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Abstract. We will show that if M is a factor, then for any pair ϕ, p ∈ M+
∗

of normal positive linear functionals on M, the inequality:

‖ϕ‖ ≤ ‖ψ‖
is equivalent to the fact that there exist a countable family {ϕi : i ∈ I} ⊂ M+

∗
in M+

∗ and a family {ui : i ∈ I} ⊂ M of partial isometries in M such that

ϕ =
∑
i∈I

ϕi,
∑
i∈I

uiϕiu
∗
i ≤ ψ, and u∗i ui = s(ϕi), i ∈ I,

where s(ω), ω ∈ M+
∗ , means the support projection of ω. Furthermore, if

‖ϕ‖ = ‖ψ‖, then the equality replaces the inequality in the second statement.
In the case that M is not of type III1, the family of partial isometries can be
replaced by a family of unitaries in M. One cannot expect to have this result
in the usual integration theory. To have a similar result, one needs to bring in
some kind of non-commutativity. Let {X,µ} be a σ-finite semifinite measure
space and G be an ergodic group of automorphisms of L∞(X,µ), then for a
pair f and g of µ-integrable positive functions on X, the inequality:∫

X

f(x)dµ(x) ≤
∫
X

g(x)dµ(x)

is equivalent to the existence of a countable families {fi : i ∈ I} ⊂ L1(X,µ) of
positive integrable functions and {γi : i ∈ I} in G such that

f =
∑
i∈I

fi and
∑
i∈I

γi(fi) ≤ g,

where the summation and inequality are all taken in the ordered Banach space
L1(X,µ) and the action ofG on L1(X,µ) is defined through the duality between
L∞(X,µ) and L1(X,µ), i.e.,

(γ(f))(x) = f
(
γ−1x

)dµ◦γ−1

dµ
(x), f ∈ L1(X,µ).

1. Introduction

Regardless of commutativity, the integration of a positive element is the numerical
value indicating the size of the quantity represented by the element. The one faces
the following basic question:

What does two positive elements to record

the same integration value mean?

Of course one cannot expect that two positive elements with the same integration
value are isomorphic. In the classical integration theory, one cannot go further
on this question. But in sharp contrast, in the non-commutative world, one
can say that two positive elements with the same integration values are decom-
posed into the countable sum of two sequences of mutually isomorphic positive
elements. This means that the non-commutative integration represents better
the true meaning of integration than the classical commutative integration the-
ory. Another important fact on this result is that the summation is taken over a
countable set of objects. Otherwise, we are dealing with cardinality, which gives
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us very little room for analysis. This shows the distinguished position of the
countability among infinities.

2. Preliminary, Noncommutative flow of weights

We will refer to either [4] or [7, Chapter XII Section 6] for the basic facts on
noncommutative flow of weights. But unfortunately, [7, Exercise XII.6] contains
a little imprecise statement, so we will present here the essence of that theory.
We consider the translation flow {L∞(R),R, ρ}:

(ρtf)(s) = f(s+ t), f ∈ L∞(R), s, t ∈ R.

Lemma 2.1. If µ is a normal weight on A = L∞(R) such that

µ◦ρs(f) = e−sµ(f), f ∈ A+;

0 < µ(f0) < +∞ for some f0 ∈ A+,

then the weight µ is a faithful semi-finite normal weight on A such that

C = µ((−∞, 0]) < +∞;

µ(f) = C

∫
R
f(s)esds, f ∈ L∞(R)+,

where we view the normal weight µ as a measure on R absolutely continuous
relative to the Lebesgue measure, but not necessarily semi-finite.

Proof. Let g be a continuous non-negative function with compact support on R.
Then we have

µ(ρg(f0)) = µ

(∫
R
g(s)ρs(f0)ds

)
=

∫
R
g(s)µ(ρs(f0))ds

=

(∫
R
e−sg(s)ds

)
µ(f0),

so that 0 < µ(ρg(f0)) < +∞ and(∫
R
g(s)ρs(f0)ds

)
(t) =

∫
R
g(s)f0(s+ t)ds = (g ∗ f0)(t).

