GAPS OF F-YANG-MILLS FIELDS ON SUBMANIFOLDS*

By

Gao-Yang Jia and Zhen-Rong Zhou[†]

(Department of Mathematics, Central China Normal University)

Abstract. Replacing the integrand of the Yang-Mills functional by $F\left(\frac{\|R^{\nabla}\|^2}{2}\right)$, we define an F-Yang-Mills functional, and hence F-Yang-Mills fields, where F is a non-negative function. The gaps of F-Yang-Mills fields on some submanifolds of the Euclidean spaces and the spheres are investigated in this paper.

Introduction

Let P(M, G) be a principal bundle over a compact Riemannian manifold Mwith structure group G, $E = P \times_{\rho} V$ a vector bundle assosiated with P(M, G), whose standard fibre is some vector space V, where $\rho: G \to GL(V)$ is a representation of G. Let $\Omega^p(E) = \Gamma(\wedge^p T^*M \otimes E)$ be the space of E-valued p-forms, ∇ the connection of E. We use \mathscr{C}_E to stand for the set of connections of E. Let $g_E = P \times_{Ad_G} g$ be the adjoint vector bundle, where g is the Lie algebra of the Lie group G. It is known that, for any $\nabla, \nabla' \in \mathscr{C}_E$, we have $\nabla - \nabla' \in \Omega^1(\mathfrak{g}_E)$. For each $\nabla \in \mathscr{C}_E$, the curvature 2-form $R^{\nabla} \in \Omega^2(\mathfrak{g}_E)$ is defined by $R_{X,Y}^{\nabla} = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]}$. If G is compact and semisimple, there is a natural invariant metric on g_E , and this metric induces a one on $\Omega^2(\mathfrak{g}_E)$. With respect to this induced metric, the Yang-Mills functional is defined as follows:

$$\mathscr{S}(\nabla) = \frac{1}{2} \int_{M} \|R^{\nabla}\|^{2}. \tag{1}$$

Keywords: F-Yang-Mills field; gap.

Classification of MR2000: 58E20.

Received August 9, 2011.

Revised November 29, 2011.

^{*}Research supported by National Science Fundation of China No. 10871149.

[†]Corresponding author: zrzhou@mail.ccnu.edu.cn

If a connection ∇ of E is a critical point of the Yang-Mills functional, we call it a Yang-Mills connection, the associated curvature tensor is called a Yang-Mills field.

An inner product $\langle \cdot, \cdot \rangle$ on g is defined by setting $\langle U, V \rangle = -\frac{1}{2} \operatorname{trace}[\rho(U), \rho(V)]$, where $\rho : \mathfrak{g} \to \mathfrak{so}(N)$ is a faithful representation. In the paper [2, 1], Bourguignon and Lawson obtained a well known result on gaps of Yang-Mills fields as follows:

Theorem 1 ([1]). Let R^{∇} be a Yang-Mills field on S^n $(n \geq 5)$ satisfying that

$$||R^{\nabla}||^2 \le \frac{1}{2} \binom{n}{2},$$

then $R^{\nabla} \equiv 0$.

If the integrand of the Yang-Mills functional is replaced by $||R^{\nabla}||^p$, then we can obtain a p-Yang-Mills functional, the critical points of which are called p-Yang-Mills connections, and the associated curvature tensors are called p-Yang-Mills fields. The article [3] investegated the gaps of p-Yang-Mills fields of Euclidean and sphere submanifolds, and generalized the related results of [1].

Let M^n be a submanifold of N^{n+k} , and $h(\cdot,\cdot)$ the second fundamental form, and let $1 \le i, j \le n$; $n+1 \le \mu \le n+k$. Choose a local orthonormal frame field $\{e_i \mid i=1,\ldots,n+k\}$ on N, such that $\{e_1,\ldots,e_n\}$ are tangent to M and $\{e_\mu \mid \mu=n+1,\ldots,n+k\}$ are normal to M. Set $h(e_i,e_j)=h^\mu_{ij}e_\mu$ and $H^\mu=\sum h^\mu_{ii}$. The article [3] proved the following gap theorem for submanifolds of the Euclidean spaces:

THEOREM 2 ([3]). Let M^n be a submanifold of \mathbb{R}^{n+k} , satisfying the following condition:

$$\sum [(-H^{\mu}h^{\mu}_{il} + h^{\mu}_{im}h^{\mu}_{ml})\delta_{ki} + h^{\mu}_{ik}h^{\mu}_{il}] \le (2 - n)\delta_{ik}\delta_{jl}.$$

If R^{∇} is a p-Yang-Mills field $(p \geq 2)$ with $||R^{\nabla}||^2 \leq \frac{1}{2} \binom{n}{2}$ (n > 4), then we have $R^{\nabla} \equiv 0$.

If $M^n = S^n \subseteq \mathbb{R}^{n+1}$, then the condition above is satisfied (in fact the equality holds in this case), and the gap theorem is true for *p*-Yang-Mills fields. Therefore, Theorem 2 generalizes the related result of [1].

For submanifolds of spheres, the following gap theorem is proved in [3]:

THEOREM 3 ([3]). Let M^n (n > 4) be a submanifold of S^{n+k} , and satisfy the following condition:

$$(-H^{\mu}h_{il}^{\mu} + h_{jm}^{\mu}h_{ml}^{\mu})\delta_{ki} + h_{ik}^{\mu}h_{il}^{\mu} \le b\delta_{ik}\delta_{jl}, \tag{2}$$

where $b \leq 0$. If R^{∇} is a p-Yang-Mills field on M with $||R^{\nabla}||^2 \leq \frac{1}{2} \binom{n}{2}$ and $p \geq 2$, then, we have $R^{\nabla} \equiv 0$.

