ON CERTAIN MIXED-TYPE BOUNDARY-VALUE PROBLEMS OF ELASTOSTATICS

-with a simple example of Melin's inequality for a system-

By

Hiroya Ito

Introduction.

Let Ω be a bounded domain in \mathbb{R}^n , $n \geq 2$, with C^{∞} -boundary $\Gamma = \partial \Omega$. For a vector function $\mathbf{u} = (u_i(x))$ with values in \mathbb{C}^n , we introduce differential systems A and B by

$$(0.1) (A\mathbf{u})_i = -\sum_{i,k,h} \partial_j (a_{ijkh}(x)\varepsilon_{kh}(\mathbf{u})) \text{in } \Omega,$$

$$(0.2) (B\mathbf{u})_i = \sum_{j,k,h} \nu_j(x) a_{ijkh}(x) \varepsilon_{kh}(\mathbf{u})|_{\Gamma} \text{on } \Gamma$$

where $\partial_j = \partial_{x_j} = \partial/\partial x_j$, $\varepsilon_{ij}(\boldsymbol{u}) = (\partial_j u_i + \partial_i u_j)/2$ and $\boldsymbol{\nu} = (\nu_i(x))$ denotes the unit outer normal to Γ . Here we assume that $a_{ijkh}(x)$ are real-valued C^{∞} -functions on $\bar{\Omega}$ with the property of symmetry

$$a_{ijkh}(x) = a_{khij}(x) = a_{jikh}(x) \quad \text{on } \bar{\Omega}$$

and the property of strong convexity

$$(0.4) \qquad \sum_{i,j,k,h} a_{ijkh}(x) s_{kh} s_{ij} \ge c_1 \sum_{i,j} s_{ij}^2 \quad \text{on } \bar{\Omega}, \quad c_1 > 0 : \text{const},$$

for all $n \times n$ real symmetric matrices (s_{ij}) . (Throughout this note, Latin indices i, j, k, h take their values in the set $\{1, \dots, n\}$; small letters u, ϕ , etc. in boldface represent column vectors.)

Then the fundamental equations of linear elastostatics are expressed as follows:

$$(0.5) Au = f in \Omega$$

with the mixed boundary condition

$$(0.6) Bu = \phi \text{on } \Gamma_N, u|_{\Gamma} = \phi \text{on } \Gamma_D$$

where Γ_N and Γ_D are open subsets of Γ into which Γ is divided by a 1-codimensional C^1 -submanifold Σ of $\Gamma: \Gamma = \Gamma_N \cup \Sigma \cup \Gamma_D$ (disjoint union). The

Received February 8, 1989. Revised June 12, 1989.

problem of seeking a solution $u=(u_i)$ of (0.5) with (0.6) for given data $f=(f_i)$, $\phi=(\phi_i)$ and $\phi=(\psi_i)$ has been studied well (see, e.g., Duvaut & Lions [2; Théorème 3.3, Chap. 3]).

We are concerned with the equation (0.5) not only with (0.6) but also with another boundary condition

$$(0.7) B_{\alpha} \mathbf{u} := \alpha(\mathbf{x}) B \mathbf{u} + (1 - \alpha(\mathbf{x})) \mathbf{u} |_{\Gamma} = \phi \text{on } \Gamma,$$

where we assume that $\alpha = \alpha(x)$ is a C^{∞} -function on Γ such that

$$0 \le \alpha(x) \le 1$$
 and $\alpha(x) \ne 1$ on Γ .

For the case $\alpha(x)\equiv 1$, see [2; Théorème 3.4, Chap. 3]. We are more interested in the latter boundary condition (0.7), which may possibly change its order on Γ . For the future use, we consider

$$(S_{\alpha})_{\lambda}$$
 $A_{\lambda} u = f$ in Ω , $B_{\alpha} u = \phi$ on Γ

where $A_{\lambda} = \lambda I + A$, $\lambda \ge 0$ a parameter, I the identity. In this paper, we will study the following problems:

- (I) Is there a solution u of $(S_{\alpha})_{\lambda}$ for given data $\{f, \phi\}$? How about the uniqueness and regularity if there exists a solution?
- (II) If problem $(S_{\alpha})_{\lambda=0}$ with data $\{f, \alpha \phi + (1-\alpha)\phi\}$ has a unique solution u_{α} , can we construct a weak solution u of (0.5) with (0.6), namely, of the problem

(S)
$$A\mathbf{u} = \mathbf{f}$$
 in Ω with $B\mathbf{u} = \mathbf{\phi}$ on Γ_N , $\mathbf{u}|_{\Gamma} = \mathbf{\phi}$ on Γ_D

as a limit of u_{α} when $\alpha(x)$ converges to the defining function of Γ_N in a suitable sense?

We will give affirmative answers to Problems (I) and (II); they will be stated in Theorems I (in § 1) and II (in § 3), respectively.

In connection with our problems, consider the dynamic problem corresponding to (S) when a_{ijkh} and Σ are time-independent. Theorem I enables us to construct a weak solution of this problem with $\{\phi, \phi\} = \{o, o\}$ by the method of Inoue [6]. Under slightly more general assumptions allowing the time-dependence of a_{ijkh} (but not of Σ) and non-zero $\{\phi, \phi\}$, Duvaut & Lions showed the existence of a unique weak solution of that problem by the Faedo-Galerkin method in [2; Théorème 4.1, Chap. 3], and proposed that "L'abandon de cette hypothèse (Σ ne dépend pas du temps) semble conduire à des problèmes ouverts et fort intéressants". Subsequently, Inoue asserted in [7] that "we may believe that the method developed in this paper will be useful to solve the problem posed by Duvaut & Lions". We may say that this paper is the first step to make

sure of his words (see Ito [9]).

The plan of this paper is as follows: §§ 1, 2 are devoted to Problem (I). To examine it we reduce problem $(S_{\alpha})_{\lambda}$ to the study of a system of pseudo-differential equations on Γ of non-elliptic type. And we obtain key estimates by means of Melin's inequality for a certain system of pseudo-differential operators. That is the same manner as Fujiwara & Uchiyama [4], Taira [13], etc., took in studying non-elliptic boundary-value problems for the Laplacian. Although the theorem of Melin [11; Theorem 3.1] is not fit for our matrix-valued operator unlike their scalar cases, we can extend it to our matrix-valued operator of a simple form (see Theorem 2.4 and the note following it). After those, we deduce Theorem I, which is a system version of Taira [13; Theorem 1], from the key estimates using the method of Agmon & Nirenberg developed in Fujiwara [3], Taira [14]. In § 3 we answer Problem (II). In § 4 we consider a slightly more general case. Finally, in Appendix, we prove Theorem 2.4.

§ 1. Reduction to the Boundary.

The purpose of this section is to reduce problem $(S_{\alpha})_{\lambda}$ to a system of pseudo-differential equations on Γ .

Sobolev spaces and pseudo-differential operators. First, we mention the Sobolev spaces, in the framework of which we study our problems. Let M be \mathbb{R}^n , a bounded domain in \mathbb{R}^n with C^{∞} -boundary, or an oriented compact C^{∞} -Riemannian manifold. We denote by $H^{\sigma}(M)$ the complex-valued Sobolev space of order $\sigma \in \mathbb{R}$ with norm $\|\cdot\|_{\sigma,M}$. When M is an oriented compact manifold or \mathbb{R}^n , we utilize the following particular norm on $H^{\sigma}(M)$:

$$||u||_{\sigma, M}^2 = \int_M |\Lambda_M^{\sigma} u|^2 dv_M \text{ with } \Lambda_M = (1 - \Delta_M)^{1/2};$$

and the inner product $(\cdot, \cdot)_M$ on $L^2(M) = H^0(M)$ can be extended to a continuous sesquilinear form on $H^{-\sigma}(M) \times H^{\sigma}(M)$ by

$$(u, v)_M = \int_M \Lambda_M^{-\sigma} u \cdot \overline{\Lambda_M^{\sigma}} v \, dv_M \quad \text{for} \quad u \in H^{-\sigma}(M), v \in H^{\sigma}(M).$$

Here, Δ_M and dv_M denote the Laplace-Beltrami operator and the volume element on M, respectively. We will express various function spaces of (n-)vector functions in boldface: C^{∞} , L^2 , H^{σ} , etc. The same notation as above will be used for the norm of $H^{\sigma}(M)$ and the inner product on $H^{-\sigma}(M) \times H^{\sigma}(M)$.

Secondly, we shortly refer to pseudo-diffential operators. For details, see, e. g., Hörmander [5]. Let $m \in \mathbb{R}$ and let M be an oriented C^{∞} -Riemannian manifold.

A classical pseudo-differential operator $P \in \Psi_{phg}^m(M)$ (regarded as acting on sections of the half density bundle on M) has its principal symbol $p_m(x, \xi)$ and subprincipal symbol $p_{m-1}^s(x, \xi)$, invariantly defined on the cotangent bundle $T^*(M) \setminus 0$ on M with the zero section removed; $p_m(x, \xi)$ (resp. $p_{m-1}^s(x, \xi)$) is homogeneous in $\xi \neq 0$ of degree m (resp. m-1). For example, those symbols of $\Lambda_M^q \in \Psi_{phg}^q(M)$ are given by $|\xi|_M^q$ and 0, respectively, where $|\xi|_M$ denotes the length of $\xi \in T_x^*(M)$ with respect to the metric on M.

By a matrix-valued pseudo-differential operator $P \in \Psi_{phg}^m(M)$, we mean that all its elements belong to $\Psi_{phg}^m(M)$. The principal and subprincipal symbols of P are defined by the matrices of those symbols of its elements. Let $P \in \Psi_{phg}^m(M)$ and $Q \in \Psi_{phg}^m(M)$ be $l \times l$ matrix-valued, and let p_m and p_{m-1}^s , q_μ and $q_{\mu-1}^s$ be respectively their principal and subprincipal symbols. The adjoint and composition formulae are as follows: (i) The principal and subprincipal symbols of the formal adjoint $P^* \in \Psi_{phg}^m(M)$ of P are given by $p_m(x, \xi)^*$ and $p_{m-1}^s(x, \xi)^*$, respectively. In particular, if $P = P^*$, then p_m and p_{m-1}^s are both Hermitian matrices. (ii) The principal and subprincipal symbols of $PQ \in \Psi_{phg}^{m+\mu}(M)$ are given respectively by $p_m(x, \xi)q_\mu(x, \xi)$ and

$$p_{m}(x,\xi)q_{\mu-1}^{s}(x,\xi)+p_{m-1}^{s}(x,\xi)q_{\mu}(x,\xi)-\frac{\sqrt{-1}}{2}\{p_{m}(x,\xi),q_{\mu}(x,\xi)\}$$

where
$$\{\cdot, \cdot\}$$
 denote the Poisson brackets: $\{p_m, q_\mu\} = \sum_j \left(\frac{\partial p_m}{\partial \xi_j} \frac{\partial q_\mu}{\partial x_j} - \frac{\partial p_m}{\partial x_j} \frac{\partial q_\mu}{\partial \xi_j}\right)$.

Throughout this paper, by c, C, C(*), etc., we denote positive constants independent of the various functions or variables found in given inequalities; they may change from line to line.

Uniqueness of solution. We state Korn's inequality, which is useful for the existence theorems in elasticity. For the proof, see, e.g., Duvaut & Lions [2; Théorèmes 3.1 et 3.3, Chap. 3], also Ito [8]. After that, the uniqueness of solution of problem $(S_{\alpha})_{\lambda}$ is proved.

