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CERTAIN NONLINEAR DIFFERENTIAL POLYNOMIAL
SHARING A NONZERO POLYNOMIAL IM

By

Abhijit BANERJEE and Sujoy MAJUMDER

Abstract. We study the uniqueness of meromorphic functions when
certain nonlinear differential polynomial sharing a nonzero poly-
nomial having common poles and thus radically improve and extend
some recent results due to of Wang-Lu-Chen [17], Sahoo [16] and
Liu and Yang [14].

1. Introduction, Definitions and Results

In this paper by meromorphic functions we shall always mean meromorphic
functions in the complex plane.

Let f and ¢g be two non-constant meromorphic functions and let a be a
finite complex number. We say that f and g share a CM, provided that f —a
and g —a have the same zeros with the same multiplicities. Similarly, we say
that f and g share @ IM, provided that f —«a and g —a have the same zeros
ignoring multiplicities. In addition we say that /" and g share co CM, if 1/f and
1/g share 0 CM, and we say that f and g share oo IM, if 1/f and 1/g share
0 IM.

We adopt the standard notations of value distribution theory (see [7]). We
denote by 7(r) the maximum of T'(r, f) and T'(r,g). The notation S(r) denotes
any quantity satisfying S(r) = o(7T(r)) as r — oo, outside of a possible exceptional
set of finite linear measure.

Throughout this paper, we use P(®) = @™ + ap_ 10" + -+ a10 + ag
as a nonzero polynomial in w with ag,ay,...,a, as complex constants. We also
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need the following definition:

, N(r,a; f)
Oa; f) =1 —limsup ——==,
( ) r—o T(I’, f)
where a is a value in the extended complex plane.
For a positive integer m and a number A, let m* = y;m, where y, =0if A1 =0

and y, =1 if 2 # 0. For the sake of simplicity we also use the notation

o [m, if deg(P(w)) =m(=1)
" _{0, if P(w) = ag

We note that when P(w)=a,w™ +ay is a non constant polynomial then
m*” =m*.

In 1959, W. K. Hayman ([8] see also [7], Corollary of Theorem 9) proved the
following theorem.

THEOREM A. Let f be a transcendental meromorphic function and n(> 3) is
an integer. Then f"f' =1 has infinitely many solutions.

During the last couple of years or so, authors have given priorities to the
uniqueness results, involving the concept of shared values. First it has been
assumed that f and g are non-constant meromorphic functions in C and P is a
certain differential polynomial such that P[f] and P[g] share one or possibly two
values. Then the question arises under which assumptions on P, on the sharing
hypothesis of the values and others one can conclude that f =g or that f and
g are closely related in some other way. In this direction we first recall the
following results of Fang and Hua [4], Yang and Hua [19] who obtained a
uniqueness theorem corresponding to Theorem A.

THEOREM B. Let f and g be two non-constant entire (meromorphic) functions,
n>6(=11) be a positive integer. If f"f’' and g"g' share 1 CM, then either
f(z) =cre“, g(z) = cre™, where c1, ¢o and ¢ are three constants satisfying
(c1¢2)" ™' = —1 or f =1g for a constant t such that "' =1,

Afterwards, many elegant results have been obtained by different authors
in this context. Among them we mention first the following two results due to
J. Wang, W. Lu and Y. Chen [17] as this will be pertinent with our future
discussions.



Certain nonlinear differential polynomial 223

TueoreM C [17]. Let f and g be two non-constant meromorphic func-
tions, and n, k, m be three positive integers with n > 9k 4+ 6m* + 13. Suppose
™ + ), (g"(ug™ + 2)*) share 1 IM, where ., u are constants such that
|[Al 4+ || #0, and f, g share oo IM.

(1) If Au#0, m>1 and (n,n+m) =1, or while m=1 and ®(o0, ) > 2/n,
then [ =g,

(ii) if Au =0, then either f =tg, where t is a constant satisfying t"™ =1
or f:cleczz, g:cze‘“z, where ¢, ¢ and ¢ are three constants such that
(=1)*22 (1) ™ [(n+m*) ) =1 or (=) 12(c1¢2)™™ [(n+ m*)e]* = 1.

THEOREM D [17]. Let f, g be two transcendental meromorphic functions,
and n, k, m be three positive integers with n > 9%k + 4m+15. If (f"(f — 1)™)®),
(g"(g — D™ share 1 IM and f, g share oo IM, then either f = g or f"(f —1)"

=g"(g— 1"

In 2010, P. Sahoo treated the problem of more generalized differential poly-
nomial sharing fixed point than that considered in the above two theorems.
P. Sahoo [16] obtained the following result.

THEOREM E [16]. Let f and g be two transcendental meromorphic functions,
and let n, k and m be three positive integers such that n > 9k +4m+ 13. Let
P(z) = apmz" + -+ aiz + ap, where ap(#0), ai,...,an(#0) are complex con-
stants. Suppose that [f"P(f)]®, [g"P(9)|"Y) share z IM and f, g share oo IM.
Then either f(z) = tg(z) for a constant t such that tY =1, where d = (n+m, ...,
n+m—i,...,n), auy_; #0 for some i =0,1,2,....m or [ and g satisfy the alge-
braic equation R(f,g) =0, where

R(f,g) = f"P(f) —g"P(9). (1.1)

For entire functions, sharing fixed point CM, Qi-Yang [15] and Dou-Qi-Yang
[3] obtained more generalized results as follows.

THEOREM F. Let f and g be two transcendental entire functions, and let n, k
and m be three positive integers with n > 2k +m* + 4, A, u be two constants such
that |2 + |u| # 0. If [f"Gf™ + 1)) ® and [g"(2g™ + 1)]® share = CM, then one of
the following conclusions hold.

(1) If Au #0, then f¢ =g’ where d = gcd(n,m); in particular f = g, when

d=1;
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(2) If \u =0, then f = cg, where c is a constant satisfying ¢"* =1, or k = 1
and f(z) = bie?”, g(z) = bye ™, for some constants by, by and b that
satisfy 4(4 + p)*(biby)"™ ™ [(n +m*)b)* = —1.

