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WEIGHTED CLASSES OF QUATERNION-VALUED
FUNCTIONS

A. EL-SAYED AHMED1∗ AND SALEH OMRAN2

Communicated by M. Abel

Abstract. In this paper, we define the classes F (p, q, s) of quaternion-valued
functions, then we characterize quaternion Bloch functions by quaternion F (p, q, s)
functions in the unit ball of R3. Further, some important basic properties of
these functions are also considered.

1. Introduction and preliminaries

Let D = {z ∈ C : |z| < 1} be the complex unit disk. Let 0 < p <∞. An analytic
function f in D belongs to the Hardy space Hp (see [11, 18]), if

sup
0<r<1

1

2π

∫ 2π

0

|f(reiθ|pdθ <∞;

f is in H∞, if

sup
z∈D
|f(z)| <∞.

It is well known that f ∈ H2 if and only if∫
D
|f(z)|2(1− |z|2) dA(z) <∞,
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where dA(z) is the Euclidean area element dx dy. For 0 < p < ∞, an analytic
function f in D belongs to the Bergman space Lpa (see [12]), if∫

D

|f(z)|2dA(z) <∞.

The well known α-Bloch space (see [29]) is defined by:

Bα = {f : f analytic in D and Bα(f) = sup
z∈D

(1− |z|2)α|f ′(z)| <∞},

where 0 < α < ∞. The space B1 is called the Bloch space B. The little α-Bloch
space Bα0 is a subspace of Bα consisting of all f ∈ Bα such that

lim
|z|→1

(1− |z|2)α|f ′(z)| = 0.

The Dirichlet space is given by:

D = {f : f analytic in D and

∫
D

|f ′(z)|2dA(z) <∞}.

Let 0 < p <∞. Then the Besov-type spaces

Bp =
{
f : f analytic in D and

sup
a∈D

∫
D

∣∣f ′(z)
∣∣p(1− |z|2)p−2(

1− |ϕa(z)|2
)2
dA(z) <∞

}
are introduced and studied intensively (see [24]). Here, ϕa always stands for the
Möbius transformation ϕa(z) = a−z

1−āz . From [24] it is known that the Bp spaces
can be used to describe the Bloch space B equivalently by the integral norms of
Bp. Composing the Möbius transform ϕa(z), which maps the unit disk D onto
itself, and the fundamental solution of the two-dimensional real Laplacian on D,
we obtain the Green’s function g(z, a) = ln |1−az

a−z | with logarithmic singularity at
a ∈ D. Then the spaces

Qp = {f : f analytic in D and sup
a∈D

∫
D

|f ′(z)|2gp(z, a)dA(z) <∞}

are defined in [6]. The idea of these Qp-spaces is to find a scale of spaces with D
and B, respectively, “at the both end points” of the scale. In [28] Zhao gave the
following definition:

Definition 1.1. Let f be an analytic function in D and let 0 < p < ∞, −2 <
q <∞ and 0 < s <∞. If

‖f‖pF (p,q,s) = sup
a∈D

∫
D
|f ′(z)|p(1− |z|2)qgs(z, a)dA(z) <∞,

then f ∈ F (p, q, s). Moreover, if

lim
|a|→1

∫
D
|f ′(z)|p(1− |z|2)qgs(z, a)dA(z) = 0,

then f ∈ F0(p, q, s).
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The spaces F (p, q, s) were intensively studied by Zhao in [28] and Rättyä in
[21]. It is known from ([28], Theorem 2.10) that, for p ≥ 1, the spaces F (p, q, s)
are Banach spaces under the norm

‖f‖ = ‖f‖F (p,q,s) + |f(0)|.
Moreover, it is known that in (Definition 1.1) the Green’s function g(z, a) can be
replaced by the weight function 1− |ϕa(z)|2 and that for q + s ≤ −1 the spaces
F (p, q, s) and F0(p, q, s) both reduce to the space of constant functions (see [28],
theorem 2.4 and proposition 2.12 ). It is sometimes convenient to replace the
parameter q by p − 2 and consider the spaces F (p, p− 2, s) and F0(p, p− 2, s)
instead of the spaces F (p, q, s) and F0(p, q, s) (see [21]).
If q = p− 2 and s = 0, we denote F (p, p− 2, 0) = F0(p, p− 2, 0) = Bp.