THEOREM 1.1. Let Ω be a bounded domain in \mathbb{R}^n with C^1 -boundary Γ .

(i) For any open subset $\gamma(\neq\emptyset)$ of Γ , there exists a constant $c_K(\gamma)=c_K(\gamma,\Omega)$ >0 such that

$$(1.1) \qquad \sum_{i,j} \int_{\Omega} |\varepsilon_{ij}(\boldsymbol{u})|^2 dx \geq c_K(\gamma) \|\boldsymbol{u}\|_{1,\Omega}^2 \quad for \ all \ \boldsymbol{u} \in \boldsymbol{H}^1(\Omega) \ with \ \boldsymbol{u}|_{\gamma} = \boldsymbol{o}.$$

(ii) There exists a constant $c_K = c_K(\Omega) > 0$ such that

(1.2)
$$\sum_{i,j} \int_{\Omega} |\varepsilon_{ij}(\boldsymbol{u})|^2 dx + \|\boldsymbol{u}\|_{0,\Omega}^2 \ge c_K \|\boldsymbol{u}\|_{1,\Omega}^2 \quad \text{for all } \boldsymbol{u} \in \boldsymbol{H}^1(\Omega).$$

PROPOSITION 1.2. Let $\lambda \ge 0$. If $\mathbf{u} \in \mathbf{H}^2(\Omega)$ is a solution of problem $(S_\alpha)_\lambda$ with $\{\mathbf{f}, \boldsymbol{\phi}\} = \{\mathbf{o}, \mathbf{o}\}$, then $\mathbf{u} = \mathbf{o}$.

PROOF. Denoting the sesquilinear form associated with A by

$$a(\boldsymbol{u}, \boldsymbol{v}) = \sum_{i,j,k,h} \int_{\Omega} a_{ijkh}(x) \varepsilon_{kh}(\boldsymbol{u}) \overline{\varepsilon_{ij}(\boldsymbol{v})} dx$$
$$= \sum_{i,j,k,h} \int_{\Omega} a_{ijkh}(x) \partial_h u_k \cdot \overline{\partial_j v_i} dx \quad \text{(by (0.3))},$$

we have Green's formula for A

$$(1.3) (A\mathbf{u}, \mathbf{v})_{\Omega} = a(\mathbf{u}, \mathbf{v}) - (B\mathbf{u}, \mathbf{v})_{\Gamma} \text{for all } \mathbf{u} \in H^{2}(\Omega), \mathbf{v} \in H^{1}(\Omega).$$

Since $\lambda \ge 0$ and $B_{\alpha} u = 0$ on Γ , we have by (1.3)

$$(A_{\lambda}u, u)_{\Omega} \geq a(u, u) + \int_{\alpha(x)\neq 0} \frac{1-\alpha(x)}{\alpha(x)} |u|^2 dv_{\Gamma} \geq a(u, u).$$

And since $A_{\lambda}u=o$ in Ω , we have using (0.4)

$$0=a(\boldsymbol{u},\,\boldsymbol{u})\geq c_1\sum_{i,j}\int_{\Omega}|\varepsilon_{ij}(\boldsymbol{u})|^2dx\geq 0.$$

Hence $(\varepsilon_{ij}(\boldsymbol{u}))=0$, so that $B_{\alpha}\boldsymbol{u}=(1-\alpha(x))\boldsymbol{u}=\boldsymbol{o}$ on Γ , and $\boldsymbol{u}=\boldsymbol{o}$ on $\{x\in\Gamma; \alpha(x)<1\}$ $\neq\emptyset$. Thus it follows from (1.1) that $\boldsymbol{u}=\boldsymbol{o}$. \square

Operator $T(\lambda)$. When $\alpha(x)\equiv 0$ or >0 on Γ , $(S_{\alpha})_{\lambda}$ is a boundary-value problem of *elliptic* type.

LEMMA 1.3. Let $\lambda \geq 0$ and $\sigma \geq 2$. If $\alpha(x) \equiv 0$ (resp. >0) on Γ , then for any $\mathbf{f} \in \mathbf{H}^{\sigma-2}(\Omega)$ and $\mathbf{\phi} \in \mathbf{H}^{\sigma-1/2}(\Gamma)$ (resp. $\mathbf{H}^{\sigma-2/3}(\Gamma)$) there exists a unique solution $\mathbf{u} \in \mathbf{H}^{\sigma}(\Omega)$ of problem $(S_{\alpha})_{\lambda}$. And the mapping: $\mathbf{u} \rightarrow \{\mathbf{f}, \mathbf{\phi}\}$ is an isomorphism between the corresponding Sobolev spaces.

PROOF. We have by (0.4) and (1.2)

$$a(u, u) \ge C_1 \|u\|_{1, \Omega}^2 - C_2 \|u\|_{0, \Omega}^2$$
 for all $u \in H^1(\Omega)$.

This inequality implies that the differential system A is strongly elliptic on $\bar{\Omega}$ and the boundary-value problem $\{A, B\}$ satisfies the strong complementing condition on Γ (see Simpson & Spector [12]), and accordingly the boundary-value problems $\{A, Dirichlet\}$ and $\{A, B\}$ are elliptic in the sense of Hörmander [5; Definition 20.1.1]. In addition, these are formally self-adjoint boundary-value problems as easily seen, so that for $\sigma \geq 2$ the mappings

(1.4)
$$\begin{cases} H^{\sigma}(\Omega) \ni u \longrightarrow \{Au, u|_{\Gamma}\} \in H^{\sigma-2}(\Omega) \times H^{\sigma-1/2}(\Gamma), \\ H^{\sigma}(\Omega) \ni u \longrightarrow \{Au, Bu\} \in H^{\sigma-2}(\Omega) \times H^{\sigma-3/2}(\Gamma) \end{cases}$$

are Fredholm operators with index 0. Therefore, we conclude from Proposition 1.2 that the following compact perturbations of (1.4):

$$\begin{cases}
H^{\sigma}(\Omega) \ni u \longrightarrow \{A_{\lambda}u, u|_{\Gamma}\} \in H^{\sigma-2}(\Omega) \times H^{\sigma-1/2}(\Gamma), \\
H^{\sigma}(\Omega) \ni u \longrightarrow \{A_{\lambda}u, (B + \frac{1 - \alpha(x)}{\alpha(x)}I)u\} \in H^{\sigma-2}(\Omega) \times H^{\sigma-3/2}(\Gamma), & \text{if } \alpha(x) > 0,
\end{cases}$$

are isomorphisms.

Let $\lambda \ge 0$ and $\sigma \ge 2$. Using Lemma 1.3, the Dirichlet problem

$$A_1 \mathbf{u} = \mathbf{o}$$
 in Ω , $\mathbf{u}|_{\Gamma} = \mathbf{\phi}$ on Γ

admits a unique solution $u \in H^{\sigma}(\Omega)$ for any $\phi \in H^{\sigma-1/2}(\Gamma)$. Define a mapping $P(\lambda)$ by $u = P(\lambda)\phi$; $P(\lambda)$ is an isomorphism: $H^{\sigma-1/2}(\Gamma) \to H^{\sigma}(\Omega)$, which we call the *Poisson operator* (for A_{λ}). Then $T(\lambda) := BP(\lambda)$ defines a continuous linear operator: $H^{\sigma-1/2}(\Gamma) \to H^{\sigma-3/2}(\Gamma)$, which makes sense for any $\sigma \in R$ because $T(\lambda) \in \Psi_{phg}^1(\Gamma)$ as will be shown below. We now state some properties of $T(\lambda)$ as a pseudo-differential operator.

PROPOSITION 1.4. Let $\lambda \geq 0$. The mapping $T(\lambda)$ is an $n \times n$ matrix-valued pseudo-differential operator $\in \Psi_{phg}^1(\Gamma)$ with λ -independent principal symbol $t_1(x, \xi)$ and subprincipal symbol $t_0^s(x, \xi)$ defined on $T^*(\Gamma) \setminus 0$. Moreover, $T(\lambda)$ is formally self-adjoint (which implies that $t_1(x, \xi)$ is Hermitian) and is strongly elliptic in the sense that there exists a constant $c_2 > 0$ such that

$$(1.5) t_1(x,\xi) \ge c_2 |\xi| \Gamma I on T^*(\Gamma) \setminus 0, I: the identity matrix.$$

PROOF. Applying Theorem 20.1.5 in [5] to our case and using the existence of a unique solution for $(S_{\alpha=0})_{\lambda\geq 0}$, we can show that: (i) $P(\lambda)$ admits an extension to a continuous linear operator: $H^{\sigma-1/2}(\Gamma) \to H^{\sigma}(\Omega)$ for any $\sigma \in \mathbb{R}$; (ii) $BP(\lambda)$ is a pseudo-differential operator $\in \Psi^1_{phg}(\Gamma)$ with λ -independent principal and subprincipal symbols.

Putting $u=P(\lambda)\phi$, $v=P(\lambda)\phi$ in (1.3) for ϕ , $\phi \in C^{\infty}(\Gamma)$, we obtain

$$(1.6) (T(\lambda)\phi, \phi)_{\Gamma} = a(P(\lambda)\phi, P(\lambda)\phi) + \lambda(P(\lambda)\phi, P(\lambda)\phi)_{\Omega},$$

which implies the formal self-adjointness of $T(\lambda)$. And if $\phi = \phi$ in (1.6) particularly, we have by (0.4) and (1.2)

(1.7)
$$(T(\lambda)\phi, \phi)_{\Gamma} \ge c_1 c_K \|P(\lambda)\phi\|_{1,\Omega}^2 + (\lambda - c_1) \|P(\lambda)\phi\|_{0,\Omega}^2$$

$$\ge c_2 \|\phi\|_{1/2,\Gamma}^2 - C \|\phi\|_{-1/2,\Gamma}^2,$$

where the last inequality is due to the trace theorem and the property (i) of $P(\lambda)$. Since the principal symbol of $A_{\Gamma}^{1/2}$ is $|\xi|_{\Gamma}^{1/2}$, we conclude from (1.7) that

$$t_1(x, \xi) \boldsymbol{\eta} \cdot \overline{\boldsymbol{\eta}} \geq c_2 |\xi|_{\Gamma} |\boldsymbol{\eta}|^2$$
 for all $(x, \xi) \in T^*(\Gamma) \setminus 0, \boldsymbol{\eta} \in C^n$.

This indicates the strong ellipticity of $T(\lambda)$. \square

EXAMPLE. When an elastic body is homogeneous and isotropic, the elasticity coefficients a_{ijkh} are given by

$$a_{ijkh} = \lambda \delta_{ij} \delta_{kh} + \mu (\delta_{ik} \delta_{jh} + \delta_{ih} \delta_{jk})$$

where λ , $\mu \in \mathbb{R}$ are the Lamé moduli, δ_{ij} the Kronecker delta. The condition $\mu > 0$ and $n\lambda + 2\mu > 0$ is equivalent to condition (0.4):

$$\sum_{i,j,k,h} a_{ijkh} s_{kh} s_{ij} \ge \min\{2\mu, n\lambda + 2\mu\} \sum_{i,j} s_{ij}^2$$
 for all (s_{ij}) as in (0.4) ;

and the associated A of (0.1) is strongly elliptic if $\mu>0$ and $\lambda+2\mu>0$; in fact, the symbol $a(\xi)=(\sum_{j,h}a_{ijkh}\xi_j\xi_h)_{i,k}$ of A satisfies

(1.9)
$$a(\xi)\eta \cdot \overline{\eta} \ge \min\{\mu, \lambda + 2\mu\} |\xi|^2 |\eta|^2$$
 for all $\xi \in \mathbb{R}^n, \eta \in \mathbb{C}^n$.