TueoreM G. Let P(®) = auo™ + @y 10™ '+ -+ ajo +ay or P(w) = C,
where ag,ay, ..., au_1,a,(#0), C(#£0) are complex constants. Suppose that [ and
g be two transcendental entire functions, and let n, k and m be three positive
integers with n > 2k +m™ + 4. If [f"P(/)]|%) and [g"P(g)]*® share z CM then the
following conclusions hold-

@) If P(w) = amyw™ + @y w" ' +---+ayw+ay is not a monomial, then
f(z) = tg(z) for a constant t such that t* =1, where d = ged(n+m, ...,
n+m—i,...,n), au_; #0 for some i=0,1,2,....m, or [ and g sat-
isfy the algebraic equation R(f,g) =0, where R(wi,w,;) = of(ano]’ +
am_lcof”’l + -+ ay) — 0} (a0l + am_lcué"’l + -+ ap);

(i) If P(w)=C or P(z) = ay,z™ then f =tg for some constant t such that
=1, or then f = bie?, g = bye b, for three constants by, by and
b that satisfy 4a2(biby)"""[(n+m)b)* = —1 or 4C%(b1by)"[nb]* = —1.

Very recently, Liu and Yang [14] replaced the CM fixed point sharing
concept by that of IM sharing one in the above two theorems. They proved the
following results:

THEOREM H. Let f and g be two transcendental entire functions, and let n, k
and m be three positive integers with n > Sk +4m* + 7, A, u be two constants such
that 2]+ |u| # 0. 1If [f"(f" +w)])® and [g"(2g" + )Y share z IM, then the
conclusion of Theorem F holds.

TueoreM 1. Let P(®) = @™ + @y 10" ' + - +ajo +ay or P(w)=C,
where ag,ay, ..., an-1,an(#0), C(# 0) are complex constants. Suppose that [ and
g be two transcendental entire functions, and let n, k and m be three positive
integers with n > 5k +4m™ + 7. If [f"P(f)]® and [g"P(g)|®) share z IM then
the then the conclusion of Theorem G holds.

So it will be interesting to investigate the above theorems in case of mero-
morphic functions sharing a non-zero polynomial IM having common poles so
that all the results can be brought under a single umbrella. The main intention of
the paper is to obtain a result in a more compact and convenient way so that
it will improve, generalize and extend all the previous results as far as IM sharing
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is concerned. We have also reduced the lower bound of n to some extent in
comparison to that obtained in Themes C, D and E. Following two theorems are
the main results of this paper:

THEOREM 1. Let f and g be two transcendental meromorphic functions,
let n, k, m be three positive integers such that n > 9k +4m* + 11 and A, u be
two constants such that ||+ |u| #0. Let p(z) be a non zero polynomial with
deg(p) < n— 1. Suppose [f"(Af™ +,u)]<k) and [g"(Ag™ + 1)] ®) share p IM and f,
g share oo IM. Then one of the following conclusions holds:

(1) when Ju # 0, if m > 2, then f = tg, for some constant t, satisfying t* =1,

where d = ged(n,m); if m=1 and ©(o0; f) + O(c0;g) > %, then f =g;

(2) when iu=0, then either [ = tg, where t is a constant satisfying t"™™ =1, or

if p(z) is not a constant then f = c1e®), g = cre7C) where Q(z) =
foz p(z)dz and ¢, ¢, and ¢ are three constants satisfying either
12 (ne)(cr1e2)" = =1 or 2*[(n+m)d*(c1c)"™™ = —1,

if p(z) is a nonzero constant b, then [ = c3e®, g = cse™%, where c3, c4
and d are three constants satisfying either (—1)*22(c1¢2)"™ ™ [(n + m)c]* =
b2 or (—1)*u2(c1e2)"[ne]* = b2,

THEOREM 2. Let f and g be two transcendental meromorphic functions and
P(w) = o™ + ap 10"+ -+ ajo+ag or P(w) = C, where ag,ai,...,dy 1,
am(#0), C(#0) are complex constants. Let n, k and m be three positive integers
with n > 9k + 4m™ + 11 and p(z) be a non zero polynomial with deg(p) <n— 1.
Suppose [f”P(f)}(k), [g”P(g)](k) share p IM and f, g share oo IM, then

(I) when P(w) = aw™ + AWV o+ ayw+ag is a non-constant poly-

nomial such that P(w) # a,w™, one of the following two cases holds:

(I1) f(2) =tg(z) for a constant t such that t* =1, where d=
gedin+m,....n+m—i,....n), ay_; #0 for some i=1,2 ... m,

(12) f and g satisfy the algebraic equation R(f,g) = 0, where R(w1,®2) =
ol (amo +am,1wf”’1 + - Fag) — 0} (am@¥ +a,,,,1a)§"’1 +-Fa);

(IT) when P(w) = C or P(w) = a,w™; one of the following two cases holds:

(I11) f =tg for some constant t such that t"*"" =1,

(I12) if p(z) is not a constant, then f = c1e?), g = e~ where
0(z) = [, p(z) dz, ¢, ¢ and ¢ are constants such that either
a2 (c1c2)" ™" [(n+m)e]* = =1 or C(c1¢2)"[ne)? = —1,
if p(z) is a nonzero constant b, then f = cze*, g = cae™, where c3,
¢4 and c are constants such that either (—l)ka57(6304)"+m[(n +m)c)*
=b2 or (=) C%(c3¢4)"[nc)** = b2
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REMARK 1. When f and g are transcendental entire functions then the
conditions n > 9k +4m* 4+ 11 and n > 9k + 4m** + 11 of the Theorems 1 and 2
will be replaced by respectively n > Sk +4m* +7 and n > Sk +4m*™ + 7.

We now explain some definitions and notations which are used in the
paper.

DEerFINITION 1| [13].  Let p be a positive integer and a e CU {0}

(i) N(r,a;f|=p) (N(r,a;f|> p)) denotes the counting function (reduced
counting function) of those a-points of f whose multiplicities are not less
than p.

(i) N(r,a; f|< p) (N(r,a;f|< p)) denotes the counting function (reduced
counting function) of those a-points of f whose multiplicities are not
greater than p.

DEFINITION 2 [21]. For ae CU{w} and a positive integer p we denote
by Ny(r,a;f) the sum N(r,a;f)+ N(r,a;f|=2)+ -+ N(r,a; f |> p). Clearly

Ni(rya; f) = N(r,a; f).

DrFINITION 3. Let a,be CU{}. Let p be a positive integer. We denote
by N(r,a;f|= plg=>b) (N(r,a; f|= plg # b)) the reduced counting function of
those a-points of f with multiplicities > p, which are the b-points (not the b-points)
of g.

