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Abstract. We study Birkhoff–James orthogonality of compact linear opera-
tors on complex reflexive Banach spaces and obtain its characterization. By
means of introducing new definitions, we illustrate that it is possible in the
complex case, to develop a study of orthogonality of compact linear operators,
analogous to the real case. Furthermore, earlier operator theoretic charac-
terizations of Birkhoff–James orthogonality in the real case, can be obtained
as simple corollaries to our present study. In fact, we obtain more than one
equivalent characterizations of Birkhoff–James orthogonality of compact linear
operators in the complex case, in order to distinguish the complex case from
the real case.

1. Introduction.

The notion of Birkhoff–James orthogonality (B–J orthogonality) plays a very
important role in the geometry of Banach spaces. In [7], James illustrated the
role of B–J orthogonality in characterizing geometric properties like smoothness,
strict convexity, and other properties of the space. It is quite straightforward to
observe that the notion of B–J orthogonality extends to the space of all bounded
linear operators on a Banach space. The role of B–J orthogonality in the study of
geometry of Banach spaces has been explored by several researchers, from various
points of view. We refer the readers to [1, 3, 4, 5, 6, 8, 14, 15], and the references
therein, for a detailed study in this regard. Recently, in [10], Sain characterized
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B–J orthogonality of linear operators on finite-dimensional real Banach spaces.
Although B–J orthogonality can be defined for either real or complex Banach
spaces, till now most of the operator theoretic study of B–J orthogonality [10, 12]
has been conducted exclusively in the context of real Banach spaces. In this
paper, our aim is to initiate an analogous study of B–J orthogonality of linear
operators in the complex case and to obtain its characterization. It is interesting
to observe that the results already known in the context of real Banach spaces
follow quite easily from these new results. It is in this sense, that our present
study can be considered as an extension of our earlier studies [10]. Without
further ado, let us establish the relevant notations and terminologies to be used
throughout the paper.

Let X and Y be complex Banach spaces. Let BX = {x ∈ X : ∥x∥ ≤ 1} and
SX = {x ∈ X : ∥x∥ = 1} be the unit ball and the unit sphere of X, respectively.
Let L(X,Y)(K(X,Y)) denote the Banach space of all bounded (compact) lin-
ear operators from X to Y, endowed with the usual operator norm. We write
L(X,Y) = L(X) and K(X,Y) = K(X) if X = Y.

For any two elements x, y ∈ X, x is said to be B–J orthogonal to y [2, 7],
written as x ⊥B y, if ∥x+ λy∥ ≥ ∥x∥ for all λ ∈ C.

Similarly, for any two elements T,A ∈ L(X), T is said to be B–J orthogonal to
A, written as T ⊥B A, if ∥T + λA∥ ≥ ∥T∥ for all λ ∈ C.

For a linear operator T defined on a Banach space X, let MT denote the col-
lection of all unit vectors in X at which T attains norm; that is,

MT = {x ∈ SX : ∥Tx∥ = ∥T∥}.

In order to characterize B–J orthogonality of bounded linear operators on finite-
dimensional real Banach spaces, Sain [10] introduced the notions of x+ and x−

in the following way:
For any two elements x and y in a real Banach space X, let us say that y ∈ x+ if
∥x+ λy∥ ≥ ∥x∥ for all λ ≥ 0. Following similar motivations, we say that y ∈ x−

if ∥x + λy∥ ≥ ∥x∥ for all λ ≤ 0. Using these notions, Sain [10] characterized
B–J orthogonality of linear operators defined on finite-dimensional real Banach
spaces.

Theorem 1.1. [10, Theorem 2.2] Let X be a finite-dimensional real Banach space.
Let T,A ∈ L(X). Then T ⊥B A if and only if there exist x, y ∈ MT such that
Ax ∈ Tx+ and Ay ∈ Ty−.

In this paper, in order to obtain an analogous result for complex Banach spaces,
let us introduce the following notions:

Let x ∈ X and U = {α ∈ C : |α| = 1, argα ∈ [0, π)}. For α ∈ U define

x+
α = {y ∈ X : ∥x+ λy∥ ≥ ∥x∥ ∀ λ = tα, t ≥ 0},

x−
α = {y ∈ X : ∥x+ λy∥ ≥ ∥x∥ ∀ λ = tα, t ≤ 0},

x⊥
α = {y ∈ X : ∥x+ λy∥ ≥ ∥x∥ ∀ λ = tα, t ∈ R}.
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If β = eiπα, then we define x+
β = x−

α , x−
β = x+

α , and x⊥
β = x⊥

α .