REMARK 4. The conditions in Theorems 2 and 3

$$\sum [(-H^{\mu}h^{\mu}_{jl} + h^{\mu}_{jm}h^{\mu}_{ml})\delta_{ki} + h^{\mu}_{ik}h^{\mu}_{jl}] \le a\delta_{ik}\delta_{jl}$$
 (3)

mean that for any skew-symmetric 2-tensor $A = (A_{ij})$, we have

$$\sum [(-H^{\mu}h^{\mu}_{jl} + h^{\mu}_{jm}h^{\mu}_{ml})\delta_{ki} + h^{\mu}_{ik}h^{\mu}_{jl}]A_{ij}A_{kl} \le a\delta_{ik}\delta_{jl}A_{ij}A_{kl}.$$

In [3], the conditions are

$$\sum [(H^{\mu}h^{\mu}_{jl} - h^{\mu}_{jm}h^{\mu}_{ml})\delta_{ki} - h^{\mu}_{ik}h^{\mu}_{jl}] \le -a\delta_{ik}\delta_{jl}$$
(4)

which mean that

$$\sum [(H^{\mu}h^{\mu}_{jl} - h^{\mu}_{jm}h^{\mu}_{ml})\delta_{ki} - h^{\mu}_{ik}h^{\mu}_{jl}]A_{ij}A_{lk} \le -a\delta_{ik}\delta_{jl}A_{ij}A_{lk}.$$

Because A_{ij} is skew-symmetric, i.e. $A_{ij} = -A_{ji}$, The conditions (3) and (4) are the same.

Replacing the integrand of the Yang-Mills functional by $F\left(\frac{\|R^{\nabla}\|^2}{2}\right)$, where F is a non-negative function, we define an F-Yang-Mills functional, and hence F-Yang-Mills fields, which is a generalization of p-Yang-Mills fields. In this paper, we investegate the gaps of F-Yang-Mills fields on submanifolds of the Euclidean space and the spheres, and our main results are in the following:

THEOREM 5. Let M^n be a submanifold of \mathbf{R}^{n+k} , and satisfy the following condition:

$$(-H^{\mu}h^{\mu}_{jl} + h^{\mu}_{jm}h^{\mu}_{ml})\delta_{ki} + h^{\mu}_{ik}h^{\mu}_{jl} \le (2-n)\delta_{ik}\delta_{jl}.$$
 (5)

Suppose that R^{∇} is an F-Yang-Mills field on M^n which satisfies $\|R^{\nabla}\|^2 \leq \frac{1}{2} \binom{n}{2}$, where, F(t) > 0, F'(t) > 0 and $F''(t) \geq 0$ for t > 0. Then, we have $\nabla R^{\nabla} = 0$ for $n \geq 3$ and $R^{\nabla} = 0$ for $n \geq 5$.

THEOREM 6. Let M^n be a submanifold of S^{n+k} , and satisfy the following condition:

$$(-H^{\mu}h_{il}^{\mu} + h_{im}^{\mu}h_{ml}^{\mu})\delta_{ki} + h_{ik}^{\mu}h_{il}^{\mu} \le b\delta_{ik}\delta_{jl}, \tag{6}$$

where, $b \leq 0$. If R^{∇} is an F-Yang-Mills field on M with $||R^{\nabla}||^2 \leq \frac{1}{2} {n \choose 2}$, where F(t) > 0, F'(t) > 0 and $F''(t) \geq 0$ for t > 0, then, we have $\nabla R^{\nabla} = 0$ for $n \geq 3$ and $R^{\nabla} \equiv 0$ for $n \geq 5$.

These theorems generalize the corresponding theorems of [1, 3].

2. F-Yang-Mills Fields

DEFINITION 7. Let $F:[0,+\infty)\to [0,+\infty)$ be a C^∞ function. Define $\mathscr{S}_F:\mathscr{C}_E\to R$ as follows: For any $\nabla\in\mathscr{C}_E$, set

$$\mathscr{S}_F(\nabla) = \int_M F\left(\frac{\|R^{\nabla}\|^2}{2}\right),\tag{7}$$

which is called an *F*-Yang-Mills functional. The critical points of \mathcal{S}_F are called *F*-Yang-Mills connections, and the associated curvature tensors are called *F*-Yang-Mills fields. When $F(t) = \frac{1}{p}(2t)^{p/2}$, the *F*-Yang-Mills fields are the *p*-Yang-Mills fields.

Let $\nabla^t = \nabla + A^t$ be a variation of $\nabla \in \mathscr{C}_E$, where $A^t \in \Omega^1(\mathfrak{g}_E)$ with $A^0 = 0$. Then the curvature of ∇^t is given by

$$R^{\nabla^t} = R^{\nabla} + d^{\nabla} A^t + \frac{1}{2} [A^t \wedge A^t], \tag{8}$$

where, the operation $[\cdot \wedge \cdot]$ is defined as follows: For $\varphi, \psi \in \Omega(\mathfrak{g}_E)$, $[\varphi \wedge \psi]_{X,Y} = [\varphi_X, \psi_Y] - [\varphi_Y, \psi_X]$. Let d^{∇} be the wedge differentiation. By a straightforward calculation, we have

$$\frac{d}{dt}\mathcal{S}_{F}(\nabla^{t}) = \int_{M} \frac{d}{dt} F\left(\frac{\|R^{\nabla^{t}}\|^{2}}{2}\right)$$

$$= \int_{M} F'\left(\frac{\|R^{\nabla^{t}}\|^{2}}{2}\right) \left\langle \frac{d}{dt} R^{\nabla^{t}}, R^{\nabla^{t}} \right\rangle$$

$$= \int_{M} F'\left(\frac{\|R^{\nabla^{t}}\|^{2}}{2}\right) \left\langle d^{\nabla} \frac{d}{dt} A^{t} + \left[\frac{d}{dt} A^{t} \wedge A^{t}\right], R^{\nabla^{t}} \right\rangle. \tag{9}$$