Consider a homogeneous isotropic elastic body occupying $\overline{R_+^n}$. Let P be the Poisson operator which assigns to $\phi \in C_0^{\infty}(R^{n-1})$ the bounded solution $u \in C^{\infty}(\overline{R_+^n})$ of the Dirichlet problem

$$Au=o$$
 in \mathbb{R}^n_+ , $u|_{\partial \mathbb{R}^n_+}=\phi$ on $\partial \mathbb{R}^n_+\cong \mathbb{R}^{n-1}$.

Then, T := BP belongs to $\Psi_{phg}(\mathbf{R}^{n-1})$ and its symbol is calculated as

$$\frac{\mu(\lambda+\mu)}{\lambda+\mu} \begin{cases} \frac{\lambda+3\mu}{\lambda+\mu} |\xi| + \frac{\xi_1^2}{|\xi|} & \frac{\xi_1\xi_2}{|\xi|} & \cdots & \frac{\xi_1\xi_{n-1}}{|\xi|} & \frac{-2\sqrt{-1}\mu}{\lambda+\mu} \xi_1 \\ \frac{\xi_1\xi_2}{|\xi|} & \frac{\lambda+3\mu}{\lambda+\mu} |\xi| + \frac{\xi_2^2}{|\xi|} & \ddots & \vdots \\ \vdots & \ddots & \vdots & \vdots \\ \frac{\xi_1\xi_{n-1}}{|\xi|} & \cdots & \frac{\xi_{n-2}\xi_{n-1}}{|\xi|} & \frac{\lambda+3\mu}{\lambda+\mu} |\xi| + \frac{\xi_{n-1}^2}{|\xi|} & \frac{-2\sqrt{-1}\mu}{\lambda+\mu} \xi_{n-1} \\ \frac{2\sqrt{-1}\mu}{\lambda+\mu} \xi_1 & \cdots & \frac{2\sqrt{-1}\mu}{\lambda+\mu} \xi_{n-1} & \frac{2(\lambda+2\mu)}{\lambda+\mu} |\xi| \end{cases}$$

where $\xi = (\xi_1, \dots, \xi_{n-1}) \neq 0$ (see Ito [8; Theorem 4.4]). Since the eigenvalues of this Hermitian matrix are given by

$$\underbrace{\mu|\xi|,\,\cdots,\,\mu|\xi|}_{n-2},\,2\mu|\xi|,\,\frac{2\mu(\lambda+\mu)}{\lambda+3\mu}|\xi|,$$

it is positive definite if $\mu>0$ and $\lambda+\mu>0$, when the sesquilinear form $a(\cdot,\cdot)$ associated with (1.8) is coercive on $H^1(\mathbb{R}^n_+)$ in view of (1.9); more precisely, we have

$$a(\boldsymbol{u},\,\boldsymbol{u}) \geq \frac{4\mu(\lambda+\mu)}{(3\lambda+5\mu+\sqrt{9\lambda^2+14\lambda\mu+9\mu^2})} \sum_{i,j} \|\partial_j u_i\|_{\boldsymbol{R}_+^n}^2 \quad \text{for all} \quad \boldsymbol{u} \in \boldsymbol{H}^1(\boldsymbol{R}_+^n),$$

where the constant is best possible (see Ito [8; Theorem 4.6]).

Reduction to the boundary. Define a function space $H^{\sigma}_{(a)}(\Gamma)$ by

$$H^{\sigma}_{(\alpha)}(\Gamma) = \{ \phi = \alpha(x)\phi_1 + (1-\alpha(x))\phi_0; \phi_1 \in H^{\sigma}(\Gamma), \phi_0 \in H^{\sigma+1}(\Gamma) \}.$$

The following lemma, whose proof we leave to the reader, is fundamental concerning this space.

LEMMA 1.5. The $H_{(\alpha)}^{\sigma}(\Gamma)$ is a Banach space equipped with the norm $\|\phi\|_{\alpha; \sigma, \Gamma} := \inf\{\|\phi_1\|_{\sigma, \Gamma} + \|\phi_0\|_{\sigma+1, \Gamma}; \phi = \alpha(x)\phi_1 + (1-\alpha(x))\phi_0$

with
$$\phi_1 \in H^{\sigma}(\Gamma)$$
, $\phi_0 \in H^{\sigma+1}(\Gamma)$.

And we have the continuous inclusion relations

$$H^{\sigma+1}(\Gamma) = H^{\sigma}_{(\alpha \equiv 0)}(\Gamma) \subset H^{\sigma}_{(\alpha)}(\Gamma) \subset H^{\sigma}_{(\alpha \equiv 1)}(\Gamma) = H^{\sigma}(\Gamma);$$

if $\alpha(x)>0$ on Γ , then $H^{\sigma}_{(\alpha)}(\Gamma)=H^{\sigma}(\Gamma)$ as Banach spaces.

Now we can answer Problem (I) by means of the space $H^{\sigma}_{(\alpha)}(\Gamma)$.

THEOREM I. Let $\lambda \geq 0$ and $\sigma \geq 2$. For any $\mathbf{f} \in \mathbf{H}^{\sigma-2}(\Omega)$ and $\mathbf{\phi} \in \mathbf{H}^{\sigma-3/2}(\Gamma)$, there exists a unique solution $\mathbf{u} \in \mathbf{H}^{\sigma}(\Omega)$ of problem $(S_{\alpha})_{\lambda}$. Furthermore, the mapping

$$(1.10) \{A_{\lambda}, B_{\alpha}\}: H^{\sigma}(\Omega) \ni u \longrightarrow \{A_{\lambda}u, B_{\alpha}u\} \in H^{\sigma-2}(\Omega) \times H^{\sigma-3/2}_{(\alpha)}(\Gamma)$$

is an (algebraic and topological) isomorphism.

Theorem I will be proved in § 2. Here we reduce $(S_{\alpha})_{\lambda}$ to a system of pseudo-differential equations on the boundary Γ .

PROPOSITION 1.6. Assume that, for any $\phi \in H^{\sigma-1/2}(\Gamma)$, the problem

$$(1.11) T_{\alpha}(\lambda)\phi = \phi on \Gamma$$

admits a unique solution $\phi \in H^{\sigma-1/2}(\Gamma)$ where $T_{\alpha}(\lambda) = \alpha(x)T(\lambda) + (1-\alpha(x))I$, $\lambda \ge 0$. Then Theorem I follows.

PROOF. By definition, $\phi \in H^{\sigma-3/2}_{(\alpha)}(\Gamma)$ can be written in the form $\phi = \alpha(x)\phi_1 + (1-\alpha(x))\phi_0$ with some $\{\phi_1, \phi_0\} \in H^{\sigma-3/2}(\Gamma) \times H^{\sigma-1/2}(\Gamma)$. By Lemma 1.3, the boundary-value problem

$$A_{\lambda}v = f$$
 in Ω , $Bv + v = \phi_1 - \phi_0$ on Γ

has a unique solution $v \in H^{\sigma}(\Omega)$. Thus we see that $u \in H^{\sigma}(\Omega)$ is a unique solution of $(S_{\alpha})_{\lambda}$ if and only if $w := u - v \in H^{\sigma}(\Omega)$ is that of the boundary-value problem

(1.12)
$$A_{\lambda} \boldsymbol{w} = \boldsymbol{o} \text{ in } \Omega, \quad B_{\alpha} \boldsymbol{w} = (2\alpha(x) - 1)\boldsymbol{v}|_{\Gamma} + \boldsymbol{\phi}_{0} \text{ on } \Gamma.$$

Moreover, since $w=P(\lambda)\phi$ with $\phi:=w|_{\Gamma}$, the solution $w\in H^{\sigma}(\Omega)$ of (1.12) corresponds one-to-one to the solution $\phi\in H^{\sigma-1/2}(\Gamma)$ of

(1.13)
$$T_{\alpha}(\lambda)\phi = (2\alpha(x)-1)v|_{\Gamma} + \phi_0 \quad \text{on } \Gamma.$$

By assumption, (1.13) admits a unique solution $\phi \in H^{\sigma-1/2}(\Gamma)$, which indicates the unique existence of solution for $(S_{\alpha})_{\lambda}$. That (1.10) is an isomorphism is due to the closed graph theorem. \square

§ 2. Solvability of Problem $(S_a)_{\lambda}$.

Operator \tilde{T} . To examine the solvability of (1.11), we use a method due to Agmon & Nirenberg: we introduce an auxiliary variable $y \in S := R^1/2\pi Z$, the unit circle (see Fujiwara [3], Taira [14]). We consider the differential operator $\tilde{A} := A - \partial_y^2$ in $\Omega \times S$. The boundary operator B of (0.2) is regarded as defined on $\partial(\Omega \times S) = \Gamma \times S$. The following lemma corresponds to Lemma 2.3.

LEMMA 2.1. Let $\sigma \geq 2$, $\tilde{f} \in H^{\sigma-2}(\Omega \times S)$ and $\tilde{\phi} \in H^{\sigma-1/2}(\Omega \times S)$. Then the Dirichlet problem

(2.1)
$$\widetilde{A}u = \widetilde{f} \text{ in } \Omega \times S, \quad \widetilde{u}|_{\Gamma \times S} = \widetilde{\phi} \text{ on } \Gamma \times S$$

admits a unique solution $\tilde{\boldsymbol{u}} \in \boldsymbol{H}^{\sigma}(\Omega \times \boldsymbol{S})$, and the mapping:

$$H^{\sigma}(\Omega \times S) \ni \tilde{\mathbf{u}} \longrightarrow \{\tilde{A}\tilde{\mathbf{u}}, \tilde{\mathbf{u}} \mid_{\Gamma \times S}\} \in H^{\sigma-2}(\Omega \times S) \times H^{\sigma-1/2}(\Gamma \times S)$$

is an isomorphism.

By Lemma 2.1 we can define the Poisson operator \tilde{P} which assigns to $\tilde{\phi} \in H^{\sigma-1/2}(\Gamma \times S)$, $\sigma \ge 2$, the unique solution $u \in H^{\sigma}(\Omega \times S)$ of (2.1) with $\tilde{f} = o$; \tilde{P} is an isomorphism: $H^{\sigma-1/2}(\Gamma \times S) \to H^{\sigma}(\Omega \times S)$. Then $\tilde{T} := B\tilde{P}$ defines a continuous linear operator: $H^{\sigma-1/2}(\Gamma \times S) \to H^{\sigma-3/2}(\Gamma \times S)$, which makes sense for any $\sigma \in R$. The following proposition for \tilde{T} corresponds to Proposition 1.4 for $T(\lambda)$.

PROPOSITION 2.2. The mapping \tilde{T} is an $n \times n$ matrix-valued pseudo-differential operator $\in \Psi_{phg}^1(\Gamma \times S)$, whose principal symbol we write $\tilde{t}_1(x, \xi; y, \eta)$, $(x, \xi; y, \eta) \in (T^*\Gamma \times T^*S) \setminus 0 \cong T^*(\Gamma \times S) \setminus 0$. Moreover, \tilde{T} enjoys the property of formal self-adjointness (which implies $\hat{t}_1(x, \xi; y, \eta)$ is a Hermitian matrix) and the property of strong ellipticity in the sense that there exists a constant $c_3 > 0$ such that

(2.2)
$$\tilde{t}_1(x, \xi; y, \eta) \ge c_3 |(\xi, \eta)|_{\Gamma \times S} \text{I}$$
 on $T^*(\Gamma \times S) \setminus 0$ where $|(\xi, \eta)|_{\Gamma \times S} = \sqrt{|\xi|_{\Gamma}^2 + \eta^2}$.