If y ∈ x⊥
α , then we write x⊥αy. Let us define the notions of x+, x−, and x⊥ in a

complex Banach space in the following way:

x+ =
∩

{x+
α : α ∈ U}, x− =

∩
{x−

α : α ∈ U}, and x⊥ =
∩

{x⊥
α : α ∈ U}.

If the space X is a real Banach space, then we must have, α ∈ U implies that
α = 1. Therefore, x+

α = x+, x−
α = x−, and x⊥

α = x⊥.
In this paper, we completely characterize B–J orthogonality of compact linear

operators from a complex reflexive Banach space to a complex Banach space. In
order to illustrate the importance of our study, we show that earlier character-
izations of operator B–J orthogonality [10, 13] in the real case follow as simple
corollaries to our present study.

2. Main Results

Let us begin with two easy propositions, that would be useful in obtaining
the desired characterization of B–J orthogonality of bounded linear operators
between complex Banach spaces.

Proposition 2.1. Let X be a complex Banach space, and consider x, y ∈ X and
α ∈ U. Then the following are true:

(i) Either y ∈ x+
α or y ∈ x−

α .
(ii) x ⊥α y if and only if y ∈ x+

α and y ∈ x−
α .

(iii) y ∈ x+
α implies that ηy ∈ (µx)+α for all η, µ > 0.

(iv) y ∈ x+
α implies that −y ∈ x−

α and y ∈ (−x)−α .
(v) y ∈ x−

α implies that ηy ∈ (µx)−α for all η, µ > 0.
(vi) y ∈ x−

α implies that −y ∈ x+
α and y ∈ (−x)+α .

(vii) y ∈ x+
α implies that βy ∈ (βx)+α for all β ∈ C.

(viii) y ∈ x−
α implies that βy ∈ (βx)−α for all β ∈ C.

Proof. (i) If y /∈ x+
α , then we show that y ∈ x−

α . Since y /∈ x+
α , we have

∥x + λ0y∥ < ∥x∥ for some λ0 = t0α with t0 > 0. Let λ = tα with t < 0. Then
there exists s ∈ [0, 1] such that

x = s(x+ λ0y) + (1− s)(x+ λy)

⇒ ∥x∥ ≤ s∥x+ λ0y∥+ (1− s)∥x+ λy∥
⇒ ∥x∥ < s∥x∥+ (1− s)∥x+ λy∥
⇒ ∥x∥ < ∥x+ λy∥.

Therefore, ∥x∥ ≤ ∥x+ λy∥ ∀λ = tα with t ≤ 0 ⇒ y ∈ x−
α .

The proofs of (ii)–(viii) can be easily completed using similar approach. □
Proposition 2.2. Let X be a complex Banach space, and let x, y ∈ X. Then the
following are true:

(i) x ⊥B y if and only if y ∈ x+ and y ∈ x−.
(ii) y ∈ x+ implies that ηy ∈ (µx)+ for all η, µ > 0.
(iii) y ∈ x+ implies that −y ∈ x− and y ∈ (−x)−.
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(iv) y ∈ x− implies that ηy ∈ (µx)− for all η, µ > 0.
(v) y ∈ x− implies that −y ∈ x+ and y ∈ (−x)+.

Proof. (i) The proof follows from the definitions of x+ and x−.
(ii) Let y ∈ x+. Then y ∈ x+

α for each α with argα ∈ [0, π). We show that
ηy ∈ (µx)+α for each α with argα ∈ [0, π). Now,

∥µx+ (tα)ηy∥ = |µ|∥x+ (
tη

µ
)αy∥ ≥ |µ|∥x∥ = ∥µx∥, for all t, µ, η > 0,

and so ηy ∈ (µx)+α for all µ, η > 0. Thus, ηy ∈ (µx)+ for all µ, η > 0.
(iii) Suppose that y ∈ x+. Then for each α with argα ∈ [0, π), ∥x+tαy∥ ≥ ∥x∥

for all t ≥ 0. So ∥x + (−t)α(−y)∥ ≥ ∥x∥ for all t ≥ 0. This shows that −y ∈ x−
α

for each α with argα ∈ [0, π), and so −y ∈ x−.
Again, for each α with argα ∈ [0, π),

∥x+ tαy∥ = ∥(−x) + (−t)α(y)∥ ≥ ∥x∥ = ∥ − x∥, for all t ≥ 0.

