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NEIGHBORHOODS OF A CERTAIN CLASS OF ANALYTIC
FUNCTIONS WITH NEGATIVE COEFFICIENTS

ADRIANA CĂTAŞ1

Communicated by K. S. Berenhaut

Abstract. A certain subclass of analytic functions in the open unit disc with
negative coefficients is introduced. The new class is defined by means of multi-
plier transformations. By making use of the familiar concept of neighborhoods
of analytic function, the author proves coefficient inequalities, distortion theo-
rems and associated inclusion relations for the (n, δ)-neighborhoods of functions
belonging to the new class, which satisfy a certain nonhomogeneous Cauchy-
Euler differential equation.

1. Introduction and definitions

Let H be the class of analytic functions in the open unit disc

U = {z ∈ C : |z| < 1}

and H[a, n] be the subclass of H consisting of functions of the form f(z) =
a+anz

n +an+1z
n+1 + · · · . Let A(n) denote the class of functions f(z) normalized

by

f(z) = z +
∞∑

k=n+1

akz
k, (n ∈ N := {1, 2, 3, . . . }) (1.1)

which are analytic in the open unit disc. In particular, we set

and A(1) := A.
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112 A. CĂTAŞ

For two functions f(z) given by (1.1) and g(z) given by

g(z) = z +
∞∑

k=n+1

bkz
k, (n ∈ N)

the Hadamard product (or convolution) (f ∗ g)(z) is defined, as usual, by

(f ∗ g)(z) := z +
∞∑

k=n+1

akbkz
k := (g ∗ f)(z).

Definition 1.1. [8] Let f ∈ A(n). For δ, λ ∈ R, λ ≥ 0, δ ≥ 0, l ≥ 0, we define
the multiplier transformations I(δ, λ, l) on A(n) by the following infinite series

I(δ, λ, l)f(z) := z +
∞∑

k=n+1

[
1 + λ(k − 1) + l

1 + l

]δ

akz
k. (1.2)

It follows from (1.2) that

I(0, λ, l)f(z) = f(z)

(1 + l)I(2, λ, l)f(z) = (1− λ + l)I(1, λ, l)f(z) + λz(I(1, λ, l)f(z))′

I(δ1, λ, l)(I(δ2, λ, l)f(z)) = I(δ2, λ, l)(I(δ1, λ, l)f(z)).

(1 + l)I(δ + 1, λ, l)f(z) = (1− λ + l)I(δ, λ, l)f(z) + λz(I(δ, λ, l)f(z))′

Remark 1.2. For l = 0, λ ≥ 0, δ = m, m ∈ N0, N0 = N∪{0} the operator Dm
λ :=

I(m,λ, 0) was introduced and studied by Al-Oboudi [1] which reduces to the
Sălăgean differential operator [16] for λ = 1. The operator Im

l := I(m, 1, l) was
studied recently by Cho and Srivastava [10] and Cho and Kim [11]. The operator
Im := I(m, 1, 1) was studied by Uralegaddi and Somanatha [21], the operator
Dδ

λ := I(δ, λ, 0) was introduced by Acu and Owa [7] and the operator I(m, l) :=
I(m, 1, l) was investigated recently by Kumar, Taneja and Ravichandran [19].

If f is given by (1.1) then we have

I(δ, λ, l)f(z) = (f ∗ ϕδ
λ,l)(z)

where

ϕδ
λ,l(z) = z +

∞∑
k=n+1

[
1 + λ(k − 1) + l

1 + l

]δ

zk.