Let $D = \frac{d}{dt} \nabla^t |_{t=0}$. The above equality becomes as

$$\frac{d}{dt} \mathscr{S}_{F}(\nabla^{t}) \Big|_{t=0} = \int_{M} F' \left(\frac{\|R^{\nabla}\|^{2}}{2} \right) \langle d^{\nabla}D, R^{\nabla} \rangle
= \int_{M} \left\langle D, \delta^{\nabla}F' \left(\frac{\|R^{\nabla}\|^{2}}{2} \right) R^{\nabla} \right\rangle,$$
(10)

where δ^{∇} is the adjoint operator of d^{∇} . Hence the Euler-Lagrange equation of $\mathscr{S}_F(.)$ is

$$\delta^{\nabla} F' \left(\frac{\|R^{\nabla}\|^2}{2} \right) R^{\nabla} = 0. \tag{11}$$

3. Lemmas

For $\varphi \in \Omega^2(\mathfrak{g}_E)$, $\omega \in \Omega^2(M) \otimes \operatorname{Hom}(\mathfrak{X}(M),\mathfrak{X}(M))$, where $\mathfrak{X}(M)$ is the set of smooth sections of TM. let

$$(\varphi \circ \omega)_{X,Y} = \frac{1}{2} \sum \varphi_{e_j,\omega_{X,Y}e_j}.$$
 (12)

We use R to express the Riemannian curvature tensor of M, Ric for the Ricci operator. On M, we take a local orthonormal frame field $\{e_i\}_{i=1,\dots,n}$, and adopt the Einsteinian convention of summation. The range of the indices i, j, k, l, m is $\{1,\dots,n\}$. Let

$$(\operatorname{Ric} \wedge I)_{Y \mid Y} = \operatorname{Ric}(X) \wedge Y + X \wedge \operatorname{Ric}(Y) \tag{13}$$

and

$$\mathfrak{R}^{\nabla}(\varphi) = \sum \{ [R_{e_i, X}^{\nabla}, \varphi_{e_i, Y}] - [R_{e_i, Y}^{\nabla}, \varphi_{e_i, X}] \}. \tag{14}$$

Here, $\operatorname{Ric} \wedge I \in \Omega^2(M) \otimes \operatorname{Hom}(\mathfrak{X}(M), \mathfrak{X}(M))$, and $X \wedge Y$ is defined as:

$$(X \wedge Y)(Z) = \langle X, Z \rangle Y - \langle Y, Z \rangle X. \tag{15}$$

For any $\varphi \in \Omega^2(\mathfrak{g}_E)$, we have (see [1])

$$\Delta \varphi = \nabla^* \nabla \varphi - \varphi \circ (\operatorname{Ric} \wedge I + 2R) + \Re^{\nabla}(\varphi). \tag{16}$$

Hence we have

$$\frac{1}{2}\Delta\|\varphi\|^{2} = \langle \Delta^{\nabla}\varphi, \varphi \rangle - \|\nabla\varphi\|^{2} - \langle \varphi \circ (\operatorname{Ric} \wedge I + 2R), \varphi \rangle - \langle \Re^{\nabla}(\varphi), \varphi \rangle. \tag{17}$$

By a straightforward calculation, we get

$$\Delta F\left(\frac{\|R^{\nabla}\|^{2}}{2}\right) = -\sum \nabla_{e_{i}} \nabla_{e_{i}} F\left(\frac{\|R^{\nabla}\|^{2}}{2}\right) \\
= -\sum \nabla_{e_{i}} \left(F'\left(\frac{\|R^{\nabla}\|^{2}}{2}\right) \nabla_{e_{i}} \frac{\|R^{\nabla}\|^{2}}{2}\right) \\
= -F''\left(\frac{\|R^{\nabla}\|^{2}}{2}\right) \|R^{\nabla}\|^{2} \|\nabla\|R^{\nabla}\| \|^{2} - \frac{1}{2}F'\left(\frac{\|R^{\nabla}\|^{2}}{2}\right) \Delta \|R^{\nabla}\|^{2} \\
= -F''\left(\frac{\|R^{\nabla}\|^{2}}{2}\right) \|R^{\nabla}\|^{2} \|\nabla\|R^{\nabla}\| \|^{2} - F'\left(\frac{\|R^{\nabla}\|^{2}}{2}\right) \langle \Re^{\nabla}(R^{\nabla}), R^{\nabla} \rangle \\
+ F'\left(\frac{\|R^{\nabla}\|^{2}}{2}\right) \langle \Delta^{\nabla}R^{\nabla}, R^{\nabla} \rangle - F'\left(\frac{\|R^{\nabla}\|^{2}}{2}\right) \|\nabla R^{\nabla}\|^{2} \\
- F'\left(\frac{\|R^{\nabla}\|^{2}}{2}\right) \langle R^{\nabla} \circ (\operatorname{Ric} \wedge I + 2R), R^{\nabla} \rangle. \tag{18}$$

LEMMA 8. For an F-Yang-Mills field R^{∇} , we have

$$\int_{M} F'' \left(\frac{\|R^{\nabla}\|^{2}}{2} \right) \|R^{\nabla}\|^{2} \|\nabla\|R^{\nabla}\| \|^{2}
+ \int_{M} F' \left(\frac{\|R^{\nabla}\|^{2}}{2} \right) \|R^{\nabla}\|^{2} + \int_{M} F' \left(\frac{\|R^{\nabla}\|^{2}}{2} \right) \langle \Re^{\nabla}(R^{\nabla}), R^{\nabla} \rangle
+ \int_{M} F' \left(\frac{\|R^{\nabla}\|^{2}}{2} \right) \langle R^{\nabla} \circ (\operatorname{Ric} \wedge I + 2R), R^{\nabla} \rangle = 0.$$
(19)