This shows that y ∈ (−x)−α for each α with argα ∈ [0, π), and therefore
y ∈ (−x)−.

(iv) Follows similarly as (ii).
(v) Follows similarly as (iii). □
Let us now obtain the promised characterization theorem, the proof of which

follows the same line of argument given in [13, Th. 2.1]. For the sake of com-
pleteness of the paper we give the proof in details here.

Theorem 2.3. Let X be a reflexive complex Banach space, and let Y be any
complex Banach space. Let T,A ∈ K(X,Y). Then T ⊥B A if and only if for
each α ∈ U there exist x = x(α), y = y(α) ∈ MT such that Ax ∈ (Tx)+α and
Ay ∈ (Ty)−α .

Proof. Let us first prove the sufficient part. Suppose, for each α ∈ U, there
exist x = x(α), y = y(α) ∈ MT such that Ax ∈ (Tx)+α and Ay ∈ (Ty)−α . Let
λ ∈ C. Then there exist t ∈ R and α ∈ U such that λ = tα. If t ≥ 0, then
∥T + λA∥ = ∥T + tαA∥ ≥ ∥(T + (tα)A)x∥ ≥ ∥Tx∥ = ∥T∥, and if t ≤ 0, then
∥T + λA∥ = ∥T + tαA∥ ≥ ∥(T + (tα)A)y∥ ≥ ∥Ty∥ = ∥T∥. Hence, T ⊥B A. This
completes the proof of the sufficient part of the theorem.

Let us now prove the necessary part. Suppose that T⊥BA. Let α ∈ U . Then
for each n ∈ N, the operator (T + α

n
A), being compact on a reflexive complex

normed linear space, attains norm. Therefore, there exists xn ∈ SX such that
∥(T + α

n
A)∥ = ∥(T + α

n
A)xn∥. Now, since X is reflexive, BX is weakly compact.

Therefore, {xn} has a subsequence, say, {xnk
} such that {xnk

} weakly converges
to x = x(α) (say) in BX. Without loss of generality we assume that {xn} weakly
converges to x. Then T and A being compact, Txn → Tx and Axn → Ax. Since
T⊥BA, we have ∥T + α

n
A∥ ≥ ∥T∥ for all n ∈ N. Hence

∥Txn +
α

n
Axn∥ ≥ ∥T∥ ≥ ∥Txn∥ ∀n ∈ N.

Letting n → ∞ we have ∥Tx∥ ≥ ∥T∥ ≥ ∥Tx∥. Therefore, x ∈ MT . Finally, we
show that Ax ∈ (Tx)+α .
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For any t > 1
n
> 0, we claim that ∥Txn + tαAxn∥ ≥ ∥Txn∥. If possible, suppose

that ∥Txn + tαAxn∥ < ∥Txn∥. Then

Txn +
α

n
Axn = (1− 1

nt
)Txn +

1

nt
(Txn + tαAxn)

⇒ ∥Txn +
α

n
Axn∥ ≤ (1− 1

nt
)∥Txn∥+

1

nt
∥(Txn + tαAxn)∥

⇒ ∥Txn +
α

n
Axn∥ < (1− 1

nt
)∥Txn∥+

1

nt
∥Txn∥

⇒ ∥Txn +
α

n
Axn∥ < ∥Txn∥,

a contradiction. This proves our claim.
Now, for any t > 0, there exists n0 ∈ N such that t > 1

n0
. Hence, for all n ≥ n0,

we have,
∥Txn + tαAxn∥ ≥ ∥Txn∥.

Letting n −→ ∞, we have,

∥Tx+ tαAx∥ ≥ ∥Tx∥.
Therefore, Ax ∈ (Tx)+α .
Similarly, considering the operator (T − α

n
A), for each n ∈ N, we obtain y = y(α)

in MT such that Ay ∈ (Ty)−α . This completes the proof of the theorem. □
In particular, if X and Y are finite-dimensional complex Banach spaces, then

we have the following corollary.

Corollary 2.4. Let X and Y be finite-dimensional complex Banach spaces. Let
T,A ∈ L(X,Y). Then T ⊥B A if and only if, for each α ∈ U , there exist x = x(α)
and y = y(α) in MT such that Ax ∈ (Tx)+α and Ay ∈ (Ty)−α .

