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\S 1. Introduction.

Expansive transformations play important roles in topological dynamics.
However there are several notions for expansiveness of real flows and the rela-
tionships between them have not been clarified enough. We investigate in this
paper the relationship between some of expansive notions and show that the
notions are unified into two kinds of expansiveness (Theorem and Theorem A).

One is the expansiveness introduced by R. Bowen and P. Walters [2] and
another is the weak expansiveness found in [5] in investigating the geometric
Lorentz flow introduced by J. Guckenheimer [3].

Let $X$ be a compact metric space with metric $d$ and $R$ denote the additive
group of real numbers. A map $F:X\times R\rightarrow X$ is called a flow on $X$ if $F$ is con-
tinuous and $f_{t+s}x=f_{l}(f_{s}x)$ , $f_{0}x=x$ for every $t,$ $s\in R$ and $x\in X$, where $f_{t}x=$

$F(x, t)$ .
R. Bowen and P. Walters introduced in [2] the notion of expansiveness as

follows: A flow $F$ is expansive if for any $\epsilon>0$ there exists $\delta>0$ such that if
$x,$ $y\in X$ satisfy $d(f_{t}x, f_{s(s)}y)<\delta(t\in R)$ for some continuous map $s;R\rightarrow R$ with
$s(O)=0$ , then $y=f_{t}x$ for some $|t|<\epsilon$ .

$f_{I}(S)=\{f_{l}x;t\in I, x\in S\}$ for an interval $I$ and $S\subset X$. A flow $F$ on $X$ is
called weakly expansive if $F$ satisfies the property that for any $\epsilon>0$ there exists
$\delta>0$ with the property that if there exist a pair of points $x,$ $y\in X$ and a strictly
increasing surjective homeomorphism $h:R\rightarrow R$ with $h(O)=0$ such that $d(f_{l}x$ ,
$ f_{h(t)}y)<\delta$ for every $t\in R$, then $f_{h(t_{0})}y\in f_{(t_{0}-\epsilon.l_{0}+\epsilon)}(\{x\})$ for some $t_{0}\in R$ .

THEOREM (R. Bowen and P. Walters [2]). The following are equivalent for
a flow $F$.

(i) $F$ is expansive.
(ii) For any $\epsilon>0$ there exists $\delta>0$ such that if $x,$ $y\in X$ satisfy $d(f_{t}x, f_{s(t)}y)$
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$<\delta(t\in R)$ for some continuous map $s:R\rightarrow R$ with $s(O)=0$ , then $y$ is in the same
orbit as $x$ and the orbit from $x$ to $y$ lies inside $B_{\epsilon}(x)=\{y\in X;d(x, y)\leqq\epsilon\}$ .

(iii) For any $\epsilon>0$ there exists $\delta>0$ with the property: for $t=(t_{i})_{i=-\infty}^{\infty}$ and
$n=(u_{i})_{i=-\infty}^{\infty}$ to which satify

$t_{0}=u_{0}=0$ , $ 0<t_{i+1}-t_{i}\leqq\delta$ , $|u_{i+1}-u_{i}|\leqq\delta$ .
and

$ t_{i}-\infty$ , $ t_{-i}--\infty$ as $ i\rightarrow\infty$

if $d(f_{t_{i}}x, f_{u_{i}}y)<\epsilon(i\in Z)$ , then $y=f_{t}x$ for some $|t|<\epsilon$ .
(iv) For any $\epsilon>0$ there exists $\delta>0$ such that if $x,$ $y\in X$ satisfy $d(f_{t}x, f_{h(t)}y)$

$<\delta(t\in R)$ for some strictly increasing surjeclive homeomorphism $h:R\rightarrow R$ with
$h(O)=0$ , then $y=f_{t}x$ for some $|t|<\epsilon$ .

Theorem was first proved by R. Bowen and P. Walters [2] for flows with-
out fixed points. However Theorem is true for all real flows dropped the con-
dition of fixed points. In \S 2 we shall explain that reason.

