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GOOD `2-SUBSPACES OF Lp, p > 2

DALE E. ALSPACH

Communicated by K. Jarosz

Abstract. We give an alternate proof of the result due to Haydon, Odell and
Schlumprecht that subspaces of Lp, p > 2, which are isomorphic to `2 contain
subspaces which are well isomorphic to `2 and well complemented.

1. Introduction and preliminaries

In a recent paper Haydon, Odell and Schlumprecht show that any subspace
of Lp, p > 2, which is isomorphic to `2 contains a subspace on which the Lp

norm behaves similarly to its behavior on the span of independent, mean 0,
Gaussian variables. (See [2, Section 6].) Using this subspace they obtain a well
complemented subspace (1 + ε)-isomorphic to `2. In order to find this subspace
the authors use types [3] and random measures [1].

In this note we show that the same result can be produced without as much
machinery by using a version of the Central Limit Theorem for martingales [4]. In
the proof of Lemma 6.6 of [2] the Central Limit Theorem also plays an essential
role. Below we assume that (Ω, P ) is an atomless probability space and denote
by E(·|F) the conditional expectation with respect to the σ-algebra F . N(µ, σ2)
denotes, as usual, the normal distribution with center at µ and variance σ2. Below
Fn,0 = {Ω, ∅}, the trivial σ-algebra. We follow the convention of suppressing the
measure space variable, i.e., {f > r} = {ω : f(ω) > r}.

Theorem 1.1. [4, VII.8 Theorem 4] Suppose that for each n, (fn,k)
n
k=1 is a

square integrable martingale difference sequence adapted to (Fn,k)
n
k=1 satisfying
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the Lindeberg condition: for every ε > 0,

lim
n→∞

n∑
k=1

E(f 2
n,k1{|fn,k|>ε}|Fn,k−1) = 0,

in probability. If

lim
n→∞

n∑
k=1

E(f 2
n,k|Fn,k−1) = σ2 in probability

then

lim
n→∞

n∑
k=1

fn,k = N(0, σ2) in distribution.

Our argument uses the limiting conditional variance as in [2] and we borrow
a few facts from that paper. If (xn) is a weakly null sequence in Lp such that
(x2

n) converges weakly in Lp/2 to v, then v is the limiting conditional variance of
(xn). Recall that a subset U of Lp(Ω, P ) is said to be p-uniformly integrable if
for every ε > 0 there is a δ such that if A is measurable and P (A) < δ then for
all f ∈ U , E(|f |p1A) < ε. An equivalent definition is that there exists K such
that for all f ∈ U , E(|f |p1{|f |>K|}) < ε. Also it is easy to see that the negation
is equivalent to: there is an ε > 0 and a sequence (fj) in U and a sequence of
disjoint measurable sets (Aj) such that E(|fj|p1Aj

) ≥ ε for all j.

Lemma 1.2. [2, Lemma 5.3] Let (xn) be a martingale difference sequence which
is p-uniformly integrable. Then set of linear combinations of (xn) with coefficients
in the unit sphere of `2 is p-uniformly integrable.

Our goal is to prove the following.

Theorem 1.3. Suppose that X is a subspace of Lp for some p, 2 < p < ∞, which
is isomorphic to `2. Then for every ε > 0 there is a sequence (zn) in X such that
for all (cn) in `2,

(1− ε)

(
∞∑

n=1

c2
n

)
≤

∥∥∥∥∥
∞∑

n=1

cnzn

∥∥∥∥∥ ≤ (1 + ε)

(
∞∑

n=1

c2
n

)

and [zn] is complemented in Lp with a projection of norm less than (1 + ε)γp,
where γp is the norm of a symmetric Gaussian random variable. Moreover, if
(xn) is a normalized sequence in X equivalent to the unit vector basis of `2 with
limiting conditional variance v, then (zn) can be chosen with limiting conditional
variance v.

This result is implicit in the proof of Theorem 6.8 of [2]. The proof given here
can also be used to prove that result since it produces a stabilized `2-sequence
with the required limiting conditional variance.
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2. Proof of the Theorem

The proof is mostly reductions to a simple situation where the Central Limit
Theorem can be easily applied. Except for the results cited above the proof uses
only basic measure theory and functional analysis.

Proof. Let (xn) be a normalized sequence in X equivalent to the unit vector basis
of `2 with limiting conditional variance v. Because (xn) is weakly null, we may
assume by passing to a subsequence and perturbing that (xn) is a martingale
difference with respect to some increasing family of σ-algebras, (Gn). We may
assume that the simple functions with respect to ∪Gn are dense in Lp(Ω, P ) for
all p, 1 ≤ p < ∞.

Our first step is to replace (xn) by a sequence of blocks (yk) of (xn) so that
(yk) is uniformly p-integrable. (See Lemma 5.4 of [HOS] for a similar argument.)