Proof. Since every finite-dimensional complex Banach space is reflexive and every
linear operator on a finite-dimensional complex Banach space is compact, the
proof of the corollary follows from Theorem 2.3. □

We would further like to comment that the proofs of the corresponding char-
acterization theorems in the real case are now obvious.

Corollary 2.5. [13, Theorem 2.1] Let X be a reflexive real Banach space, and let
Y be any real Banach space. Let T,A ∈ K(X,Y). Then T ⊥B A if and only if
there exist x, y ∈ MT such that Ax ∈ (Tx)+ and Ay ∈ (Ty)−.

Proof. Let T⊥BA. Since in real Banach space, α ∈ U implies that α = 1, by
Theorem 2.3, there exist x, y ∈ MT such that Ax ∈ (Tx)+ and Ay ∈ (Ty)−. □
Corollary 2.6. (Theorem 2.2 of [10]) Let X,Y be finite-dimensional real Banach
spaces. Let T,A ∈ L(X,Y). Then T ⊥B A if and only if there exist x, y ∈ MT

such that Ax ∈ (Tx)+ and Ay ∈ (Ty)−.

Proof. Since every finite-dimensional complex Banach space is reflexive and every
linear operator on a finite-dimensional complex Banach space is compact, the
proof of the corollary follows from Corollary 2.5. □
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In spite of being a complete characterization of B–J orthogonality of compact
linear operators on a reflexive complex Banach space, Theorem 2.3 does not
capture the full strength of the complex number system. Indeed, in our opinion,
Theorem 2.3 should be regarded as a stepping stone towards our next theorem,
that also distinguishes the complex case from the real case. First we need the
following geometric lemma.

Lemma 2.7. Let X be a complex Banach space. Let x, y ∈ X and α = eiθ, where
θ ∈ [0, π]. If y ∈ x+

α , then either y ∈ x+
β for all β with arg β ∈ [0, θ] or y ∈ x+

β for
all β with arg β ∈ [θ, π].

Proof. Suppose that y /∈ x+
α1

for some α1 with argα1 ∈ [0, θ]. Then there exists
t1 > 0 such that ∥x + t1α1y∥ < ∥x∥. We claim that y ∈ x+

β for all β with

arg β ∈ [θ, π]. If possible suppose that y /∈ x+
α2

for some α2 with argα2 ∈ [θ, π].
Then there exists t2 > 0 such that ∥x + t2α2y∥ < ∥x∥. Then it is easy to verify
that there exist 0 < s < 1 and t > 0 such that (1−s)t1α1+st2α2 = tα. Therefore,
(1− s)[x+ t1α1y] + s[x+ t2α2y] = x+ tαy. This implies that

∥x+ tαy∥ ≤ (1− s)∥x+ t1α1y∥+ s∥x+ t2α2y∥ < (1− s)∥x∥+ s∥x∥ = ∥x∥,
which is a contradiction. This proves our claim. □

Let us now prove the following characterization theorem, that improves the
necessary part of Theorem 2.3.

Theorem 2.8. Let X be a reflexive complex Banach space, and let Y be any com-
plex Banach space. Let T,A ∈ K(X,Y). Then T⊥BA if and only if there exist
x, y, z, and w in MT and ϕ1, ϕ2 ∈ [0, π] such that

(i) Ax ∈ (Tx)+α ∀ α with argα ∈ [0, ϕ1],

(ii) Ay ∈ (Ty)+α ∀ α with argα ∈ [ϕ1, π],

(iii) Az ∈ (Tz)−α ∀ α with argα ∈ [0, ϕ2],

(iv) Aw ∈ (Tw)−α ∀ α with argα ∈ [ϕ2, π].

Proof. We first prove the easier sufficient part. Suppose that there exist x, y, z,
and w in MT and ϕ1, ϕ2 ∈ [0, π] such that all the conditions in (i), (ii), (iii), and
(iv) are satisfied. Let λ ∈ C. Then one of the following conditions hold:
(a)There exist t1 ≥ 0 and α1 with argα1 ∈ [0, ϕ1] such that λ = t1α1.
(b)There exist t2 ≥ 0 and α2 with argα2 ∈ [ϕ1, π] such that λ = t2α2.
(c)There exist t3 ≤ 0 and α3 with argα3 ∈ [0, ϕ2] such that λ = t3α3.
(d)There exist t4 ≤ 0 and α4 with argα4 ∈ [ϕ2, π] such that λ = t4α4.