PROOF. Integrating (18) shows that it is sufficient to prove $\int_M F'\left(\frac{\|R^\nabla\|^2}{2}\right) \langle \Delta^\nabla R^\nabla, R^\nabla \rangle = 0$. By (11) and the Bianchi equality $d^\nabla R^\nabla = 0$, we have

$$\begin{split} &\int_{M} F' \Biggl(\frac{\|R^{\nabla}\|^{2}}{2} \Biggr) \langle \Delta^{\nabla} R^{\nabla}, R^{\nabla} \rangle \\ &= \int_{M} \Biggl\langle d^{\nabla} \circ \delta^{\nabla} R^{\nabla}, F' \Biggl(\frac{\|R^{\nabla}\|^{2}}{2} \Biggr) R^{\nabla} \Biggr\rangle + \int_{M} \Biggl\langle \delta^{\nabla} \circ d^{\nabla} R^{\nabla}, F' \Biggl(\frac{\|R^{\nabla}\|^{2}}{2} \Biggr) R^{\nabla} \Biggr\rangle \end{split}$$

$$= \int_{M} \left\langle \delta^{\nabla} R^{\nabla}, \delta^{\nabla} F' \left(\frac{\|R^{\nabla}\|^{2}}{2} \right) R^{\nabla} \right\rangle + \int_{M} \left\langle \delta^{\nabla} \circ d^{\nabla} R^{\nabla}, F' \left(\frac{\|R^{\nabla}\|^{2}}{2} \right) R^{\nabla} \right\rangle$$

$$= 0. \tag{20}$$

Let $\{X_a\}$ be an orthonormal frame of \mathfrak{g}_E , and $\{e_i\}$ on M. Let

$$R_{e_i,e_j}^{\nabla} = f_{ij}^{a} X_a, \quad (\nabla_{e_k} R^{\nabla})_{e_i,e_j} = f_{ijk}^{a} X_a. \tag{21}$$

Then we have $f_{ij}^a = -f_{ji}^a$, $f_{ijk}^a = -f_{jik}^a$, $\|R^{\nabla}\|^2 = \frac{1}{2}f_{ij}^a f_{ij}^a$, $\|\nabla R^{\nabla}\|^2 = \frac{1}{2}f_{ijk}^a f_{ijk}^a$.

LEMMA 9 ([3]). We have

(i) If M^n is a submanifold of \mathbf{R}^{n+k} , then

$$\langle R^{\nabla} \circ (\operatorname{Ric} \wedge I + 2R), R^{\nabla} \rangle = [(H^{\mu}h^{\mu}_{il} - h^{\mu}_{im}h^{\mu}_{ml})\delta_{ki} - h^{\mu}_{ik}h^{\mu}_{il}]f^{a}_{ii}f^{a}_{kl}; \tag{22}$$

(ii) If M^n is a submanifold of S^{n+k} , then

$$\langle R^{\nabla} \circ (\text{Ric} \wedge I + 2R), R^{\nabla} \rangle$$

$$= [(H^{\mu}h^{\mu}_{ii} - h^{\mu}_{im}h^{\mu}_{ml})\delta_{ki} - h^{\mu}_{ik}h^{\mu}_{il}]f^{a}_{ii}f^{a}_{kl} + 2(n-2)||R^{\nabla}||^{2}.$$
(23)

PROOF. (i) The Riemannian curvature operator R of M is defined by

$$R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X, Y]} Z,$$

Let $R_{ijkl} = g(R(e_k, e_l)e_j, e_i)$ and $r_{jl} = \sum R_{ijil}$ are the Riemannian curvature tensor and the Ricci curvature tensor of M^n respectively, h^{μ}_{ij} the second fundamental tensor, and $H^{\mu} = \sum_{i=1}^{n} h^{\mu}_{ii}$. Because the Riemannian curvature of \mathbf{R}^{n+k} vanishes, by Gaussian equation we get

$$R_{ijkl} = h^{\mu}_{lj} h^{\mu}_{ik} - h^{\mu}_{il} h^{\mu}_{jk}, \quad r_{jl} = H^{\mu} h^{\mu}_{jl} - h^{\mu}_{ij} h^{\mu}_{il}. \tag{24}$$

Since

$$(\operatorname{Ric} \wedge I)_{e_k, e_l} = \operatorname{Ric}(e_k) \wedge e_l + e_k \wedge \operatorname{Ric}(e_l) = r_{ki}e_i \wedge e_l + r_{li}e_k \wedge e_i, \tag{25}$$

we have

$$\begin{split} \langle R^{\nabla} \circ (\operatorname{Ric} \wedge I), R^{\nabla} \rangle \\ &= \frac{1}{2} \sum \langle (R^{\nabla} \circ (\operatorname{Ric} \wedge I))_{e_k, e_l}, R^{\nabla}_{e_k, e_l} \rangle \end{split}$$