A priori estimates. We set $\widetilde{T}_{\alpha} = \alpha(x)\widetilde{T} + (1-\alpha(x))I$ ($\in \Psi_{phg}^1(\Gamma \times S)$). The following estimates for \widetilde{T}_{α} and its formal adjoint \widetilde{T}_{α}^* play an important role in proving Theorem I.

PROPOSITION 2.3. Let $\sigma \in \mathbb{R}$. There exists a constant $C = C(\alpha, \sigma) > 0$ such that for all $\tilde{\phi} \in C^{\infty}(\Gamma \times S)$

$$\|\tilde{\boldsymbol{\phi}}\|_{\sigma-1/2, \Gamma \times S} \leq C(\|\tilde{T}_{\alpha}\tilde{\boldsymbol{\phi}}\|_{\sigma-1/2, \Gamma \times S} + \|\tilde{\boldsymbol{\phi}}\|_{\sigma-1, \Gamma \times S}),$$

$$\|\tilde{\boldsymbol{\phi}}\|_{-\sigma+1/2, \Gamma \times S} \leq C(\|\tilde{T}_{\alpha}^*\tilde{\boldsymbol{\phi}}\|_{-\sigma+1/2, \Gamma \times S} + \|\tilde{\boldsymbol{\phi}}\|_{-\sigma, \Gamma \times S}).$$

To prove Proposition 2.3, we utilize Melin's inequality (see Melin [11] and Hörmander [5]) in the following form.

THEOREM 2.4. Let M be an oriented compact C^{∞} -Riemannian manifold. And let P be an $l \times l$ matrix-valued pseudo-differential operator $\in \Psi_{phg}^m(M)$, $m \in \mathbb{R}$. Assume that the principal and subprincipal symbols $p_m(x, \xi)$ and $p_{m-1}^s(x, \xi)$ of P satisfy respectively the following conditions:

(i) $p_m(x, \xi)$ is expressed as $p_m(x, \xi) = a_m(x, \xi)q_0(x, \xi)$ with a real-valued symbol a_m homogeneous in $\xi \neq 0$ of degree m and an $l \times l$ matrix symbol q_0 homogeneous in $\xi \neq 0$ of degree 0 such that

$$a_m(x, \xi) \ge 0$$
, Re $q_0(x, \xi) > 0$ (positive definite) on $T^*(M) \setminus 0$

where $\operatorname{Re} q_0$ denotes the Hermitian part of q_0 : $\operatorname{Re} q_0 = (q_0 + q_0^*)/2$;

(ii) The Hermitian part $Re p_{m-1}^s$ of p_{m-1}^s satisfies

Re
$$p_{m-1}^{s}(x, \xi) + \frac{1}{2} (\operatorname{Tr}^{+} H_{a_{m}}(x, \xi)) \operatorname{Re} q_{0}(x, \xi) \ge c_{0} \operatorname{I}, \quad c_{0} \in \mathbb{R}$$
,

on the characteristic set $\Sigma_{a_m} := \{(x, \xi) \in T^*(M) \setminus 0; a_m(x, \xi) = 0\}$ of a_m . Here, $H = H_{a_m}$ is the Hessian of a_m invariantly defined on Σ_{a_m} , and Tr^+H denotes the sum of the positive eigenvalues, each being counted with its multiplicity, of the Hamilton map of $H/\sqrt{-1}$ (see [5]).

Then, for any $\varepsilon > 0$ we have Melin's inequality for P:

(2.3)
$$\operatorname{Re}(Pu, u)_{M} \geq (c_0 - \varepsilon) \|u\|_{(m-1)/2, M}^2 - C(\varepsilon) \|u\|_{(m-2)/2, M}^2$$
 for all $u \in C^{\infty}(M)$.

Furthermore, if $c_0>0$, for any $\varepsilon\in(0, c_0)$ and $s\in\mathbb{R}$ we have the following estimates with loss of one derivtive: for all $\mathbf{u}\in\mathbb{C}^{\infty}(M)$,

(2.4)
$$\begin{cases} \|Pu\|_{s,M}^2 \ge (c_0 - \varepsilon)^2 \|u\|_{s+m-1,M}^2 - C(\varepsilon, s) \|u\|_{s+m-3/2,M}^2, \\ \|P^*u\|_{s,M}^2 \ge (c_0 - \varepsilon)^2 \|u\|_{s+m-1,M}^2 - C(\varepsilon, s) \|u\|_{s+m-3/2,M}^2. \end{cases}$$

This simple system version of Melin's inequality is already known (essentially). When $P \in \Psi_{phg}^m(M)$, m > 1, satisfies (i) with $q_0(x, \xi) = I$ and (ii) with $c_0 > 0$, Iwasaki [10] constructed the fundamental solution E(t) of (d/dt) + P in a certain class of pseudo-differential operators with parameter t; inequality (2.3) follows as a corollary of that. We will, however, prove Theorem 2.4 more directly in Appendix.

PROOF OF PROPOSITION 2.3. Using the composition formula, the principal and subprincipal symbols $p_1(x, \xi; y, \eta)$ and $p_0^s(x, \xi; y, \eta)$ of $P := \tilde{T}_{\alpha}$ are calculated respectively as $p_1(x, \xi; y, \eta) = \alpha(x)\tilde{t}_1(x, \xi; y, \eta)$ and

$$p_0^{s}(x, \xi; y, \eta) = I + \alpha(x)(\tilde{t}_0^{s}(x, \xi; y, \eta) - I) - \frac{\sqrt{-1}}{2} \{\alpha(x)I, \tilde{t}_1(x, \xi; y, \eta)\}$$

where $\tilde{t}_0^s(x, \xi; y, \eta)$ is the subprincipal symbol of \tilde{T} . Put

$$a_1(x, \xi; y, \eta) = \alpha(x) |(\xi, \eta)|_{\Gamma \times S}, q_0(x, \xi; y, \eta) = \tilde{t}_1(x, \xi; y, \eta) / |(\xi, \eta)|_{\Gamma \times S},$$

then P satisfies (i) of Theorem 2.4 by Proposition 2.2. Since, at all zeros $(x, \xi; y, \eta)$ of $a_1, \operatorname{Tr}^+H_{a_1}(x, \xi; y, \eta) \ge 0$ by definition (=0 truth to tell) and $p_0^s(x, \xi; y, \eta) = I$, P satisfies also (ii) with $c_0 = 1$. Consequently we obtain the desired estimates from (2.4). \square

Proof of Theorem I. Following Taira [14], we associate with equation (1.11) the closed linear operator $\mathcal{I}_{\alpha}(\lambda): \mathcal{D}(\mathcal{I}_{\alpha}(\lambda)) \subset H^{\sigma-1/2}(\Gamma) \to H^{\sigma-1/2}(\Gamma)$ defined by

(a)
$$\mathcal{D}(\mathcal{I}_{\alpha}(\lambda)) = \{ \phi \in H^{\sigma - 1/2}(\Gamma) ; T_{\alpha}(\lambda) \phi \in H^{\sigma - 1/2}(\Gamma) \}$$
,

(b)
$$\mathcal{I}_{\alpha}(\lambda)\phi = T_{\alpha}(\lambda)\phi$$
 for $\phi \in \mathcal{D}(\mathcal{I}_{\alpha}(\lambda))$

where $\mathcal{D}(\mathcal{I}_{\alpha}(\lambda))$ denotes the domain of $\mathcal{I}_{\alpha}(\lambda)$. We define also a closed linear operator $\tilde{\mathcal{I}}_{\alpha}: \mathcal{D}(\tilde{\mathcal{I}}_{\alpha}) \subset H^{\sigma-1/2}(\Gamma \times S) \to H^{\sigma-1/2}(\Gamma \times S)$ by

(ã)
$$\mathcal{D}(\tilde{\mathcal{I}}_{\alpha}) = \{\tilde{\boldsymbol{\phi}} \in \boldsymbol{H}^{\sigma-1/2}(\Gamma \times \boldsymbol{S}); \ \tilde{T}_{\alpha}\tilde{\boldsymbol{\phi}} \in \boldsymbol{H}^{\sigma-1/2}(\Gamma \times \boldsymbol{S})\},$$

$$(\tilde{b}) \quad \tilde{\mathcal{I}}_{\alpha} \tilde{\boldsymbol{\phi}} = \tilde{T}_{\alpha} \tilde{\boldsymbol{\phi}} \quad \text{for} \quad \tilde{\boldsymbol{\phi}} \in \mathcal{D}(\tilde{\mathcal{I}}_{\alpha}).$$

Since \mathfrak{T}_{α} is densely defined as easily seen, \mathfrak{T}_{α} admits its *adjoint* operator \mathfrak{T}_{α}^* : $\mathfrak{D}(\mathfrak{T}_{\alpha}^*) \subset H^{-\sigma+1/2}(\Gamma \times S) \to H^{-\sigma+1/2}(\Gamma \times S)$. Similarly, $\mathfrak{T}_{\alpha}(\lambda)$ admits its adjoint

 $\mathcal{I}_{\alpha}(\lambda)^*$.

LEMMA 2.5. The closed linear operator \tilde{I}^*_{α} is characterized by

$$(\tilde{\mathbf{a}}^*) \quad \mathcal{D}(\tilde{\mathcal{I}}_{\sigma}^*) = \{ \tilde{\boldsymbol{\phi}} \in \boldsymbol{H}^{-\sigma+1/2}(\Gamma \times \boldsymbol{S}) \; ; \; \tilde{\boldsymbol{T}}_{\sigma}^* \tilde{\boldsymbol{\phi}} \in \boldsymbol{H}^{\sigma+1/2}(\Gamma \times \boldsymbol{S}) \},$$

$$(\tilde{b}^*)$$
 $\tilde{\mathcal{I}}_{\alpha}^*\tilde{\boldsymbol{\phi}} = \tilde{\mathcal{T}}_{\alpha}^*\tilde{\boldsymbol{\phi}}$ for $\tilde{\boldsymbol{\phi}} \in \mathcal{D}(\tilde{\mathcal{I}}_{\alpha}^*)$.

By the definition of \mathcal{I}_{α} , Lemma 2.5 and Proposition 2.3, we have

$$\|\tilde{\boldsymbol{\phi}}\|_{\sigma-1/2, \Gamma \times S} \leq C(\|\tilde{\mathcal{I}}_{\alpha}\tilde{\boldsymbol{\phi}}\|_{\sigma-1/2, \Gamma \times S} + \|\tilde{\boldsymbol{\phi}}\|_{\sigma-1, \Gamma \times S})$$
 for all $\tilde{\boldsymbol{\phi}} \in \mathcal{D}(\tilde{\mathcal{I}}_{\alpha})$,

$$\|\tilde{\boldsymbol{\phi}}\|_{-\sigma+1/2, \Gamma \times S} \leq C(\|\tilde{\mathcal{T}}_{\alpha}^*\tilde{\boldsymbol{\phi}}\|_{-\sigma+1/2, \Gamma \times S} + \|\tilde{\boldsymbol{\phi}}\|_{-\sigma, \Gamma \times S})$$
 for all $\tilde{\boldsymbol{\phi}} \in \mathcal{D}(\tilde{\mathcal{T}}_{\alpha}^*)$.

Furthermore, since $H^s(\Gamma \times S) \hookrightarrow H^{s-1/2}(\Gamma \times S)$ is compact for any $s \in \mathbb{R}$, \mathfrak{T}_{α} and \mathfrak{T}_{α}^* are, as well-known, semi-Fredholm operators (i. e., operator T with finite dimensional kernel $\mathfrak{I}(T)$ and closed range $\mathfrak{R}(T)$).