Let T (n) denote the class of functions f(z) of the form

f(z) = z −
∞∑

k=n+1

akz
k, ak ≥ 0, n ∈ N, (1.3)

which are analytic in the open unit disc.
Following the earlier investigations by Goodman [12], Ruscheweyh [15] and

Alintaş et al. [6], we define (n, η)-neighborhood of a function f(z) ∈ T (n) by

Nn,η(f) :=

{
g(z) = z −

∞∑
k=n+1

bkz
k ∈ T (n) :

∞∑
k=n+1

k|ak − bk| ≤ η

}
(1.4)
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or,

Nn,η(h) :=

{
g(z) = z −

∞∑
k=n+1

bkz
k ∈ T (n) :

∞∑
k=n+1

k|bk| ≤ η

}
(1.5)

where

h(z) = z.

Let S∗n(α) denote the subclass of T (n) consisting of functions which satisfy

Re

(
zf ′(z)

f(z)

)
> α, z ∈ U, 0 ≤ α < 1.

A function f(z), in S∗n(α) is said to be starlike of order α in U .
A function f(z) ∈ T (n) is said to be convex of order α it it satisfies

Re

(
1 +

zf ′′(z)

f ′(z)

)
> α, z ∈ U, 0 ≤ α < 1.

We denote by Cn(α) the subclass of T (n) consisting of all such functions [4].
An interesting unification of the function classes S∗n(α) and Cn(α) is provided

by the class Tn(α, γ) of functions f(z) ∈ T (n), which also satisfy the following
inequality

Re

(
zf ′(z) + γz2f ′′(z)

γzf ′(z) + (1− γ)f(z)

)
> α, z ∈ U, 0 ≤ α < 1, 0 ≤ γ ≤ 1.

The class Tn(α, γ) was investigated by Alintaş et al. [3].

2. Coefficient Inequalities

In this section we will define a new class of starlike functions by using the
multiplier transformations I(m, λ, l), m ∈ N0 = N ∪ {0}, λ ≥ 0, l ≥ 0 as in (1.2)
and we will establish certain coefficient inequalities relating to the new introduced
class.

Definition 2.1. Let 0 ≤ α < 1, 0 ≤ γ ≤ 1, m ∈ N0, l ≥ 0, λ ≥ 0. A function f
belonging to T (n) is said to be in the class T m

λ,l(n, α, γ) if and only if

Re

{
(1− γ)z(I(m, λ, l)f(z))′ + γz(I(m + 1, λ, l)f(z))′

(1− γ)z(I(m, λ, l)f(z)) + γz(I(m + 1, λ, l)f(z))

}
> α, z ∈ U. (2.1)

Remark 2.2. The class T m
λ,l(n, α, γ) is a generalization of the subclasses

i) T 0
1,0(1, α, 0) ≡ T ∗(α) ≡ S∗1 (α) and T 1

1,0(1, α, 0) ≡ C(α) ≡ C1(α) defined and
studied by Silverman [18];

ii)T 0
1,0(n, α, 0) and T 1

1,0(n, α, 0) studied by Chatterjea [9] and Srivastava et al.
[20];

iii) T m
1,0(1, α, 0) ≡ T (m, α) studied by Hur and Oh [13];

iv) T 0
1,0(n, α, γ) studied by Kamali [14].
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Theorem 2.3. Let the function f be defined by (1.3). Then f belongs to the
class T m

λ,l(n, α, γ) if and only if

∞∑
k=n+1

ck(m, λ, l)(k − α)[1 + l + γλ(k − 1)]ak ≤ (1 + l)(1− α). (2.2)

where

ck(m,λ, l) =

[
1 + λ(k − 1) + l

1 + l

]m

. (2.3)

The result is sharp and the extremal functions are

fk(z) = z − (1 + l)(1− α)

ck(m, λ, l)(k − α)[1 + l + γλ(k − 1)]
· zk, k ≥ n + 1. (2.4)

Proof. Assume that the inequality (2.2) holds and let |z| = 1. Then we have∣∣∣∣(1− γ)z(I(m, λ, l)f(z))′ + γz(I(m + 1, λ, l)f(z))′

(1− γ)z(I(m, λ, l)f(z)) + γz(I(m + 1, λ, l)f(z))
− 1

∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

∞∑
k=n+1

[
1 + λ(k − 1) + l

1 + l

]m [
1 + l + γλ(k − 1)