Remark 1.2. The interest of the spaces F (p, q, s) come from that these spaces
cover a lot of known spaces. Zhao in [28] collected the following immediate
relations of F (p, q, s) and F0(p, q, s) :

(1) F (p, q, s) = B
q+2
p and F0(p, q, s) = B

q+2
p

0 , for s > 1.
(2) F (2, 0, s) = Qs, F0(2, 0, s) = Qs,0.

(3) F (2, 1, 0) = H2.

(4) F (p, p, 0) = Lpa, for 1 ≤ p <∞.
(5) F (p, p− 2, 0) = Bp , for 1 < p <∞.

For more studies on the spaces F (p, q, s) in the unit disk or in the unit ball of
Cn, we refer to [4, 17, 19, 20, 21, 26, 27, 28, 30].

2. Quaternion function spaces

Let IH be the skew field of quaternions. This means we can write each element
z ∈ IH in the form

z = z0 + z1i+ z2j + z3k, z0, z1, z2, z3 ∈ IR,

where 1, i, j, k are the basis elements of IH. For these elements we have the
multiplication rules

i2 = j2 = k2 = −1, ij = −ji = k, kj = −jk = i, ki = −ik = j.

The conjugate element z̄ is given by z̄ = z0 − z1i − z2j − z3k and we have the
property

zz̄ = z̄z = ‖z‖2 = z2
0 + z2

1 + z2
2 + z2

3 .

Moreover, we can identify each vector ~x = (x0, x1, x2) ∈ IR3 with a quaternion x
of the form

x = x0 + x1i+ x2j.

In what follows we will work in B ⊂ IR3, the unit ball in the real three-dimensional
space. B is a bounded, simply connected domain with a C∞-boundary S1(0).
Moreover, we will consider functions f defined on B with values in IH. Let Ω be a
domain in IR3, then we will consider IH-valued functions defined in Ω (depending
on x = (x0, x1, x2)):

f : Ω −→ IH.
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The notation Cp(Ω; IH), p ∈ N∪{0}, has the usual component-wise meaning. On
C1(Ω; IH) we define a generalized Cauchy-Riemann operator D by

Df =
∂f

∂x0

+ i
∂f

∂x1

+ j
∂f

∂x2

and it’s conjugate operator by

Df =
∂f

∂x0

− i ∂f
∂x1

− j ∂f
∂x2

.

The solutions of Df = 0, x ∈ Ω, are called (left) hyperholomorphic (or mono-
genic) functions and generalize the class of holomorphic functions from the one-
dimensional complex function theory. For more details about quaternionic anal-
ysis and general Clifford analysis, we refer to [9], [14], [16] and [25] and others.
For |a| < 1, we will denote by

ϕa(x) = (a− x)(1− āx)−1

the Möbius transform, which maps the unit ball onto itself. Furthermore, let

g(x, a) =
1

4π

(
1

|ϕa(x)|
− 1

)
be the modified fundamental solution of the Laplacian in IR3 composed with the
Möbius transform ϕa(x). Especially, we denote for all p ≥ 0

gp(x, a) =
1

4pπp

(
1

|ϕa(x)|
− 1

)p
.

Let f : B 7→ IH be a hyperholomorphic function. Then from [13], we have the
seminorms

• B(f) = sup
x∈B

(1− |x|2)3/2|Df(x)|,

• Qp(f) = sup
a∈B

∫
B |Df(x)|2gp(x, a)dBx,

which lead to the following definitions:

Definition 2.1. (see [13]) The spatial (or three-dimensional) Bloch space B is the
right IH-module of all hyperholomorphic functions f : B 7→ IH with B(f) <∞.

Definition 2.2. (see [13]) The right IH-module of all quaternion-valued functions
f defined on the unit ball, which are hyperholomorphic and satisfy Qp(f) < ∞,
is called Qp-space.

Remark 2.3. Because of the special structure of g(x, a) the seminorms Qp(f) make
sense for p < 3 only. Consequently, we will consider in this paper Qp-spaces for
p < 3 only.

With the generalized Cauchy-Riemann operator D, its adjoint D, the hyper-
complex Möbius transformation ϕa(x) = (a−x)(1− āx)−1, and a modified funda-
mental solution g of the real Laplacian Gürlebeck et al. [13] considered generalized
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Qp-spaces defined by

Qp = {f ∈ kerD : sup
a∈B

∫
B

|Df(x)|2
(
g(ϕa(x))

)p
dBx <∞}.

where B stands for the unit ball in IR3.