DerINITION 4 [1, 2]. Let f and g be two non-constant meromorphic
functions such that f and g share the value 1 IM. Let zy be a 1-point of f with
multiplicity p, a l-point of g with multiplicity q. We denote by Np(r,1;f) the
counting function of those 1-points of f and g where p > q, by N[?(r, 1; 1) the
counting function of those 1-points of f and g where p = q =1 and by ]V]i-z(r, L; 1)
the counting function of those 1-points of [ and g where p = q > 2, each point
in these counting functions is counted only once. In the same way we can define
Ni(r139), NP (r,159), Ng(r,159).

DerINITION 5 [1, 2].  Let k be a positive integer. Let f and g be two non-
constant meromorphic functions such that [ and g share the value 1 IM. Let zy be
a l-point of f with multiplicity p, a 1-point of g with multiplicity q. We denote by
Nysi(r,1;g) the reduced counting function of those 1-points of f and g such that
p>q=k Ngi(r,1;f) is defined analogously.
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DerFINITION 6 [9, 10]. Let f, g share a value a IM. We denote by
N.(r,a; f,g) the reduced counting function of those a-points of f whose multi-
plicities differ from the multiplicities of the corresponding a-points of g.

Clearly

N.(r.a; f,9) = Nu(r,a;9,f) and N.(r,a; f,g9) = Np(r,a; [) + NL(r,a;9).

2. Lemmas

Let F and G be two non-constant meromorphic functions defined in C. We
denote by H and V the functions as follows:

F// ZF/ G// 2Gl
H=[("_ (= ) 2.1
F-7=1)-(F-v21) 2

F' F' G’ G’
V—<F_1‘f>‘(5t7‘6>- (22)
LemMa 1 [18]. Let f be a non-constant meromorphic function and let

ay(2)(#£0), a,_1(2),...,a0(z) be meromorphic functions such that T(r,a;(z)) =
S(r, f) for i=0,1,2,...,n. Then

T(r,anf”—l—a,,_lf”’1 +-+arf+a)=nT({, f)+S(r,[f).

LemMmA 2 [23]. Let f be a non-constant meromorphic function and p, k be
positive integers. Then

Np(r, 0 £©) < T(r, fO) = T, f) + Npase(r, 0, /) + S0, 1), (23)
Np(r,0; f0) < kN (r, 003 f) + Npia (r, 05 f) + S(r, f).- (2.4)
LemMA 3 [12]. If N(r,0; %) | f # 0) denotes the counting function of those

zeros of f®) which are not the zeros of f, where a zero of f® is counted
according to its multiplicity, then

N0, fO £ #£0) <kN(r, 005 f) + N(r,0; f |< k) + kN(r,0; f |> k) + S(r, f).

LemMA 4 [[7], Theorem 3.10]. Suppose that f is a non-constant meromorphic
function, k > 2 is an integer. If

/

N(r, 0, f) + N(r,0; ) + N(r,0; f ) = S<Vf7)

then [ = e®*’ where a #0, b are constants.
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LeEmMMA 5 [6]. Let f(z) be a non-constant entire function and let k > 2 be a
positive integer. If f(z)f®)(z) # 0, then f(z) = e®*?, where a # 0,b are constant.

LemmA 6 [[22], Theorem 1.24]. Let f be a non-constant meromorphic func-
tion and let k be a positive integer. Suppose that f*) # 0, then

N(}’,O;f(k>) SN(I’,O;f)+kN(V,OO;f)+S(V,f).

Lemma 7. Let [ and g be two non-constant meromorphic functions and
P(w) = @™ + ap 10"+ -+ ajw+ag or P(w) = C, where ag,ai,...,dy 1,
am(#0), C(#0) are complex constants. Let n(> 1), k(= 1) and m** (> 0) be three
integers such that n > 3k +m™ + 1. If [f”P(f)](k) = [g”P(g)](k), then f"P(f) =
g"P(g).

PrOOF. We have [f”P(f)](k) = [g"P(g)] .
Integrating we get

PO = 19" P()] Y + e

If possible suppose ci—1 # 0. Now in the view of Lemma 2 for p =1 and using
the second fundamental theorem we get

(n+m™)T(r, f)
< T(r, [/"P() ) = N 0; (1 POONY) 4+ Ni(r, 0 £ P(f)) + S(r, f)
< N0 [P + NG 003 f) + N e PO
= N(r,0; [/ PN Y) + Nic(r, 0, /" P(f)) + S(r, f)
< N(r, 005 /) + N(r, 0 [g"P(g)] “ V) + kN (r,0; 1) + N(r, 0; P(f)) + S(r, f)
< (k+14+m™T(r, f)+ (k= 1)N(r, 0} 9) + Ni(r, 09" P(g)) + S(r, f)
< (k+14+m™)T(r, f) + kN(r, 00;9) + kN(r,0; g) + N(r,0; P(g)) + S(r, f)
< (k+ 14+m™)T(r, f) + 2k +m™)T(r,g) + S(r, /) + S(r, )
< (Bk+2m™ + 1)T(r)+ S(r).
Similarly we get

(n+m™)T(r,g) < Bk +2m™ + 1)T(r) + S(r).
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Combining these we get
(m—m" =3k—-1T() < S(r),

which is a contradiction since n > 3k + m™ + 1.
Therefore ¢, =0 and so [f”P(f)]“‘_l) = [g"P(g)](k_l).
Proceeding in this way we obtain

/PN = 19" P(g)]'.
Integrating we get
J"P(F) = g"P(g) + co.
If possible suppose ¢y # 0. Now using the second fundamental theorem we get
(n+m™)T(r, f) < N(r,0; f"P(f)) + N(r, 005 f"P(f)) + N(r, co; f"P(f))
< N(r, 05 ) +mT(r, f) + N(r, 0 f) + N(r, 0;¢"P(g))
< (M + DT(r,f) + N(r, 0: f)
+N(r,0;9) +m™T(r,g) + S(r, f)
< (34 2m™)T(r) + S(r).
Similarly we get
(mn4+m™)T(r,g) < 3+2m™)T(r) + S(r).
Combining these we get
(n—3—m™)T(r) < S,

which is a contradiction since n > 4 + m™*.
Therefore ¢y = 0 and so

S"P(f) =9g"P(9).