1 + l

]
(k − 1)akz

k−1

1−
∞∑

k=n+1

[
1 + λ(k − 1) + l

1 + l

]m [
1 + l + γλ(k − 1)

1 + l

]
akz

k−1

∣∣∣∣∣∣∣∣∣∣

≤ 1 +

∞∑
k=n+1

[
1 + λ(k − 1) + l

1 + l

]m [
1 + l + γλ(k − 1)

1 + l

]
kak − 1

1−
∞∑

k=n+1

[
1 + λ(k − 1) + l

1 + l

]m [
1 + l + γλ(k − 1)

1 + l

]
ak

≤ 1− α.

Consequently, by the maximum modulus theorem one obtains

f(z) ∈ T m
λ,l(n, α, γ).

Conversely, suppose that f(z) ∈ T m
λ,l(n, α, γ). Then from (2.1) we find that

Re


z −

∞∑
k=n+1

[
1 + λ(k − 1) + l

1 + l

]m [
1 + l + γλ(k − 1)

1 + l

]
kakz

k

z −
∞∑

k=n+1

[
1 + λ(k − 1) + l

1 + l

]m [
1 + l + γλ(k − 1)

1 + l

]
akz

k

 > α.

Choose values of z on the real axis such that

(1− γ)z(I(m, λ, l)f(z))′ + γz(I(m + 1, λ, l)f(z))′

(1− γ)z(I(m,λ, l)f(z)) + γz(I(m + 1, λ, l)f(z))
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is real. Letting z → 1− through real values, we obtain

Re


1−

∞∑
k=n+1

[
1 + λ(k − 1) + l

1 + l

]m [
1 + l + γλ(k − 1)

1 + l

]
kak

1−
∞∑

k=n+1

[
1 + λ(k − 1) + l

1 + l

]m [
1 + l + γλ(k − 1)

1 + l

]
ak

 ≥ α

or, equivalently

1−
∞∑

k=n+1

[
1 + λ(k − 1) + l

1 + l

]m [
1 + l + γλ(k − 1)

1 + l

]
kak

≥ α

{
1−

∞∑
k=n+1

[
1 + λ(k − 1) + l

1 + l

]m [
1 + l + γλ(k − 1)

1 + l

]
ak

}
which gives (2.2). �

Remark 2.4. In the special case λ = 1, l = 0, Theorem 2.3 yields a result given
earlier by Kamali [14].

Theorem 2.5. Let the function f defined by (1.3) be in the class T m
λ,l(n, α, γ).

Then
∞∑

k=n+1

ak ≤
(1 + l)(1− α)

cn+1(m, λ, l)(1 + l + γλn)(n + 1− α)
(2.5)

and
∞∑

k=n+1

kak ≤
(1 + l)(1− α)(n + 1)

cn+p(m, λ, l)(1 + l + γλn)(n + 1− α)
. (2.6)

The equality in (2.5) and (2.6) is attained for the function f given by (2.4).

Proof. By using Theorem 2.3, we find from (2.1) that

(1 + l + γλn)(n + 1− α)cn+p(m, λ, l)
∞∑

k=n+1

ak

≤
∞∑

k=n+1

ck(m, λ, l)(k − α)[1 + l + γλ(k − 1)]}ak ≤ (1 + l)(1− α),

which immediately yields the first assertion (2.5) of Theorem 2.5.
On the other hand, taking into account the inequality (2.1), we also have

(1 + l + γλn)cn+p(m, λ, l)
∞∑

k=n+1

(k − α)ak ≤ (1 + l)(1− α)

that is

(1 + l + γλn)cn+p(m, λ, l)
∞∑

k=n+1

kak

≤ (1 + l)(1− α) + α(1 + l + γλn)cn+p(m, λ, l)
∞∑

k=n+1

ak
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which, in view of the coefficient inequality (2.5), can be put in the form

(1 + l + γλn)cn+p(m, λ, l)
∞∑

k=n+1

kak

≤ (1+ l)(1−α)+α(1+ l+γλn)cn+p(m,λ, l)
(1 + l)(1− α)

cn+p(m, λ, l)(1 + l + γλn)(n + 1− α)

and this completes the proof of (2.6). �

3. Distortion Theorems

Theorem 3.1. Let the function f defined by (1.3) be in the class T m
λ,l(n, α, γ).