Definition 2.4. The right IH-module of all quaternion-valued functions f defined
on the unit ball, which are hyperholomorphic and satisfy the condition∫

B
|Df(x)|2dBx <∞,

is called spatial (or three-dimensional) Dirichlet space D.

The quaternion α-Bloch space (see [2]) is defined by:

Bα = {f : f ∈ KerD and Bα(f) = sup
x∈B

(1− |x|2)
3
2
α|Df(x)| <∞},

where 0 < α <∞. The space B1 is called the Bloch space B. The little quaternion
α-Bloch space Bα0 is a subspace of Bα consisting of all f ∈ Bα such that

lim
|x|→1

(1− |x|2)
3
2
α|Df(x)| = 0.

Now, we give the following definition:

Definition 2.5. Let f be quaternion-valued function in B. For 0 < p < ∞,
−2 < q <∞ and 0 < s <∞. If

‖f‖pF (p,q,s) = sup
a∈B

∫
B
|Df(x)|p(1− |x|2)

3q
2

(
1− |ϕa(x)|2

)s
dBx <∞,

then f ∈ F (p, q, s). Moreover, if

lim
|a|→1

∫
B
|Df(x)|p(1− |x|2)

3q
2

(
1− |ϕa(x)|2

)s
dBx = 0,

then f ∈ F0(p, q, s).

Remark 2.6. Obviously, these spaces are not Banach spaces. Nevertheless, if we
consider a small neighborhood of the origin Nε, with an arbitrary but fixed ε > 0,
then we can add the L1-norm of the function f over Nε to the seminorms, so
F (p, q, s) spaces will become Banach spaces. Also, F (p, q, s) spaces are not linear
spaces.

Remark 2.7. It should be remarked that if we put q = 0 and p = 2, then
F (2, 0, s) = Qs. Also, if p = 2 and s = q = 0, then F (2, 0, 0) = D, the quaternion
Dirichlit space.

The main aim of this paper is to study these F (p, q, s) spaces and their relations
to the above mentioned quaternionic Bloch space. It will be shown that these
exponents p and q generate a new scale of spaces, equivalent to the Bloch space for
all p and q. The concept may be generalized in the context of Clifford analysis to
arbitrary real dimensions. We will restrict us for simplicity to IR3 and quaternion-
valued functions as (the lowest non-commutative case) a model case.



WEIGHTED QUATERNION CLASSES 185

For more studies on quaternion function spaces, we refer to [1, 2, 3, 5, 7, 8, 10,
13, 15, 22] and others.
Let U(a,R) = {x : |ϕa(x)| < R} be the pseudo-hyperbolic ball with radius
R, where 0 < R < 1. Analogously to the complex case (see [24]), for a point
a ∈ B and 0 < R < 1, we can get that U(a,R) with pseudo-hyperbolic center
a and pseudo hyperbolic radius R is a Euclidean disc: its Euclidean center and

Euclidean radius are (1−R2)a

1−R2|a|2 and (1−|a|2)R

1−R2|a|2 , respectively.

We will need the following lemma in the sequel:

Lemma 2.8. [22] Let f : B −→ IH be a hyperholomorphic function. Suppose that
0 < R < 1 and 1 < q <∞. Then for every a ∈ B, we have

|Df(a)|q ≤ 3(4)2+q

πR3(1−R2)2q(1− |a|2)3

∫
U(a,R)

∣∣Df(x)
∣∣q dBx.

3. F (p, q, s)-spaces in Clifford Analysis

In this section, relations between F (p, q, s) and Bloch spaces, which have been
attracted considerable attention are given in quaternion sense. Our results are
extensions of the results due to Zhao (see [28]) in quaternion sense. We consider
some essential properties of F (p, q, s) spaces of quaternion-valued functions as
basic scale properties.

Proposition 3.1. Let f be a hyperholomorphic function in B and f ∈ B
3(q+2)

2p .
Then for 0 < p <∞, −2 < q <∞ and 2 < s <∞, we have that∫

B

∣∣Df(x)
∣∣p(1− |x|2) 3

2
q(

1− |ϕa(x)|2
)s
dBx ≤ λ

(
B(f)

) 3
2

(q+2)
.

Proof. For α > 0, we have

(1− |x|2
) 3

2
α∣∣Df(x)

∣∣ ≤ Bα(f).