This proves the Lemma. |

LemmA 8. Let f, g be two non-constant meromorphic functions and P(w) =
A" + a1 0" ajw + ay or Plw) = C, where ag,ay, ..., dy_1,an(#0),
C(# 0) are complex constants. Let n(> 1), m** (= 0) and k(= 1) be three integers
with n > k+2. If [f"P(f)] and [g"P(g)]" share o IM, where a(%£0,0) is a
small function of f and g, then T(r,f)= O(T(r,g)) and T(r,g) = O(T(r, f)).
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Proor. Let F = f"P(f). By the second fundamental theorem for small
functions {see [20]}, we have

T(r,F®) < N(r,0; F®) + N(r,0; F®) + N(r,o; F®) + (e + o(1)) T(r, F),
for all ¢ > 0.
Now in the view of Lemmas I and 2 for p =1 and using above we get
(n+m™)T(r, f) < T(r, [f"P(N)Y) = NG, 0; [f"P(S)] )
+ Niar (1,0; f"P(f)) + (& + o(1) T(r, f)
< N0 [f"POO™) + N(r, 003 ) + N(r, o5 [£P()]Y)
= N(r,0; [f"P(/)N™) + Nicsa (7,0 f"P(f)) + (e + o) T(r, /)
< N(r, 05 f) + N(ro; [f"P(f)]Y) + (k + )N (r,0; f)
+N(r,0; P(f)) + (e + o) T(r, f)
< (k+2+m™)T(r, ) + N, [g"P(@9)] ") + (e + o (1) T (r, f)
<(k+24+mTr )+ k+1D)n+m™)T(r,g)
+ (6 +o()T(r, f),
ie.,
(n=k=2)T(r, f) < (k+ 1)(n+m™)T(r,g) + (e + o(1)T(r, f)-

Since n > k + 2, take ¢ < 1 and we have T'(r, f) = O(T(r,g)). Similarly we have
T(r,g) = O(T(r,f)). This completes the proof of the Lemma. N

LeEMMA 9. Let f, g be two transcendental meromorphic functions and P(w) =

@™ + @y 10" a4 ag or P(w) = C, where ag,ay, ..., dm_1,a,(# 0),

LrP(mn™ _ [g"P(e)"™
P , G= P

C(#0) are complex constants. Let F = , where p(z) is a

non zero polynomial and n(>1), k(=1) and m™(>0) are integers such that
n>3k+m*+3. If f, g share oo IM and H = 0, then one of the following two
cases holds:
@) PPl PN = p, where [f"P(N)Y = p(z) and [g"P(g)]" -
p(z) share 0 CM,
(i) /"P(f) = g"P(g).
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Proor. Since H =0, on integration we get

I _bG+a-b
F-1~ G-1 '

(2.5)

where a, b are constants and a # 0. From (2.5) it follows that F and G share
1 CM. We now consider the following cases:

Case 1. Let b #0 and a # b.

If h=—1, then from (2.5) we have

—d

F=——.
G—a-—1

Therefore
N(r,a+1;G) = N(r,00; F) = N(r, c0; f).

So in view of Lemmas I and 2 for p=1 and using the second fundamental
theorem we get

(n+m™)T(r,9) < T(r,G) + Nis1(r,0,9"P(g)) — N(r,0; G)
< N(r,0;G) + N(r,0; G) + N(r,a+ 1; G)
+ Niey1(r, 05" P(g)) — N(r,0; G) + S(r, g)
< N(r, 00;9) + Niep1(r,0: " P(g)) + N(r, 003 [) + S(r, g)
< N(r, 005 f) + N(r, 00;9) + N1 (r, 05 ")
+ Niw1(r, 0 P(g)) + S(r, 9)
<2N(r,0:9) + (k + 1)N(r,0;9) + T(r, P(9)) + S(r,9)
<{k+3+m"}T(r,9) + S(r,9),

which is a contradiction since n > k + 3.
If b# —1, from (2.5) we obtain that

So
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Using Lemmas 1, 2 and the same argument as used in the case when b = —1 we
can get a contradiction.

Case 2. Let b#0 and a =b.

If b= -1, then from (2.5) we have

FG =1,
ie.,
PN [g"P(g)])Y = p?,

where [£"P(f)]® = p(z) and [¢"P(¢)]*) — p(z) share 0 CM.
If b# —1, from (2.5) we have

1 bG

F~ (1+h)G-1

Therefore

— 1 —
N(ﬂm,G) :N(V,O,F).

So in view of Lemmas I and 2 for p=1 and using the second fundamental
theorem we get

(n-’-m**)T(r,g) SA_/(V,OO,G)+N(V,0,G)+N(r,11_i_b,G)

+ Nis1(r, 09" P(g)) — N(r,0; G) + S(r, g)
< N(r,00:9) + (k + 1)N(r,059) + T(r, P(g)) + N(r,0; F) + S(r, )
DN(r,059) + T(r, P(g)) + (k + 1)N(r, 0; f)
+ T(r, P(f)) +kN(r, 05 f) + S(r. ) + S(r,9)
<{k+24+m"}T(r,g9)+ {2k +14+m"}T(r, f)
+8(r, f) + 8(r,9).

< N(r,o0;9) + (k +

Without loss of generality, we suppose that there exists a set / with infinite
measure such that T(r, f) < T(r,g) for rel.
So for re I we have

{n —3k—-3— }’}/l*>‘<}’]-‘(l"7 g) < S(V, 9)7

which is a contradiction since n > 3k + 3 + m™*.
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Case 3. Let b =0. From (2.5) we obtain

G+a—1
—

F

Il
—~

>

(@)
=

If a #1 then from (2.6) we obtain
N(r,1 —a;G) = N(r,0; F).

We can similarly deduce a contradiction as in Case 2. Therefore a = 1 and from
(2.6) we obtain

F =G,
ie.,
L)Y =lg"P(9)]"-
Then by Lemma 7 we have
S"P(f) = g"P(9)-
This completes the proof. U

Lemma 10 (22].  Let f; (j =1,2,3) be a meromorphic and fi be non-constant.
Suppose that

3
Y5
Jj=1

and

3
ZNrOf

Jj=1

N(r,00; f;) < (A+0(1))T(r),

HMW

as r— 4o, rel, A<1 and T(r) =maxi<;<3 T(r,f;). Then =1 or fy=1

LemMa 11.  Let f, g be two transcendental meromorphic functions, p(z) be a
non-zero polynomial with deg(p) <n — 1, where n and k be two positive integers
such that n > max{2k,k +2}. Suppose [f"W[g"|* = p2, where [f"® — p(z),
(9" ® — p(z) share 0 CM and f, g share o IM,

(i) if p(z) is not a constant, then f = c1e‘%), g = cre Q) where Q(z) =
o p(z) dz, ¢1, ¢ and ¢ are constants such that (ne)?(cr1c2)" = —1,
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(i) if p(z) is a nonzero constant b, then f = c3e®, g = cse™"

and d are constants such that (—l)k(C3C4)n(l’ld)2k = b2

, where ¢3, ¢4

ProOOF. Suppose
1“1 = p. (2.7)

Since f and g share oo IM, (2.7) one can easily say that f and ¢ are tran-
scendental entire functions.

