constant C=C(£’, s)>0 such that

(37) v “um“s,()'éc(”f.“s—z,g“‘“¢Hs—s/z,[‘+“¢”3—1/2,[‘)

for large m. Indeed, the rest of the proof is similar to the latter half of Proof
of II.

Now we show estimate (3.7). For 1</<[s]+1, we choose functions n,&
C=(2) such that 0<7,<1 on 2 and 7,=1 on {dist(x, 2)=id}, =0 on
{dist(x, 2)<(I—1)8} where d=dist(2’, X)/([s]+1). Let m, be a number such
that en,<d. Since ap=am, on supp(n.|r) for all m=m, and 2<I<[s]+1, the
equations in (S), with {@n, ¢n}={¢, ¢} multiplied by 7, are

{ Amun)=[A, nlun+nf in 9,
B (tn)=an([B, nlun+m@)+1—an)ng  on I’

where [-, -] denotes the commutator. Thus an application of [Theorem| I shows
that, for any 2<t<s, m=m, and 2=/<[s]+1,

(3.8)1.¢ Intenlle, o= CULA, nlun+71flle-z. 0
+llan (LB, ﬁt]um+7]t¢)+(1-‘amo)¢’llamo;c-s/z.r)
SCUi-attmllsor, 0+ Flles, 0t I@lle-sro. rH N Plle-rre, ).
Using (3.8),.. for [=t=2, ---, [s] and we have
[7csttm lls-1, 0= | Pesatbm [l es1, 2

L C(Iflts1-2. 2+ B llcsa-sre, r P llcs-172. 1)
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which combined with (3.8)474..s gives (3.7). [

§4. Simple Generalization.

For a forthcoming paper (Ito [9]) dealing with a dynamic problem mentioned
in Introduction, we give a simple extension of [Theoreml I.

When we consider (S,); only for large 1>>0, it is essential for the arguments
in §§2, 3 that the real-valued functions a;;(x)= C=(2) possess the property of

symmetry
(4.1) Qijen(X)=aenif(X) on 2

and the property of coerciveness
4.2) 3 | auna(00nus -G dx zedull o—edlul o

for all usH (QUI,) with I,={x<I"; a(x)+0}.
Now we redefine differential systems A in £ and B on I by

(4.3) (Au);=— ; kzhaj(aijkh(x)ahuk)"l'" JZ}E bijk(x)akuj-#g)ci,(x)u,-,

(4.4) (Bu);=( X2 Vi(x)aijkh(x)ahuk+§:Tij(x)uj)|P

iEn

where all the coefficients are real-valued C>-functions on € or I” and Qijrn(x)
satisfy and [4.2). We note that these conditions imply that A is strongly
elliptic on 2 and {A, B} satisfies the strong complemention condition on 7.

Let a(x) be as before but we allow the case a(x)=1, and let w;;(x) be real-
valued C~-functions on /" such that w(x)=(w;,(x)) is positive definite on I. Then
[ can be extended as follows.

THEOREM l'. Let 6=2 and A<=R. The mapping
(45) {AZ, Ba.w} : HU(‘Q)Bu —> {Alu» Ba.wu}EHU_Z(Q)XH?;?/Z(F)'

is a Fredholm operator with index 0 where A; =i+ A, Ba o=a(x)B+(1—a(x))w(x).
In particular, if 2 is sufficiently large, then (4.5) 7s an (algebraic and topological)

isomor phism.
For the proof, we prepare the following two lemmas.

LEMMA 4.1. Let ¢=2. If A is sufficiently large, the mapping (4.5) is an
injection. If a(x)=0 or >0 on I’ in addition, then it is then an isomorphism.

PROOF. Let uc H’(£2), ¢<2, be in the kernel of (4.5). Then, we have by
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integration by parts

5 | @usn(0nus -0 dx+2ult 0

i,75.k,

= =3 (F b0+ Teiou,udx

1—a(x) _ _
#Sl’a< rrrrr w(x)u'u_i%?ij(x)ujui>dvr.
Using and the positivity of w(x), we obtain

collullf o+(A—co)l|ullf o< Clully, ollullo, o+ luell, 1),

from which the first claim follows immediately. The second is due to the same
argument as in Proof of Lemma 1.3. [

LEMMA 4.2. Let =2, and A° B° be the first terms of A, B in (4.3) and
(4.4). If 2 is sufficiently large, then for any fFEH**Q) and g=H°*'*(I") there
exists a us H°(Q) which satisfies ASu=f in 2, B'u=¢ in a neighborhood of I,
on I where AY=A+A°, and the estimate

lulls, 0= C(”fHo-z,Q+ H¢”o—3/2,1‘) .