Then, for α = 3(q+2)
2p

, we deduce that∫
B

∣∣Df(x)
∣∣p(1− |x|2) 3

2
q(

1− |ϕa(x)|2
)s
dBx

≤
(
B(f)

) 3
2

(q+2)
∫
B

(
1− |x|2

)−3 (
1− |ϕa(x)|2

)s
dBx

=
(
B(f)

) 3
2

(q+2)
∫
B

(
1− |ϕa(x)|2

)−3 (
1− |x|2

)s (1− |a|2)3

|1− āx|6
dBx .

Here, we used that the Jacobian determinant is (1−|a|2)3

|1−āx|6 . Now, using the equality

(
1− |ϕa(x)|2

)
=

(
1− |a|2

)(
1− |x|2

)
|1− āx|2



186 A. EL-SAYED AHMED, S. OMRAN

we obtain that, ∫
B

∣∣Df(x)
∣∣p(1− |x|2) 3

2
q(

1− |ϕa(x)|2
)s
dBx

≤ λ
(
B(f)

) 3
2

(q+2)
∫ 1

0

(
1− r2

)s−3
r2dr,

where λ is a positive constant. The integral∫ 1

0

(
1− r2

)s−3
r2dr <∞

for 2 < s <∞. This completes the proof.

Corollary 3.2. From proposition 3.1, for 0 < p <∞, −2 < q <∞ and
2 < s <∞, then we have that

B
3(q+2)

2p ⊂ F (p, q, s).

Proposition 3.3. Let f be a hyperholomorphic function in the unit ball B. Then
for 1 < p <∞, −2 < q <∞ and 0 < s <∞, we have(
1−|a|2

) 3
2

(q+2)∣∣Df(a)
∣∣p ≤ 48(2)2p

πR3(1−R2)s+2p

∫
B

∣∣Df(x)
∣∣p(1−|x|2) 3

2
q(

1−|ϕa(x)|2
)s
dBx,

where 0 < R < 1.

Proof. For a fixed R ∈ (0, 1), let

E(a,R) =
{
x ∈ B : |x− a| < R|1− a|}

Then, we have ∫
B

∣∣Df(x)
∣∣p(1− |x|2) 3

2
p(

1− |ϕa(x)|2
)s
dBx

≥
∫
U(a,R)

∣∣Df(x)
∣∣p(1− |x|2) 3

2
q(

1− |ϕa(x)|2
)s
dBx

≥ (1−R2)s
∫
U(a,R)

∣∣Df(x)
∣∣p(1− |x|2) 3

2
q
dBx

≥ (1−R2)s
∫
E(a,R)

∣∣Df(x)
∣∣p(1− |x|2) 3

2
q
dBx

≥ (1−R2)s
(
1− |a|2

) 3
2
q
∫
E(a,R)

∣∣Df(x)
∣∣p dBx .

Then, applying Lemma 2.8, we obtain∫
B

∣∣Df(x)
∣∣p(1− |x|2) 3

2
q(

1− |ϕa(x)|2
)s
dBx

≥ 4−(p+2)πR3

3

(
1−R2

)s+2p(
1− |a|2

) 3
2
q+3|Df(a)|p,

which implies that,(
1−|a|2

) 3
2

(q+2)∣∣Df(a)
∣∣p ≤ 48(2)2p

πR3(1−R2)s+2p

∫
B

∣∣Df(x)
∣∣p(1−|x|2) 3

2
q(

1−|ϕa(x)|2
)s
dBx,
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This completes the proof.

Corollary 3.4. From proposition 3.2, we get for 1 < p < ∞, −2 < q < ∞ and
0 < s <∞ that

F (p, q, s) ⊂ B
3(q+2)

2p .

The following result gives a characterization of the quaternion Bloch space by
quaternion F (p, q, s) spaces.

Theorem 3.5. Let f be hyperholomorphic in the unit ball B. Then for
1 < p <∞, −2 < q <∞ and 2 < s <∞, we have that

F (p, q, s) = B
3(q+2)

2p .

Proof. The proof follows from Corollaries 3.2 and 3.4.
The importance of the above theorem is to give us a characterization for the
hyperholomorphic Bloch space by the help of integral norms of F (p, q, s) spaces
of hyperholomorphic functions.

Also, with the same arguments used to prove the previous theorem, we can
prove the following theorem for characterization of little hyperholomorphic Bloch
space.

Theorem 3.6. Let f be hyperholomorphic in the unit ball B. Then, for
1 < p <∞, −2 < q <∞ and 2 < s <∞, we have that

F0(p, q, s) = B
3(q+2)

2p

0 .