Now λ = t1α1 implies that

∥T + λA∥ = ∥T + t1α1A∥ ≥ ∥Tx+ t1α1Ax∥ ≥ ∥Tx∥ = ∥T∥.
Similarly, in the other cases, it can be shown that ∥T + λA∥ ≥ ∥T∥. Hence
T⊥BA.
For the necessary part, suppose that T ⊥B A. Then from Theorem 2.3, we have,
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for each α with argα ∈ [0, π], there exists xα ∈ MT such that Axα ∈ (Txα)
+
α .

Now, consider

V1 = {θ ∈ [0, π] : ∃ x ∈ MT s.t. Ax ∈ (Tx)+α ∀ α with argα ∈ [0, θ]},
V2 = {θ ∈ [0, π] : ∃ x ∈ MT s.t. Ax ∈ (Tx)+α ∀ α with argα ∈ [θ, π]}.

Clearly, 0 ∈ V1 and π ∈ V2, and therefore, V1 and V2 are nonempty. Moreover,
V1 and V2 are bounded. Suppose that ξ = supV1 and that η = inf V2. Now, we
claim that ξ ≥ η.
If possible suppose that ξ < η. Then consider ζ = ξ+η

2
∈ [0, π]. Now, from

Theorem 2.3, we have, for α = eiζ there exists xα ∈ MT such that Axα ∈ (Txα)
+
α .

Using Lemma 2.7, we have, either Axα ∈ (Txα)
+
β for all β with arg β ∈ [0, ζ] or

Axα ∈ (Txα)
+
β for all β with arg β ∈ [ζ, π]. But Axα ∈ (Txα)

+
β for all β with

arg β ∈ [0, ζ] implies that ζ ∈ V1. This contradicts that ξ = supV1.
Again, Axα ∈ (Txα)

+
β for all β with arg β ∈ [ζ, π] implies that ζ ∈ V2. This

contradicts that η = inf V2. Hence ξ ≥ η.
Now, there exist sequences {ξn} ⊆ V1 and {ηn} ⊆ V2 such that {ξn} and {ηn}

converge to ξ and η, respectively. Since ξn ∈ V1 and ηn ∈ V2, there exist xn and
yn in MT such that Axn ∈ (Txn)

+
α for all α with argα ∈ [0, ξn] and Ayn ∈ (Tyn)

+
α

for all α with argα ∈ [ηn, π]. Since X is reflexive, {xn} and {yn} have weakly
convergent subsequences. Without loss of generality assume that {xn} and {yn}
weakly converge to x and y, respectively. Since T and A are compact operators,
Txn −→ Tx, Tyn −→ Ty, Axn −→ Ax, and Ayn −→ Ay. Clearly, x, y ∈ MT .
Now,

∥Txn + tαAxn∥ ≥ ∥T∥, for all t ≥ 0 and for all α with argα ∈ [0, ξn],

⇒ ∥Tx+ tαAx∥ ≥ ∥T∥, for all t ≥ 0 and for all α with argα ∈ [0, ξ].

Similarly,

∥Tyn + tαAyn∥ ≥ ∥T∥, for all t ≥ 0 and for all α with argα ∈ [ηn, π],

⇒ ∥Ty + tαAy∥ ≥ ∥T∥, for all t ≥ 0 and for all α with argα ∈ [η, π].

Since ξ ≥ η, ∥Ty + tαAy∥ ≥ ∥T∥ for all t ≥ 0 and for all α with argα ∈ [ξ, π].
Let ξ = ϕ1. Then Ax ∈ (Tx)+α for all α with argα ∈ [0, ϕ1] and Ay ∈ (Ty)+α for
all α with argα ∈ [ϕ1, π].
Similarly, the fact that for each α with argα ∈ [0, π], there exists zα ∈ MT such
that
Azα ∈ (Tzα)

−
α gives that there exist ϕ2 ∈ [0, π] and z, w ∈ MT such that

Az ∈ (Tz)−α for all α with argα ∈ [0, ϕ2] and Aw ∈ (Tw)−α for all α with
argα ∈ [ϕ2, π]. □

Sain and Paul proved in [12] that if T is a linear operator on a finite-dimensional
real Banach space X, with MT = ±D (D being a closed connected subset of SX),
then T⊥BA if and only if there exists x ∈ D such that Tx⊥BAx. In the following
theorem we prove an analogous result for complex Banach spaces. Before proving
the theorem, let us observe that if X is a complex Banach space, T ∈ L(X) and
D is a closed connected subset of SX such that D ⊂ MT , then we must have,∪

θ∈[0,2π) e
iθD ⊂ MT and

∪
θ∈[0,2π) e

iθD is also a connected subset of SX. Note
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that, it is not true in general, if X is a real Banach space. This explains the
change in the statement of Theorem 2.9, compared to the corresponding real
case.