Let

a = sup{ε : there exists (nj) and disjoint measurable sets (Aj)

such that ‖xnj |Aj
‖ ≥ ε}.

Then choose a subsequence (nj) and a sequence of disjoint sets (Aj) so that the
supremum is achieved, i.e., lim ‖xnj |Aj

‖ = a. Moreover by taking an appropriate

subsequence of the σ-algebras and relabeling we may assume that Aj is in Gnj

for each j. It follows that (xnj
1Ω\Aj

) is a martingale difference. Moreover by the
choice of (Anj

), (xnj
1Ω\Aj

) must be p-uniformly integrable.
Let (Km) be finite subsets of N such that max Km < min Km+1 for all m and

strictly increasing cardinality. Let ym = |Km|−1/2
∑

j∈Km
xnj

for all m, where |F |
denotes the cardinality of F .

Observe that

‖|Km|−1/2
∑

j∈Km

xnj
1Aj

‖ = |Km|−1/2

(∑
j∈Km

‖xnj |Aj
‖p

)1/p

≤ a|Km|(2−p)/(2p).

Because p > 2, this goes to zero as m increases. A norm perturbation of a p-
uniformly integrable sequence is also p-uniformly integrable and thus it follows
from Lemma 1.2 that (ym) is p-uniformly integrable. Further notice that (y2

m)
converges weakly to v. Indeed

y2
m = |Km|−1

∑
j∈Km

x2
nj

+ |Km|−1
∑

r,s∈Km,r 6=s

2xnsxnr .

By our assumption on the family (Gn), every element in L∗
p/2 can be approximated

in norm as close as required by Gn-measurable simple functions for n sufficiently
large. Thus for m sufficiently large for all r, s ∈ Km, r 6= s, xnrxns is orthogonal
to Lp/2(Ω,Gn, P )∗ and hence |Km|−1

∑
r,s∈Km,r 6=s 2xnsxnr tends to 0 weakly.

Our next step is to show that we may assume

(*) v is measurable with respect to some finite (cardinality) σ-
algebra G0 and that (yn) is a p-uniformly integrable martingale
difference sequence such that E(yn|G0) = 0 for all n.
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By another application of Lemma 1.2 the set S of all linear combinations of
(yn) with coefficients in the sphere of `2 is p-uniformly integrable. Let ε > 0 and
choose δ > 0 such that for all z ∈ S, if B is measurable with P (B) < δ then
E(|z|p1B) < ε. Choose M0 > 0 such that P ({v ≤ M0}) < δ/2 and M1 > 0 such
that P ({v > M1}) < δ/2. Let A = {v ≤ M0} ∪ {v > M1}. Then if z ∈ S,
E(|z|p1A) < ε. Consequently we may (and do) assume by a norm perturbation
that yn1A = 0 and that v and 1/v are bounded on the support of v.

Let ρ > 0. Let R0 and R1 be integers such that (1+ρ)R0 ≤ M0 and (1+ρ)R1 >
M1. For each r, R0 ≤ r < R1, let Ar = {(1 + ρ)r ≤ v < (1 + ρ)r+1}. Let

w = 1Ω\suppv +

R1−1∑
r=R0

(1 + ρ)r

v
1Ar .

Notice that for all r, 1 ≤ r < ∞,

E(|f |rwr/2) ≤ E(|f |r) ≤ (1 + ρ)r/2E(|f |rwr/2)

for all f ∈ Lr(Ω, P ). Thus multiplication by w1/2 is a (1+ρ)1/2-isomorphism from
Lr(Ω, P ) onto Lr(Ω, P ). Moreover (ymw1/2) converges weakly to 0 and (y2

mw)

converges weakly to v0 =
∑R1−1

r=R0
(1+ρ)r1Ar . The first assertion is immediate and

the second follows by approximating w by simple functions. Another perturbation
gives our required reduction (*). Indeed let F0 be the finite σ-algebra generated
by v0 and for each n ∈ N let Fn be the σ-algebra generated by F0 and Gn.
Because (ynw

1/2) converges weakly to 0, there is a subsequence (ynj
w1/2) and a

Lp-norm perturbation (zj), i.e., ‖ynj
w1/2−zj‖p → 0, such that (zj) is a martingale

difference relative to (Fmj
). Moreover

‖y2
nj

w − z2
j ‖1 ≤ ‖ynj

w1/2 − zj‖2‖ynj
w1/2 + zj‖2 → 0.

Hence the weak limit of (z2
j ) is v0.