4. Weights in quaternion F (p, q, s)-spaces

In this section, we give a characterization for the quaternion F (p, q, s) spaces
in terms of some different weighted functions in the unit ball of R3.

Theorem 4.1. Let f be a hyperholomorphic function in B. Then, for 1 < q < 4
and 1 ≤ p ≤ 2 + q

4
, we have that

f ∈ F (p, q, s)⇔ sup
a∈B

∫
B
|Df(x)|p(1− |x|2)

3
2
q
(
g(x, a)

)s
dBx <∞.

Proof. First, we consider the equivalence∫
B
|Df(x)|p(1− |x|2)

3
2
q(1− |ϕa(x)|2)sdBx '

∫
B
|Df(x)|p(1− |x|2)

3
2
q
(
g(x, a)

)s
dBx,

with g(x, a) = 1
4π

(
1

|ϕa(x)| − 1
)

and ϕa(x) = (a − x)(1 − āx)−1 the Möbius-

transform, which maps the unit ball onto itself. After a change of variables

w = ϕa(x) (the Jacobian determinant
(

1−|a|2
|1−āw|2

)3

has no singularities) we get∫
B
|Dxf(ϕa(w))|p(1− |ϕa(w)|2)

3
2
q(1− |w|2)s

(
1− |a|2

|1− āw|2

)3

dBw

'
∫
B
|Dxf(ϕa(w))|p(1− |ϕa(w)|2)

3
2
qgs(w, 0)

(
1− |a|2

|1− āw|2

)3

dBw,
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where Dx means the Cauchy-Riemann-operator with respect to x.
The problem here is, that Dxf(x) is hyperholomorphic, but after the change
of variables Dxf(ϕa(w)) is not hyperholomorphic. But we know from [23] that

1−w̄a
|1−āw|3Dxf(ϕa(w)) is again hyperholomorphic. We also refer to [25] who studied

this problem for the four-dimensional case already in 1979. Therefore, we get∫
B
|ψ(w, a)|p(1− |w|2)

3
2
q+s (1− |a|2)

3
2
q+3

|1− āw|2( 3
2
q+p+3)

dBw

' 1

(4π)s

∫
B
|ψ(w, a)|p

(
1

|w|
− 1

)s
(1− |w|2)

3
2
q(1− |a|2)

3
2
q+3

|1− āw|2( 3
2
q+p+3)

dBw,

with ψ(w, a) = 1−w̄a
|1−āw|3Dxf(ϕa(w)). This means we have to find constants C1(s)

and C2(s) with

1

(4π)s
C1(s)

∫
B
|ψ(w, a)|p

(
1

|w|
− 1

)s
(1− |w|2)

3
2
q(1− |a|2)

3
2
q+3

|1− āw|2( 3
2
q+p+3)

dBw

≤
∫
B
|ψ(w, a)|p(1− |w|2)

3
2
q+s (1− |a|2)

3
2
q+3

|1− āw|2( 3
2
q+p+3)

dBw

≤ 1

(4π)s
C2(s)

∫
B
|ψ(w, a)|p

(
1

|w|
− 1

)s
(1− |w|2)

3
2
q(1− |a|2)

3
2
q+3

|1− āw|2( 3
2
q+p+3)

dBw.

Part 1
Let C2(s) = 2s(4π)s. Then, using the inequalities

1− |a| ≤ |1− āw| ≤ 1 + |a| and 1− |w| ≤ |1− āw| ≤ 1 + |w|,
we obtain that

I1 =

∫
B
|ψ(w, a)|p(1− |w|2)

3
2
q+s (1− |a|2)

3
2
q+3

|1− āw|2( 3
2
q+p+3)

dBw

− 2s
∫
B
|ψ(w, a)|p

(
1

|w|
− 1

)s
(1− |w|2)

3
2
q(1− |a|2)

3
2
q+3

|1− āw|2( 3
2
q+p+3)

dBw

=

∫
B
|ψ(w, a)|p(1− |w|2)

3
2
q+s (1− |a|2)

3
2
q+3

|1− āw|2( 3
2
q+p+3)

{
1− 2s(1− |w|)s

|w|s(1− |w|2)s

}
dBw

=

∫
B
|ψ(w, a)|p(1− |w|2)

3
2
q+s (1− |a|2)

3
2
q+3

|1− āw|2( 3
2
q+p+3)

{
1− 2s

|w|s(1 + |w|)s

}
dBw

≤ (2)3q+s+3

∫
B
|ψ(w, a)|p(1− |w|)s−2p−3

{
1− 2s

|w|s(1 + |w|)s

}
dBw

= (2)3q+s+3

∫ 1

0

(
Mp(Df, r)

)p
(1− r)s−2p−3

(
1− 2s

rs(1 + r)s

)
r2dr ≤ 0

with (
Mp(Df, r)

)p
=

π∫
0

2π∫
0

∣∣h(r)Df(r, θ1, θ2)
∣∣p sin θ1dθ2dθ1,
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where, h(r) stands for 1
|1−āw|2 in spherical coordinates.