Hence ρg(f0) is continuous on R and takes a finite value on the normal weight µ.
Thus we may and do take a continuous positive function as f0 in the assumption
of the lemma. So there are an interval (a, b], a < b, and a constant C1 > 0 such
that

C1χ(a,b] ≤ f0 and 0 < µ
(
χ(a,b]

)
< +∞.

As ρs
(
χ(a,b]

)
= χ(a−s,b−s], we have

µ((a− s, b− s]) = e−sµ((a, b]) for every s ∈ R.
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From this, it follows that the measure µ takes a positive finite value on every
finite interval and also that

C = µ((−∞, 0]) = µ

(
∞⋃
n=1

(−n,−n+ 1]

)

=
∞∑
n=1

e−nµ((0, 1]) =
1

e− 1
µ((0, 1]) < +∞,

µ((−∞, s]) = µ
(
ρ−s
(
χ(−∞,0]

))
= esµ((−∞, 0]) < +∞,

dµ(s) = µ((−∞, 0])esds.

This completes the proof. �

Fix a von Neumann algebra M and consider the associated noncommutative

flow of weights
{
M̃,R, τ, θ

}
to have

M = M̃θ, τ ◦θs = e−sτ,

M′ ∩ M̃ = C = The Center of M̃,

{C,R, θ} = The flow of weights on M.

Let M be the algebra of all τ -measurable densely defined closed operators

affiliated to M̃. The following criteria for τ -measurability is very useful and easy
to manage:

A densely defined closed positive operator h affiliated to M̃ is τττ-measurable
if and only if there exists a positive number λ0 > 0 such that

τ
(
χ[λ0,+∞)(h)

)
< +∞.

We are going to write Eλ = χ[λ,+∞) ∈ L∞(R) for each λ > 0. The algebra M is
graded by the noncommutative flow {θs : s ∈ R} as seen below.

Setting

M(α) =
{
x ∈M : θs(x) = e−αsx, s ∈ R

}
, α ∈ C,

we obtain the following:

i) The original von Neumann algebra M is the fixed point algebra of θ,
which is exactly the equality:

M = M(0).

ii) For each p > 0 we write

Lp(M) = M

(
1

p

)
.

iii) The cases that p = 1 and p = 2 are of particular interest for us:

L1(M) = M(1) =
{
x ∈M : θs(x) = e−sx, s ∈ R

}
,

L2(M) = M

(
1

2

)
=
{
x ∈M : θs(x) = e−s/2x, s ∈ R

}
.

as it will be identified with the predualM∗ and the standard form ofM.
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iv) If <α < 0, then

M(α) = {0}.

We now consider the operator valued weight Iθ from M̃+ to the extended positive

cone M̂+ of M:

Iθ(x) =

∫
R
θs(x)ds, x ∈ M̃+.

As in the paper of Falcone–Takesaki, [4], we denote the element of M correspond-
ing to ω ∈M∗ by T (ω) ∈ L1(M) to avoid possible confusions and write

ω(1) =

∫
dT (ω),

which is defined to be the following value:∫
dT (ω) = τ

(
a

1
2T (ω)a

1
2

)
= ω(1)

for any a ∈ M̃+ with Iθ(a) = 1. The middle quantity τ
(
a

1
2T (ω)a

1
2

)
does not

depend on the choice of a ∈ M̃+ with Iθ(a) = 1 as shown in [4, Theorem 3.12].

3. Comparison of Integrals

Let M be a fixed von Neumann algebra. Fixing a pair ϕ, ψ ∈ M+
∗ with

p = s(ϕ), q = s(ψ) ∈ Proj(M), consider the one parameter group
{
σϕ,ψt : t ∈ R

}
of isometries on pMq defined by the following:

σϕ,ψt (x) = T (ϕ)itxT (ψ)−it, x ∈M,

which appears on the (1, 2)-corner of M2(C)⊗M of the modular automorphism
group σρ of the balanced positive linear functional ρ = ϕ⊕ ψ:

ρ =

(
ϕ 0
0 ψ

)
∈ (M2(C)⊗M)

+
∗ .