Then we have

|I(i, λ, l)f(z)| ≥ |z| − (1 + l)(1− α)

ck(m− i, λ, l)(n + 1− α)(1 + l + γλn)
· |z|n+1 (3.1)

and

|I(i, λ, l)f(z)| ≤ |z|+ (1 + l)(1− α)

ck(m− i, λ, l)(n + 1− α)(1 + l + γλn)
· |z|n+1 (3.2)

for z ∈ U , where 0 ≤ i ≤ m and ck(m− i, λ, l) is given by (2.3).
The equalities in (3.1) and (3.2) are attained for the function f given by

fn+1(z) = z − (1− α)(1 + l)m+1

(1 + λn + l)m(n + 1− α)(1 + l + γλn)
zn+1. (3.3)

Proof. Note that f ∈ T m
λ,l(n, α, γ) if and only if I(i, λ, l)f(z) ∈ T m−i

λ,l (n, α, γ),
where

I(i, λ, l)f(z) = z −
∞∑

k=n+1

ck(i, λ, l)akz
k.

By Theorem 2.3, we know that

ck(m− i, λ, l)(n + 1− α)(1 + l + γλn)
∞∑

k=n+1

ck(i, λ, l)ak ≤

≤
∞∑

k=n+1

ck(m, λ, l)(k − α)[1 + l + γλ(k − 1)]ak ≤ (1 + l)(1− α)

that is
∞∑

k=n+1

ck(i, λ, l)ak ≤
(1 + l)(1− α)

ck(m− i, λ, l)(n + 1− α)(1 + l + γλn)
.

The assertions of (3.1) and (3.2) of Theorem 3.1 follow immediately. Finally,
we note that the equalities (3.1) and (3.2) are attained for the function f defined
by

I(i, λ, l)f(z) = z − (1 + l)(1− α)

ck(m− i, λ, l)(n + 1− α)(1 + l + γλn)
zn+1

This completes the proof of Theorem 3.1. �
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Corollary 3.2. Let the function f defined by (1.3) be in the class T m
λ,l(n, α, γ).

Then we have

|f(z)| ≥ |z| − (1 + l)(1− α)

ck(m, λ, l)(n + 1− α)(1 + l + γλn)
|z|n+1 (3.4)

and

|f(z)| ≤ |z|+ (1 + l)(1− α)

ck(m, λ, l)(n + 1− α)(1 + l + γλn)
|z|n+1 (3.5)

for z ∈ U . The equalities in (3.4) and (3.5) are attained for the function fn+1

given in (3.3).

Corollary 3.3. Let the function f defined by (1.3) be in the class T m
λ,l(n, p, α, γ).

Then we have

|f ′(z)| ≥ 1− (1 + l)(1− α)(n + 1)

ck(m,λ, l)(n + 1− α)(1 + l + γλn)
|z|n (3.6)

and

|f ′(z)| ≤ 1 +
(1 + l)(1− α)(n + 1)

ck(m,λ, l)(n + 1− α)(1 + l + γλn)
|z|n (3.7)

for z ∈ U . The equalities in (3.6) and (3.7) are attained for the function fn+1

given in (3.3).

Corollary 3.4. Let the function f defined by (1.3) be in the class T m
λ,l(n, α, γ).