We consider the following cases:

Case 1: Let deg(p(z)) =1(=1).

By Lemma 8 we have S(r,f) = S(r,g). At first we observe that f and g
being two transcendental meromorphic functions N(r,0; f) = N(r,0;g) = O(log r)
= S(r, f) = S(r,9).

Let

n (k)
F] = and G] = [g ] .

(2.8)

Note that T'(r, F1) < n(k+ 1)T(r, f) + S(r,f) and so T(r, F1) = O(T(r, f)). Also
by Lemma 2, one can obtain T'(r, f) = O(T(r,F))). Hence S(r,F) = S(r,f).
Similarly we get S(r, Gi) = S(r,g). Hence we get S(r, F1) = S(r, G;). From (2.7)
we get

FG = 1. (2.9)

If Fi = c¢Gy, where ¢ is a nonzero constant, then by (2.9), F| is a constant and
so f is a polynomial, which contradicts our assumption. Hence F; # c¢Gj.
Let

% - p
= ® (2.10)
91" —p
We deduce from (2.10) that
O = el (2.11)

where f is an entire function.
Let fi = F, f»=—ePGy and f; = . Here f; is transcendental. Now from
(2.11), we have

h+hH+fi=1
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Hence by Lemma 6 we get

3
ZNVOf

j=1

N(r,0; ;) < N(r,0; Fi) + N(r,0;¢*G) + O(log r)

H Mw

< (A+o()T(r),

as r— 4o, rel, A<1 and T(r) =maxi<;<3 T(r, f}).
So by Lemma 10, we get either ¢/G; = —1 or ¢/ = 1. But here the only
possibility is that e/G, = —1, i.e., [¢"] ®) = —ePp(z) and so from (2.7) we obtain

Fr=e"Gy,
1e.,
11" = enfgn™®,
where y, is a non-constant entire function. Now from (2.7) we get

("M = ceVPrp(z), (g = ce”127p(z), (2.12)

where ¢ = +1.
Since N(r,0;f) = O(logr) and N(r,0;g) = O(log r), so we can take

@) =m(2)e?, g(z) = ha(2)e!), (2.13)

where s and A, are nonzero polynomials and o, f are two non-constant entire
functions.

We deduce from (2.7) and (2.13) that either both « and § are transcendental
entire functions or both are polynomials.

We consider the following cases:

Subcase 1.1: Let k > 2.

First we suppose both o and [)’ are transcendental entire functions.

Let oy =o' + h Land B, = ' + 7.+ Clearly both o and f; are transcendental
functions.

Note that

S(r,noy) = S(r, [J;]/), S(r,npy) = S(r, [gg:]l).

Moreover we see that
N(r,0; /"™y < N(r,0; p*) = O(log r)
N(r,0;[g""™) < N(r,0; p?) = O(log r).
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From these and using (2.13) we have

N, £7) 4 N0 ) + N0 L) = () = S [f,f}/) (2.14)
and
NG 30"+ N0 ")+ N 050g") ) = ) = 5 [Z}') (2.15)
Then from (2.14), (2.15) and Lemma 4 we must have
f=e"th g =ectd (2.16)

where a #0, b, ¢ # 0 and d are constants. But these types of f and g do not
agree with the relation (2.7).
Next we suppose o and f are both non-constant polynomials, since otherwise
f, g reduces to a polynomials contradicting that they are transcendental.
Also from (2.7) we get o+ B = C ie., o' = —f'. Therefore deg(x) = deg(p).
Suppose %;’s i = 1,2 are non-constant polynomials. We deduce from (2.13)
that

1% = ARy @) + Py (o hY)]e™ = p(z)e™, (2.17)
and

9" = By k(B + Qi (B 15)]e™ = p(z)e™, (2.18)

where A, B are nonzero constants, Px_i(o’,h]) and Qx_1(p’,h}) are differential
polynomials in o, 4] and B', h} respectively.

Since deg(p) <n—1, from (2.17) and (2.18) we conclude that both s; and
hy are nonzero constants.

So we can rewrite f and ¢ as follows:

f=e, g=¢ (2.19)
We deduce from (2.19) that
(") = my'e”
(/") =2 + e
()" = 1) + 39y 4 e

(fn>(iv) _ [n4(y/)4 + 6”3())/)2)/” + 31’12())//)2 Jr4_”2])/)}/// +ny(iv)}eny
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(fn)(v) _ [7’15()/,)54—10}’24( )3 " 151’1 /( )2+10n3(y/)2y///

+ 10}’[2 l/ " + Sl’l +ny( )]

MO = 0N + KO + Pea(y)]e”.

Similarly we get
9" = (0" + K@) 70" + Proa(o)]e”

= (=1 n* (") = K(=1D) 20N " + Pea(=)]e™,

where K is a suitably positive integer and Py »(y’) is a differential polynomial
in y.

Since deg(y) > 2, we observe that deg((y")*) > k deg(y’) and so (')*2y" is
cither a nonzero constant or deg((y')*2") > (k — 1) deg(y’) — 1. Also we see
that

deg((")") > deg((?")* ") > deg(Pr—2(y")(or deg(Pi—2(~7")))-

Now from (2.12) we see that [f "](k) and [g"]</‘) share 0 CM and so the
polynomials

n* () + KGN + Pia(y)
and
(=D 0N = K(=1) 20N " + Pra(=y)
must be identical but this is impossible for k> 2.
Actually the terms n*(y")* +K(")* 2" and (=1)*n*(y")* — K(=1)*2.
(")*29" can not be identical for k > 2.

Subcase 1.2: Let k= 1.
Now from (2.7) we get

/e = (2.20)

where p? =1 p.

We wish to prove that both « and f are polynomials.

To this end let &7 = fg and suppose at least one of o and S is a transcendental
entire function. We consider the following subcases:

Subcase 1.2.1: First suppose that / is a polynomial. Then from (2.13), it is
clear that h = Ahjhy, where A =€ and «+ f = C a constant. It follwos that
both o and f are transcendental. Therefore o’ = —p’.
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Now from (2.20) we see that

2
Ao (—hjhy + Iy — b)) = e~V LU i,
(hiha)"

2
# is a polynomial. From this it is clear that
1172

N(r,0;0") = O(log r), N(r,0;—hjhy + hihy — hihya') = O(log r).

where

By the second fundamental theorem for small functions {see [20]}, we have
T(r,o') < N(r,00;0") + N(r,0;0") + N(r,0; —hihy + hihy — hyhao')
+(e+0(1)T(r,a')
< O(log r) + (e + o(1)) T (r, o),

for all ¢ >0. This shows that o’ is a polynomial and so is «, which is a
contradiction.

