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ABSTRACT. Let D be the open unit disk with its boundary dD in the complex
plane C and dA(z) = Ldzdy, the normalized area measure on . Let L2(ID, dA)

7
be the Bergman space consisting of analytic functions on D that are also in
L?(D,dA). In this paper we obtain certain distance estimates for bounded

linear operators defined on the Bergman space.

1. INTRODUCTION

Let dA denote Lebesgue area measure on the unit disk D, normalized so that the
measure of D equals 1. The Bergman space L?(D) is the Hilbert space consisting
of the analytic functions on D that are also in L?*(ID,dA). Since point evaluation
at z € D is a bounded linear functional on the Hilbert space L?(D), the Riesz
representation theorem implies that there exists a unique function K, in L?(D)
such that

f(2) = / F () K (w)dA(w)

for all f € L?(D). Let K(z,w) be the function on D x D defined by K(z,w) =

K, (w) = (1_#)2 The function K(z,w) is called the Bergman kernel of D or the
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reproducing kernel of L?(D) because the formula

/f K (2, w)dA(w)

reproduces each f € L?(D). The sequence of functions e, (z) = \/n +12" n =
0,1,2,... form an orthonormal basis for L2(D) and K(z,w) Zen 2)en(w)

For a € D, let ¢, be the analytic map from D onto D defined by
a—z
Pal(2) = 1—az’

Let £(L%(D)) be the set of all bounded linear operators from L?(ID) into itself.
Let LC(L?(D)) denote the ideal of compact operators in L(L?(D)). Let L°°(D)
denote the usual space of bounded measurable functions f on the unit disk D in
the complex plane with || f||cc = esssup{|f(2)| : z € D} < co. Let H*(D) be the
space of bounded analytic functions on D and ~A*°(ID) be the space of all bounded
harmonic functions on D. _

For T € L(L?(D)), the Berezin transform of T is the function 7' on D defined
by

z € D.

T(2) = (Tks, k)

where k,(w) = \I;I({w:i = (11:‘;52. These functions are called normalized repro-

ducing kernels of L2(D); it is clear that they are unit vectors in L?(D). For
¢ € L>(D), the Toeplitz operator with symbol ¢ is the operator T, on LZ(D)
defined by T, f = P(¢f), where P is the orthogonal projection of L*(D, dA) onto

L?(D). The Berezin transform of the function ¢, denoted by ¢, is defined to be
the Berezin transform of the Toeplitz operator Tj. This definition easily leads to

the formula
5 = (1= P [ T2 daw)

If p € h*(D), then T, = ¢ = ¢. Let ¢ : D — D be analytic. Then ¢ induces
a composition operator Cy on L2(D) defined by Cyf = f o ¢, for all f € L2(D).
An operator A € L(L?(D)) is positive if (Af, f) > 0, for every f € L?(D). In
this case we write A > 0. Let o(A) denote the spectrum of A € L(L%(D)). In
section 2, we introduce the operator U, € L(L?(D)),a € D and discuss certain
algebraic properties of these classes of operators. In section 3, we propose some
distance estimates for operators defined on the Bergman space. In section 4, we
are concerned only with Toeplitz operators with bounded harmonic symbols and
obtained certain distance estimates between Toeplitz operators.

2. PRELIMINARIES

In this section we introduce the operator U, € L(L%(D)),a € D and discuss

certain algebraic properties of these classes of operators. Given a € D, we define
the operator U, from LZ(D) into itself as U, f = (f o ¢4)k,. The Proposition 2.1
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is well known. For example see [ 1]. To make the presentation self-contained, we
give a proof of the proposition.

Proposition 2.1. Let a € D. The following hold:
(i) U, is self-adjoint unitary operator.
(it) UakC. = ka(2) Ko, ().
(iii) Usk. = aky,(») where o = aq(2) € OD.