We then consider the subspace A(ϕ, ψ) of entire elements in pMq relative to
σϕ,ψ, i.e., A(ϕ, ψ) is the set of all those elements x ∈ pMq such that the function:

t ∈ R 7→ σϕ,ψt (x) ∈ M has entire extension to C. We denote its value at α ∈ C
by σϕ,ψα (x) ∈ M. Of particular interest to us is the value at the half imaginary

unit: ±i/2, which is σϕ,ψ
±i/2(x) ∈M.

Lemma 3.1. If x ∈ A(ϕ, ψ), x 6= 0, then the element T (ϕ)
1
2xT (ψ)

1
2 ∈ L1(M)

has the property: ∣∣∣T (ϕ)
1
2xT (ψ)

1
2

∣∣∣ ≤ ∥∥∥σϕ,ψ−i/2(x)
∥∥∥ψ,∣∣∣(T (ϕ)

1
2xT (ψ)

1
2

)∗∣∣∣ ≤ ∥∥∥σψ,ϕ−i/2(x∗)∥∥∥ϕ,
T (ϕ)

1
2xT (ψ)

1
2 6= 0.
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Proof. We consider the path:

t ∈ R 7→ σϕ,ψt (x) = T (ϕ)itxT (ψ)−it ∈ A(ϕ, ψ) ⊂ pMq,

which admits entire extension:

σϕ,ψz = T (ϕ)izxT (ψ)−iz ∈ A(ϕ, ψ), z ∈ C.

The evaluation at −i/2 gives

σϕ,ψ−i/2(x) = T (ϕ)
1
2xT (ψ)−

1
2 ,

so that we get

T (ϕ)
1
2xT (ψ)

1
2 = T (ϕ)

1
2xT (ψ)−

1
2T (ψ) = σϕ,ψ−i/2(x)T (ψ) ∈ L1(M).

Thus we get the following easy conclusion:∣∣∣T (ϕ)
1
2xT (ψ)

1
2

∣∣∣ =
[(
σϕ,ψ−i/2(x)T (ψ)

)∗(
σϕ,ψ−i/2(x)T (ψ)

)] 1
2

≤
∥∥∥σϕ,ψ−i/2(x)

∥∥∥T (ψ).

The other inequality follows similarly.
The non-triviality of the element T (ϕ)

1
2xT (ψ)

1
2 follows from the fact that T (ψ)

is non-singular on the range of the projection q and T (ϕ) is also on the range of
p. �

Definition 3.2. A pair ϕ, ψ ∈ M+
∗ of normal positive linear functionals is said

to be equivalent and written

ϕ ∼ ψ

if there exists a partial isometry u ∈M such that

u∗u ≥ s(ϕ), uu∗ ≥ s(ψ) and uϕu∗ = ψ,

which automatically gives

ϕ = u∗ψu.

If the above u can be chosen to be unitary, then we say that ϕ and ψ are unitarily
conjugate and write

ϕ ≡ ψ mod Int(M).

Lemma 3.3. If M is a factor, then every pair ϕ, ψ ∈ M+
∗ of non-zero normal

positive linear functionals on M admits a pair ϕ1, ψ1 ∈M+
∗ such that

0 6= ϕ1 ≤ ϕ, 0 6= ψ1 ≤ ψ and ϕ1 ∼ ψ1.

In the case that if every non-zero normal positive linear functional ω ∈M+
∗ , ω 6=

0, majorizes a non-zero non-faithful positive linear functional ω1 ∈ M+
∗ , ω1 6= 0,

then the above ϕ1 and ψ1 may be chosen to be unitarily conjugate, i.e.,

ϕ1 ≡ ψ1 mod Int(M).
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Proof. Choose x ∈ A(ϕ, ψ), x 6= 0 and set

ρ =
1∥∥∥σϕ,ψ−i/2(x)

∥∥∥ϕ 1
2xψ

1
2 ∈ L1(M) =M∗.