127

$$\begin{aligned}
&= \frac{1}{4} \sum \left\langle \left(R_{e_{j}, (\text{Ric} \wedge I)_{e_{k}, e_{l}} e_{j}}^{\mathsf{V}} \right), R_{e_{k}, e_{l}}^{\mathsf{V}} \right\rangle \\
&= \frac{1}{4} \sum \left\langle \left(R_{e_{j}, (r_{ki} e_{i} \wedge e_{l} + r_{li} e_{k} \wedge e_{i}) e_{j}}^{\mathsf{V}} \right), R_{e_{k}, e_{l}}^{\mathsf{V}} \right\rangle \\
&= \frac{1}{4} \sum r_{ki} \left\langle \left(R_{e_{j}, (e_{i} \wedge e_{l}) e_{j}}^{\mathsf{V}} \right), R_{e_{k}, e_{l}}^{\mathsf{V}} \right\rangle + \frac{1}{4} \sum r_{li} \left\langle \left(R_{e_{j}, (e_{k} \wedge e_{i}) e_{j}}^{\mathsf{V}} \right), R_{e_{k}, e_{l}}^{\mathsf{V}} \right\rangle \\
&= \frac{1}{2} r_{ki} \left\langle R_{e_{i}, e_{l}}^{\mathsf{V}}, R_{e_{k}, e_{l}}^{\mathsf{V}} \right\rangle + \frac{1}{2} r_{li} \left\langle R_{e_{k}, e_{i}}^{\mathsf{V}}, R_{e_{k}, e_{l}}^{\mathsf{V}} \right\rangle \\
&= r_{li} \left\langle R_{e_{k}, e_{l}}^{\mathsf{V}}, R_{e_{k}, e_{l}}^{\mathsf{V}} \right\rangle = -r_{li} \left\langle R_{e_{i}, e_{k}}^{\mathsf{V}}, R_{e_{k}, e_{l}}^{\mathsf{V}} \right\rangle. \tag{26}
\end{aligned}$$

Similarly,

$$\langle R^{\nabla} \circ 2R, R^{\nabla} \rangle = \frac{1}{2} \sum \langle (R^{\nabla} \circ 2R)_{e_{k}, e_{l}}, R^{\nabla}_{e_{k}, e_{l}} \rangle$$

$$= \frac{1}{2} \sum \langle R^{\nabla}_{e_{j}, R(e_{k}, e_{l})e_{j}}, R^{\nabla}_{e_{k}, e_{l}} \rangle$$

$$= \frac{1}{2} \sum R_{ijkl} \langle R^{\nabla}_{e_{j}, e_{l}}, R^{\nabla}_{e_{k}, e_{l}} \rangle. \tag{27}$$

So we have

$$\langle R^{\nabla} \circ (\operatorname{Ric} \wedge I + 2R), R^{\nabla} \rangle$$

$$= \langle R^{\nabla} \circ (\operatorname{Ric} \wedge I), R^{\nabla} \rangle + \langle R^{\nabla} \circ 2R, R^{\nabla} \rangle$$

$$= -r_{lj} \langle R^{\nabla}_{e_{j}, e_{k}}, R^{\nabla}_{e_{k}, e_{l}} \rangle + \frac{1}{2} R_{ijkl} \langle R^{\nabla}_{e_{j}, e_{i}}, R^{\nabla}_{e_{k}, e_{l}} \rangle$$

$$= \frac{1}{2} [-2r_{lj} \langle R^{\nabla}_{e_{j}, e_{k}}, R^{\nabla}_{e_{k}, e_{l}} \rangle + R_{ijkl} \langle R^{\nabla}_{e_{j}, e_{i}}, R^{\nabla}_{e_{k}, e_{l}} \rangle]. \tag{28}$$

Substituting (24) into the above yields

$$\langle R^{\nabla} \circ (\text{Ric} \wedge I + 2R), R^{\nabla} \rangle$$

$$= \frac{1}{2} [-2(H^{\mu}h^{\mu}_{jl} - h^{\mu}_{ji}h^{\mu}_{il}) \langle R^{\nabla}_{e_{j},e_{k}}, R^{\nabla}_{e_{k},e_{l}} \rangle + (h^{\mu}_{ik}h^{\mu}_{jl} - h^{\mu}_{il}h^{\mu}_{jk}) \langle R^{\nabla}_{e_{j},e_{i}}, R^{\nabla}_{e_{k},e_{l}} \rangle]$$

$$= -(H^{\mu}h^{\mu}_{jl} - h^{\mu}_{ji}h^{\mu}_{il}) f^{a}_{jk} f^{a}_{kl} + \frac{1}{2} (h^{\mu}_{ik}h^{\mu}_{jl} - h^{\mu}_{il}h^{\mu}_{jk}) f^{a}_{ji} f^{a}_{kl}$$

$$= [-(H^{\mu}h^{\mu}_{jl} - h^{\mu}_{jm}h^{\mu}_{ml}) \delta_{ki} + h^{\mu}_{ik}h^{\mu}_{jl}] f^{a}_{ji} f^{a}_{kl}$$

$$= [(H^{\mu}h^{\mu}_{il} - h^{\mu}_{im}h^{\mu}_{ml}) \delta_{ki} - h^{\mu}_{ik}h^{\mu}_{jl}] f^{a}_{ii} f^{a}_{kl}. \tag{29}$$

(32)

(ii) If M^n is a submanifold of S^{n+k} , the Riemannian and the Ricci tensors can be respectively written as

$$R_{ijkl} = (\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}) + (h^{\mu}_{ik}h^{\mu}_{il} - h^{\mu}_{il}h^{\mu}_{ik})$$
(30)

and

$$r_{il} = (n-1)\delta_{il} + H^{\mu}h^{\mu}_{il} - h^{\mu}_{il}h^{\mu}_{ii}. \tag{31}$$