Proof. (i). Let f,g € L2(D) and let ¢, be the Mobius transformation for a € D.
Then

(fo¢a,goda) = (kaf kag)-
First we will prove U, is self-adjoint. If f, g € L?(D) then
(Usf,9) =, Uag) = (£, ka(900a)) = (kafoba; ka(kaoba)g) = (Uaf, (ka(ka0Pa)g))
where we have used the above change of variable and the identity ¢, 0 ¢,(w) = w.
Since (ko (kao0pa)) = 1,50 (Ur f,g) = (Uaf, g). That U, is unitary follows similarly.
Simply rewrite the change of variable replacing f by fo@,, simplify the result with
the identity k, o ¢,(w) = k,(w)~!. Combining these result yields U, ' = U* = U,,.
This proves (i). For (ii), let f € L2( ). Now

(fLUK:) = (Uaf, K2) = Uaf(2) = ka(2) f(¢a(2))

= ka(2)(f, Kou)) = (f ha(2) Ko, ).
This proves (ii). We shall now prove (iii). Notice that

1 — [Fomy p—
Uk, = ——U,K, = ——ko(2) Ky, ( QD  ka(2) ) Kot
~ K 1K 2@ = UKL Pu(2)

Setting @ = aq(2) = || Kpo(o)l| | =] ka(z) we get the desired identity. Since

(1= Ja’)(1 = J2)

1— |ga(2)]” =
a2 = e
To prove o, (z) € 0D we calculate
o(2) = 1=z 1—[a® |1—az]?

L—|¢a(2)]? (1 —az)? (1 -az)*

Now since kq(2)ka(pa(z)) = 1 for each a € D, hence Uk, = 1 and U, k,,, =

km, where m, is the geodesic midpoint between 0 and a (see [0]), i.e, m, =
1—+/1—|al?
TM a. Further Uk, = ky,(2).
a
Lemma 2.2. Let T € L(L?(D)). The following hold:

(i) If TU, = U,T for all a € D, then T = ol for some a € C.
(ii) If TUy, = Uy, T for all a € D, then T = 31 for some 3 € C.
(ii) If TU, = U,T for some a € D, then M, = {ky,(g 0 ¢m,) : g even} is a
reducing subspace of T.

Proof. For proof see [3]. O
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Lemma 2.3. Let T € L(L:(D)), T > 0. Then T = Z Te, ® (\/Tey)", where
n=1

{en} is an orthonormal basis for L2(D), and the infinite sum means the limit of

partial sums in the strong operator topology.

N
Proof. Define Py = Z e, ®ey. Clearly Py T I strongly. Thus VTPyT — T

n=1

N
strongly and VT PyVT = Z Te, @ (\/Tey)". O
n=1

3. THE OPERATOR U, AND CERTAIN DISTANCE ESTIMATES

In this section we propose some distance estimates for operators defined on the
Bergman space. Such inequalities are useful in the theory of best approximation
in C*-algebras [5], complex interpolation [3], the theory of generalized inverses
and operator approximation (see, [9], [10] and [I]). We obtain estimates for
|U, — T|| where T € L(L?(D)), T > 0 and a € D.

It is well known [7] that if T € L£(L2(D)) and there exists §, 0 < § < 1 such
that || —T"|] <6 < 1 for all n € N, then T' = I, the identity operator. Thus it
follows from this that ||I — U,|| > 1 since U, # I and U? = I. Further, since U, is

not positive, it follows from [7] that there exists no positive integer N such that
k+n

I-5:2 U

=k

<1foralln> N and k € NU {0}. But the following holds:

Theorem 3.1. Let A be a positive operator in L(L(D)). Suppose for some a €
D, ||U, — Al < 1. Then A is invertible. Further, ||I —A|| < |[|[U, — Al < [T+ 4]

Proof. If f € LZ(D) and ||f|| = 1 then

[(Ua — A)fII? = ((Ua — A) f, (Us — A)S)
= |UafI? + NASII® = (Uaf, Af) = (Af, Uaf)
= FI? + NASII® = (f, UsAf) — (UFAS, f)
= 1+ JAfI? = (f, U Af) — (UAf, f)
=1+ |AfII? = (U.AS, f) = (UAS, f)
=1+ [JAf]]* = 2 Re(U.Af, f)
> 1+ |Af)? = 2[(U.Af, £)
> 1+ [JAfIP = 2| U AL f]
=1+ [JAF? =20 AF I £
=1+ |Af]* = 2l Af|| = (1 = [Af[)*.
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Now since A is positive, ‘mf (Af, f) = inf ||Af] and sup (Af, f) = sup ||Af]|

Ifl=1 IflI=1 IflI=1
and we have

1Ua = Al = sup [|(Ua — A)f|

Ifl=1
> sup |1 —[lAf]]
Ifl1=1
= sup [1 —(Af, f)|
I Fl=1
= sup (I = A)f, )l = I = Al.
Ifl=1

Thus if ||U, — Al| < 1 then || — A|| < 1 and this implies A is invertible [1].
Further,
HUa - AH = IISf1||lp HUaf - Af”
=1

< sup (1+ [[Af]])
I1£1=1

= Ili1||1§1<(f+f4)f, f)y =1+ Al

Theorem 3.2. Let T € L(L?(D)). The following hold:

(i): If for some a €D, ||U, —T| <1, then T is invertible.
(ii): If T is invertible and ||U, —rT|| = 1 for some real number r > 1 and
a €D, then U, —T| < 1.