THEOREM A. A weakly expansive flow without fixed points must be an expan-
sive flow.

The proof of Theorem A will be proceeded in \S 3. By Theorem A it seems
likely that some of properties obtained for expansive flow hold also for weakly

expansive flows with fixed points. Concerning with topological entropy Theo-
rem $B$ below is a natural extension of Theorem 5 [2] for weakly expansive

flows. $h(F)$ is the topological entropy of $F$ and $\nu(t)$ denotes the number of

closed orbits of $F$ with a period $\tau\in[0, t]$ . It is easily checked that a weakly

expansive flow is h-expansive in the sense of [1] and so Theorem $B$ is readily

confirmed according as the proof of Theorem 5 [2].

THEOREM B. Let $F$ be a weakly expansive flow. Then

$\lim_{l\rightarrow}\sup_{\infty}[(1/t)\log\nu(t)]\leqq h(F)<\infty$ .

\S 2. Proof for the case with fixed points.

A point $x\in X$ is called a periodic point if $fix=x$ for some $t>0$ , and called
a fixed point if $f_{\iota}x=x$ for any $t\in R$ . The smallest $t>0$ with $f_{\iota}x=x$ is called
the period of a point $x$ . Fix $(F)$ denotes the set of all fixed point of $F$.

Each fixed point is an isolated point of $X$ for both expansive flows and

flows with the property (ii) of Theorem ( $c$ . $f$ . $[2$ , Lemma 1]). Since (i) and (ii)
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are equivalent for a flow $F$ without fixed point by [2, Theorem 3], it is easily

checked that (i) and (ii) are equivalent.
That $(i)\rightarrow(iii)$ and $(iii)\rightarrow(iv)$ has been essentially proved in the proof of [2,

Theorem 3]. We show that $(iv)\rightarrow(i)$ .
Assume that $F$ satisfies the property (iv). Let $\delta>0$ be a constant of the

property (iv) for 1. Put $\delta_{0}=\delta/3$ . $U_{r}(x)$ is an open ball with radius $r$ and center
$x\in X$.

LEMMA 1. If $X$ is connected and Card $(X)\geqq 2$ , then $F$ has no fi.xed points.

PROOF. Assume that $F$ has a fixed point $x_{0}$ . We have by the property (iv)

that there is no fixed point in $U_{\delta}(x_{0})\backslash \{x_{0}\}$ and that if $x\in U_{\delta_{0}}(x_{0})\backslash \{x_{0}\}$ , then
$d(f_{t}x, x_{0})\geqq 2\delta_{0}$ for some $t\in R$ .

For any $x\in X$, put

$T(x)=\inf\{|t| : d(f_{t}x, x_{0})\geqq\delta_{0}\}$ .

0bviously $T(x)>0$ for any $x\in U_{\delta_{0}/\mathfrak{g}}(x_{0})$ . By the facts that $X$ is connected and
Card $(X)\geqq 2$ and that $x_{0}$ is a fixed point of $F$, we have $y_{0}\in U_{\delta_{0}/2}(x_{0})$ with $T(y_{0})$

$\geqq 2$ .
Put

$T_{0}=\inf\{t>0;d(f_{t}y_{0}, x_{0})=\delta_{0}\}$

and
$S_{0}=\sup\{t<0;d(f_{t}y_{0}, x_{0})=\delta_{0}\}$ .

Then $T_{0}\geqq 2$ and $S_{0}\leqq-2$ , where $\inf\phi=\infty$ and $\sup\phi=-\infty$ .
Let $y_{1}=f_{1}y_{0}$ . Take a strictly increasing surjective homeomorphism $h:R\rightarrow R$

with $h(O)=0$ such that $h(t)=t-1$ in $|t|\geqq 2,$ $h(t)=t/2$ in $0\leqq t\leqq 2$ and $h(t)=3t/2$