Then the unit disc is mapped onto a domain that contains the disc

|w| < ck(m, λ, l)(n + 1− α)(1 + l + γλn)− (1 + l)(1− α)

ck(m, λ, l)(n + 1− α)(1 + l + γλn)
.

The result is sharp with the extremal function fn+1 given in (3.3).

4. Inclusion relations

In this section we determine certain inclusion relations for the class T m
λ,l(n, α, γ),

some of them involving the familiar concept of (n, η)-neighborhoods of analytic
functions, defined by (1.4) and (1.5).

Theorem 4.1. Let 0 ≤ α < 1, 0 ≤ γ1 ≤ γ2 ≤ 1, k ≥ n + 1, n ∈ N and λ ≥ 0 .
Then

T m
λ,l(n, α, γ2) ⊆ T m

λ,l(n, α, γ1).

Proof. It follows from Theorem 2.3 that
∞∑

k=n+1

ck(m,λ, l)(k − α)[1 + l + γ1λ(k − 1)]ak ≤

≤
∞∑

k=n+1

ck(m,λ, l)(k − α)[1 + l + γ2λ(k − 1)]ak ≤ (1 + l)(1− α)

for f ∈ T m
λ,l(n, α, γ2). Hence f belongs to the class T m

λ,l(n, α, γ1). �

Theorem 4.2. Let 0 ≤ α < 1, 0 ≤ γ ≤ 1, k ≥ n + 1, n ∈ N and λ ≥ 0. Then

T m+1
λ,l (n, α, γ) ⊆ T m

λ,l(n, α, γ).
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Proof. It follows from Theorem 2.3 that
∞∑

k=n+1

ck(m,λ, l)(k − α)[1 + l + γλ(k − 1)]ak ≤

≤
∞∑

k=n+1

ck(m + 1, λ, l)(k − α)[1 + l + γλ(k − 1)]ak ≤ (1 + l)(1− α)

for f ∈ T m+1
λ,l (n, α, γ). Hence, f belongs to the class T m

λ,l(n, α, γ). �

Remark 4.3. T m
λ,l(n, α, γ) ⊂ T 0

λ,l(n, α, γ) ⊂ T 0
0,0(n, α, 0) ≡ S∗n(α). Hence the func-

tions f are starlike of order α, (univalent).

For the following theorems we shall require Definition 4.4 below.

Definition 4.4. A function f(z) ∈ T (n) is said to be in the class Kn
λ,l(α, γ, µ) if it

satisfies the following nonhomogeneous Cauchy-Euler differential
equation

z2d2f(z)

dz2
+ 2(µ + 1)z

df(z)

dz
+ µ(µ + 1)f(z) = (1 + µ)(1 + µ + 1)g(z) (4.1)

where, g(z) ∈ T m
λ,l(n, α, γ), µ > −1, µ ∈ R.

Theorem 4.5. If f(z) ∈ T (n) is in the class T m
λ,l(n, α, γ) then

T m
λ,l(n, α, γ) ⊂ Nn,η(h), (4.2)

where

h(z) = z,

Nn,η(h) is defined in (1.5) and

η :=
(1 + l)(1− α)(n + 1)

cn+1(m, λ, l)(n + 1− α)(1 + l + γλn)
.

Proof. The assertion (4.2) would follow easily from the definition (1.5) of Nn,η(h)
and from the second assertion (2.6) of Theorem 2.5. �

Theorem 4.6. If f(z) ∈ T (n) is in the class Kn
λ,l(α, γ, µ) then

Kn
λ,l(α, γ, µ) ⊂ Nn,η(g) ,

where

η :=
(1 + l)(1− α)(n + 1)

cn+1(m, λ, l)(n + 1− α)(1 + l + γλn)
·
{

n + (1 + µ)(1 + µ + 2)

n + 1 + µ

}
.