Subcase 1.2.2: Next suppose /& is a transcendental entire function. From
(2.20) we get

g TN 1[N,
(5‘5%) =7 —h™"p3. (2.21)
Let
g/ 14
2 =" "7 7
g 2h
From (2.21) we get
1 h/ g —n
03 = Z(E) —h™"p3. (2.22)

First we suppose o =0. Then we get 1 "p} = %(’%)2 and so T(r,h) = S(r,h),
which is impossible. Next we suppose that oy # 0. Differentiating (2.22) we get
!

Lh' (R
200 = 5 % (%) +nh'h " pt = 20 py i

Applying (2.22) we obtain

n ho, PR A Lh (W h
h (—nzpl‘i‘zplpl—za—zm 27 \\%) ") (2.23)
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If we suppose
!/

a/
7 pi+2p1p) — 2a—2pf =0,

—n

then there exist a non-zero constant ¢ such that o3 = ch™"p? and so from (2.22)

-n L ’
(c+ 1)h pIZEZ(Z>'

If ¢ = —1, then & will be a constant. If ¢ # —1, then we have T'(r,h) = S(r,h),
which is impossible. Next we suppose that

we get

/

h

a/
—n—pi +2p1p] — 20721712 #0.

Then by (2.23) we have

nT(r,h) = nm(r,h)

! AN /i
<m r,hnlh_ PN Moo\ r,;’ +0(1)
2 h h h o ﬂ((%)’_lz_’ﬁ)

LA (BN h o h , ah
< —_ ) == = _ 2z
< N(r,0;) + S(r,h) + S(r, 02). (2.24)
From (2.22) we get
1
T(r,on) < EnT(r, h) 4+ S(r, h).
Now from (2.24) we get

%nT(r, h) < S(r,h),

which is impossible.
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So from the above two subcases we must conclude that both « and f are
polynomials. Also from (2.7) we can conclude that o(z) 4+ f(z) = C for a constant
C and so o/(z) + p'(z) =0. We deduce from (2.7) that

[ = nlhje’ + hy~ hile™ = p(z)e™, (2.25)
and
l9"" = nlh3p’ + by~ ple™ = p(z)e™. (2.26)

Since deg(p) < n— 1, from (2.25) and (2.26) we conclude that both /; and &, are
nonzero constant.
So we can rewrite f and g as follows:

f=e? g=e” (2.27)
Now from (2.7) we get

n2yhohe19) = p2. (2.28)
Also from (2.28) we can conclude that y,(z) 4+ d(z) = C for a constant C and
$0 75(z) +J5(z) = 0. Thus from (2.28) we get n?e"“y}d, = p*(z). By computation

we get
P R — (2.29)

Hence
72 =¢Q(z) + b1, 0= —cQ(z) + b, (2.30)
where Q(z) = fé p(z) dz and by, b, are constants. Finally we take f and ¢ as

f(2) = ae@?, g(z) = 70,

where ¢|, ¢, and ¢ are constants such that (nc)*(cic;)" = —1.

Case 2: Let p(z) be a nonzero constant b.

In this case we see that f and g have no zeros and so we can take f and g
as follows:

f=e, g=¢, (2.31)
where «(z), f(z) are two non-constant entire functions.
We now consider the following two subcases:

Subcase 2.1: Let k > 2.
We see that

N(r,0;[f"%) = 0.
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From this and using (2.31) we have
L e #o. (232)
Similarly we have
g"@)g"@NY #o0. (2.33)
Then from (2.32), (2.33) and Lemma 5 we must have
=@t g et (2.34)

where a # 0, b, ¢ #0 and d are constants. From (2.7) it is clear that a + ¢ = 0.
Subcase 2.1: Let k = 1.
Considering Subcase 1.2 one can easily get

f _ E['Hb, g= ec:+d7 (235)
where a # 0, b, ¢ #0 and d are constants.
Finally we can take f and g as

dz —d:
f=ce®, g=ce ¥

where ¢3, ¢4 and d are nonzero constants such that (—l)k(C3C4)"(nd)2k = b2
This completes the proof. ]

LemMA 12.  Let f, g be two transcendental meromorphic functions and P(w) =
A" + ap_10™ V- ajw+ay be not a monomial, where ag,ay,...,am_1,
am(# 0) are complex constants. Let n, m and k be three positive integers such that
n>k If f and g share oo IM, then [f"P(f)]®[g"P(g)|") % p?, where p(z) is a
non zero polynomial.

PrOOF. Suppose
PN W [g"P(g)) Y = p2. (2.36)

For the sake of the simplicity we suppose @y # 0. Since f and g share oo IM,
(2.7) one can easily say that f and g are transcendental entire functions.
Since n > k, so we can take f(z) as

f(2) = h(z)e™?, (2.37)

where / is a nonzero polynomial and o is a non-constant entire function.
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Since f = he”, then by induction we get
ai(f™H0 = o 0, a® kL R E) e, (2.38)

where #;(o 0", ..., n b ... k%)) (i=0,1,2,...,m) are differential poly-
nomials in o, o”, ..., 0% hn' ... KK,
We now show that

(e o a % hoh L R B #£ 0,

for i =0,m.