in $-2\leqq t\leqq 0$ . We have

$d(f_{t}y_{0}, f_{h(t)}y_{1})=d(f_{l}y_{0}, f_{h(t)+1}y_{0})$

$\leqq d(f_{t}y_{0}, x_{0})+d(x_{0}, f_{h(t)+1}y_{0})$

$\leqq\delta_{0}+\delta_{0}<\delta$

for $|t|\leqq 2$ . 0bviously

$d(f_{l}y_{0}, f_{h(t)}y_{1})=d(f_{l}y_{0}, f_{h(t)+1}y_{0})=0$

for $|t|\geqq 2$ . Hence $ d(f_{l}y_{0}, f_{h(t)}y_{1})<\delta$ for any $t\in R$ . Therefore we have that
$y_{1}=f_{l}y_{0}$ for some $|t|<1$ by the property (iv), From this fact we have that
$f_{1-t}y_{0}=y_{0}$ and $1-t<2$ . Hence $y_{0}$ is a periodic point of $F$ with period $1-t$ .
Since $\{f_{l}y_{0} : -2\leqq t\leqq 2\}\subset B_{\delta_{0}}(x_{0})$ , we have that $d(f_{\iota}y_{0}, x_{0})\leqq\delta_{0}$ for any $t\in R$ .
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This contradicts that $d(f_{t}y_{0}, x_{0})\geqq 2\delta_{0}$ for some $t\in R$ . Hence $F$ has no fixed
point.

LEMMA 2. Each fixed point of $F$ is an isolated point of $X$.

PROOF. Assume that there exists $x_{0}\in Fix(F)$ which is not isolated in $X$.
Take $x_{n}\in B_{1/n}(x_{0})\backslash \{x_{0}\}$ for each $n\in N$, where $N$ is the set of all positive integers.
$C(X)$ denotes the set of all non-empty closed subsets of $X$ . Let $C(x_{n})$ be the
connected component of $x_{n}$ in $X$. Obviously $C(x_{n})\in C(X)$ .

Since $C(X)$ is compact with respect to the Hausdorff metric, we can assume
that $C(x_{n})$ converges to some $C\in C(X)$ when $n$ goes to $\infty$ . Then $C$ is connected.

We claim that $\{x_{0}\}\subset C\approx$ . Indeed, if $C=\{x_{0}\}$ , then $C(x_{n})\subset B_{\delta}(x_{0})$ for sufficiently
large $n$ , where $\delta>0$ is a constant of the property (iv) for 1. Since $ f_{t}(x_{n})\in$

$C(x_{n})$ for any $t\in R$, we have that $x_{n}=x_{0}$ by the property (iv), which contradicts
that $x_{n}\neq x_{0}$ .

Since $C(x_{0})$ is the connected component of $x_{0}$ in $X,$ $C(x_{0})\supset C\supseteqq\{x_{0}\}$ . Hence
Card $(C(x_{0}))\geqq 2$ . We have that $f_{l}(C(x_{0})=C(x_{0})$ for any $t\in R$ . Hence $F$ induces
a flow on $C(x_{0})$ with a fixed point $x_{0}$ . Since $C(x_{0})$ is compact and connected
and Card $(C(x_{0}))\geqq 2$ , this contradicts Lemma 1.

Since $F$ satisfies the property (iv), $F$ has finitely many fixed points. Put
Fix $(F)=\{x_{1}, \cdots , x_{k}\}$ . By Lemma 2, $X\backslash \{x_{1}, \cdots, x_{k}\}$ is a compact invariant set
of F. $F$ is a flow on $X\backslash \{x_{1}, \cdots, x_{k}\}$ with the property (iv) and has no fixed
points on it. Hence $F$ is expansive by [2, Theorem 3]. Take $\epsilon>0$ . Let $\alpha$ be
an expansive constant of $F$ on $X\backslash \{x_{1}, \cdots, x_{k}\}$ for $\epsilon$ .

Put $\delta_{i}=d(x_{i}, X\backslash \{x_{i}\})$ for $i=1,$ $\cdots,$
$k$ , where $ d(x, X\backslash \{x\})=\inf\{d(x, y);y\in$

$X\backslash \{x\}\}$ . Then $\delta_{i}>0$ from Lemma 2. Put $\alpha_{0}=\min\{\alpha, \delta_{1}, \cdots, \delta_{k}\}$ . We show
that $\alpha_{0}$ is an expansive constant of $F$ for $\epsilon$ .