As a result, by the same argument as in [14], we arrive at:

PROPOSITION 2.6. Let $l \in \mathbb{Z}$. Then mapping $\mathcal{I}_{\alpha}(l^2) : \mathcal{D}(\mathcal{I}_{\alpha}(l^2)) \subset H^{s-1/2}(\Gamma) \to H^{s-1/2}(\Gamma)$ is a Fredholm operator with the property that there exist finite subsets J and J^* of \mathbb{Z} such that

$$\begin{split} \dim & \mathcal{H}(\mathcal{T}_{\alpha}(l^2)) < \infty \ \ \text{if} \ \ l \in J, \quad =0 \ \ \text{if} \ \ l \in \mathbf{Z} \setminus J; \\ \dim & \mathcal{H}(\mathcal{T}_{\alpha}(l^2)) = \dim & \mathcal{H}(\mathcal{T}_{\alpha}^*(l^2)) < \infty \ \ \text{if} \ \ l \in J^*, \quad =0 \ \ \text{if} \ \ l \in \mathbf{Z} \setminus J^*. \end{split}$$

END OF PROOF OF THEOREM I. Let $\sigma \geq 2$. Since the principal and subprincipal symbols of $T(\lambda)$ are, by Proposition 1.4, independent of $\lambda \geq 0$, so are those of $T_{\alpha}(\lambda)$; hence $T_{\alpha}(\lambda_1) - T_{\alpha}(\lambda_2) \in \Psi_{phg}^{-1}(\Gamma)$ for any λ_1 , $\lambda_2 \geq 0$. Thus, $\mathcal{D}(\mathcal{I}_{\alpha}(\lambda))$ is also independent of $\lambda \geq 0$, and for any λ_1 , $\lambda_2 \geq 0$ the mapping $\mathcal{I}_{\alpha}(\lambda_1) - \mathcal{I}_{\alpha}(\lambda_2)$ admits an extension to a compact operator: $H^{\sigma-1/2}(\Gamma) \rightarrow H^{\sigma-1/2}(\Gamma)$.

On the other hand, Proposition 2.6 shows that the mapping $\mathcal{I}_{\alpha}(\lambda_0)$, $\lambda_0 = l_0^2$ with some $l_0 \in \mathbb{Z} \setminus (J \cup J^*)$, is a Fredholm operator with index 0. Therefore, for any $\lambda \geq 0$, $\mathcal{I}_{\alpha}(\lambda) = \mathcal{I}_{\alpha}(\lambda_0) + (\mathcal{I}_{\alpha}(\lambda) - \mathcal{I}_{\alpha}(\lambda_0))$ is a compact perturbation of a Fredholm operator with index 0, and hence is a Fredholm operator with index 0.

We finally show $\dim \mathcal{H}(\mathcal{I}_{\alpha}(\lambda))=0$. If $\phi \in \mathcal{D}(\mathcal{I}_{\alpha}(\lambda)) \subset H^{\sigma-1/2}(\Gamma)$ satisfies $T_{\alpha}(\lambda)\phi$ =0 on Γ , we have by putting $u=P(\lambda)\phi$

$$A_{\lambda} \boldsymbol{u} = \boldsymbol{o}$$
 in Ω , $B_{\alpha} \boldsymbol{u} = \boldsymbol{o}$ on Γ .

Thus Proposition 1.2. gives that u=o and $\phi=u|_{\Gamma}=o$. It therefore follows that

$$\operatorname{codim} \mathfrak{R}(\mathcal{I}_{\alpha}(\lambda)) = \operatorname{ind} \mathcal{I}_{\alpha}(\lambda) - \dim \mathfrak{N}(\mathcal{I}_{\alpha}(\lambda)) = 0,$$

which completes the proof of Theorem I by Proposition 1.6.

§ 3. Weak Solution of Problem (S).

In this section, we construct a weak solution to (S) using Theorem I (cf. Duvaut & Lions [2; Théorème 3.3, Chap. 3]).

DEFINITION. Suppose $f \in L^2(\Omega)$, $\phi \in L^2(\Gamma)$ and $\phi \in H^{1/2}(\Gamma)$ in (S). We call $u \in H^1(\Omega)$ a weak solution of problem (S) if $u|_{\Gamma} = \phi$ on Γ_D and

(3.1)
$$a(\boldsymbol{u}, \boldsymbol{\eta}) = (\boldsymbol{f}, \boldsymbol{\eta})_{\Omega} + (\boldsymbol{\phi}, \boldsymbol{\eta})_{\Gamma_N} \quad \text{for all } \boldsymbol{\eta} \in \boldsymbol{H}_0^1(\Omega \cup \Gamma_N).$$

Here $H_0^1(\Omega \cup \Gamma_N)$ denotes the closure of $C_0^{\infty}(\Omega \cup \Gamma_N) := \{u \in C^{\infty}(\bar{\Omega}); \text{ supp } u \subset \Omega \cup \Gamma_N\}$ in $H^1(\Omega)$. Since the interface $\Sigma = \bar{\Gamma}_N \cap \bar{\Gamma}_D$ between Γ_N and Γ_D is of class C^1 , this space is characterized as

$$H_0^1(\Omega \cup \Gamma_N) = \{ \boldsymbol{u} \in H^1(\Omega) ; \boldsymbol{u} |_{\Gamma} = \boldsymbol{o} \text{ on } \Gamma_D \}.$$

See the Proof of Lemma 10 in Browder [1].

Let $f \in L^2(\Omega)$, $\phi \in L^2(\Gamma)$ and $\phi \in H^{1/2}(\Gamma)$ be given. We begin with constructing a collection of approximate solutions of (S) by means of Theorem I. We may assume, without loss of generality, that $\sup \phi \subset \Gamma \setminus \bar{\gamma}_0$ with γ_0 an open subset of Γ such that $\bar{\gamma}_0 \subset \Gamma_N$. Choose sequences $\{\phi_m\}$ in $H^{1/2}(\Gamma)$ and $\{\phi_m\}$ in $H^{3/2}(\Gamma)$ with $\sup \phi_m \subset \Gamma \setminus \bar{\gamma}_0$ so that

$$(3.2) \quad \phi_m \longrightarrow \phi \quad \text{in} \quad H^{-1/2}(\Gamma), \quad \phi_m \longrightarrow \phi \quad \text{in} \quad H^{1/2}(\Gamma) \quad \text{as} \quad m \longrightarrow \infty.$$

Now, let $\{\varepsilon_m\}_{m=1}^{\infty}$ be an arbitrary decreasing sequence tending to 0 such that $\gamma_1 \neq \emptyset$ where $\gamma_m = \{x \in \Gamma_D; \operatorname{dist}_{\Gamma}(x, \Gamma_N) \geq \varepsilon_m\}$. It is easy to construct a family $\{\alpha_m(x)\}$ in $C^{\infty}(\Gamma)$ such that $0 \leq \alpha_m(x) \leq 1$ on Γ and $\alpha_m(x) = 1$ on Γ_N , =0 on γ_m . We set $B_m = B_{\alpha_m}$.

For each m, consider the approximate problem $(S)_m$ of (S) given by

$$(S)_m$$
 $A \mathbf{u} = \mathbf{f}$ in Ω , $B_m \mathbf{u} = \alpha_m(x) \boldsymbol{\phi}_m + (1 - \alpha_m(x)) \boldsymbol{\phi}_m$ on Γ .

By applying Theorem I, we get the unique solution $u_m \in H^2(\Omega)$ of $(S)_m$.

THEOREM II. The sequence $\{u_m\}$ in $H^2(\Omega)$ obtained above is $H^1(\Omega)$ -weakly convergent. The limit $u \in H^1(\Omega)$ gives an unique weak solution of problem (S). Moreover, it satisfies the estimate

(3.3)
$$\|\boldsymbol{u}\|_{1,\Omega} \leq C(\|\boldsymbol{f}\|_{-1,\Omega \cup \Gamma_N} + \|\boldsymbol{\phi}\|_{-1/2,\Gamma} + \|\boldsymbol{\phi}\|_{1/2,\Gamma})$$

where $\|\cdot\|_{-1,\Omega\cup\Gamma_N}$ denotes the norm of the dual space of $H^1_0(\Omega\cup\Gamma_N)$.

PROOF. According to Theorem I, the boundary-value problem

$$A oldsymbol{v} = oldsymbol{o}$$
 in Ω , $oldsymbol{v}|_{\Gamma} = oldsymbol{\phi}_m$ on Γ (resp. $A oldsymbol{w} = oldsymbol{f}$ in Ω , $B_m oldsymbol{w} = lpha_m(x)(oldsymbol{\phi}_m - B oldsymbol{v}_m)$ on Γ)

admits a unique solution v_m (resp. w_m) $\in H^2(\Omega)$. Since $v_m + w_m$ is a solution of $(S)_m$, it follows from the uniqueness property that $u_m = v_m + w_m$. By Green's formula (1.3), the solutions v_m and w_m satisfy

(3.4)
$$\begin{cases} a(\boldsymbol{v}_{m}, \, \boldsymbol{v}_{m}) = (B\boldsymbol{v}_{m}, \, \boldsymbol{v}_{m})_{\Gamma}, \\ a(\boldsymbol{w}_{m}, \, \boldsymbol{w}_{m}) = (\boldsymbol{f}, \, \boldsymbol{w}_{m})_{\Omega} + \int_{\alpha_{m}(\boldsymbol{x}) \neq 0} (\boldsymbol{\phi}_{m} - B\boldsymbol{v}_{m} - \frac{1 - \alpha_{m}(\boldsymbol{x})}{\alpha_{m}(\boldsymbol{x})} \boldsymbol{w}_{m}) \cdot \overline{\boldsymbol{w}_{m}} dv_{\Gamma}. \end{cases}$$

Noting that $v_m|_{\gamma_0}=o$ and $w_m|_{\gamma_1}=o$, we obtain from (0.6) and (1.1) that $a(v,v) \ge C_1 \|v\|_{1,\mathcal{Q}}^2$ for $v=v_m$, w_m . Using this and the fact that $BP(0)=T(0) \in \Psi_{phg}(\Gamma)$, we have from (3.4)

(3.5)
$$\begin{cases} C_{1}\|\boldsymbol{v}_{m}\|_{1,\Omega}^{2} \leq \|B\boldsymbol{v}_{m}\|_{-1/2,\Gamma}\|\boldsymbol{v}_{m}\|_{1/2,\Gamma} \leq \frac{C_{1}}{2}\|\boldsymbol{v}_{m}\|_{1,\Omega}^{2} + C\|\boldsymbol{\phi}_{m}\|_{1/2,\Gamma}^{2}, \\ C_{1}\|\boldsymbol{w}_{m}\|_{1,\Omega}^{2} \leq (\boldsymbol{f}, \boldsymbol{w}_{m})_{\Omega} + (\|\boldsymbol{\phi}_{m}\|_{-1/2,\Gamma} + \|B\boldsymbol{v}_{m}\|_{-1/2,\Gamma})\|\boldsymbol{w}_{m}\|_{1/2,\Gamma} \\ \leq \frac{C_{1}}{2}\|\boldsymbol{w}_{m}\|_{1,\Omega}^{2} + C(\|\boldsymbol{f}\|_{0,\Omega}^{2} + \|\boldsymbol{\phi}_{m}\|_{-1/2,\Gamma}^{2} + \|\boldsymbol{\phi}_{m}\|_{1/2,\Gamma}^{2}). \end{cases}$$

Thus (3.2) and (3.5) yield

$$\|\boldsymbol{u}_{m}\|_{1,\Omega} \leq \|\boldsymbol{v}_{m}\|_{1,\Omega} + \|\boldsymbol{w}_{m}\|_{1,\Omega} \leq C(\|\boldsymbol{f}\|_{0,\Omega} + \|\boldsymbol{\phi}\|_{-1/2,\Gamma} + \|\boldsymbol{\phi}\|_{1/2,\Gamma}).$$

This shows that, for any subsequence $\{u_{m'}\}$ of $\{u_m\}$, some subsequence $\{u_{m'}\}$ of $\{u_{m'}\}$ has a weak limit u^0 in $H^1(\Omega)$. If u^0 is a unique weak solution of (S), which will be shown below, then we see from the uniqueness that the sequence $\{u_m\}$ itself converges weakly to u^0 in $H^1(\Omega)$.