Theorem 2.9. Let X be a finite-dimensional complex Banach space, and let
T ∈ L(X) be such that MT is a closed connected subset of SX. Then for A ∈ L(X),
T⊥BA if and only if for each α ∈ U , there exists x = x(α) ∈ MT such that
Tx⊥αAx.

Proof. The sufficient part of the theorem follows trivially. For the necessary part,
suppose that T⊥BA. Let α ∈ U . Consider two sets W1α and W2α, where,

W1α = {x ∈ MT : Ax ∈ (Tx)+α},
W2α = {x ∈ MT : Ax ∈ (Tx)−α}.

Now, let x ∈ MT . Then by Proposition 2.1 (i), we have, either Ax ∈ (Tx)+α or
Ax ∈ (Tx)−α . Thus, x ∈ W1α ∪W2α. This implies that MT ⊆ W1α ∪W2α ⊆ MT .
Hence, MT = W1α ∪W2α. Now, by applying Corollary 2.4, it follows that there
exist x = x(α) and y = y(α) in MT such that Ax ∈ (Tx)+α and Ay ∈ (Ty)−α .
Therefore, x ∈ W1α and y ∈ W2α. Hence, W1α ̸= ∅ and W2α ̸= ∅.
Next, we show that W1α is closed. Let {xn} be a sequence in W1α converging
to x. Clearly, x ∈ MT . Now, Axn ∈ (Txn)

+
α for all n ∈ N. Therefore, for

any t ≥ 0, ∥Txn + tαAxn∥ ≥ ∥Txn∥ for all n ∈ N. Letting n → ∞, we have,
∥Tx+ tαAx∥ ≥ ∥Tx∥. Hence, Ax ∈ (Tx)+α , and so x ∈ W1α. Thus, W1α is closed.
Similarly, we can show that W2α is closed.
Now, since MT is connected, we must have, W1α ∩W2α ̸= ∅. Let u ∈ W1α ∩W2α.
Then Au ∈ (Tu)+α and Au ∈ (Tu)−α . This implies that Tu⊥αAu. This establishes
the theorem. □

Once again, in contrast to the real case, we would like to sharpen the necessary
part of Theorem 2.9 in the complex case. First we need the following lemma.

Lemma 2.10. Let X be a complex Banach space. Let x, y ∈ X and α ∈ U with
argα = θ such that x⊥αy. Then either y ∈ (x)+β for all β with arg β ∈ [θ − π, θ]

or y ∈ (x)+β for all β with arg β ∈ [θ, θ + π].

Proof. Let x⊥αy. Suppose that y /∈ (x)+β1
for some β1 with arg β1 ∈ [θ − π, θ].

Then there exists t1 > 0 such that ∥x + t1β1y∥ < ∥x∥. If possible suppose that
y /∈ (x)+β2

for some β2 with arg β2 ∈ [θ, θ + π]. Then there exists t2 > 0 such that
∥x+ t2β2y∥ < ∥x∥. Then it is easy to verify that there exist 0 < s < 1 and t ∈ R
such that

tα = (1− s)t1β1 + st2β2

⇒ x+ tαy = (1− s)(x+ t1β1y) + s(x+ t2β2y)

⇒ ∥x+ tαy∥ ≤ (1− s)∥(x+ t1β1y)∥+ s∥(x+ t2β2y)∥
⇒ ∥x+ tαy∥ < (1− s)∥x∥+ s∥x∥

= ∥x∥,
this leads to a contradiction, and so y ∈ (x)+β for all β with arg β ∈ [θ, θ + π].
This proves the lemma. □
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Now, we prove the promised theorem.

Theorem 2.11. Let X be a finite-dimensional complex Banach space, and let
T ∈ L(X) be such that MT is a closed connected subset of SX. Then, T⊥BA, for
A ∈ L(X), if and only if there exist some θ ∈ [0, π] and x, y ∈ MT such that
Ax ∈ (Tx)+α for all α with argα ∈ [θ − π, θ] and Ay ∈ (Ty)+α for all α with
argα ∈ [θ, θ + π].