By (28), (30) and (31), we have

$$\langle R^{\nabla} \circ (\text{Ric} \wedge I + 2R), R^{\nabla} \rangle$$

$$= \frac{1}{2} [-2r_{lj} \langle R^{\nabla}_{e_{j},e_{k}}, R^{\nabla}_{e_{k},e_{l}} \rangle + R_{ijkl} \langle R^{\nabla}_{e_{j},e_{i}}, R^{\nabla}_{e_{k},e_{l}} \rangle]$$

$$= -((n-1)\delta_{jl} + H^{\mu}h^{\mu}_{jl} - h^{\mu}_{ji}h^{\mu}_{il}) f^{a}_{jk} f^{a}_{kl} + \frac{1}{2} (\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk} + h^{\mu}_{ik}h^{\mu}_{jl} - h^{\mu}_{il}h^{\mu}_{jk}) f^{a}_{ji} f^{a}_{kl}$$

$$= -(H^{\mu}h^{\mu}_{jl} - h^{\mu}_{ji}h^{\mu}_{il}) f^{a}_{jk} f^{a}_{kl} + \frac{1}{2} (h^{\mu}_{ik}h^{\mu}_{jl} - h^{\mu}_{il}h^{\mu}_{jk}) f^{a}_{ji} f^{a}_{kl}$$

$$- (n-1)\delta_{jl}f^{a}_{jk} f^{a}_{kl} + \frac{1}{2} (\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}) f^{a}_{ji} f^{a}_{kl}$$

$$= -(H^{\mu}h^{\mu}_{jl} - h^{\mu}_{ji}h^{\mu}_{il}) f^{a}_{jk} f^{a}_{kl} + \frac{1}{2} (h^{\mu}_{ik}h^{\mu}_{jl} - h^{\mu}_{il}h^{\mu}_{jk}) f^{a}_{ji} f^{a}_{kl} + 2(n-2) ||R^{\nabla}||^{2}$$

$$= [-(H^{\mu}h^{\mu}_{jl} - h^{\mu}_{jm}h^{\mu}_{ml}) \delta_{ki} + h^{\mu}_{ik}h^{\mu}_{jl}] f^{a}_{ji} f^{a}_{kl} + 2(n-2) ||R^{\nabla}||^{2}$$

$$= [(H^{\mu}h^{\mu}_{il} - h^{\mu}_{im}h^{\mu}_{ml}) \delta_{ki} - h^{\mu}_{ik}h^{\mu}_{jl}] f^{a}_{ii} f^{a}_{kl} + 2(n-2) ||R^{\nabla}||^{2}.$$
(32)

Taking $L = R^{\nabla}$ in Lemma 5.6 of [1], we have

Lemma 10 ([1]). If
$$||R^{\nabla}||^2 \leq \frac{1}{2} \binom{n}{2}$$
, and $n \geq 3$, then $|\langle [R_{e_k,e_i}^{\nabla}, R_{e_i,e_i}^{\nabla}], R_{e_i,e_k}^{\nabla} \rangle| \leq 2(n-2) ||R^{\nabla}||^2$. (33)

Furthermore, when $n \ge 5$ and $R^{\nabla} \ne 0$, the above inequality is strict.

4. Gaps of F-Yang-Mills Fields

THEOREM 11. Let M^n be a submanifold of \mathbf{R}^{n+k} and satisfy the following condition:

$$(-H^{\mu}h^{\mu}_{il} + h^{\mu}_{im}h^{\mu}_{ml})\delta_{ki} + h^{\mu}_{ik}h^{\mu}_{il} \le (2 - n)\delta_{ik}\delta_{jl}. \tag{34}$$

Suppose that R^{∇} is an F-Yang-Mills field on M^n which satisfies that $||R^{\nabla}||^2 \le \frac{1}{2}\binom{n}{2}$, where, F'(t) > 0 and $F''(t) \ge 0$ for t > 0. Then we have $\nabla R^{\nabla} = 0$ for $n \ge 3$, or $R^{\nabla} = 0$ for $n \ge 5$.

PROOF. According to (19) we have

$$\int_{M} F'' \left(\frac{\|R^{\nabla}\|^{2}}{2} \right) \|R^{\nabla}\|^{2} \|\nabla\|R^{\nabla}\| \|^{2} + \int_{M} F' \left(\frac{\|R^{\nabla}\|^{2}}{2} \right) \|\nabla R^{\nabla}\|^{2}$$

$$= -\int_{M} F' \left(\frac{\|R^{\nabla}\|^{2}}{2} \right) \langle R^{\nabla} \circ (\operatorname{Ric} \wedge I + 2R), R^{\nabla} \rangle$$

$$-\int_{M} F' \left(\frac{\|R^{\nabla}\|^{2}}{2} \right) \langle \Re^{\nabla} (R^{\nabla}), R^{\nabla} \rangle \equiv (I) + (II). \tag{35}$$

By (22) and the condition (34), we get

$$(I) = -\int_{M} F' \left(\frac{\|R^{\nabla}\|^{2}}{2} \right) [(H^{\mu}h^{\mu}_{jl} - h^{\mu}_{jm}h^{\mu}_{ml})\delta_{ki} - h^{\mu}_{ik}h^{\mu}_{jl}] f^{a}_{ij} f^{a}_{kl}$$

$$= \int_{M} F' \left(\frac{\|R^{\nabla}\|^{2}}{2} \right) [(-H^{\mu}h^{\mu}_{jl} + h^{\mu}_{jm}h^{\mu}_{ml})\delta_{ki} + h^{\mu}_{ik}h^{\mu}_{jl}] f^{a}_{ij} f^{a}_{kl}$$

$$\leq \int_{M} F' \left(\frac{\|R^{\nabla}\|^{2}}{2} \right) (2 - n)\delta_{ik}\delta_{jl} f^{a}_{ij} f^{a}_{kl}$$

$$= 2(2 - n) \int_{M} F' \left(\frac{\|R^{\nabla}\|^{2}}{2} \right) \|R^{\nabla}\|^{2}.$$
(36)

