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ESSENTIAL m-SECTORIALITY AND ESSENTIAL
SPECTRUM OF THE SCHRODINGER OPERATORS
WITH RAPIDLY OSCILLATING COMPLEX-VALUED

POTENTIALS

By

Yorimasa OSHIME

Abstract. Schrédinger operators Ty = —A + ¢g(x) with rapidly
oscillating complex-valued potentials ¢(x) are considered. Each of
such operators is sectorial and hence has Friedrichs extension. We
prove that T} is essentially m-sectorial in the sense that the closure of
Ty coincides with its Friedrichs extension 7. In particular, 7 is
essentially self-adjoint if the rapidly oscillating potential ¢g(x) is real-
valued. Further, we prove ¢,4(7T) = [0,00) under somewhat stricter
condition on the potentials g(x).

1 Introduction

It is well known (see Theorem X.38 and its corollary in Reed-Simon [4]) that
the Schrédinger operator —A + g(x) (x € RY) is essentially self-adjoint if the real
potential ¢(x) satisfies ¢(x) > —¢|x|* for some positive constant ¢. However, there
are still many potentials for which the essential self-adjointness of the Schrédinger
operators have not been fully studied. Rapidly oscillating potentials are among
such ones and typical examples are

(/)(I_;CO Ix|? sin(jx]*), (1 + |x*) "M cos(e).

Here ¢(w) is a bounded function on the unit sphere SV~! = {w e RY : || = 1}.
Skriganov [6] (see also Mateev and Skriganov [3]) studies such potentials and also

2010 Mathematics Subject Classification: Primary 35J10; Secondary 35P15.

Key words and phrases: Oscillating potentials, Sectorial forms, Friedrichs extension.
Received September 10, 2014.

Revised June 30, 2015.



208 Yorimasa OSHIME

provides sufficient conditions for the essential self-adjointness of the operators.
However, he assumes that the potentials are continuous and satisfy some ad-
ditional properties. Removing the continuity conditions on the potentials, Sasaki
[5] proves that the essential spectrum of their Friedrichs extension is [0, c0)
though he does not consider their essential self-adjointness.

It should be noted that the above authors use argument applicable only to
the real potentials. In this paper, we study complex-valued rapidly oscillating
potentials. To mention our results, we define the essential m-sectoriality of
operators.

Let Sy be a densely defined sectorial operator in a Hilbert space. Then S
has an m-sectorial extension S which is called its Friedrichs extension. (See Kato
[2, p325].) If this S coincides with the closure of Sy, then Sy is called essentially
m-sectorial. In the special case where Sy is a symmetric operator bounded from
below, the essential m-sectoriality becomes the essential self-adjointness.

In Section 2, we prove the essential self-adjointness or rather the essential
m-sectoriality of the operators with complex-valued rapidly oscillating potentials,
avoiding continuity conditions. It is guaranteed that, for example, Ty = —A + ¢(x),
Dom(7Ty) = Cy° with ¢g(x) = |x|? e or el exp(iel) is essentially m-sectorial and
its closure coincides with its Friedrichs extension.

In Section 3, we prove that the essential spectrum of such operators equals
[0, c0) under somewhat stricter condition on the potentials. It is guaranteed that,
for example, the Friedrichs extension 7 of Ty = —A + ¢(x) with ¢(x) = |)c|3e""*"5
or (1+ |x|*) "l exp(iel) satisfies oo (T) = [0, o0).

Our main tools are sectorial sesquilinear forms and associated m-sectorial
operators. See Kato [2] for their definitions and basic properties.

Finally, the author sincerely thanks Professor 1. Sasaki of Shinshu University
for many valuable advices and encouragement. He also thanks the referee for
many suggestions to improve the manuscript.

2 Essential m-Sectoriality
In this section, we consider the essential m-sectoriality of the operator
Tou = —Au+q(x)u, (xeRY)

with domain Dom(7;) = CZ°(RY).
Throughout this section, we always assume

q(x) = q1(x) + q2(x)
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with ¢ (x) e LE.(RY), ¢2(x) e L*(RY) and

sup J q1(pw) dp‘ < 0.
0

r>0,meSN-1

Therefore, by setting

0i(rw) = JO q1(pw) dp,

q1(x) e LL.(RY) implies
|Q1(VCO)| <M min{lvr}a

sup g (ro)| = M

r>0,me SN-1
for some constant M > 0 independent of we SVN-!.
Note that g(x) = |x|3e"|x‘4 are el exp(iel!) typical examples for the above

q1(x).