Now, since $\alpha_m(x)=1$ on Γ_N , we have by (1.3)

(3.6)
$$a(\boldsymbol{u}_{m'}, \boldsymbol{\eta}) = (\boldsymbol{f}, \boldsymbol{\eta})_{\Omega} + (\boldsymbol{\phi}_{m'}, \boldsymbol{\eta})_{\Gamma} \quad \text{for all } \boldsymbol{\eta} \in \boldsymbol{H}_0^1(\Omega \cup \Gamma_N).$$

And, for any $\zeta \in C^{\infty}(\Gamma)$ with support in Γ_D , we have

$$(\boldsymbol{u}_{m'}, \boldsymbol{\zeta})_{\Gamma} = (\boldsymbol{\phi}_{m'}, \boldsymbol{\zeta})_{\Gamma} + (\alpha_{m'}(\boldsymbol{\phi}_{m'} - \boldsymbol{\phi}_{m'} - B\boldsymbol{u}_{m'} + \boldsymbol{u}_{m'}), \boldsymbol{\zeta})_{\Gamma};$$

hence $(u_m, \zeta)_{\Gamma} = (\phi_m, \zeta)_{\Gamma}$ if m'' is so large that $\varepsilon_m < \text{dist}_{\Gamma}(\text{supp}\zeta, \Sigma)$. Letting $m'' \to \infty$ here and in (3.6), we see that u is a weak solution of problem (S). Furthermore, the uniqueness of weak solution is shown as follows: Let $u^1 \in H^1(\Omega)$ be a weak solution of (S) with $\{f, \phi, \phi\} = \{o, o, o\}$. Then, by definition, $u^1 \in H^1_0(\Omega \cup \Gamma_N)$ and $a(u^1, u^1) = 0$, so that (0.6) and Korn's inequality (1.2) give us that $u^1 = o$.

Similarly, we see that the sequences $\{v_m\}$, $\{w_m\}$ are also $H^1(\Omega)$ -weakly convergent and that their limits v^0 , $w^0 \in H^1(\Omega)$ satisfy $u^0 = v^0 + w^0$. Since $w^0 \in H^1(\Omega \cup \Gamma_N)$, we have, as $m \to \infty$,

$$(\boldsymbol{f}, \boldsymbol{w}_m)_{\Omega} \longrightarrow (\boldsymbol{f}, \boldsymbol{w}^0)_{\Omega} \leq \|\boldsymbol{f}\|_{-1, \Omega \cup \Gamma_N} \|\boldsymbol{w}^0\|_{1, \Omega}.$$

Therefore, the desired estimate (3.3) follows immediately by letting $m\rightarrow\infty$ in estimate (3.5). \Box

COROLLARY 3.1. Let $\mathbf{f} \in \mathbf{H}^{s-2}(\Omega)$, $\boldsymbol{\phi} \in \mathbf{H}^{s-3/2}(\Gamma)$ and $\boldsymbol{\phi} \in \mathbf{H}^{s-1/2}(\Gamma)$ for $s \geq 2$. And let $\mathbf{u}_m \in \mathbf{H}^s(\Omega)$ be the unique solution of problem $(S)_m$ with $\boldsymbol{\phi}_m = \boldsymbol{\phi}$, $\boldsymbol{\phi}_m = \boldsymbol{\phi}$ for each m. Then the sequence $\{\mathbf{u}_m\}$ converges to the weak solution \mathbf{u} of problem (S) weakly in $\mathbf{H}^s_{loc}(\bar{\Omega} \setminus \Sigma)$, that is, $\{\mathbf{u}_m\}$ cenverges to \mathbf{u} weakly in $\mathbf{H}^s(\Omega')$ for any subdomain Ω' of Ω (with C^{∞} -boundary) such that $\bar{\Omega}' \subset \bar{\Omega} \setminus \Sigma$. Furthermore, we have the estimate

$$\|\boldsymbol{u}\|_{s,\Omega'} \leq C(\Omega', s)(\|\boldsymbol{f}\|_{s-2,\Omega} + \|\boldsymbol{\phi}\|_{s-3/2,\Gamma} + \|\boldsymbol{\phi}\|_{s-1/2,\Gamma}).$$

PROOF. Although the claim can be shown by the general theory of elliptic systems, our proof is an application of Theorem I.

Let Ω' be any such domain in Ω as stated above. All we have to do is to show that there exists a constant $C = C(\Omega', s) > 0$ such that

(3.7)
$$\|\boldsymbol{u}_{m}\|_{s,\Omega'} \leq C(\|\boldsymbol{f}\|_{s-2,\Omega} + \|\boldsymbol{\phi}\|_{s-3/2,\Gamma} + \|\boldsymbol{\phi}\|_{s-1/2,\Gamma})$$

for large m. Indeed, the rest of the proof is similar to the latter half of Proof of Theorem II.

Now we show estimate (3.7). For $1 \le l \le \lceil s \rceil + 1$, we choose functions $\eta_l \in C^{\infty}(\bar{\Omega})$ such that $0 \le \eta_l \le 1$ on $\bar{\Omega}$ and $\eta_l = 1$ on $\{\operatorname{dist}(x, \Sigma) \ge l\delta\}$, = 0 on $\{\operatorname{dist}(x, \Sigma) \le (l-1)\delta\}$ where $\delta = \operatorname{dist}(\bar{\Omega}', \Sigma)/(\lceil s \rceil + 1)$. Let m_0 be a number such that $\varepsilon_{m_0} < \delta$. Since $\alpha_m = \alpha_{m_0}$ on $\sup (\eta_l \mid \Gamma)$ for all $m \ge m_0$ and $2 \le l \le \lceil s \rceil + 1$, the equations in $(S)_m$ with $\{\phi_m, \phi_m\} = \{\phi, \phi\}$ multiplied by η_l are

$$\begin{cases} A(\eta_{l}\boldsymbol{u}_{m}) = [A, \eta_{l}]\boldsymbol{u}_{m} + \eta_{l}\boldsymbol{f} & \text{in } \Omega, \\ B_{m_{0}}(\eta_{l}\boldsymbol{u}_{m}) = \alpha_{m_{0}}([B, \eta_{l}]\boldsymbol{u}_{m} + \eta_{l}\boldsymbol{\phi}) + (1 - \alpha_{m_{0}})\eta_{l}\boldsymbol{\phi} & \text{on } \Gamma \end{cases}$$

where $[\cdot, \cdot]$ denotes the commutator. Thus an application of Theorem I shows that, for any $2 \le t \le s$, $m \ge m_0$ and $2 \le l \le [s] + 1$,

$$(3.8)_{t,t} \| \eta_t \mathbf{u}_m \|_{t,\Omega} \leq C(\| [A, \eta_t] \mathbf{u}_m + \eta_t \mathbf{f} \|_{t-2,\Omega}$$

$$+ \| \alpha_{m_0}([B, \eta_t] \mathbf{u}_m + \eta_t \boldsymbol{\phi}) + (1 - \alpha_{m_0}) \boldsymbol{\phi} \|_{\alpha_{m_0}; t-3/2, \Gamma})$$

$$\leq C(\| \eta_{t-1} \mathbf{u}_m \|_{t-1,\Omega} + \| \mathbf{f} \|_{t-2,\Omega} + \| \boldsymbol{\phi} \|_{t-3/2,\Gamma} + \| \boldsymbol{\phi} \|_{t-1/2,\Gamma}).$$

Using $(3.8)_{l,t}$ for $l=t=2, \dots, [s]$ and (3.3), we have

$$\|\eta_{[s]}u_m\|_{s-1,\Omega} \leq \|\eta_{[s]}u_m\|_{[s],\Omega}$$

$$\leq C(\|f\|_{[s]-2,\Omega} + \|\phi\|_{[s]-3/2,\Gamma} + \|\phi\|_{[s]-1/2,\Gamma}),$$

which combined with $(3.8)_{[s]+1,s}$ gives (3.7). \square

§ 4. Simple Generalization.

For a forthcoming paper (Ito [9]) dealing with a dynamic problem mentioned in Introduction, we give a simple extension of Theorem I.

When we consider $(S_{\alpha})_{\lambda}$ only for large $\lambda > 0$, it is essential for the arguments in §§ 2, 3 that the real-valued functions $a_{ijkh}(x) \in C^{\infty}(\bar{\Omega})$ possess the property of symmetry

$$a_{ijkh}(x) = a_{khij}(x) \quad \text{on } \bar{\Omega}$$

and the property of coerciveness

$$(4.2) \qquad \sum_{i,j,k,h} \int_{\Omega} a_{ijkh}(x) \partial_h u_k \cdot \overline{\partial_j u_i} dx \ge c_4 \|u\|_{1,\Omega}^2 - c_5 \|u\|_{0,\Omega}^2$$

for all $u \in H_0^1(\Omega \cup \Gamma_\alpha)$ with $\Gamma_\alpha = \{x \in \Gamma; \alpha(x) \neq 0\}$.

Now we redefine differential systems A in Ω and B on Γ by

$$(4.3) (Au)_i = -\sum_{j,k,h} \partial_j (a_{ijkh}(x)\partial_h u_k) + \sum_{j,k} b_{ijk}(x)\partial_k u_j + \sum_j c_{ij}(x)u_j,$$

$$(4.4) (Bu)_i = \left(\sum_{j k, h} \nu_i(x) a_{ijkh}(x) \partial_h u_k + \sum_j \tau_{ij}(x) u_j\right) |_{\Gamma}$$

where all the coefficients are real-valued C^{∞} -functions on $\bar{\Omega}$ or Γ and $a_{ijkh}(x)$ satisfy (4.1) and (4.2). We note that these conditions imply that A is strongly elliptic on $\bar{\Omega}$ and $\{A, B\}$ satisfies the strong complemention condition on $\bar{\Gamma}_{\alpha}$.

Let $\alpha(x)$ be as before but we allow the case $\alpha(x)\equiv 1$, and let $\omega_{ij}(x)$ be real-valued C^{∞} -functions on Γ such that $\omega(x)=(\omega_{ij}(x))$ is positive definite on Γ . Then Theorem I can be extended as follows.

THEOREM I'. Let $\sigma \ge 2$ and $\lambda \in \mathbb{R}$. The mapping

$$(4.5) \{A_{\lambda}, B_{\sigma, \omega}\}: \mathbf{H}^{\sigma}(\Omega) \ni \mathbf{u} \longrightarrow \{A_{\lambda}\mathbf{u}, B_{\sigma, \omega}\mathbf{u}\} \in \mathbf{H}^{\sigma-2}(\Omega) \times \mathbf{H}^{\sigma-3/2}(\Gamma).$$

is a Fredholm operator with index 0 where $A_{\lambda} = \lambda I + A$, $B_{\alpha,\omega} = \alpha(x)B + (1-\alpha(x))\omega(x)$. In particular, if λ is sufficiently large, then (4.5) is an (algebraic and topological) isomorphism.