Then with the polar decomposition:

ρ = v|ρ|

we have

0 6= ψ1 = |ρ| ≤ ψ and 0 6= ϕ1 = |ρ∗| ≤ ϕ,

v∗v = s(ψ1), vv∗ = s(ϕ1) and vψ1v
∗ = ϕ1, v∗ϕ1v = ψ1.

Setting u1 = v∗, we get the desired triplet {ϕ1, ψ1, u1} of the lemma. If the partial
isometry u1 admits a unitary extension w in the sense that

w∗w = ww∗ = 1, ws(ϕ1) = u1,

then the triplet {ϕ1, ψ1, w} is the required one in the latter claim. Thus if the pro-
jections 1− s(ϕ1) and 1− s(ψ1) are equivalent in the projection lattice Proj(M),
then the above w exists and the last assertion on the unitary choice of u1 follows.
We split the proof according to the type of M. The case that M is finite has
been taken care of by the above arguments. So we assume that M is infinite.

The case that M is semi-finite: Let τ be a faithful semi-finite normal
trace. Then ϕ1 and ψ1 are of the following form:

ϕ1(x) = τ(h1x) and ψ1(x) = τ(k1x), x ∈M,

u1h1u
∗
1 = k1.

Choose a spectral projection e of h1 such that eh1 6= 0 and τ(e) < +∞ and set
f = u1eu

∗
1. Replacing the triplet {ϕ1, ψ1, u1} by {ϕ1e, ψ1f, u1e}, we can extend

u1e to a unitary w, which makes the situation back to the already treated case.
The case that M is purely infinite: Suppose M is purely infinite. In

this case, all non-zero σ-finite projections are equivalent and also the orthogonal
complements of σ-finite projections are equivalent in the case that M is not
σ-finite. So if s(ϕ1) 6= 1 and s(ψ1) 6= 1, then we have

1− s(ϕ1) ∼ 1− s(ψ1).

Thus we are back to the already treated case. Therefore the only remaining case is
that either s(ϕ1) = 1 or s(ψ1) 6= 1 by symmetry. In this last case, the assumption
on M guarantees the existence of a non-faithful ω ∈ M+

∗ , ω 6= 0 bounded by
ϕ1, so that e = s(ω) 6= 1. Replace ϕ1 by ω and set ψ2 = u1ωu

∗
1. Then we have

s(ψ2) = u1eu
∗
1 and

1− s(ϕ1) ∼ 1− s(ψ2)

which allows us to extend u1s(ϕ1) to a unitary w ∈ U(M) with u1s(ϕ1) = we.
This completes the proof of lemma. �
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Lemma 3.4. Let {ϕi : i ∈ I} be a family of non-zero positive linear functionals
on a von Neumann algebra M such that there exists ϕ ∈ M+

∗ which dominates
all finite sums of ϕi, i.e.,∑

i∈J

ϕi ≤ ϕ for all finite subset J b I,

then the family {ϕi : i ∈ I} is countable.

Proof. For each n ∈ N, set

In =

{
i ∈ I : ‖ϕi‖ ≥

1

n

}
.

Then we have
nϕ(1) ≥

∑
i∈In

nϕi(1) ≥ Card(In),

so that Card(In) is finite. Since I = ∪n∈NIn, we conclude that I is countable. �

Theorem 3.5. (Comparison of Positive Linear Functionals) Let M be a
factor. For a pair ϕ, ψ ∈ M+

∗ of non-zero normal positive linear functionals on
M, the following statements are equivalent:

i)
‖ϕ‖ = ϕ(1) ≤ ψ(1) = ‖ψ‖.

ii) There exist sequences {ϕi : i ∈ I} ⊂ M+
∗ , {ψi : i ∈ I} ⊂ M+

∗ , I ⊂ N such
that

ϕ =
∑
i∈I

ϕi,
∑
i∈I

ψi ≤ ψ,

ϕi ∼ ψi, i ∈ I.
In the above equivalence, the equality of (i) corresponds to that of (ii).