On the contrary we suppose that #; =0 for i = 0,m. Then from (2.38) we
have (f ”“)W =0 for i = 0,m and so f is a polynomial, which is a contradiction.
Hence

(e o a® hoh L R B #£ 0,

for i=0,m. Also (2.36) yields [f"P(f)]* #0.
From (2.36) and (2.38) we obtain

N(r,0;te™ + -+ + 11" + 1) < N(r,0; p?) = S(r, f). (2.39)

Since o is an entire function, we obtain T(r,a)) = S(r, f) for j=1,2,... k.
Hence T(r,t;) = S(r,f) for i=0,1,2,...,m. So from (2.39) and using second
fundamental theorem for small functions {see [20]}, we obtain

mT(r, f)=T(r, t,e™ + -+ t1e*) + S(r, f)
< N, 0;te™ + -+ 1e”) + N(r, 05 te™ + - - + t1e%)
+ N(r,0;1,,e™ + - 4+ t1e* 4+ 19) + (¢ + o(1))T(r, f)
<N 0; 1, V% o 1) + (e + 0(1)T(r, )
<(m-=NOT(r,f)+ (+o()T(, f),

for all ¢ >0. Take ¢ <1 and we obtain a contradiction. This completes the
Lemma. [

LemMa 13 [2]. Let f and g be two non-constant meromorphic functions
sharing 1 IM. Then

NL(r G f) + 2N 1g) + NS, L f) = Ny (r, 159) — N (7, 13 f)

< N(r,1;9) = N(r,1;9).
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LemMA 14 [2]. Let f, g share 1 IM. Then
Ni(r, 1 f) < N(r,0; f) + N(r, 003 f) + S(r, )

LemmaA 15 [2]. Let f, g share 1 IM. Then
(1) N/>1(r717g) ﬁ]V(r,O,f)—i—N(r,oo,f)—No(r,O,f’)+S(r,f)
(11) ]Vg>1(r,l;f)SN(r,O;g)—l—N(r,oo;g)—No(r,O;g’)—i—S(r,g).

LEMMA 16.  Suppose that [ and g be two non-constant meromorphic functions.
Let F=[f"P(]%, G =[g"P(9)]"Y), where n(=1), k(= 1), are integers. If f, g
share oo IM and V =0, then F = G.

ProoF. Suppose V = 0. Then by integration we obtain

1 1

If zp is a pole of f then it is a pole of g. Hence from the definition of F and G
wehavemzo andﬁzo. So A =1 and hence F = G. O

Lemma 17.  Suppose that f and g be two non-constant meromorphic functions.
F, G be defined as in Lemma 16 and H # 0. If f, g share oo IM and F, G share 1
IM, then

(n+m™ — 3k — 3)N(r, o0; f) < 2(k +m™ + D{T(r, f) + T(r,g)}
+S(r, /) + 8(r, 9).

Similar result holds for g also.

Proor. Suppose oo is an e.v.P of f and ¢ then the lemma follows im-
mediately.

Next suppose co is not an e.v.P of f and g. Since H # 0 from Lemma 16 we
have V' # 0. We suppose that zj is a pole of f* with multiplicity ¢ and a pole of ¢
with multiplicity r. Clearly zy is a pole of F with multiplicity (n + m**)g + k and
a pole of G with multiplicity (n + m**)r 4+ k. Noting that f, g share oo IM from
the definition of V it is clear that zy is a zero of V' with multiplicity at least
n+m** +k—1. Now using the Milloux theorem {see [7], p. 55}, and Lemma 1,
we obtain from the definition of V' that

m(r, V) = S(r,f) +S(r,g).
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Also by Lemma 14 we get
N.(r,1;F,G) = N(r,1;F) + N.(r,1; G)
< N(r,0; F) + N(r, 0; F) + N(r,0; G)
+ N(r,0;G) + 8(r, ) + S(r,9)
<2(k+ 1)N(r, 00, f) + (k + m" + D)T(r, f)
+ (k+m"+1)T(r,g) + S(r, ) + S(r,9)
Thus using Lemmas 1 and 2 we get
(n+m" +k—1)N(r,00; f) < N(r,0; V)
T(r,V)+0(1)
< N(r,o0; V) +m(r, V) + O(1)
< N(r,0;F) + N(r,0;G) + N.(r, 1, F, G)
+8(r, /) +S(r.9)
< Nieaa (1,05 f"P(f) + Nie1 (r, 05 9" P(g))
+kN(r, 05 f) + kN(r, 003 9)
+N.(r, 1;F,G) +S(r, f) + S(r,9)
< Niew1 (1,05 f*) 4 Niewa (1,05 P(f)) + Ni11(r, 0;9")
+ Niy1(r,0; P(g)) + 2kN(r, 005 f) + N.(r, 1; F, G)
+8(r, f) + S(r.9)
< (k+1)N(r,0;.f) + N(r,0; P(f)) + (k + 1)N(r,0; 9)
+ N(r,0; P(g)) + 2kN(r,c0; f) + N.(r, 1; F, G)
+8(r, f) + S(r,9).
This gives
(n+m"™ =3k =3)N(r,0; f) < 2(k +m™ + D{T(r, f) + T(r.g)}
+8(r.f)+S(r. 9).

This completes the proof of the lemma. O
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3. Proof of the Theorem

n 1 (k) n (k)
PrOOF OF THEOREM 1. Let F =/ P;/ I and G :%, where P(w) =

Aw™ 4+ . It follows that F and G share 1 IM. Also f and g share oo IM.

Case 1: Let H #0.

From (2.1) it can be easily calculated that the possible poles of H occur at (i)
multiple zeros of F and G, (ii) those 1 points of F and G whose multiplicities are
different, (iii) poles of f and g with different multiplicities, (iv) zeros of F'(G’)
which are not the zeros of F(F —1)(G(G —1)). Since H has only simple poles
we get

N(r,00;H) < N.(r,0; f,9) + N.(r, 1;F,G) + N(r,0; F |> 2)
+

N(r,0;G|>2) + No(r,0; F') 4+ No(r,0; G"), (3.1)

where No(r,0; F') is the reduced counting function of those zeros of F’ which are
not the zeros of F(F —1) and No(r,0;G') is similarly defined.
Here we see that

NP (R 1;F|=1)< N(r,0,H) < N(r,00;H) + S(r,F) + S(r,G).  (3.2)

Now using Lemmas 3, 13, 14, 15, (3.1) and (3.2) we get

N(r,1;F) < ND(r 1, F) + No(r, 1, F) + Np(r, 1, G) + NS (r, 1 F)

< N(r,o0; f) + N(r,0; F|> 2) + N(r,0; G|> 2) + N.(r, 1; F, G)
+ N G F) + NL(r, 1:G) + Ny (r, 1; F) + No(r, 0; F')
+ No(r,0;G") + S(r, f) + S(r, 9)

< N(r,00;f) + N(r,0; F|>2) + N(r,0; G |> 2)
+ 2N (r,1;F) + 2N, (r, 1; G) —&-]Vg(r, I; F)
+ No(r,0; F") + No(r,0; G') + S(r, f) + S(r, g)

< N(r,00; f) + N(r,0; F|>2) + N(r,0; G |= 2) + Np=1(r, 1; G)
+ Ngs1(r,1; F) + Np(r,1;F) + N(r, 1;G) — N(r,1; G)