Proof. (i) The operator U, is a unitary operator and U? = I, U} = U,. Since
I =UT| = [|Us—T| <1,

the operator U,T is invertible. Hence T is invertible as T = U,(U,T). This
completes the proof of (i). To prove (ii), we first show that if S, R € L(L?(D))
and [|S — R|| = ||S]| + ||R|| then there exists a sequence {f,} of unit vectors in
L(L%(D)) such that lim ||(||R]|S + ||S||R) f»|| = 0. The converse holds if one of S

and R is an isometric operator. To prove this we use the well known fact that if f

and g are two vectors in a normed linear space such that || f+g|| = || f]|+]|g|| then
laf + bg|| = al|f]| + bl|lg|| for any nonnegative real numbers a and b. Suppose
S #0, R#0,|S—R| =S|+ |R| Let K = ﬁ and L = HRII Since

|S—R|| = ||S||+||R]|| we have || K+ L|| = 2. So there exists a sequence { f,,} of unit
vectors such that lim || K f, + Lf,|| = 2. This implies that lim |Kf,—Lf,|| =0

as ||[Kfnl| <1, |[Lfn|| <1 for all n and by Parallelogram law

1K fo+ Lfall* + 1K fo = Lfall* = 2 K full* + 2] L fa1*.
It thus follows that lim ||(||R||S + [|S]|R) fu|| = 0. Conversely, let S be an iso-
metric operator and lim ||(||R||S + R) f.|| = 0 for some sequence {f,} € LZ(D)
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of unit vectors. Then we have
2RIl > [(IRIS = R) full = 2 RIS full = ICIRIS + R) full — 2[[R]| as n — oc.

Hence, ||(||R]|S — R)|| = 2||R||, equivalently, ||.S — R|| = 1+ ||R||. Thus we obtain
that if S, R € L(L?*(D)) and S is an isometric operator then ||S — R|| =1+ || R||
if and only if there exists a sequence {f,} of unit vectors in L?(D) such that
lim [|(||R]|S + R) fu]| = 0. Notice that
AT = 1S + [1(r = DST) full = IATN = 1)S + (r = DISIT) fall
= (r = DTS +T) fall

It thus follows that |[(r —1)S —T'|| < (r — 1) + ||T"]] if and only if there exists no
sequence {f,} € L2(D) of unit vectors such that lim ||(||T||S + T)f.|| = 0. Now

we shall establish (ii). Suppose T is invertible and ||U, — rT'|| = 1 for some real
number r > 1. From the above argument it follows that there exists no sequence
{f.} € L3(D) of unit vectors such that

Jim (|([|Uq = 7T |Us + (T = Ua)) ful = 0

if and only if
|(r=10)U, — (rT = U,)|| < (r = 1)+ ||rT = U,|| = 7.
We thus show that if there exists no sequence {f,} € L(D) of unit vectors such
that lim ||Tf,| = 0 then
r|| Uy =T = ||rUs — 7T = |[(r = YU, — (rT = U,)|| < .

That is, ||U, —T'|| < 1. Hence if T is invertible and ||U, —rT|| = 1 for some a € D
and some real number r > 1 then ||U, — T|| < 1. O]

Corollary 3.3. Let T € L(L*(D)). Then ||[U, —T|| = 1+ ||T|| for some a € D if
and only if the operator ||T||U, + T is not invertible.

Proof. Supposer > 1 = ||T| and V; = Y*L Then T = rV;,—U, and ||[U,—rV;| =
|T|| = 1. Thus V; = %+ is not 1nvert1ble if and only if ||U, — Y+ || > 1. But
1tr = DUa =T < (r = DIVl + [T} = .