Lemma 1. For ue H'(RY), ve CF(RY),
[, ool dx = = = 1) [ (Q1)/)ux)eC) dv
R’ R’

N
~ [ 060 > ol ute o) + (oufex)a) .

]:

—

Proor. We may assume u e C°(RY). Using (0/0r)Qi(ro) = ¢qi(rw) and
integration by parts, we have

J B g1 (X)u(x)v(x) dx = J JOO N g (ro)u(ro)o(ro) drdo
R sv-1Jo

==V =1) | (@) d

N
J (%) Y (5/[xX){u(0/0x;) + (6u/ox;)p} dx. W

J=1
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LEMMA 2. Define the sesqulinear form s[u,v] by

+J ()u(x)o(x) d
-
for u,ve H'(RY). Then we have
[s[u, v]| < M[Vul| 2|0l 2 + M a2Vl 2 + MN[ul| L2][v]] 2

for all u,ve H'(RV).

ProoF. Recalling |Q;(x)| < M and using the Cauchy-Schwartz inequality,
we have

X | ou(x) — 0v(x)
URN 01(x) ) |):| { e x) + u(x)axj} dx

We apply |Q1(x)| < M|x| and |¢q2(x)| < M to the first and third terms of s[u, v] to
obtain

< M|Vl [|ol] + Mful| [[Vol|.

[s[u, ]| < M||Vul| [Jo]] + Mjul |Vo]| + MN|juf o]~ =

REMARK. Combining Lemma 1 and Lemma 2 we know that the multi-
plication operator u — (g;(x) + ¢2(x))u can be extended to a bounded map from

H' to H .
THEOREM 3.
tu, v] = (Vu, Vo) + sfu, v]

is a closed sectorial sesquilinear form with domain H'. The associated m-sectorial
operator is

Tu=—Au+ q(x)u
with domain

Dom(T) = {ue H'NH}, : —Au+g(x)ue L*}.
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Proor. From the previous Lemma 2, we have
fut, ]| < (1/2)]1Vr]]® + (8M2 + MN)Ju]>
Hence
Re f[u,u] = |[Vu|® + Re s[u, u] > (1/2)||Vul|* = (8M> + MN)|jul|*.
We also have
[t ol| < IVl [[Voll + M|Vl [[of| + MJull [[Vol| + MN[|ul| o]

Therefore #[u,v] is a closed sectorial sesquilinear form with domain H!. Thus
the representation theorem (Theorem 2.1 of Kato, [2; p322]) ensures that there
exists a unique associated m-sectorial operator 7 such that for an arbitrary
u e Dom(T), t{u,v] = (Tu,v) holds for all ve Dom(z).

Finally, considering the special case where ve Ci°, it is easy to prove
Dom(T) ={ue H'NH}, : —Au+ q(x)ue L*}. [ |

We have now proved the minimal operator Tou = —Au + g(x)u with domain
Dom(7y) = Cy has an m-sectorial extension (i.e., Friedrichs extension). We
shall show this extension is unique by proving the closure of Ty is exaclty the
Friedrichs extension 7" we have just obtained. Let us begin with a lemma.

LeEmMMA 4. For any ue H.. and any constant R > 1, the following holds.

j P dx

< (1/2)J |Vu|* dx + (8M> + 2MN)J |u|? dx.