Proof. Suppose that (i) holds. Let F be the set of following three sequences:

Φ = {ϕi : i ∈ I} ⊂ M+
∗ , Ψ = {ψi : i ∈ I} ⊂ M+

∗ ,

U = {ui : i ∈ I} ⊂ M
such that ∑

i∈

ϕi ≤ ϕ,
∑
i∈I

ψi ≤ ψ,

0 6= u∗iui = s(ϕi), 0 6= uiu
∗
i = s(ψi),

uiϕiu
∗
i = ψi u∗iψiui = ϕi, i ∈ I.

From Lemma 3.4 it follows that F is an inductive set relative to the inclusion
ordering. Hence it admits a maximal element {Φ,Ψ, U} ∈ F . The maximality
and Lemma 2.3 implies that either

ϕ =
∑
i∈I

ϕi or ψ =
∑
i∈I

ψi.

If ϕ 6=
∑

i∈Iϕi, then the equality ψ =
∑

i∈Iψi implies that

ϕ(1) >
∑
i∈I

ϕi(1) =
∑
i∈I

ψi(1) = ψ(1),
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which contradicts the assumption ϕ(1) ≤ ψ(1). Hence we have

ϕ =
∑
i∈I

ϕi and ψ ≥
∑
i∈I

ψi.

Suppose that (ii) holds, i.e., there exist Φ = {ϕi : i ∈ I},Ψ = {ψi : i ∈ I} and
U = {ui : i ∈ I} which satisfy the requirements in (ii). Since ui is an isometry
from the range of pi = s(ϕi) to that of qi = s(ψi), we have ‖ϕi‖ = ‖ψi‖, i ∈ I.
Then we get

ϕ(1) =
∑
i∈I

ϕi(1) =
∑
i∈I

‖ϕi‖ =
∑
i∈I

‖ψi‖ =
∑
i∈I

ψi(1)

≤ ψ(1).

This completes the proof. �

Definition 3.6. A positive linear functional ϕ on a von Neumann algebra M is
said to be super faithful if every non-zero positive linear functional ψ dominated
by ϕ is faithful.

Remark 3.7. If ϕ is a super faithful state on a von Neumann algebra M, then
ϕ is automatically a normal faithful positive linear functional and Mϕ = C,
consequently M is a factor of type III1.

Corollary 3.8. i)If M is a factor which does not admits a super faithful state,
then the equivalence ϕi ∼ ψi in the condition (ii) can be replaced by the unitary
conjugacy: ϕi ≡ ψi mod Int(M), i ∈ I.

ii) If the pair ϕ, ψ ∈ M+
∗ are both non-faithful instead, then the equivalence

ϕi ∼ ψi can be replaced by ϕi ≡ ψi mod Int(M).
iii) If the pair ϕ, ψ ∈M+

∗ are both super faithful, then the equivalence ϕi ∼ ψi
is replaced by ϕi ≡ ψi mod Int(M).

Proof. This follows from the fact that the equivalence of non-faithful normal
positive linear functionals can be implemented by a unitary element in M. �

4. Commutative Case

Let A be an abelian von Neumann algebra. In this case, as it stands, one
cannot compare a pair of normal positive linear functionals beyond the absolute
continuity. We need a device to move around elements of A. So let G be a group
of automorphisms of A, i.e., G is a subgroup of Aut(A). For each member γ ∈ G,
we consider the action of γ on the predual A∗ as follows:

〈x, γ(ϕ)〉 =
〈
γ−1(x), ϕ

〉
, x ∈ A, ϕ ∈ A∗.