For the proof, we prepare the following two lemmas.

LEMMA 4.1. Let $\sigma \ge 2$. If λ is sufficiently large, the mapping (4.5) is an injection. If $\alpha(x) \equiv 0$ or >0 on Γ in addition, then it is then an isomorphism.

PROOF. Let $u \in H^{\sigma}(\Omega)$, $\sigma \leq 2$, be in the kernel of (4.5). Then, we have by

integration by parts

$$\begin{split} \sum_{i,j,k,h} & \int_{\Omega} a_{ijkh}(x) \partial_h u_k \cdot \overline{\partial_j u_i} \, dx + \lambda \| \boldsymbol{u} \|_{0,\Omega}^2 \\ &= - \sum_{i} \int_{\Omega} (\sum_{j,k} b_{ijk}(x) \partial_k u_j + \sum_{j} c_{ij}(x) u_j) \overline{u_i} \, dx \\ & - \int_{\Gamma_{\alpha}} \left(\frac{1 - \alpha(x)}{\alpha(x)} \boldsymbol{\omega}(x) \boldsymbol{u} \cdot \bar{\boldsymbol{u}} - \sum_{i,i} \tau_{ij}(x) u_j \overline{u_i} \right) dv_{\Gamma} \, . \end{split}$$

Using (4.2) and the positivity of $\omega(x)$, we obtain

$$c_4 \|u\|_{1,\Omega}^2 + (\lambda - c_5) \|u\|_{0,\Omega}^2 \le C(\|u\|_{1,\Omega} \|u\|_{0,\Omega} + \|u\|_{0,\Gamma}^2),$$

from which the first claim follows immediately. The second is due to the same argument as in Proof of Lemma 1.3. \Box

LEMMA 4.2. Let $\sigma \geq 2$, and A^0 , B^0 be the first terms of A, B in (4.3) and (4.4). If λ is sufficiently large, then for any $\mathbf{f} \in \mathbf{H}^{\sigma-2}(\Omega)$ and $\mathbf{\phi} \in \mathbf{H}^{\sigma-3/2}(\Gamma)$ there exists a $\mathbf{u} \in \mathbf{H}^{\sigma}(\Omega)$ which satisfies $A^0_{\lambda}\mathbf{u} = \mathbf{f}$ in Ω , $B^0\mathbf{u} = \mathbf{\phi}$ in a neighborhood of Γ_{α} on Γ where $A^0_{\lambda} = \lambda \mathbf{I} + A^0$, and the estimate

$$\|u\|_{\sigma,\Omega} \leq C(\|f\|_{\sigma-2,\Omega} + \|\phi\|_{\sigma-3/2,\Gamma}).$$

PROOF. We can choose a bounded domain $\hat{\Omega}$ including Ω with C^{∞} -boundary $\hat{\Gamma}$ and C^{∞} -extensions $\hat{a}_{ijkh}(x)$ of $a_{ijkh}(x)$ to $\bar{\hat{\Omega}}$ so that (i) $\hat{\Gamma}$ includes an open neighborhood $\hat{\gamma}$ of $\bar{\Gamma}_{\alpha}$ in Γ and (ii) (4.1) and (4.2) are valid for $\hat{a}_{ijkh}(x)$ with Ω , Γ_{α} replaced by $\hat{\Omega}$, $\hat{\Gamma}$ (that is, \hat{A}^{0} is strongly elliptic on $\bar{\hat{\Omega}}$ and $\{\hat{A}^{0}, \hat{B}^{0}\}$ is strongly complementing on $\hat{\Gamma}$ where \hat{A}^{0} , \hat{B}^{0} are the associated A^{0} , B^{0} with $\hat{a}_{ijkh}(x)$, $\hat{\Omega}$ and $\hat{\Gamma}$). Here we need to pay attention to the fact that the strong complementing condition at $x_{0} \in \hat{\Gamma}$ depends (continuously) not only on $\hat{a}_{ijkh}(x_{0})$ but also on the direction of the normal at x_{0} to $\hat{\Gamma}$.

Take a nonnegative function $\zeta(x) \in C^{\infty}(\Gamma)$ with support in γ such that $\zeta(x)=1$ near $\overline{\Gamma}_{\alpha}$, and define $\hat{\phi} \in H^{\sigma-3/2}(\hat{\Gamma})$, for any given $\phi \in H^{\sigma-3/2}(\Gamma)$, by $\hat{\phi} = \zeta(x)\phi$ on γ , = o on $\hat{\Gamma} \setminus \gamma$. Then we have

$$\|\hat{\boldsymbol{\phi}}\|_{\sigma-3/2, \hat{\Gamma}} \leq C \|\zeta(x)\boldsymbol{\phi}\|_{\sigma-3/2, \Gamma} \leq C \|\boldsymbol{\phi}\|_{\sigma-3/2, \Gamma}$$
 for all $\boldsymbol{\phi} \in \boldsymbol{H}^{\sigma-3/2}(\Gamma)$.

Also, any $\mathbf{f} \in \mathbf{H}^{\sigma-2}(\Omega)$ admits an extension $\hat{\mathbf{f}} \in \mathbf{H}^{\sigma-2}(\hat{\Omega})$ such that $\|\hat{\mathbf{f}}\|_{\sigma-2,\hat{\Omega}} \leq C\|\mathbf{f}\|_{\sigma-2,\Omega}$. Now consider the boundary-value problem

(4.6)
$$\hat{A}_{\lambda}^{0}\hat{\boldsymbol{u}} = \hat{\boldsymbol{f}} \quad \text{in } \hat{\Omega}, \qquad \hat{B}^{0}\hat{\boldsymbol{u}} = \hat{\boldsymbol{\phi}} \quad \text{on } \hat{\Gamma}.$$

By an argument similar to Proof of Lemma 1.3 (see also the preceding lemma), we have, for a sufficiently large λ , a unique solution $\hat{\boldsymbol{u}} \in \boldsymbol{H}^{\sigma}(\hat{\Omega})$ of problem (4.6), which satisfies the estimate

$$\|\hat{\boldsymbol{u}}\|_{\sigma,\hat{\Omega}} \leq C(\|\hat{\boldsymbol{f}}\|_{\sigma-2,\hat{\Omega}} + \|\hat{\boldsymbol{\phi}}\|_{\sigma-3/2,\hat{\Gamma}}) \leq C'(\|\boldsymbol{f}\|_{\sigma-2,\Omega} + \|\boldsymbol{\phi}\|_{\sigma-3/2,\Gamma}).$$

Thus $\mathbf{u} := \hat{\mathbf{u}}|_{\Omega}$ is a desired one. \square

PROOF OF THEOREM I'. By Lemma 4.1 and the compactness of the map:

$$H^{\sigma}(\Omega) \ni u \longrightarrow \{(\sum_{j,k} b_{ijk} \partial_k u_j + \sum_j c_{ij} u_j), (\alpha \sum_j \tau_{ij} u_j)\} \in H^{\sigma-2}(\Omega) \times H^{\sigma-3/2}(\Gamma),$$

we have only to show that, for sufficiently large λ ,

$$\{A_{\lambda}^{0}, B_{\alpha,\omega}^{0}\}: H^{\sigma}(\Omega) \ni u \longrightarrow \{A_{\lambda}^{0}u, B_{\alpha,\omega}^{0}u\} \in H^{\sigma-2}(\Omega) \times H^{\sigma-3/2}(\Gamma)$$

is an isomorphism where $B_{\alpha, \omega}^0 = \alpha(x)B^0 + (1-\alpha(x))\omega(x)$.

Applying Lemma 4.1 in the case $\{A_{\lambda}, B_{\alpha,\omega}\} = \{A_{\lambda}^{0}, Dirichlet\}$, we can define the Poisson operator $P^{0}(\lambda)$ for A_{λ}^{0} if $\lambda \geq \lambda_{1}$ with λ_{1} large enough. Then Proposition 1.4 is valid for $T^{0}(\lambda) := B^{0}P^{0}(\lambda)$, $\lambda \geq \lambda_{1}$, except that the principal symbol $t_{1}^{0}(x, \xi)$ of $T^{0}(\lambda)$ is strongly elliptic on $\overline{\Gamma}_{\alpha}$ in the sense that for some $c_{2}^{0} > 0$

$$t_1^0(x, \xi) \ge c_2^0 |\xi|_{\Gamma} \text{I} \quad \text{for all} \quad (x, \xi) \in \bigcup_{x \in \overline{\Gamma}_{\alpha}} T_x^*(\Gamma) \setminus \{0\} \subset T^*(\Gamma) \setminus 0$$

And, by virtue of Lemma 4.2, Proposition 1.6 is also valid if we replace $T_{\alpha}(\lambda)$, $\lambda \ge 0$, with $T_{\alpha,\omega}^0(\lambda) = \alpha(x)T^0(\lambda) + (1-\alpha(x))\omega(x)$. Moreover, the argument in § 2 will be justified in this case if we replace A, $P(\lambda)$ and $T_{\alpha}(\lambda)$ with $A_{\lambda_1}^0$, $P^0(\lambda)$ and $T_{\alpha,\omega}^0(\lambda)$, respectively; we have only to remark that, in Proposition 2.2, the corresponding principal symbol $\tilde{t}_1^0(x, \xi; y, \eta)$ satisfies only the following condition:

$$\tilde{t}_{1}^{0}(x, \xi; y, \eta) \ge c_{3}^{0} |(\xi, \eta)|_{\Gamma \times S} I, \quad c_{3}^{0} > 0: \text{ const,}$$

$$\text{for all } (x, \xi; y, \eta) \in \bigcup_{\substack{(x, y) \in \overline{\Gamma}_{\alpha} \times S}} T_{(x, y)}^{*}(\Gamma \times S) \setminus \{0\} \subset T^{*}(\Gamma \times S) \setminus 0,$$

which is weaker than (2.2) but sufficient for our argument. \square

Appendix. Proof of Theorem 2.4.

For simplicity, we abbreviate $(\cdot, \cdot)_M$ and $\|\cdot\|_{s,M}$ as (\cdot, \cdot) and $\|\cdot\|_s$, respectively.

Proof of inequality (2.3).

First step (Reduction to the case $P=P^*$, $c_0=0$ and $q_0(x, \xi)=I$). It suffices to consider the case $P=P^*$ and $c_0=0$. In fact,

$$\operatorname{Re}(Pu, u) = ((\operatorname{Re}P - c_0 \Lambda_{M}^{m-1}I)u, u) + c_0 \|u\|_{(m-1)/2}^2$$

where $\text{Re}P = (P+P^*)/2$, and the principal and subprincipal symbols of $\text{Re}P - c_0 \Lambda_M^{m-1}$ I are given respectively by

$$\operatorname{Re} p_m(x, \xi) = a_m(x, \xi) \operatorname{Re} q_0(x, \xi), \qquad \operatorname{Re} p_{m-1}^s(x, \xi) - c_0 |\xi|_{M}^{m-1} I.$$

Assume that $P=P^*$ and $c_0=0$, so $q_0=q_0^*$. Let Q_1 (iesp. Q_2) $\in \Psi_{phg}^0(M)$ be a formally self-adjoit pseudo-differential operator with principal symbol $q_0^{-1/2}$ (resp. $q_0^{1/2}$) and subprincipal symbol 0 (resp. $(\sqrt{-1}/2)q_0^{1/2}\{q_0^{-1/2}, q_0^{1/2}\}$). Since $Q_1Q_2\equiv Q_2Q_1\equiv I \mod \Psi_{phg}^{-2}(M)$, we have

(A.1)
$$(Pu, u) \ge (Q_1 P Q_1 Q_2 u, Q_2 u) - C \|u\|_{(m-2)/2}^2$$
 for all $u \in C^{\infty}(M)$.