Taking $\varphi = R^{\nabla}$ in the definition of $\Re^{\nabla}(\varphi)$, (see (14)), we have

$$\Re^{\nabla}(R^{\nabla})_{e_{i},e_{k}} = [R^{\nabla}_{e_{i},e_{j}}, R^{\nabla}_{e_{i},e_{k}}] - [R^{\nabla}_{e_{i},e_{k}}, R^{\nabla}_{e_{i},e_{j}}] = 2[R^{\nabla}_{e_{k},e_{i}}, R^{\nabla}_{e_{i},e_{j}}]. \tag{37}$$

For $n \ge 3$, from (33) we have

$$\begin{split} (II) &= -\int_{M} F' \Biggl(\frac{\|R^{\nabla}\|^{2}}{2} \Biggr) \langle \Re^{\nabla}(R^{\nabla}), R^{\nabla} \rangle \\ &= -\frac{1}{2} \int_{M} F' \Biggl(\frac{\|R^{\nabla}\|^{2}}{2} \Biggr) \langle \Re^{\nabla}(R^{\nabla})_{e_{j}, e_{k}}, R^{\nabla}_{e_{j}, e_{k}} \rangle \end{split}$$

$$= -\int_{M} F'\left(\frac{\|R^{\nabla}\|^{2}}{2}\right) \langle [R_{e_{k},e_{i}}^{\nabla}, R_{e_{i},e_{j}}^{\nabla}], R_{e_{j},e_{k}}^{\nabla} \rangle$$

$$\leq 2(n-2) \int_{M} F'\left(\frac{\|R^{\nabla}\|^{2}}{2}\right) \|R^{\nabla}\|^{2}, \tag{38}$$

where, the inequality (38) is strict by Lemma 10 if $n \ge 5$ and $R^{\nabla} \ne 0$. Therefore, we have

$$\int_{M} F'' \left(\frac{\|R^{\nabla}\|^{2}}{2} \right) \|R^{\nabla}\|^{2} \|\nabla\|R^{\nabla}\| \|^{2} + \int_{M} F' \left(\frac{\|R^{\nabla}\|^{2}}{2} \right) \|\nabla R^{\nabla}\|^{2}
\leq 2(2 - n + n - 2) \int_{M} F' \left(\frac{\|R^{\nabla}\|^{2}}{2} \right) \|R^{\nabla}\|^{2} = 0.$$
(39)

Hence we have $\int_M F'\Big(\frac{\|R^\nabla\|^2}{2}\Big)\|\nabla R^\nabla\|^2 \le 0$. If $\nabla R^\nabla \ne 0$ at some point, then $\nabla R^\nabla \ne 0$ on some neighborhood U. Because $\int_U F'\Big(\frac{\|R^\nabla\|^2}{2}\Big)\|\nabla R^\nabla\|^2 \le 0$, we have $F'\Big(\frac{\|R^\nabla\|^2}{2}\Big) = 0$, and hence $R^\nabla = 0$ on U, which is a contradiction to $\nabla R^\nabla \ne 0$. Therefore we have $\nabla R^\nabla \equiv 0$ everywhere when $n \ge 3$. When $n \ge 5$ and $R^\nabla \ne 0$, the inequality (39) is strict which is imposible.

COROLLARY 12. Let M^n be a hypersurface of \mathbf{R}^{n+1} , the principal curvatures λ_i of which satisfy the following ordinary inequalities:

$$-H\lambda_i + \lambda_i\lambda_l + \lambda_i\lambda_i \le 2 - n, \quad i, j, l = 1, 2, \dots, n. \tag{40}$$

Suppose that R^{∇} is an F-Yang-Mills field on M^n with $||R^{\nabla}||^2 \leq \frac{1}{2} {n \choose 2}$, where, F(t) > 0, F'(t) > 0 and $F''(t) \geq 0$ for t > 0. Then, $\nabla R^{\nabla} = 0$ for $n \geq 3$ or $R^{\nabla} = 0$ for $n \geq 5$.

Especially, if $M^n = S^n$, the equality holds in the condition (40). Hence Corollary 12 is valid for S^n .

Proof. Let

$$h_{ij}^{n+1} \equiv h_{ij} = \lambda_i \delta_{ij}, \quad H \equiv H^{n+1} = \sum_i \lambda_i.$$
 (41)

Then we have (i, j, k, l not summation)

$$(-H^{\mu}h^{\mu}_{il} + h^{\mu}_{im}h^{\mu}_{ml})\delta_{ki} + h^{\mu}_{ik}h^{\mu}_{il} = (-H\lambda_j + \lambda_j\lambda_l + \lambda_i\lambda_j)\delta_{ki}\delta_{jl}.$$

By Theorem 11, when

$$(-H\lambda_i + \lambda_i\lambda_l + \lambda_i\lambda_i)\delta_{ki}\delta_{il} \le (2-n)\delta_{ki}\delta_{il},\tag{42}$$

the conclusions of Corollary 12 hold. Condition (42) means that for any skew-symmetric tensor A_{ij} , we have

$$(-H\lambda_i + \lambda_i\lambda_l + \lambda_i\lambda_i)\delta_{kl}\delta_{il}A_{ij}A_{kl} \le (2-n)\delta_{kl}\delta_{il}A_{ij}A_{kl},\tag{43}$$

which is equivalent to (40) as an ordinary inequality.

REMARK 13. In Corollary 3.3 of [3], the condition

$$H\lambda_i - \lambda_i\lambda_l - \lambda_i\lambda_i \le n-2$$

means that for any slew-symmetric tensor A_{ij} , the following inequality holds:

$$(H\lambda_i - \lambda_i \lambda_l - \lambda_i \lambda_i) \delta_{ki} \delta_{jl} A_{ji} A_{kl} \le (n-2) \delta_{ki} \delta_{jl} A_{ji} A_{kl}$$

which is equivalent to (40) as an ordinary inequality.