We write
ϕ ≡ ψ mod G

if there exists γ ∈ G such that ψ = γ(ϕ).

Proposition 4.1. If A is an abelian von Neumann algebra equipped with an
ergodic group G of automorphisms, then for every pair ϕ, ψ ∈ A+

∗ of normal
positive linear functionals the following two statements are equivalent:
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i)

‖ϕ‖ ≤ ‖ψ‖.

ii) There exist families {ϕi : i ∈ I} and {ψi : i ∈ I} of normal positive linear
functionals on A such that

ϕ =
∑
i∈I

ϕi,
∑
i∈I

ψi ≤ ψ;

ϕi ≡ ψi mod G, i ∈ I.

Proof. First we remark that the commutativity of A entails the lattice property
of both the self-adjoint part of A and of the self-adjoint part of its predual A∗.
From the discussion in the last section, to prove the theorem it is enough to show
that for every pair ϕ, ψ ∈ A+

∗ of non-zero normal positive linear functionals there
exists a pair ϕ1, ψ1 ∈ A+

∗ such that

0 6= ϕ1 ≤ ϕ, 0 6= ψ1 ≤ ψ,

ϕ1 ≡ ψ1 mod G.

To this end, set

p = s(ϕ), q = s(ψ).

Since ϕ 6= 0 and ψ 6= 0, we have p 6= 0 and q 6= 0 as well. Hence the ergodicity of
G implies the existence of γ1 ∈ G such that

γ1(p)q 6= 0.

This means that γ1(ϕ)q 6= 0, so that γ1(ϕ) ∧ ψ = ψ1 6= 0. Setting

ϕ1 = γ−11 (ψ1),

we obtained a pair ϕ1, ψ1 ∈ A+
∗ with

0 6= ϕ1 ≤ ϕ, 0 6= ψ1 ≤ ψ, ϕ1 ≡ ψ1 mod G.

This completes the proof. �

Application of the proposition yields the following fact which can be stated
more general form such as the integration over a locally compact group. We just
state here a special case which should be taught in the class on the Lebesgue
integration.

Corollary 4.2. Let L1(Rn) be the Banach space of all integrable functions on the
vector space Rn relative to the Lebesgue measure. For a pair f, g ∈ L1(Rn)+ of
positive integrable functions, the following two conditions are equivalent:

i) ∫
Rn

f(x)dx ≤
∫
Rn

g(x)dx.
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ii) There exist countable families, {fi : i ∈ I}, {gi : i ∈ I} ⊂ L1(Rn)+ and
{ai : i ∈ I} ⊂ Rn such that

f =
∑
i∈I

fi,
∑
i∈I

gi ≤ g

and

gi(x) = fi(x+ ai) for almost every x ∈ Rn.

Here the summation is taken relative to the convergence in the Banach
space L1(Rn).

Here the equality of (i) corresponds to that of (ii).

5. Commutativity of Normal Positive Linear Functionals

Fix a factor M and a pair ϕ, ψ ∈ M+
∗ with ‖ϕ‖ ≤ ‖ψ‖. Then we have

decomposition:

ϕ =
∑
i∈I

ϕi,
∑
i∈I

ψi ≤ ψ, ϕi ∼ ψi, i ∈ I.

We are going to discuss the commutativity of the families {ϕi : i ∈ I} and {ψi, i ∈ I}.
To this end, we remind ourselves the following fact: the commutativity of a pair
ϕ, ψ ∈M+

∗ of normal positive linear functionals was first introduced in [6] in the
following form:

Definition 5.1. A pair ω1, ω2 ∈M+
∗ is said to commute if

|ω1 + iω2| = |ω1 − iω2|.