Thus V; is not invertible if and only if ||[(r — 1)U, — T'|| = r. That is, if and
only if, ||U, — T|| = 1+ ||T'||. That is, rV4 = U, + T is not invertible if and
only if |U, — T|| = 1+ ||T||. For the general case, suppose T € L(L2(D)). Then

ﬁ ‘ = 1. From the first part we obtain U, + ﬁ is not invertible if and only if
v g =+ il =
HTH 177l
Thus || T||U, + T is not invertible if and only if ||[|T||U, — T|| = 2||T||. That is, if
and only if ||{U, —T|| = 1+ ||T||. This completes the proof. O

Corollary 3.4. Let T € L(L?(D)). Let R = U, T — TU, for some a € D. Then
|l — R|| > 1.
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Proof. Notice that ||U,|| = 1 and the spectral radius of U, = r(U,) = 1. In fact
the spectrum of U, = o(U,) = {—1, 1}. Hence there is a sequence of unit vectors
fn € L2(D),(n=1,2,3,---) such that (U, — I)f, — 0. Now
The result follows if we can show that (Rf,, f,) — 0. But
(Bfn, fu) = ((Ua = DT = T(Ua — 1)) f, f)
= <Tfna (Ua - I)fn> - <(Ua - [)fnaT*fn> .
So

(B f, fud | < NTN (Ve = D full + [(Ua = D) full) — 0 as n — oo.
O

The Schatten-Von Neumann class S, = S,(H),0 < p < oo, consists of all
operators T' € LC(H) such that

ITls, = (Z(Sn(T))p> e (3.1)

n=0

Corollary 3.5. If A is positive and A € L(LZ(D)) and U, — A€ S,, 0 <p < 0
for some a € D, then I — A € S,,.

Proof. Suppose U, — A € S, for some a € D. Then
AU, +U,A = (U, — AU, — U, (U, — A) € 5,.
Hence
I—A*=(U,—A) (U, + A) + (AU, — U, A) € S,
Since A is positive, hence I + A is invertible and so I — A= (I — A?2)(I+ A)~! €
Sp. O

4. TOEPLITZ OPERATORS WITH BOUNDED HARMONIC
SYMBOLS

For T € L(L:(D)), T > 0, let W(T) = {(Tf, f) : |If]| = 1}, the numerical
range of T and w(T") = sup{|(T'f, f)| : || f|| = 1}, the numerical radius of T It is
well known that W (T') is convex and its closure contains (7). There are certain
standard norm estimates like (see [1]), w(T) < ||T|| < 2w(T) and w(T") <

w(T)",n € N. It is not hard to check that for T € £(L2(D)), the range of T
is contained in W(T') and [|T]|« < w(T). Thus if ¢ € L>*(D), then ||¢| =
1Tsllo0 < w(Ty) < ||Ty|| < [|@]|oo- The natural question that arises at this point

is the following: Is there a real number M > 0 with [|T,|| < M||¢||~ for all
¢ € L>*(D) and if so what are the distance estimates for ||T,, —Ty|| and ||U, — Ty ||
where, ¢,1 € L*(D) ? In this section, we are concerned only with Toeplitz
operators with bounded harmonic symbols and obtained such distance estimates.

Theorem 4.1. If ¢,¢ € h*°(D) and T,, T, > 0, then
(1): For all a € D, ||Tyoq, — Tyl < max {||]c, |¢oc}
(ii): [ TTy — TyTy| < (max{{|olcc, [¥[lc})”-
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(iii): Ifr > 0 and Typry > 11 > 0, then [|[TyU, + U Ty || > 7.

Proof. (i) Let ¢(z) = (Tyk, k), where k, is the normalized reproducing kernel
for the Hilbert space L2(D). Hence ¢(z) = / o(w) |k, (w)|*dA(w), z € D. Since

¢’ = —k., making a change of variable we also have ng / d(0,(w))dA(w) =
$(6:(0)) = ¢(2), 2 € D. Thus |¢(2)| = |6(2)| = [(Tyks, k=)| < [|Ty| for all = € D.

Hence ||@]loc < ||T4]]. Now since the Bergman projection has norm 1, we have

1Tl = 1[#]]oc-
Suppose a € D. Now on L2(D) & L3(D), let

(T, 0 (0 U,
M_<0 T¢> and N—(O O)'
0 T,U,-UT,
0 0

1 Tyosa = Toll = [ T6Ua = UaTy| = [[MN = NM|| < [[MI|[|N]]
= max{|[ Ty, [| Ty |} |Vall = max{|[¢[loc, [[¥lloc}-
This completes the proof of (i). To prove (ii), observe that
2Ty Ty = ToTy) = (Ty + Ty) (T = Ty) = (Ty = Ty)(Ty + Ty)
= TorgTo—y = ToyTory.