Because
(
Mp(Df, r)

)p ≥ 0 ∀ r ∈ [0, 1] and (1 − r)s−2p−3

(
1 − 2s

rs(1+r)s

)
r2 ≤ 0

∀ r ∈ [0, 1], 0 < p < s
2
− 1; 2 < s <∞ and 0 < q <∞. Hence, we deduce that∫

B
|ψ(w, a)|p(1− |w|2)

3
2
q+s (1− |a|2)

3
2
q+3

|1− āw|2( 3
2
q+p+3)

dBw

≤ 1

(4π)s
C2(s)

∫
B
|ψ(w, a)|p

(
1

|w|
− 1

)s
(1− |w|2)

3
2
q(1− |a|2)

3
2
q+3

|1− āw|2( 3
2
q+p+3)

dBw.

Part 2
Let C1(s) =

(
11
100

)s
(4π)s. Then,

I2 =

∫
B
|ψ(w, a)|p(1− |w|2)

3
2
q+s (1− |a|2)

3
2
q+3

|1− āw|2( 3
2
q+p+3)

dBw

− C1(s)

(4π)s

∫
B
|ψ(w, a)|p

(
1

|w|
− 1

)s
(1− |w|2)

3
2
q(1− |a|2)

3
2
q+3

|1− āw|2( 3
2
q+p+3)

dBw

=

∫
B
|ψ(w, a)|p(1− |w|2)

3
2
q+s (1− |a|2)

3
2
q+3

|1− āw|2( 3
2
qp+3)

dBw

where G(|w|) = 1−
(

11
100

)s ( 1
|w|(1+|w|)

)s
To get our estimates, the integral I2 must

be greater than or equal to zero. Now, we have

I2 = −
∫
B 1

10

|ψ(w, a)|p(1− |w|2)
3
2
q+s (1− |a|2)

3
2
q+3

|1− āw|2( 3
2
q+p+3)

G(|w|)dBw

+

∫
B 5

10
\B 1

10

|ψ(w, a)|p(1− |w|2)
3
2
q+s (1− |a|2)

3
2
q+3

|1− āw|2( 3
2
q+p+3)

G(|w|)dBw

+

∫
B 6

10
\B 5

10

|ψ(w, a)|p(1− |w|2)
3
2
q+s (1− |a|2)

3
2
q+3

|1− āw|2( 3
2
q+p+3)

G(|w|)dBw

+

∫
B\B 6

10

|ψ(w, a)|p(1− |w|2)
3
2
q+s (1− |a|2)

3
2
q+3

|1− āw|2( 3
2
q+p+3)

G(|w|)dBw, (4.1)

where Br is the ball centered at zero with radius r. It is clear that the second
and the fourth integrals in (4.1) are greater than zero. Therefore, it is sufficient
to compare the first and the third integrals in (4.1). Now, since in B 1

10
, we have

that 9
10
≤ 1− |w| ≤ |1− āw| and in B 6

10
\ B 5

10
, we have

1− |w| ≤ |1− āw| ≤ 16

10
.



190 A. EL-SAYED AHMED, S. OMRAN

Then,

−
(

10

9

)2( 3
2
q+p+3)

1
10∫

0

(
Mp(Df, r)

)p(
1− r2

) 3
2
q+s
(

1−
(

11

100

)s
1

rs(1 + r)s

)
r2dr

≤
(

10

16

)2( 3
2
q+p+3)

6
10∫

5
10

(
Mp(Df, r)

)p(
1− r2

) 3
2
q+s
(

1−
(

11

100

)s
1

rs(1 + r)s

)
r2dr.

In particular we have that Mp(Df, r) is a nondecreasing function, this because
Df is harmonic in B and belongs to Lp(B); ∀ 0 ≤ r < 1.
Thus, I2 ≥ 0, and our theorem is therefore established.
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