[x|<R [x|<R

ProOF. We may assume u e H. N C*. Note that
2 N-1 2
| el ac= | oiRo)RY u(Ro) do
[x[<R Sh-1

— J JR(N — V20 (rcu)|u(rcu)|2 drdw
sv-1 Jo

R
- J J rN’IQl (ra))g |u(rco)|2 drdo.
SN-1 Jo al"
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Recalling |Q;(rw)| < M min{r, 1}, we further have

J|<quxMMXN2dx

< MJ RN Ju(Re)* doo + M(N — 1)J ()| dx
SN [x|<R

1

+ ZMJ |u(x)| [Vu(x)| dx
[x|<R

SMLMR”W@@VM+MMJ Vu(x)? d

[x|<R

s M) [ ol ax

[x|<R

Now we have only to estimate J“stl RN ‘l\u(Ra))|2 dw. Indeed,

J RYu(Rw)|? doo
SN-1

1

R
J J é;’N’I |u(m))|2 drdw + J J ﬁrN|u(rw)|2 drdw
SN-1 J1 6r SN-1 Jo (3}"

R
= J J (N = D)V 2 u(rw)|* drdw
SN-1

R —_—
+ 2r¥ 1 Re u(ro)(w - Vu(rw)) drdw
Jsn-1
1
+ NN "Nu(ro)|* drdew
s Jo
1 S
+ 2rY Re u(row)(w - Vu(rw)) drdw
Jsn-1Jo
sj (N — 1)|x|*1|u(x)|2dx+J 2fu(x)| |Vul dx
I1<|x|<R I<|x<R

Nlu(x)|* dx + J 2|u(x)| |Vl dx

x| <1

|u(x)|? dx + le x |u(x)| |V dx
x| <

IA
<l
—_
—
=
IA

Vul® dx+ (N +4M)J () dx. m
R

[x|<R
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PROPOSITION 5. Suppose u e L* satisfies
—Au+ (q(x) — Hu=we L
in the distributional sense, for some complex constant . Then ue H' N H}.
Proor. First notice that
~Au=—(q(x) - Du+welLj,

since ¢(x) = q1(x) + ¢2(x) is locally bounded. Hence u € HZ,.
Observe now that

J uhu = —J |Vu? dx+J RN—la(Rw)a—”(Rw) dow
[x|<R |x[<R SN-1 OR

since u € H?,. Note that the integral on S¥~! converges. From this equation and
Au = (qi(x) + q2(x) = L)u = w,

—J \Vu)? dx + J RY'u(Rw)||Vu(Rw)| dow
Ix| <R SN

> ReJ ul\u dx

[x|<R

= ReJ {(@1(x) + @2(x) = Dlu(x)|* = u(x)w(x)} dx
[x|<R

> —

j 41 () |u(x) 2 dx
[x|<R

- J |<R{qu(X) — 2 |u(x)|* + Ju(x)| w(x)|} dx.

By Lemma 4 and |¢»(x) — A| < M + |A|, this is estimated from below by

2
AD el = Nl w1l

)

_(1/2)J Vul> dx — (8M> + 2MN + M +

[x|<R

Therefore, we have

(1/2) J [Vul? dx — (8M7 + 2MN + M + [2])|[ull* = |Ju] |w]

[x|<R

< J R¥|u(Rw)| |Vu(Ro)| dov,
SN-1
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Let us now prove u € H' by contradiction, assuming to the contrary that

R—0

lim J IVu|* dx = .
[x|<R
Thus

(1/4)J \Vu|? dx < Lm RV Nu(Rw)| |Vu(Rw)| dw

[x|<R

for R > Ry with sufficiently large Ry. Putting

G(R) = J \Vu|* dx

[x|<R

and integrating the last inequality over [Ry, R], we have

(1/4) JR G(r)dr < JR LNH rN’1|u(rco)\ |Vu(rw)| dewdr
< | el ax
< lull(G(R)'2.
Hence we have
Juf) G(R)

Integrating this inequality over [2Ry, R], we have

% < (JZRO G(r) dr)l - (JR G(r) arr)1 < .

Ro RO

If R— oo, the left side goes to oo while the right side remains bounded.
A contradiction. |

Now we are ready to prove the main theorem of this section.

THEOREM 6. Let

Tou = —Au+q(x)u, Dom(Ty) = Cg°(RY).



Essential m-Sectoriality and Essential Spectrum 215

Assume

9(x) = q1(x) + 2(x),  @1(x) € L7 (RY),  ga(x) e L*(RY)

and

sup
r>0,meSN-1

J q1(pw) dp‘ < 0.
0

Then the closure Ty of Ty coincides with its Friedrichs extension T.