Proof. Suppose that f ∈ Kn
λ,l(α, γ, µ) and f is given by (1.3). From (4.1) we

deduce that

ak =
(1 + µ)(2 + µ)

(k + µ)(k + µ + 1)
· bk, (k = n + 1, n + 2, . . .) (4.3)
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so that

f(z) = z −
∞∑

k=n+1

akz
k = z −

∞∑
k=n+1

(1 + µ)(2 + µ)

(k + µ)(k + µ + 1)
· bkz

k;

g(z) = z −
∞∑

k=n+1

bkz
k.

One obtains
∞∑

k=n+1

k|ak − bk| ≤
∞∑

k=n+1

k(|ak|+ |bk|) =
∞∑

k=n+1

kak +
∞∑

k=n+1

kbk, ak ≥ 0, bk ≥ 0.

Substituting from (4.3) into the above coefficient inequality, we have

∞∑
k=n+1

k|ak − bk| ≤
∞∑

k=n+1

(1 + µ)(2 + µ)

(k + µ)(k + µ + 1)
· kbk +

∞∑
k=n+1

kbk. (4.4)

Next, since g(z) ∈ T m
λ,l(n, α, γ), the second assertion (2.6) of the Theorem 2.5

yields

kbk ≤
(1 + l)(1− α)(n + 1)

cn+1(m, λ, l)(n + 1− α)(1 + l + γλn)
, k = n + 1, n + 2, . . . (4.5)

Finally, by making use of (2.6) as well as (4.5) on the right-hand side of (4.4),
we find that

∞∑
k=n+1

k|ak − bk| ≤
(1 + l)(1− α)(n + 1)

cn+1(m,λ, l)(n + 1− α)(1 + l + γλn)
·

·

(
1 +

∞∑
k=n+1

(1 + µ)(2 + µ)

(k + µ)(k + µ + 1)

)
.

In view of the telescopic sum
∞∑

k=n+1

1

(k + µ)(k + µ + 1)
=

∞∑
k=n+1

(
1

k + µ
− 1

k + µ + 1

)
=

= lim
s→∞

s∑
k=n+1

(
1

k + µ
− 1

k + µ + 1

)
=

= lim
s→∞

(
1

n + 1 + µ
− 1

s + 1 + µ

)
=

1

n + 1 + µ
,

(µ ∈ R− {−1− n, −2− n, . . .}) immediately yields

∞∑
k=n+1

k|ak − bk| ≤

≤ (1 + l)(1− α)(n + 1)

cn+1(m, λ, l)(n + 1− α)(1 + l + γλn)
·
[
1 +

(1 + µ)(2 + µ)

n + 1 + µ

]
=
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=
(1 + l)(1− α)(n + 1)

cn+1(m, λ, l)(n + 1− α)(1 + l + γλn)
·
{

n + (1 + µ)(3 + µ)

n + 1 + µ

}
= η.

Thus, by the definition (1.3) f ∈ Nn,η(g). This, evidently, completes the proof
of Theorem 4.2. �

By setting m = 0, γ = 0, l = 0, λ = 1 in Theorem 4.1, we arrive to the next
corollary obtained earlier in [4].

Corollary 4.7. If f(z) ∈ T (n) is in the class T 0
0,0(n, α, 0) ≡ S∗n(α) then

S∗n(α) ⊂ Nn,η(h),

where
h(z) = z,

Nn,η(h) is defined in (1.5) and

η :=
(1− α)(n + 1)

n + 1− α
.

By setting m = 0, γ = 1, l = 0, λ = 1 in Theorem 4.1, we get the next corollary
obtained also in [4].

Corollary 4.8. If f(z) ∈ T (n) is in the class T 0
0,0(n, α, 1) ≡ Cn(α) then

Cn(α) ⊂ Nn,η(h),

where
h(z) = z,

Nn,η(h) is defined in (1.5) and

η :=
1− α

n + 1− α
.
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4. O. Alintaş and S. Owa, Neighborhoods of certain analytic functions with negative coefficient,
Internat. J. Math. and Math. Sci., 19 (1996), 797–800.
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