In the case that both functionals are faithful, it is shown in [6] that their com-
mutativity is equivalent to the invariance of one relative to the modular automor-
phism group of the other. For the general pair ϕ, ψ ∈ M+

∗ , we don’t have any
tool to attack the commutativity question. So we restrict ourselves to the special
case that ϕ and ψ are both factoring through a maximal abelian subalgebra A of
M in the sense that

ϕ = ϕ◦EA and ψ = ψ◦EA,
where EA means the A-valued normal conditional expectation. In general, EA
does not exist. For example there is no normal conditional expectation from
L(L2(R)) to L∞(R). But if it does exist, then it is unique.

Proposition 5.2. Let M be a factor and A be a maximal abelian subalgebra of
M. If A is semi-regular and the range of normal conditional expectation EA, then
for a pair ϕ, ψ ∈M+

∗ such that

ϕ = ϕ◦EA, ψ = ψ◦EA,

the inequality

‖ϕ‖ ≤ ‖ψ‖
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is equivalent to the existence of the decomposition:

ϕ =
∑
i∈I

ϕi,
∑
i∈I

ψi ≤ ψ,

ϕi ≡ ψi mod N (A),

ϕi = ϕi◦EA, ψi = ψi◦EA, i ∈ I,
where N (A) = {u ∈ U(M) : uAu∗ = A} is the normalizer of A in M.

Before the proof, we observe that the invariance ϕ = ϕ◦EA is equivalent to the
inclusion:

A ⊂Mϕ.

Proof. First we observe

uEA(x)u∗ = EA(uxu∗), u ∈ N (A).

Then with G = {Ad(u) : u ∈ N (A)}, G acts on A ergodically by the semi-
regularity assumption on A. Hence Proposition 4.1 implies that there exist fam-
ilies {ϕ̄i : i ∈ I} ⊂ A+

∗ and
{
ψ̄i : i ∈ I

}
ıA+
∗ such that

ϕ|A =
∑
i∈I

ϕ̄i,
∑
i∈I

ψ̄i ≤ ψ|A, ϕ̄i ≡ ψ̄i mod G.

Setting ϕi = ϕ̄i◦EA and ψi = ψ̄i◦EA, we get for every x ∈M+,∑
i∈I

ϕi(x) =
∑
i∈I

ϕ̄i(EA(x)) =

(∑
i∈I

ϕ̄i

)
(EA(x))

= ϕ(EA(x)) = ϕ(x);∑
i∈I

ψi(x) =
∑
i∈I

ψ̄i(EA(x)) =

(∑
i∈I

ψ̄i

)
(EA(x))

≤ ψ(EA(x)) = ψ(x).

If ui ∈ N (A) gives Ad(ui)|A(ϕ̄i) = ψ̄i, i ∈ I, then we have for each x ∈M

ϕi(u
∗
ixui) = ϕ̄i(EA(u∗ixui)) = ϕ̄i(u

∗
iEA(x)ui) = ϕ̄i◦Ad(ui)

−1(EA(x))

= ψ̄i(EA(x)) = ψi(x).

Consequently we get
ϕi ≡ ψi mod G, i ∈ I.

This completes the proof. �

6. Concluding Remark

Throughout the paper, we only consider the factor case. The generalization to
the non-factor case is very much the same as the comparison theory of projections
in the general frame work of von Neumann algebras. However the point of this
paper is that the non-commutative theory of integration gives the natural answer
about the question concerning the meaning of the same values on integrations.
In the case of semi-finite factors, the work of Kadison and Pedersen, [5], on the
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additivity of a trace gives the same result. However the motivations of their
work and this work are quite different. They are very much concerned about
the natural proof of the additivity property of the trace which comes from the
comparison of projections. In other words, their theory can be viewed as the
one about the measure theory, whilst our work is more concerned with the result
of integration. Technically, their work is more demanding as they don’t assume
the existence of a semi-finite normal trace on the base von Neumann algebra.
Indeed, the result in the case of factors of type III is unexpected. Also the seek
of natural answer brought about the new question on the existence of a super
faithful state which was never considered before. The author has been unable to
exclude the existence of a super faithful state so far. The author would like to
leave the existence question of a super faithful state as a challenge for operator
algebraists.
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