Proof. Let us first prove the sufficient part of the theorem. Suppose there exist
some θ ∈ [0, π] and x, y ∈ MT such thatAx ∈ (Tx)+α for all α with argα ∈ [θ−π, θ]
and Ay ∈ (Ty)+α for all α with argα ∈ [θ, θ + π]. Let λ ∈ C. Then either there
exist t1 ≥ 0 and α1 with argα1 ∈ [θ−π, θ] such that λ = t1α1 or there exist t2 ≥ 0
and α2 with argα2 ∈ [θ, θ + π] such that λ = t2α2. Now, λ = t1α1 implies that
∥T +λA∥ = ∥T + t1α1A∥ ≥ ∥(T + t1α1A)x∥ ≥ ∥Tx∥ = ∥T∥ and λ = t2α2 implies
that ∥T + λA∥ = ∥T + t2α2A∥ ≥ ∥(T + t2α2A)y∥ ≥ ∥Ty∥ = ∥T∥. Therefore,
T⊥BA. This completes the proof of the sufficient part of the theorem.
For the necessary part, suppose that T⊥BA. Let us consider the following two
sets

V1 = {θ ∈ [0, π] : ∃ x ∈ MT s.t. Ax ∈ (Tx)+α ∀ α with argα ∈ [θ − π, θ]},

V2 = {θ ∈ [0, π] : ∃ x ∈ MT s.t. Ax ∈ (Tx)+α ∀ α with argα ∈ [θ, θ + π]}.
We first show that [0, π] = V1 ∪ V2. Let θ ∈ [0, π] and α = eiθ. Since T⊥BA, by
Theorem 2.9, we have, there exists x = x(α) ∈ MT such that Tx⊥αAx. Therefore,
applying Lemma 2.10, we have, either Ax ∈ (Tx)+β for all β with arg β ∈ [θ−π, θ];

that is, θ ∈ V1 or Ax ∈ (Tx)+β for all β with arg β ∈ [θ, θ + π]; that is, θ ∈ V2.
Hence [0, π] = V1 ∪ V2.
We claim that V1 ̸= ∅. Let 0 /∈ V1. Then 0 ∈ V2. Hence there exists z ∈ MT such
that Az ∈ (Tz)+β for all β with arg β ∈ [0, π]. This implies that π ∈ V1. Hence
V1 ̸= ∅. Similarly, it can be shown that V2 ̸= ∅.
We next show that V1 is closed. Let {θn} be a sequence in V1 such that {θn}
converges to θ. Let β = eiθ. Then there exists xn ∈ MT such that Axn ∈ (Txn)

+
α

for all α with argα ∈ [θn − π, θn]. Since X is finite-dimensional, {xn} has a
convergent subsequence. Without loss of generality assume that {xn} converges
to x (say). Clearly, x ∈ MT . Now, Axn ∈ (Txn)

+
α for all α with argα ∈ [θn−π, θn]

gives that ∥Txn + teiθnAxn∥ ≥ ∥T∥ for all t ≥ 0. Letting n −→ ∞, we have
∥Tx + teiθAx∥ = ∥Tx + tβAx∥ ≥ ∥T∥ ⇒ Ax ∈ (Tx)+β . Similarly, Ax ∈ (Tx)+γ ,
where arg γ = θ− π. Now, let θ− π < ϕ < θ. If possible suppose that there does
not exist any n0 ∈ N such that ϕ ∈ [θn − π, θn] for all n ≥ n0. Then without loss
of generality we may assume that ϕ > θn for all n ∈ N. Letting n −→ ∞, we
have ϕ ≥ θ, a contradiction. Hence there exists n0 ∈ N such that ϕ ∈ [θn − π, θn]
for all n ≥ n0. This implies that ∥Txn + teiϕAxn∥ ≥ ∥T∥ for all t ≥ 0 and for
all n ≥ n0. Therefore, as n −→ ∞, we have ∥Tx + teiϕAx∥ ≥ ∥T∥ for all t ≥ 0.
This implies that Ax ∈ (Tx)+δ , where δ = eiϕ. Thus, Ax ∈ (Tx)+α for all α with
argα ∈ [θ − π, θ]. Hence θ ∈ V1. Thus, V1 is closed. Similarly, it can be shown
that V2 is closed.
Now, since [0, π] is connected, V1 ∩ V2 ̸= ∅. Let θ ∈ V1 ∩ V2. Then there exist
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x, y ∈ MT such that Ax ∈ (Tx)+α for all α with argα ∈ [θ−π, θ] and Ay ∈ (Ty)+α
for all α with argα ∈ [θ, θ + π]. This establishes the theorem. □