To summarize, we can now assume that (yn) is a martingale difference sequence
where yn is Gn measurable for all n, G0 ⊂ . . .Gn ⊂ Gn+1 ⊂ · · · , |Gn| < ∞ for all
n, (y2

n) converges weakly to v, v is measurable with respect to the σ-algebra
G0 and the set of all linear combinations of (yn) with coefficients in the unit
sphere of `2 is p-uniformly integrable. Because (y2

n) converges weakly to v and
the σ-algebras (Gn) are finite, by passing to a subsequence we may assume that
‖E(y2

n|Gn−1)− v‖p < 2−n for all n.
Next we will apply the Central Limit Theorem to the restriction of (ym) to

each of the level sets of v. Let v =
∑R

r=1 a2
r1Ar , with ar > 0 for all r, ar 6= as and

Ar ∩ As = ∅ if s 6= r. Fix r and consider the probability space (Ar, Pr) where
Pr(S) = P (S)/P (Ar) and the corresponding expectation is Er and let (zn) be
the restriction of (yn/ar) to Ar. Clearly (z2

n) converges weakly to 1Ar and (zn) is
a p-uniformly integrable martingale difference.

Let ε > 0, δ > 0, and M ⊂ N, M 6= ∅, and choose K such that
Er(|zn|p1{|zn|≥K}) < δp/2. Then if c = |M |−1/2 and |M | > K2ε−2, by Hölder’s and
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Chebychev’s inequalities

Er(|czn|21{|czn|≥ε}) ≤ c2(Er(|zn|p1{|czn|≥ε}))
2/pPr({|czn| ≥ ε})(p−2)/p ≤

(Er(|zn|p1{|czn|≥ε}))
2/pcpε−(p−2)Er(|zn|p)(p−2)/p

and thus∑
n∈M

Er(|czn|21{|czn|≥ε}) < δ|M ||M |−p/2ε−(p−2)maxn∈MEr(|zn|p)(p−2)/p.

It follows that if (Mj) is a sequence of non empty subsets of N with max Mj <
min Mj+1 and limj→∞ |Mj| = ∞ then for every ε > 0,∑

n∈Mj

Er(|Mj|−1|zn|21{|Mj |−1/2|zn|≥ε}|Gn−1)

converges in probability to 0. Thus the Lindeberg condition is satisfied.
Our assumption that ‖E(y2

n|Gn−1)− v‖p < 2−n for all n implies that∑
n∈Mj

Er(y
2
n|Gn−1) converges in probability, Pr, to 1. By the Central Limit

Theorem |Mj|−1/2
∑

n∈Mj
zn converges in distribution to N (0, 1).

Let wj = |Mj|−1/2
∑

n∈Mj
zn for all j. We claim that for any ε1 > 0 there is a

J such that if w is a linear combination of (wj)j≥J with coefficients in the sphere
of `2, then (1 + ε1)

−1Er(|gr|p) ≤ Er(|w|p) ≤ (1 + ε1)Er(|gr|p). Here gr is normally
distributed with mean 0 and variance 1 on (Ω, Pr).

Suppose that for some ε0 > 0 there is no such J . Then we can find a se-
quence (xk) of linear combinations of (wj)j≥Jk

with coefficients in the sphere of
`2, max Jk < min Jk+1 and ε0 such that

(1 + ε0)
−1Er(|gr|p) > Er(|xk|p)

or

Er(|xk|p) > (1 + ε0)Er(|gr|p),
for all k. Because (zn) is p-uniformly integrable, so is (xk). The argument above
shows that (xk) converges in distribution to N (0, 1). Thus limk→∞Er(|xk|p) =
Er(|gr|p), a contradiction.

There are only finitely many sets Ar in the representation of v as a simple
function, so we can choose sets Mj and J as above so that (1 + ε1)

−1Er(|gr|p) ≤
Er(|w|p) ≤ (1 + ε1)Er(|gr|p) for all r and all linear combinations of (wj)j≥J with
coefficients in the sphere of `2. Thus if uj = |Mj|−1/2

∑
n∈Mj

yn for j ≥ J and u

is a linear combination of (uj)j≥J with coefficients in the sphere of `2, then

R∑
r=1

(1 + ε1)
−1ap

rP (Ar)Er(|gr|p) ≤
R∑

r=1

E(|u|p1Ar) ≤
R∑

r=1

(1 + ε1)a
p
rP (Ar)Er(|gr|p).

The orthogonal projection from Lp onto the closed span of (uj)j≥J is bounded
by sup{‖u‖p/‖u‖2 : u ∈ [uj : j ≥ J ]} ≤ (1 + ε1)

1/p‖v‖pγp. With a suitable choice
of ε1 the sequence (uj/‖uj‖p)j≥J satisfies the conclusion of Theorem 1.3. �
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Remark 2.1. In the last estimate in the proof the comparison is to ‖v‖p
pγ

p
p but

in fact is really an approximation in distribution. Thus the argument above
gives a fairly explicit limiting distribution for the elements of the subspace and
the approximating basic sequence is obtained by at most two `2-averages of the
original basic sequence. If 1 ≤ p < 2 and (xn) ⊂ Lp is equivalent to unit vector
basis of `r, p < r < 2, is there a sequence of linear combinations of (xn) which
are close in distribution to a sum of multiples of disjointly supported r-stable
random variables?.
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