Proor. Let A be outside the sectorial regions (which are larger than the

numerical ranges) of the sesquilinear forms #[u,v] and ¢*[u,v] = f[v,u]. Note that
2€p(T)Np(T*). Suppose there exists v e L?\{0} such that

(v, (To — 2)u) = 0
for all ue Cj°. This means v e L? is the distributional solution of
—Av+ (g(x) — v =0.

Therefore, the previous Proposition 5 implies that v € H! = Dom(¢*) = Dom(%).
Hence

(" = Ao, v] = (t = Vv, 1] = (=Av+ (¢(x) — )v,v) = 0.

Recalling that A is outside the sectorial region of the sesquilinear form #[u, v], we
obtain v = 0. Thus we have proved that

Ran(Ty — A) = Ran(Ty — 1) = L*.

Since (Typ—/4) < (T —2) and (T —4)"' is bounded, so is (To—4)"" on its
domain Ran(7) — 4). Recalling that Ty — A is a closed operator, we obtain

Ran(Ty — A) = Ran(Ty — A) = L? = Ran(T — 1).

This implies (Tp — 1) = (T — 1) and Ty =T. |

Remark. If, in addition, ¢;(x) and ¢2(x) in g(x) = q1(x) + ¢2(x) are both
real-valued, then Theorem 6 ensures that Tou = —Au + g(x)u is essentially self-
adjoint.



216 Yorimasa OSHIME

3 Essential Spectrum

In this section, imposing somewhat stricter conditions on the potential ¢(x) =
q1(x) + ¢2(x), we study the essential spectrum of the Friedrichs extension 7 of

—A + g(x). More specifically, we assume that q;(x) € LZ.(RY), ¢2(x) e L*(R")

loc

satisfy

lim  sup
=0 HcgN-1

J q1(pw) dp‘ =0

rn
and

lim sup |g(rw)| =0

r—o0 weSN-1

throughout this section. In other words, for any w e S¥~! and r, >r; > R, we
assume

|01(rnw) = Qi(no)| +[g:(no)| < &(R)

with some &(R) such that limg_.o &(R) = 0.

Note that ¢(x) = |x|’e™" and (1 + |x|?) "¢l exp(ie!) are typical examples
for the aove ¢q(x).

From the result of the previous section, we already know that the multi-
plication operator u — (g1 (x) + ¢2(x))u is bounded from H' to H~!. We consider
its further property under the stricter assumption of this section.

LEMMA 7. For any ue H', ve Cy and any constant R > 1, the following
holds.

< e(R)([lull [IVo] + [[Vu[ [lol]) + (N = D)e(R)[Jul| [[v]]-

J 41 (Vu(x)o(x) dx
|x|=R

ProoF. We may assume u € H' N C*. Notice that ve C{.

[ awuitg = [ [ {2 @00 - oo utro)ite) drdo

R

= LM J:{Ql (rw) — O (Rw)}%r/v_lu(ra))v(rw) drdw

Since |Q(rw) — Q1(Rw)| < &(R) for r > R > 1,
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<é&(R) Lmq Jw V(N = Dr Hu(ro)| [o(ro))
+ [(8/0r)u(ro)| |v(rw)| + |u(rw)||(8/or)v(rw)|} drdo

< (N - l)R_le(R)J [u(x)| |v(x)] dx

[x|=R

+ E(R)J (IVu()[ [o(x)] + [u(x)[ [Vo(x)[) dx

[x|>=R

< (N = De(R)[[ull [[o]] + e(R)([[ull Vol + [[Vall flof}). =

Lemma 8. The multiplication operator

= (1= yr(x))g(x)u

defines a bounded map from H' to H~' with norm not larger than 2Ne(R). Here
xr(X) is the characteristic function of the open ball Bx = {x e RY : |x| < R}.

PrOOF. Since |g2(rw)| < &(R) for r = R, we have

< &(R)[[ull [[o]]

| oot ax
[x|=R
for u,ve H'. Using this inequality and the previous lemma,

JRN (1 - XR(X))Q(X)U(X)m dx

jp;mn+mmwmﬁﬁw

< Ne(R)|[ull [[ol| + e(R)([[ull Vo + [[Vael[ [[o]])
< (N + De(R)(lull* + [[Vul*) 2 ([[e]]* + (Vo) 2.