Assume that there is a continuous map $s:R\rightarrow R$ with $s(O)=0$ such that
$d(f_{t}x, f_{s(t)}y)<\alpha_{0}$ for any $t\in R$ . If $x\in Fix(F)$ , then by the property (iv) we have
that $y=x$ . Hence $y=f_{0}x$ . Similarly $y=f_{0}x$ when $y\in Fix(F)$ . If $x,$ $y\in Fix(F)$ ,

then $y=f_{t}x$ for some $|t|<\epsilon$ since $\alpha_{0}\leqq\alpha$ . Hence $F$ must be an expansive flow
on $X$. The proof is completed.

\S 3. Proof of Theorem A.

For a continuous flow $F$ we define

$\epsilon_{0}(F)=\inf$ { $t>0;F(t,$ $x)=x$ for some $x\in X\backslash Fix(F)$ }.
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Obviously $\epsilon_{0}(F)=\infty$ if $F$ has no periodic points except fixed points.

LEMMA 3. The following (i) and (ii) are equivalent.
(i) $F$ is weakly expansive.
(ii) For any $\epsilon>0$ there exists $\alpha_{0}>0$ such that the following holds: for $\alpha$ with

$0<\alpha\leqq\alpha_{0}$ and for $t=(t_{i})_{i=-\infty}^{\infty}$ and $u=(u_{i})_{i=-\infty}^{\infty}$ to which satisfy

$t_{0}=u_{0}=0$ , $ 0<t_{i+1}-t_{i}\leqq\alpha$ , $ 0<u_{i+1}-u_{i}\leqq\alpha$

and
$t_{i},$ $u_{i^{-\infty}}$ , $t_{-i},$ $ u_{-i}\rightarrow-\infty$ $(i\rightarrow\infty)$ ,

if $d(f_{t_{i}}x, f_{u_{i}}y)<\alpha(i\in Z)$ thex there exists $i\in Z$ such that

$f_{u_{i}}y\in f_{(-\epsilon-\alpha+\iota_{i\prime}\iota_{i}+\alpha+\epsilon)}(\{x\})$ .

PROOF. $(i)\rightarrow(ii)$ . For any $\epsilon>0$ take $\alpha_{0}>0$ such that

$\alpha_{0}+2\sup\{d(z, f_{u}z);z\in X, |u|\leqq\alpha_{0}\}<\delta$ ,

where $\delta$ is an expansive constant of $F$ for $\epsilon$ . We assume that $t=(t_{i})^{\infty_{i=-\infty}}$ and
$u=(u_{i})_{i=-\infty}^{\infty}$ satisfy the assumption of (ii). Let $\cdot h$ be $a$

. strictly increasing surjec-

tive homeomorphism of $R$ with $h(t_{i})=u_{i}$ for any $i\in Z$ . Then we have

$d(f_{l}x, f_{h(t)}y)\leqq d(f_{t}x, f_{\iota_{i}}x)+d(f_{\iota_{i}}x, f_{u}iy)+d(f_{u_{i}}y, f_{h(t)}y)$

$\leqq\alpha+2\sup\{d(z, f_{u}z);z\in X, |u|\leqq\alpha\}$

$<\delta$

for $t_{i}\leqq t\leqq t_{i+1}$ . Since $F$ is weakly expansive by (i), we have $ f_{h(t_{0})}y\in$

$f_{(t_{0}-\epsilon.t_{0}+\epsilon)}(\{x\})$ for some $t_{0}\in R$ . By the definition of $h$ there is $i\in Z$ such that
$t_{i}\leqq t_{0}\leqq t_{i+1}$ and $u_{i}\leqq h(t_{0})\leqq u_{i+1}$ . Hence $f_{u_{i}}y=f_{u_{i}-h(t_{0})}\circ f_{h(t_{0})}y=f_{u_{i}-\hslash(t_{0})+l}x$ for
some $t\in(t_{0}-\epsilon, t_{0}+\epsilon)$ . Put $s=u_{i}-h(t_{0})+t$ . Then