THEOREM 14. Let M^n be a submanifold of S^{n+k} , and satisfy the following condition:

$$(-H^{\mu}h^{\mu}_{il} + h^{\mu}_{im}h^{\mu}_{ml})\delta_{ki} + h^{\mu}_{ik}h^{\mu}_{il} \le b\delta_{ik}\delta_{jl}, \tag{44}$$

where $b \le 0$. If R^{∇} is an F-Yang-Mills field on M with $||R^{\nabla}||^2 \le \frac{1}{2} \binom{n}{2}$, where F(t) > 0, F'(t) > 0 and $F''(t) \ge 0$ for t > 0, then, we have $\nabla R^{\nabla} = 0$ for $n \ge 3$ and $R^{\nabla} \equiv 0$ for $n \ge 5$.

PROOF. By Lemma 9 (ii) and condition (44), we get

$$= -\int_{M} F' \left(\frac{\|R^{\nabla}\|^{2}}{2} \right) \langle R^{\nabla} \circ (\text{Ric} \wedge I + 2R), R^{\nabla} \rangle$$

$$= \int_{M} F' \left(\frac{\|R^{\nabla}\|^{2}}{2} \right) \left[(-H^{\mu}h^{\mu}_{jl} + h^{\mu}_{jm}h^{\mu}_{ml}) \delta_{ki} + h^{\mu}_{ik}h^{\mu}_{jl} \right] f^{a}_{ij} f^{a}_{kl}$$

$$+ 2(2-n) \int_{M} F' \left(\frac{\|R^{\nabla}\|^{2}}{2} \right) \|R^{\nabla}\|^{2}$$

$$\leq \int_{M} F' \left(\frac{\|R^{\nabla}\|^{2}}{2} \right) b \delta_{ik} \delta_{jl} f_{ij}^{a} f_{kl}^{a} + 2(2 - n) \int_{M} F' \left(\frac{\|R^{\nabla}\|^{2}}{2} \right) \|R^{\nabla}\|^{2} \\
= \int_{M} 2(b + 2 - n) F' \left(\frac{\|R^{\nabla}\|^{2}}{2} \right) \|R^{\nabla}\|^{2}. \tag{45}$$

According to (35), (38), (45) and Lemma 10, for $n \ge 3$ we have

$$\int_{M} F'' \left(\frac{\|R^{\nabla}\|^{2}}{2} \right) \|R^{\nabla}\|^{2} \|\nabla\|R^{\nabla}\| \|^{2} + \int_{M} F' \left(\frac{\|R^{\nabla}\|^{2}}{2} \right) \|\nabla R^{\nabla}\|^{2}
\leq \int_{M} 2(b+2-n)F' \left(\frac{\|R^{\nabla}\|^{2}}{2} \right) \|R^{\nabla}\|^{2} + 2(n-2) \int_{M} F' \left(\frac{\|R^{\nabla}\|^{2}}{2} \right) \|R^{\nabla}\|^{2}
= 2 \int_{M} bF' \left(\frac{\|R^{\nabla}\|^{2}}{2} \right) \|R^{\nabla}\|^{2} \leq 0.$$
(46)

For the rest proof see that of Theorem 11.

For a hypersurface of a sphere, we have a result similar to Corollary 12, i.e.

COROLLARY 15. Suppose that M^n is a hypersurface of S^{n+1} , the principal curvatures of which satisfies the following inequalities:

$$-H\lambda_j + \lambda_j\lambda_l + \lambda_i\lambda_j \le 0, \quad i, j = 1, 2, \dots, n.$$

$$(47)$$

If R^{∇} is an F-Yang-Mills field on M^n with $||R^{\nabla}||^2 \leq \frac{1}{2} \binom{n}{2}$, where, F(t) > 0, F'(t) > 0 and $F''(t) \geq 0$ for t > 0, then, we have $\nabla R^{\nabla} = 0$ for $n \geq 3$ or $R^{\nabla} = 0$ for $n \geq 5$.

The proof of this corollary is similar to that of Corollary 12, and we omit the details.

References

- J. P. Bourguignon and H. B. Lawson, Stability and isolation phenomena for Yang-Mills fields. Comm. Math. Phys. 79 (1981), no. 2, 189–230.
- [2] J. P. Bourguignon, H. B. Lawson and J. Simons, Stability and gap phenomena for Yang-Mills fields, Proc. Acad. Sci. U.S.A. 76 (1979), 1550–1553.
- [3] Q. Chen and Z. R. Zhou, On Gap Properties and Instabilities of p-Yang-Mills Fields. Canad. J. Math. Vol. 59 (6), 2007 pp. 1245–1259.
- [4] S. Kobayashi, Y. Ohnita and M. Takeuchi, On instability of Yang-Mills connections, Math. Z. 193 (1986), 165–189.

- [5] C. L. Shen, Weakly stability of Yang-Mills fields over submanifolds of sphere, Archiv der Math. 39 (1982), 78–84.
- [6] K. Uhlenbeck, Connections with L^p bounds on curvature, Comm. Math. Phys. 83 (1982), 31-42.
- [7] Y. L. Xin, Instability theorems of Yang-Mills fields. Acta Math. Sci. 3 (1983), no. 1, 103-112.

Gao-Yang Jia and Zhen-Rong Zhou¹ Department of Mathematics Central China Normal University 430079, Wuhan, P.R. China E-mail: zrzhou@mail.ccnu.edu.cn

¹ corresponding author