This implies the claim. |

PrOPOSITION 9. Let {u,} = H' be an arbitrary bounded sequence. Then
{g(X)un(x)} =« H™' has a converging subsequence. O

REMARK. In other words, the multiplication operator u — g(x)u from H' to
H~' is compact. However, it is generally unbounded as a map from H? to L>.
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(e.g., g(x) = |x|* sin(|x]*), u(x) = (1 + |x|) "N TD/H

unbounded with respect to (—A) in the usual framework.

. That is, it may be relatively

ProoF. The Rellich theorem and ¢(x) e Ly, imply u— y;(x)q(x)u is a
compact operator from H' to L?> < H~! for each j=1,2,....
Let us choose R=1,2,...,j,... in Lemma 8. Then we have

IO =2 () g (Xt 1 < 2Ne()[uall, - lim 2Ne(j) = 0.

Let us assume from now on that ||u,|/; <1 for simplicity.
By the compactness of u — y;(x)g(x)u, we can choose a subsequence {u}l)}j

of {uy,}, such that )(l(x)q(yc)z/t;1> converges in L> = H~' and

limsup [[g(x)ul"” — g(x)uf’| ;1 < Timsup (1 = 3 (x)) (g(x)u” — g(x)ug”) 4

Jyk—o0 Jyk—o0
<4Neg(l).

In the same way, we choose a subsequence {u]@}j of {u}l)}A such that

j
)(z(x)q(x)uj(z) converges in L> ¢ H~! and

lim sup ||q(x)uj(2) - q(x)u,((2>||H,1 <4Ne(2).

Jik—o0

Repeating the same procedure, we finally have {ujm} (¢,j=1,2,...) such that

limsup [|g(x)u”) — g(x)u |1 < 4Ne(?).

Jyk—o0
Using the diagonal process, we have

J)

. k
limsup [|g(x)u” — g(x)u || ;- =0

Jik—oo

J

since lim;_,, 4N¢(j) = 0. In other words, the subsequence {q(x)uj( )} converges

in H L. |
THEOREM 10. Let
Tou = —Au+ q(x)u, Dom(Ty) = Cg°(RY).
Assume

q(x) = q1(x) + ¢2(x), q1(x) e L}, (RY), ga(x) e L*(RY),

lim  sup
T,127=%0 e gN-1

r
J q1(pw) dp‘ =0

r
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and

lim sup |g:(rw)| = 0.

r—00 o oN-1

Then the Friedrichs extension T of Ty satisfies

Oess(T) = [0, 00).

ProoF. Let u > 0 be sufficiently large. Then —u € p(T) N p(—A) holds and
T + pu, — A + p are isomorphic maps from H' to H~!. (Strictly speaking, consider
both of closed sectorial forms with domain H' which are associated with T + u
and —A + )

Let us prove (T +u) ' — (=A +x)~" is a compact operator in L2. Suppose
that {u,} = L? is an arbitrary bounded sequence. Note that

(T+p ' = (—b+p7"
=(T+u0) o+ +0) " = (T+w) (T+u)(=L+p)"

= (T+ 1) {=a)H =2+ w ",

Note also that {(—A + x) 'u,} is a bounded sequence in H? = H!. By Lemma 9,
there exists a subsequence {u,,} of {u,} such that g(x)(—A + ,u)flunj converges in
H~', hence

{(T+u0)" = (=0 + ) Yuy = —(T+ 1) q() (=L + 1) uy,

converges in H' = L. Since {u,} = L? is an arbitrary bounded sequence in L2,
this implies (7 + W) = (=A+u)"" is a compact operator from L? into itself.
Therefore

O'ess(T) = Uem(_A) = [07 OO) u

ReEmArRk. The present theorem can be extended as follows by the result of
F. Gesztesy et al. [1] and a rather lengthy argument, although the minimal
operator has not yet been proved essentially m-sectorial.

Let ¢1(x), 2(x) in q(x) = q1(x) + q2(x) belong to L3, qa2(x) be (~A)-
compact and yg(x)g;(x) be (—A)-compact for all R > 0. Let the other as-
sumption be the same. Then the result remain the same.
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