$ s>u_{i}-h(t_{0})+t_{0}-\epsilon\geqq u_{i}-h(t_{0})+t_{i}-\epsilon$

$\geqq t_{i}-\alpha-\epsilon$ ,

$ s<u_{i}-h(t_{0})+t_{0}+\epsilon\leqq u_{i}-h(t_{0})+t_{i+1}+\epsilon$

$\leqq u_{i}-h(t_{0})+t_{i}+\alpha+\epsilon$

$\leqq t_{i}+\alpha+\epsilon$ .
Therefore there is $i\in Z$ such that

$f_{u_{i}}y\in f_{(-\epsilon-\alpha+l_{i}.t_{i}+\alpha+\epsilon)}(\{x\})$ .
$(ii)\rightarrow(i)$ Take and fix $\epsilon>0$ . Let $\alpha_{0}>0$ satisfy (ii) for $\epsilon/2$ and let $ 0<\alpha\leqq$
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$\min\{\alpha_{0}, \epsilon/2\}$ . Then it is enough to show that $\alpha$ is an expansive constant of
$F$ for $\epsilon$ .

Assume that $h$ is a strictly increasing surjective homeomorphism of $R$ with
$h(O)=0$, and that $ d(f_{t}x, f_{h(t)}y)<\alpha$ for any $t\in R$ . Choose $(t_{i})_{i=-\infty}^{\infty}$ such that $t_{0}=0$ ,
$ 0<t_{j+1}-t_{i}\leqq\alpha$ and $ 0<h(t_{i+1})-h(t_{i})\leqq\alpha$ and that $t_{i},$ $ h(t_{i})\rightarrow\infty$ and $t_{-i},$ $ h(t_{-i})\rightarrow-\infty$

as $ i\rightarrow\infty$ . Then we have $ d(f_{t_{i}}x, f_{u_{i}}y)<\alpha$ where $u_{i}=h(t_{i})$ for $i=Z$ . By (ii)

there exists $i\in Z$ such that $f_{u_{i}}y\in f_{(-\epsilon/2-\alpha+t_{i}.t_{i}+\alpha+\epsilon/t)(}\{x\}$ ). Thus $ f_{h(\ell_{i})}y\in$

$f_{(\iota_{i}-\epsilon.t_{i}+\epsilon)}(\{x\})$ . This implies that $F$ is weakly expansive.

For the rest of this section $F$ is assumed to be a continuous flow on $X$

without fixed points.
A subset $S\subset X$ is called a local cross-section of time $\zeta>0$ for a continous

flow $F$ if $S$ is closed and $S\cap f_{[-\zeta.\zeta]}(\{x\})=\{x\}$ for all $x\in S$ , where $\zeta<\epsilon_{0}(F)/2$ .
If $S$ is a local cross-section of time $\zeta,$ $F$ maps $S\times[-\zeta, \zeta]$ homeomorphically

onto $f_{[-\zeta.\zeta]}(S)$ . By the interior $s*$ of $S$ we mean the set $S\cap intf_{[-\zeta.\zeta]}(S)$ . Note
that $f_{(- g.)}(S^{*})$ is open in $X$ for any $\epsilon>0$ .

LEMMA 4 ([4]). Under the above notations and assumptions, there is a $ 0<\zeta$

$<\epsilon_{0}(F)/2$ such that for each $\alpha>0$ we can find a finite family $\mathcal{G}=\{S_{1}, S_{2}, \cdots, S_{k}\}$

of pairwise disjoint local cross-sections of time $\zeta$ and diameter at most $\alpha$ , and a
finite family of local cross-sections $\xi r=\{T_{1}, T_{2}, \cdots, T_{i}\}$ with $T_{i}\subset S_{i}^{*}(i=1,2, \cdots, k)$

such that
$X=f_{[0.a]}(T^{+})=f_{[-\alpha.0]}(T^{+})=f_{[0.\alpha]}(S^{+})=f_{[- a.0]}(S^{+})$ .

where $T^{+}=\bigcup_{i=1}^{k}T_{i}$ and $S^{+}=\bigcup_{i=1}^{i}S_{i}$ .