Next, in the context of complex Banach spaces we explore the structure of MT

in connection with B–J orthogonality. We would like to invite the reader to have
a look at Theorem 2.2 and Corollary 2.2.1 of [9], for an analogous result in the
real case.

Theorem 2.12. Let X be a complex Banach space, 0 ̸= T ∈ L(X) and x ∈ MT .

(i) If y ∈ X is such that Tx ⊥B Ty, then x ⊥B y.

(ii) T (x+
α \ x⊥

α ) ⊂ (Tx)+α \ (Tx)⊥α for α ∈ U.

(iii) T (x−
α \ x⊥

α ) ⊂ (Tx)−α \ (Tx)⊥α for α ∈ U.

(iv) kerT ⊂
∩

x∈MT
x⊥.

Proof. (i) Suppose Tx ⊥B Ty. Then

∥T∥∥x∥ = ∥Tx∥ ≤ ∥Tx+ λTy∥ ≤ ∥T∥∥x+ λy∥ ∀λ ∈ C.
This implies that ∥x+ λy∥ ≥ ∥x∥ for all λ ∈ C. Therefore, x⊥By.

(ii) Let y ∈ x+
α \ x⊥

α . Then there exists t < 0 such that ∥x+ tαy∥ < ∥x∥. Now,
∥Tx+ tαTy∥ ≤ ∥T∥∥x+ tαy∥ < ∥T∥∥x∥ = ∥Tx∥. This implies that Ty /∈ (Tx)−α .
It now follows from Proposition 2.1 that Ty ∈ (Tx)+α \ (Tx)⊥α .

(iii) Follows similarly as (ii).

(iv) If MT = ϕ, then the theorem follows trivially. Let us assume that MT ̸= ϕ.
Let y ∈ kerT. Then for any x ∈ MT , we have Ty ∈ (Tx)⊥, since Ty = 0. From
(i) it follows that y ∈ x⊥. This implies that kerT ⊂

∩
x∈MT

x⊥. □
Remark 2.13. In addition to x ∈ MT , if x and Tx are smooth points in X, then,
for any y ∈ X, we have x⊥By ⇒ Tx⊥BTy. This can be proved following the
same line of arguments, as in Lemma 2.1 of [11]. As a matter of fact, a closer
inspection reveals that only the smoothness of x in X suffices in both the cases.
We thank the referee for this nice observation.
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4. J. Chmieliński, On an ϵ−Birkhoff orthogonality, J. Inequal. Pure Appl. Math. 6 (2005), no.

3, Article 79, 7 pp.
5. J. Chmieliński, T. Stypula, and P. Wójcik, Approximate orthogonality in normed spaces

and its applications, Linear Algebra Appl. 531 (2017), 305–317.
6. R. C. James, Inner product in normed linear spaces, Bull. Amer. Math. Soc. 53 (1947),

559–566.
7. R. C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer.

Math. Soc. 61 (1947), 265–292.
8. A. Koldobsky, Operators preserving orthogonality are isometries, Proc. Roy. Soc. Edinburgh

Sect. A 123 (1993), no. 5, 835–837.
9. D. Sain, On the norm attainment set of a bounded linear operator, J. Math. Anal. Appl.

457 (2018), no. 1, 67–76.
10. D. Sain, Birkhoff-James orthogonality of linear operators on finite dimensional Banach

spaces, J. Math. Anal. Appl. 447 (2017), no. 2, 860–866.
11. D. Sain, P. Ghosh, and K. Paul, On symmetry of Birkhoff-James orthogonality of linear

operators on finite dimensional real Banach space, Oper. Matrices. 11 (2017), no. 4, 1087–
1095.

12. D. Sain and K. Paul, Operator norm attainment and inner product spaces, Linear Algebra
Appl. 439 (2013), 2448–2452.

13. D. Sain, K. Paul, and A. Mal, A complete characterization of Birkhoff-James orthogonality
of bounded linear operators, J. Operator Theory (to appear).
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