PROOF. We can choose a bounded domain £ including 2 with C*-boundary
I and C=-extensions d;;,n(x) Of aixn(x) to 9 so that (i) I" includes an open
neighborhood 7 of I, in I" and (ii) [4.1) and [4.2) are valid for d;,(x) with
Q, I, replaced by O, I’ (that is, A° is strongly elliptic on Q and {A°, B} is
strongly complementing on /° where A°, B° are the associated A°, B® with

di;en(x), 2 and I'). Here we need to pay attention to the fact that the strong
complementing condition at x,<=/" depends (continuously) not only on 8ijrn(%x0)
but also on the direction of the normal at x, to /.

Take a nonnegative function {(x)= C=(I") with support in 7 such that {(x)=1
near I, and define ﬁEH”‘s/Z(f), for any given ¢g=H’*/*(I"), by ¢?:C(x)¢ on
¥, =0 on I'\y. Then we have

IBllo-sre, F SCILE)Bl o-sre. P SCli@Gllosse.r  for all g H~**(I).
Also, any FEH* %) admits an extension feH’ Q) such that |Ffl,_.p=
C|flls-2 o. Now consider the boundary-value problem
(4.6) Ma=Ff in 2, B'a=¢ on I.

By an argument similar to Proof of Lemma 1.3 (see also the preceding lemma),
we have, for a sufficiently large 4, a unique solution a<H(Q) of problem

(4

0), which satisfies the estimate
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lale =< CUIFllo-2.0F IBllo—sr2. DS C'UF llo-2 0+ Dllo-sre. ).

Thus u:=it|, is a desired one. [J

PrROOF OF THEOREM I’. By Lemma 4.1 and the compactness of the map:
H'(Q)su — {(;Ee bijkakuj+ ;cijuj)r (a ?Tijuj)} EHU_Q(Q)XH‘{;§/Z(F),

we have only to show that, for sufficiently large 2,
{A% Bl ol: H(2)su — {ASu, BY Juts Ho2(Q)x Hi3'I)

is an isomorphism where BY ,=a(x)B°+4(1—a(x))w(x).

Applying in the case {A;, Bqa.o} ={AS Dirichlet}, we can define
the Poisson operator P°(1) for A} if A=24, with A, large enough. Then Proposi-
tion 1.4 is valid for T°(A):=B°P°%JA), A=21,, except that the principal symbol
t3(x, &) of T°(A) is strongly elliptic on I, in the sense that for some >0

ti(x, zczl&lrl  for all (x, )= U THI WO} S THIMNO
xel’,
And, by virtue of Lemma 4.2, [Proposition 1.6 is also valid if we replace T (1),
4=0, with T} (D)=a(x)T*(AD)+(1—a(x))w(x). Moreover, the argument in §2
will be justified in this case if we replace A, P(1) and T.(4) with AY,, P(A)
and T3 ,(4), respectively; we have only to remark that, in [Proposition 2.2, the

corresponding principal symbol #%(x, &; y, 7) satisfies only the following condition :

1x, &5 9, P=AIE, N)lresl,  ¢2>0: const,
for all (x, &; v, p)= U TE U XSN{0} C T*(I" X S)\O0,

(x, y)efaxs

which is weaker than but sufficient for our argument. [J

Appendix. Proof of Theorem 2.4.
For simplicity, we abbreviate (-, - )y and ||-|ls.» as (-, -) and ||-||;, respectively.
PROOF OF INEQUALITY (2.3).

First step (Reduction to the case P=P*, ¢,=0 and g,(x, &)=I). It suffices
to consider the case P=P* and ¢,=0. In fact,

Re(Pu, u)=(ReP—coA% ™ Du, u)+collulim-12

where ReP=(P+ P*)/2, and the principal and subprincipal symbols of Re P—
co A% 'l are given respectively by

Repn(x, §)=an(x, §)Reqo(x, §), Reps-i(x, &) —col§15% 7.
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Assume that P=P* and ¢,=0, so ¢,=¢¥%. Let Q,(iesp. Q.,)=¥J, (M) be a
formally self-adjoit pseudo-differential operator with principal symbol ¢5'/2 (resp.
g$’*) and subprincipal symbol 0 (resp. (v —1/2)q%/2{q5’%, ¢5?}). Since Q,Q.=Q.Q,
=Imod ¥,3,(M), we have
(A1) (Pu, )=z(Q,PQ,Q.u, Q.u)~Clulin-s  for all usC=(M).

On the other hand, the principal symbol p.(x, &) and subprincipal symbol
pi._i(x, &) of ﬁ::QIPQ1 are given respectively by pr=an,l and

g —1/2 —~1/2 \/j —1/2 —1/2 1/2 —-1/2

Pi-1=q5" " ph-1q5" _‘—2—({610 2, amgot g +{angs’?, q3'?}).