Hereafter let $ 0<3\alpha<\zeta$ and $\beta$ be the minimum time between sections of $\mathcal{G}$

$i.e$ .
$\beta=\sup$ { $\delta>0;f_{(0.\delta)}(\{x\})\cap S^{+}=\phi$ for $x\in S^{+}$ }.

0bviously $ 0<\beta\leqq\alpha$ . Let $\rho$ satisfy $ 0<2\rho<\beta$ .
For $x\in T^{+}$ let $t$ be the smallest positive number such that $f_{t}(x)\in T^{+}$ . Then

we can define a first return map $\varphi$ by $\varphi(x)=f_{t}x$ . It is easily checked that
$\varphi:T^{+}\rightarrow T^{+}$ is bijective but not continuous. Note that $\beta\leqq t\leqq\alpha$ .

For $ S_{i}\in\rho$ let $D_{\rho}^{i}=f_{[-\rho.\rho]}(S_{i})$ and define a projective map $P_{\rho}^{i}$ : $D_{\rho}^{i}\rightarrow S_{i}$ by
$P_{\rho}^{i}(x)=f_{t}x$, where $f_{\iota}x\in S_{i}$ and $|t|\leqq\rho$ Since $2\rho<\zeta,$ $P_{\rho}^{i}$ is well defined and onto
continuous. We write $D_{\rho}=D_{\rho}^{\ell}$ and $P_{\rho}=P_{\rho}^{i}$ if there is no confusion.

LEMMA 5. There is an $0<a<\beta/2$ such that for $x,$ $y\in S_{i}$ if $d(x, y)\leqq a$ and
$f_{t}x\in T_{j}(|l|\leqq 3\alpha)$ for some $T_{j}$ , then $f_{l}y\in D_{\ell}^{j},$ .
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Proof is clear.

Using Lemma 5 we can set up a shadowing orbit of $y$ relative to a $\varphi$-orbit
of $x\in T^{+}$ as follows. If $y$ is sufficiently close to $x$ , the orbit of $y$ will cross $S_{i}$

at a time near the time when the orbit of $x$ crosses $T_{i}$ . For $x\in T_{i}$ and $y\in S_{i}$

with $d(x, y)\leqq a$ , we can define a set of points $\{y_{i}\}$ where $y_{0}=y$ and $y_{i}=$

$P_{\rho}(f_{t}y_{i- 1})$, where $t$ is the smallest positive time such that $\varphi^{i}(x)=f_{\iota}(\varphi^{i- 1}(x))$, and
we can continue this construction as long as $d(\varphi^{i}(x), y_{i})\leqq a$ . Then we obtain a
time delated $y$ shadow orbit along a piece of the orbit of $x$ . We can also pro-
ceed the same construction as the above for negative powers of $\varphi$ . For sim-
plicity we write $T,$ $S$ instead of $T_{i},$ $S_{i}$ respectively. Let $a>0$ be as in Lemma
5 and let $0<\eta<a$ .

For $x\in T$ the $\eta$ -stable set of $x$ is

$W_{\eta}^{s}(x)=$ { $y\in S;d(\varphi^{i}(x),$ $ y_{i})<\eta$ for all $i\geqq 0$ }

and the $\eta$-unstable set of $x$ is

$W_{\eta}^{u}(x)=$ { $y\in S;d(\varphi^{i}(x),$ $ y_{t})<\eta$ for all $i\leqq 0$ }.

LEMMA 6 ([4]). $F$ is expansive if and only if given collections of local cross-
sections $\mathcal{G}$ and $q$ (with $\zeta$ and $ 3\alpha<\zeta$ ) and $\rho>0$ (with $ 2\rho<\beta$ ), there is $\eta>0$ such
that $W_{\eta}^{s}(x)\cap W_{\eta}^{u}(x)=\{x\}$ for any $x\in T^{+}$ .