ThenMZOandMN—NM:( ).From”wehave

Since T4y is positive and || Tyiyp|| = ||¢ + |00, We have from [2] that
2T Ty = ToTull < 1 TorpllITo—ull = 19 + Pllool| Ty — Tyl
= ¢ + ¥loo max{{|d|sc, [[4]loc }-
Thus

1
1Ty Ts =TTyl < 5 U0l + 1 lloc} max{fidlos, [[floc} < (max{[|@l]oo, [lloe})?

This completes the proof of (ii). To prove (iii), notice that the spectral radius
of U, =r(U,) =1 and |U,]| = 1 and o(U,) = {—1, 1}. Hence there is a sequence
of unit vectors {f,,} € L2(D) such that (U, — I)f, — 0. Now
1T6Ua + UaTyll = (TsUa + UaTy) fu, f)

|< ( )fnafn> <( _I)T¢fnafn> <(T¢+Tw)fnafn>|
= [{(Ua = D) fo, To fu) + (TS, (Ua = D fn) + {(To + Tp) f, f)]
{

> (T + Tp) frr fud| = W = D full 1 T foll + 1T S| (Ua = 1) £ ]

Z r—rTrn
where r,, is a term depending on n and r,, — 0 as n — oco. Hence

HT¢>UG + UaTwH Z r.
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Theorem 4.2. (i): If gbl € L) and T3 + T3, = 2T4op, Ty for some
T (Tyop, -
a € D, then lim 17" ( di% 2 =0, Tpop,—o is not invertible and ||U, —
oo HT(;L 1|| $opa—¢
Tsopa—sll = 1.

(ii): If ¢ € L>(D) and Ty is positive, then also || Uy — Tpop,—o|| > 1.
Proof. (i) Suppose T3 + 12,5 = 2T 0, Ty for some a € D. Then
Ts00.To — T5 = Tgog, — Toopu To-
That is,
UTyULTy — T2 = (U,T,U) (UaTyUs) — (U TyU) T,
= U T3U, — (U T3U)Ty.

Hence T,U, T — UaTg = TjUa —TyU,Ty. That is, (TyU, — U Ty)Ty = Ty(T,U, —
U,Ty). Thus Ty commutes with T,,U, — U,Ty. Suppose there exists a m € Z, such
that 77" = 0. Now since

n—1
m n __ n—1—1 7
TyU, — UTy =Y Ty~ (TyU, — UT,) T
=0
n—1
=Ty = ST — (LU, - UT) T,
i=0
we have 0 = T;"U, — U, T} = ng"l(T(z,Ua — U,T,) and hence
T Y1,U, — U,T, T Y Thow. —
. 175 ( ol - ol _ - 1T (,il% ¢)||:0.
n—o0 1Tl n—oo 1Tl

If there does not exist m € Z, such that 7" = 0 then the inequality
AT o, —ll = nll T3~ (Tl = UaTo)| = 13U — ULTE
< 2| Tl 1Tl T5 = | = 20 Tl 75l

-1
175 ™ (Toopa—o)ll
—1
175"

and HTq;;a—qs” < C for some constant C' > 0. Then

175~ Toosa—sTpopa—s|

implies that — 0 asn — o0o. Suppose now that T4, 4 is invertible

1757
175 Toosu—o 1 Tgo0,—
- 175
CITE Toos-sll _ 2C| Tyl
R [/

Taking limit as n — oo both the sides we obtain a contradiction. Hence Tyo4,—¢
is not invertible. That is, U,T,U, — T, = U,(TpU, — U,Ty) is not invertible.
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Hence T,U, — U, Ty is not invertible and ||I — (T,U, — U,Ty)|| > 1. That is,
1o = Tsopa—oll = [IUa = Toop, + Toll = [ = (TUa = UaTp)|| = 1.

This completes the proof of (i). To prove (ii), assume 7T, is positive. Then
| T3 || = |IT5[|™ for all m € Z,. Thus it follows that

n||Te[" = n|| T3]

n—1
< |NTpU = UTR| + || D T3 = (TyUa — UaTy)) T
=0
n—1
2TVl T3 I+ 1 = (ToUa = UaTo) | > N5 T
=0
n—1
= 2| Tyl T5lI" " + 1 = (ToUa = UaT) || Y ITol™ T
=0

= 2(|Ty||" + 1l — (TsUs — UTo) ||| T )"
Thus
2
1< =Tyl + 1 = (TyU, — UTy)|| for alln € Z,.
n

If now ||I — (T4U, — U,Ty)|| < 1 then we get a contradiction. Hence
|Ua = Thogu—oll = I = (TUs — UaTy)[| > 1.
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