Since a, vanishes to the second order on X :=X%, , condition (ii) of [Theorem
2.4 is equivalent to

Facs(x, O+ 5 (TrH(z, )20  on 3

where H=H, . Now, suppose that [Theorem 2/4 is valid for the case g,=LI
Then we have for any £¢>0

(A.2)  (PQuu, Quu)z—¢|Qutt|im-1512— C(&)|Qettlim 23/
2 —eCillultn-nrp—ClE)ultn-2.  for all usC=(M)

where the constant C,>0 depends only on @, The desired inequality (2.3)
follows immediately from inequalities (A.1) and (A.2).

Second step (Proof of the case P=P%*, ¢,=0 and g.(x, &)=I). Fix an ¢>0
arbitrarily. We first show that, for any (x,, &)T*(M))\0, there exists a conic
neighborhood‘l" oCT*M)ONO of (x,, &) with the following property: Let @o(x, &)
be any real-valued symbol homogeneous in £§+#0 of degree 0 with support in I,.
Then we have

(A.3)  (POu, Pu)=—¢|Qulltn-12—Cle, O)ulltn-2s  for all usC=(M)

where @<¥3,,(M) is any formally self-adjoint pseudo-differential operator with
principal symbol ¢, and subprincipal symbol 0.

When (x,, &)¢2, there is a conic neighborhood I’y of (x,, &) such that
an(x, §)=201&|% on I, for some 0>0, so by the Garding inequality

(POu, Qu)=06||Pul/.—C(D)|ulim-».  for all usC=(M)

with any ¥}, (M) as above.
When (x,, &)=2, we define a symbol a%,_,(x, &) by

ah-i(x, O=(5 —Tr*H(xo, &/ 1610)) €157
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Then, by the continuity of Tr*H(x, & on 2, there exists a conic neighborhood
I’y of (x,, &) such that

(Ad)  glEIE San(x, OFTrH(x, OS5 1E1F" on TonX.

If Ac¥7,,(M) is a formally self-adjoint pseudo-differential operator with prin-
cipal symbol @, and subprincipal symbol a},-,, the usual Melin’s inequality (see
Hormander [5; Theorem 22.3.3]) gives

(A.5)  (AQu, Qu)=—c¢||Quliin-1y:—C(e, D)ulim-23r2 for all u=C=(M).

On the other hand, R:=P—Ale¥®p;;(M) is a formally self-adjoint pseudo-
differential operator with principal symbol 7, _,:=p%_,—ai-;I, which satisfy by
virtue of (A.4) and condition (ii)

Fnar=(Ppo—(TrH)D—(ah —Tr* Mz —5 161571 on TN,
Thus, by shrinking I, if necessary, we have r,_,=—¢|&|%'l on [, so that
by the sharp Garding inequality

(ROu, Pu)=—e|Qul|tn-152—C(e, P)ullim-2/2 for all ueC=(M)

with any @ as above. This and (A.5) show (A.3) in this case.

To complete the proof, we choose finite number of real-valued symbols
@oi(x, §)=0 homogeneous in &+0 of degree 0 with so small support that (A.3)
is valid for each @; and X;9%,=1 in T*M)\0 where @,=¥ ), (M) is a formally
self-adjoint pseudo-differential operator with principal symbol ¢,; and subprincipal
symbol 0. Since X,0:—1=¥33 (M) and [[P, @,], D,1=¥ 74 M), we therefore
obtain that

(Pu, )=5(PDu, @ u)+Re((I— S0P, w+5 I[P, 0,1, @, Ju, w)
J
= — eSOl s — COltl 72 Z — et ia— COltl i
J
for all usC=(M). O

PROOF OF INEQUALITIES [2.4). Let ¢=R. The principal and subprincipal
symbols of A3¥PA% are given respectively by p, and ph_,+6~ =118 u{|E| s> Pm}.
Since {|€|u, pn}=0 on 2, it follows from (2.3) that for any e<(0, ¢)

Re(A3 PAYv, v)Z(co—elvltn-13/2— C(e, O)[0lTm-23/2.

By putting v=A4§"""/?u and g==s—(m—1)/2 in the above, we have
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(co—e)|ullfsm-1—C(e, ulfsm-se=Re(AYPu, A5™ " 1)

L a9 -
< g |Pulit 5 [ultm-y  for all ucsC(M).

Putting d=c,—e¢, we obtain the former of [2.4). As for the latter, we have
only to note that, if P satisfies (i) and (ii), so does P*. [
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