PROOF OF THEOREM A. Since $F$ has no fixed points, take $\zeta>0$ as in Lemma
4. Put $\epsilon=\zeta/3$ and let $\alpha_{0}>0$ be as in Lemma 3 (ii). Now take $\alpha$ with $0<2\alpha<$

$\min\{\zeta/3, \alpha_{0}\}$ . For this $\alpha>0$ , we can find local cross-sections $\mathcal{G}$ and $\xi\Gamma$ by

Lemma 4.
Let $\beta$ be as the above. Take $\rho>0$ such that $ 2\rho<\beta$ . Let $0<a<\beta/2$ be as

in Lemma 5 and let $0<\eta<\min\{a, 2\alpha\}$ . To obtain the conclusion, it is enough

to show that $W_{\eta}^{s}(x)\cap W_{\eta}^{u}(x)=\{x\}$ for any $x\in T^{+}$ .
Let $y\in W_{\eta}^{s}(x)\cap W_{\eta}^{u}(x)$ for $x\in T^{+}$ . Then we have $ d(\varphi^{i}(x), y_{i})>\eta$ for all $i\in Z$ .

Let $\tau_{i}$ be the smallest positive number such that $\varphi^{i}(x)=f_{\tau_{i}}(\varphi^{i- 1}(x))$ for $i\in Z$ .
Since $\varphi^{i}(x)=\varphi(\varphi^{i-1}(x))=f_{\tau_{i}}(\varphi^{i- 1}(x))$ , we have $\beta\leqq\tau_{i}\leqq\alpha$ . Since $ d(\varphi^{i}(x), y_{i})<\eta$ for
$i\in Z$, the time difference $\lambda_{i}$ between $y_{i+1}$ and $y_{i}$ satisfies $|\lambda_{i}-\tau_{i}|\leqq\rho$ . Thus

(1) $\beta/2=\beta-\beta/2<\tau_{i}-\rho\leqq\lambda_{i}\leqq\tau_{i}+\rho<\tau_{i}+\alpha\leqq 2\alpha$ .
Now define doubly infinite sequences $t=(t_{i})_{i=-\infty}^{\infty}$ and $u=(u_{i})_{i=-\infty}^{\infty}$ where
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$(\sum_{k=0}^{i}\tau_{k}(\lambda_{k})$
if $i\geqq 0$

$t_{i}(u_{i})=$ $0$ if $i=0$

$|_{-\sum_{k=0}^{i}\tau_{k}(\lambda_{k})}$ if $i\leqq 0$ .

Then we have $\beta\leqq t_{i+1}-t_{1}\leqq\alpha\leqq 2\alpha$ for $i\in Z$ and from (1), $\beta/2\leqq u_{i+1}-u_{i}\leqq 2\alpha$ .
Hence $t_{i},$ $ u_{i}\rightarrow\infty$ and $t_{-i},$ $ u_{-i}\rightarrow-\infty$ as $ i\rightarrow\infty$ . Since

$ d(f_{\iota_{i}}x, f_{u_{i}}y)=d(\varphi^{i}(x), y_{i})<\eta<2\alpha$ $(i\in Z)$ ,

there is $i\in Z$ such that $f_{u_{i}}y\in f_{(-\epsilon-2\alpha+t_{i},t_{i}+2\alpha+\epsilon)}(\{x\})$ (by Lemma 3) and $1\leqq l\leqq k$

such that $f_{t_{i}}x\in T_{t}$ . Since $\epsilon+2\alpha=\zeta/3+2\alpha<2\zeta/3<3<\zeta$ and since $S_{l}$ is a local
cross-section of time $\zeta$ , we obtain $f_{u_{i}}y=f_{\iota_{i}}x$ . By using induction on $i$ we see
that $x=y$ holds. Hence $F$ is an expansive flow on $X$ by Lemma 6.
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