On the other hand, the principal symbol $\tilde{p}_m(x, \xi)$ and subprincipal symbol $\tilde{p}_{m-1}^s(x, \xi)$ of $\tilde{P}:=Q_1PQ_1$ are given respectively by $\tilde{p}_m=a_mI$ and

$$\tilde{p}_{m-1}^{s} = q_0^{-1/2} p_{m-1}^{s} q_0^{-1/2} - \frac{\sqrt{-1}}{2} (\{q_0^{-1/2}, a_m q_0\} q_0^{-1/2} + \{a_m q_0^{1/2}, q_0^{-1/2}\}).$$

Since a_m vanishes to the second order on $\Sigma := \Sigma_{a_m}$, condition (ii) of Theorem 2.4 is equivalent to

$$\tilde{p}_{m-1}^s(x,\xi) + \frac{1}{2}(\operatorname{Tr}^+H(x,\xi))\mathbf{I} \ge 0$$
 on Σ

where $H=H_{a_m}$. Now, suppose that Theorem 2.4 is valid for the case $q_0=I$. Then we have for any $\varepsilon>0$

(A.2)
$$(\widetilde{P}Q_2u, Q_2u) \ge -\varepsilon \|Q_2u\|_{(m-1)/2}^3 - C(\varepsilon) \|Q_2u\|_{(m-2)/2}^2$$

 $\ge -\varepsilon C_1 \|u\|_{(m-1)/2}^2 - C(\varepsilon) \|u\|_{(m-2)/2}^2$ for all $u \in C^{\infty}(M)$

where the constant $C_1>0$ depends only on Q_2 . The desired inequality (2.3) follows immediately from inequalities (A.1) and (A.2).

Second step (Proof of the case $P=P^*$, $c_0=0$ and $q_0(x,\xi)=I$). Fix an $\varepsilon>0$ arbitrarily. We first show that, for any $(x_0,\xi_0)\in T^*(M)\setminus 0$, there exists a conic neighborhood $\Gamma_0\subset T^*(M)\setminus 0$ of (x_0,ξ_0) with the following property: Let $\phi_0(x,\xi)$ be any real-valued symbol homogeneous in $\xi\neq 0$ of degree 0 with support in Γ_0 . Then we have

(A.3)
$$(P\Phi u, \Phi u) \ge -\varepsilon \|\Phi u\|_{(m-1)/2}^2 - C(\varepsilon, \Phi) \|u\|_{(m-2)/2}^2$$
 for all $u \in C^{\infty}(M)$

where $\Phi \in \Psi_{phg}^0(M)$ is any formally self-adjoint pseudo-differential operator with principal symbol ϕ_0 and subprincipal symbol 0.

When $(x_0, \xi_0) \notin \Sigma$, there is a conic neighborhood Γ_0 of (x_0, ξ_0) such that $a_m(x, \xi) \ge 2\delta |\xi|_M^m$ on Γ_0 for some $\delta > 0$, so by the Gårding inequality

$$(P\Phi u, \Phi u) \ge \delta \|\Phi u\|_{m/2}^2 - C(\Phi) \|u\|_{(m-2)/2}^2$$
 for all $u \in C^{\infty}(M)$

with any $\Phi \in \Psi_{phg}^0(M)$ as above.

When $(x_0, \xi_0) \in \Sigma$, we define a symbol $a_{m-1}^s(x, \xi)$ by

$$a_{m-1}^{s}(x, \xi) = \left(\frac{\varepsilon}{4} - \operatorname{Tr}^{+}H(x_{0}, \xi_{0}/|\xi_{0}|_{M})\right)|\xi|_{M}^{m-1}.$$

Then, by the continuity of $\operatorname{Tr}^+H(x,\xi)$ on Σ , there exists a conic neighborhood Γ_0 of (x_0,ξ_0) such that

$$(A.4) \qquad \frac{\varepsilon}{8} |\xi|_{M}^{m-1} \leq a_{m-1}^{s}(x, \xi) + \operatorname{Tr}^{+}H(x, \xi) \leq \frac{\varepsilon}{2} |\xi|_{M}^{m-1} \quad \text{on} \quad \Gamma_{0} \cap \Sigma.$$

If $A \in \Psi_{phg}^m(M)$ is a formally self-adjoint pseudo-differential operator with principal symbol a_m and subprincipal symbol a_{m-1}^s , the usual Melin's inequality (see Hörmander [5; Theorem 22.3.3]) gives

$$(A.5) \quad (A\Phi u, \Phi u) \ge -\varepsilon \|\Phi u\|_{(m-1)/2}^2 - C(\varepsilon, \Phi) \|u\|_{(m-2)/2}^2 \quad \text{for all} \quad u \in C^{\infty}(M).$$

On the other hand, $R := P - AI \in \mathbf{V}_{phs}^{m-1}(M)$ is a formally self-adjoint pseudo-differential operator with principal symbol $r_{m-1} := p_{m-1}^s - a_{m-1}^s I$, which satisfy by virtue of (A.4) and condition (ii)

$$r_{m-1} = (p_{m-1}^s - (\operatorname{Tr}^+ H)I) - (a_{m-1}^s - \operatorname{Tr}^+ H)I \ge -\frac{\varepsilon}{2} |\xi|_M^{m-1}I \quad \text{on} \quad \Gamma_0 \cap \Sigma.$$

Thus, by shrinking Γ_0 if necessary, we have $r_{m-1} \ge -\varepsilon |\xi|_M^{m-1} I$ on Γ_0 , so that by the sharp Gårding inequality

$$(R\Phi u, \Phi u) \ge -\varepsilon \|\Phi u\|_{(m-1)/2}^2 - C(\varepsilon, \Phi) \|u\|_{(m-2)/2}^2$$
 for all $u \in C^{\infty}(M)$

with any Φ as above. This and (A.5) show (A.3) in this case.

To complete the proof, we choose finite number of real-valued symbols $\phi_{0j}(x,\xi) \ge 0$ homogeneous in $\xi \ne 0$ of degree 0 with so small support that (A.3) is valid for each Φ_j and $\sum_j \phi_{0j}^2 = 1$ in $T^*(M) \setminus 0$ where $\Phi_j \in \Psi_{phg}^0(M)$ is a formally self-adjoint pseudo-differential operator with principal symbol ϕ_{0j} and subprincipal symbol 0. Since $\sum_j \Phi_j^2 - \mathbb{I} \in \Psi_{phg}^{-2}(M)$ and $[[P, \Phi_j], \Phi_j] \in \Psi_{phg}^{m-2}(M)$, we therefore obtain that

$$(Pu, u) = \sum_{j} (P\Phi_{j}u, \Phi_{j}u) + \text{Re}((I - \sum_{j} \Phi_{j}^{2})Pu, u) + \frac{1}{2} \sum_{j} ([[P, \Phi_{j}], \Phi_{j}]u, u)$$

$$\geq -\varepsilon \sum_{j} \|\Phi_{j}u\|_{(m-1)/2}^{2} - C(\varepsilon) \|u\|_{(m-1)/2}^{2} \geq -\varepsilon \|u\|_{(m-1)/2}^{2} - C(\varepsilon) \|u\|_{(m-2)/2}^{2}$$

for all $u \in C^{\infty}(M)$. \square

PROOF OF INEQUALITIES (2.4). Let $\sigma \in \mathbb{R}$. The principal and subprincipal symbols of $\Lambda_M^{-\sigma}P\Lambda_M^{\sigma}$ are given respectively by p_m and $p_{m-1}^s + \sigma \sqrt{-1}|\xi|_M\{|\xi|_M, p_m\}$. Since $\{|\xi|_M, p_m\} = 0$ on Σ , it follows from (2.3) that for any $\varepsilon \in (0, c_0)$

$$\operatorname{Re}(\Lambda_{M}^{-\sigma}P\Lambda_{M}^{\sigma}v, v) \geq (c_{0}-\varepsilon)\|v\|_{(m-1)/2}^{2} - C(\varepsilon, \sigma)\|v\|_{(m-2)/2}^{2}$$
.

By putting $v = \Lambda_M^{(m-1)/2} u$ and $\sigma = s - (m-1)/2$ in the above, we have

$$(c_{0}-\varepsilon)\|u\|_{s+m-1}^{2}-C(\varepsilon, s)\|u\|_{s+m-3/2}^{2} \leq \operatorname{Re}(\Lambda_{M}^{s}Pu, \Lambda_{M}^{s+m-1}u)$$

$$\leq \frac{1}{2\delta}\|Pu\|_{s}^{2}+\frac{\delta}{2}\|u\|_{s+m-1}^{2} \quad \text{for all} \quad u \in C^{\infty}(M).$$

Putting $\delta = c_0 - \varepsilon$, we obtain the former of (2.4). As for the latter, we have only to note that, if P satisfies (i) and (ii), so does P^* . \square

Acknowledgement

The author would like to thank Professor A. Inoue who aroused the author's interest in these subjects and gave him useful advice.

References

- [1] Browder, F.E., On the spectral theory of elliptic differential operators. I, Math. Annalen 142 (1961), 22-130.
- [2] Duvaut, G. and Lions, J.L., Les inéquations en mécanique et en physique, Dunod, Paris, 1972.
- [3] Fujiwara, D., On some homogeneous boundary value problems bounded below, J. Fac. Sci. Univ. Tokyo Sec. IA 17 (1970), 123-152.
- [4] Fujiwara, D. and Uchiyama, K., On some dissipative boundary value problems for the Laplacian, J. Math. Soc. Japan 27 (1971), 625-635.
- [5] Hörmander, L., The analysis of linear partial differential operators vol. 3, Springer-Verlag, 1983.
- [6] Inoue, A., On a mixed problem for \square with discontinuous boundary condition (I), J. Fac. Sci. Univ. Tokyo Sec. IA 21 (1974), 85-92.
- [7] Inoue, A., On a mixed problem for \square with a discontinuous boundary condition (II)

 —an example of moving boundary, J. Math. Soc. Japan 30 (1978), 633-651.
- [8] Ito, H., Extended Korn's inequalities and the associated best possible constants, to appear in J. Elasticity.
- [9] Ito, H., A mixed problem of linear elastodynamics with a time-dependent discontinuous boundary condition, to appear in Osaka J. Math.
- [10] Iwasaki, C., Construction of the fundamental solution for degenerate parabolic systems and its application to construction of a parametrix of \Box_b , Osaka J. Math. 21 (1984), 931-954.
- [11] Melin, A., Lower bounds for pseudo-differential operators, Ark. för Math. 9 (1971), 117-140.
- [12] Simpson, H. C. and Spector, S. J., On the positivity of the second variation in finite elasticity, Arch. Rational Mech. Anal. 98 (1987), 1-30.
- [13] Taira, K., On some degenerate oblique problems, J. Fac. Sci. Univ. Tokyo Sec. IA 23 (1976), 259-287.
- [14] Taira, K., Un théorème d'existence et d'unicité des solutions pour des problèmes aux limites non-elliptiques, J. Func. Anal. 43 (1981), 166-192.

Department of Mathematics Faculty of Science Shinshu University Matsumoto, 390, Japan