+ No(r,0; F") + No(r,0;G") + S(r, ) + S(r,9)
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< A4N(r,00;f) + Na(r,0; F) + N(r,0; F) + Na(r,0; G) + N(r, 1; G)
— N(r,1;G) + No(r,0; G') + No(r,0; F') + S(r, f) + S(r, 9)
< A4N(r,00; f) + No(r,0; F) + N(r,0; F) + Na(r,0; G)
+ N(r,0;G'|G # 0) + No(r,0; F') + S(r, f) + S(r, 9)
< 5N(r,00;f) + Na(r,0; F) + N(r,0; F) + N»(r,0; G)
+ N(r,0; G) + No(r,0; F') + S(r, f) + S(r,9). (3.3)

Hence using (3.3), Lemmas 1, 2 and 17 we get from second fundamental theorem
that

(n+m*)T(r, f) < N(r,0; F) + N(r, 00, F) + N(r, 1; F)

+ Niewa(r, 0 f"P(f)) = Na(r, 05 F) — No(r,0; F')

< 6N(r, 0, f) + Na(r,0; F) + 2N (r,0; F)
+ Niew2(r, 05 f"P(f)) + Na(r, 0; G)
+N(r,0;G) = Na(r, 0, F) + S(r, /) + S(r,9)

< O6N(r, 03 f) + Ny (r, 0; f"P(f)) + 2N (r,0; F)
+ Na(r,0; G) + N(r,0; G) + S(r, f) + S(r, 9)

< ON(r, 03 f) + Niwa(r, 0; f"P(f)) + 2kN (1, 005 f)
+ 2Nies1 (1,05 f"P(f)) + kN (r, 003 g) + Nieya(r, 0: 9" P(g))
+kN(r, 039) + Neaa(r,0:9"P(g)) + S(r, f) + S(r,9)

< (4k + 6)N(r, 00; f) + (3k +4)N(r,0; /) + 3T (r, P(f))
+ (2k +3)N(r,0;9) + 2T (r, P(9)) + S(r, /) + S(r,9)

- 12(k + m™ + 1)
T n+m*—-3k—-3

{T(r, f)+T(r.g)} +4kT(r, f)

+ (Bk+4)N(r,0; )+ 3T(r, P(f))
+ (2k +3)N(r,0;9) + 2T (r, P(g9)) + S(r, f) + S(r, 9)

24(k +m* +1)

<< 9k + 5m*
_{9 + Sm +7+n+m*—3k—3

}T(r) + S(r). (3.4)
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In a similar way we can obtain

24(k +m* + 1)

(n+m*)T(r,g) S{9k+5m +7+m

}T(r) +S(r).  (3.9)

Combining (3.4) and (3.5) we see that

(n=9% —4m* = T)(n+m* -3k —3) =24k + m* + 1)
n+m*—3k—3

] T(r) < S(r). (3.6)

When n > 9% + 4m* + 11, (3.6) leads to a contradiction.
Case 2: Let H =0. Then by Lemma 9, we get either

O™ 4 1) = g" (g + ) (3.7)
or
™+ 1] g (2g™ + 0] © = p2. (3.8)

We now consider the following two subcases:
Subcase 2.1: Let Au # 0. By Lemma 12 we must have

™+ 1] g (2g™ + )] © £ p2.

Next we consider the relation (3.7). Let m = 1. In this case noting that d =1 =
(1,n), proceeding in the same way as done in Lemma 6 of [11] we can show
when @(o0, f) 4+ O(c0,g) > 4/n, we have f =g.

Next we suppose m > 2. Let f # tg for a constant ¢ satisfying ¢ = 1, where
d = ged(n,m). We put h =2 Then h? £ 1, ice., (h—vo)(h—v1) - (h—vqa_1) #0,
where v = exp(%H), k = 0,1,2,....d — 1. First suppose that / is constant. Now

(3.7) implies
'ugm(thrm _ 1) = —ﬂ(hn _ 1)

Since ged(n,m) = d, it follows that gcd(n + m,n) = d. Eliminating d common
factors namely 7 —uvg, k=0,1,...,d — 1 from both sides we are left with

ag”(h—on)(h—o) - (h = tpim-a) = (h = B)(h = B3) - - (h = B,_a),



248 Abhijit BANERJEE and Sujoy MAJUMDER

where o; and f; are those zeros of h"t —1 and h" — 1 which are not the
zerosof hY —1,i=1,2,....n+m—d and j=1,2,...,n—d. Also we note that
none of the «;’s coincides with ﬁj’s. So if h=o; or s then we have either
(h=p))h=p) - (h—pF,_1_4) =0 or g=0 and in both case we get contra-
dictions. So we assume neither A" =1 nor A" = 1. Hence we may write

IR

It follows from above that g is a constant, which is impossible. So / is non-
constant. We observe that since a non-constant meromorphic function can not
have more than two Picard exceptional values /& can take at least n+m —d — 2
values among u; = exp(ffiﬁl), where j=0,1,2,...,n+m— 1. Since g” has no
simple pole, and so /2 — u; has no simple zero for at least n +m — d — 2 values of

uj, for j=0,1,2,...,n+m —1 and for these values of j we have O(u;; /1) > %,
which leads to a contradiction.

Therefore h? =1. ie., f =tg for a constant ¢ satisfying ¢ =1, where
d = ged(n,m).

Subcase 2.2: Let Au=0 but |A|+|ul#0. Then from (3.7) we get
[ = g™t and so f = tg, where ¢ is a constant satisfying "t = 1.

Also from (3.8) we get either

}VZ [fn+n1] (k) [ng—m] (k) = p2

or
ny(k)r ny(k) _
21 Pgm® = p.

Then by Lemma 11, we get if p(z) is not a constant then f = ce9?), g=
2679 where Q(z) = [; p(z) dz and ¢y, ¢; and ¢ are three constants satisfying
either 12(nc)?(cie2)" = —1 or A%[(n+m)d*(c1c2)"™™ = —1, if p(z) is a nonzero
constant b, then f = c3e?, g = c4e~ %, where 3, ¢4 and d are three constants
satisfying either (—1)*2%(cic2)"™™[(n+m)c)™ = b2 or (=1)*12(c12)"[nc]™* = b2
This completes the proof. O

ProOF OF THEOREM 2. Let F = [f"P(f)]*® /p(z) and G = [¢"P(¢9)]"¥ /p(2).
It follows that F and G share 1 IM and f, g share co IM. We omit the
proof since the proof of the theorem can be carried out in the line of proof of
Theorem 1. O
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