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Examples of certain kind of minimal orbits of Hermann actions

Naoyuki KOIKE
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Abstract. We give examples of certain kind of minimal orbits of Hermann actions
and discuss whether each of the examples is austere.
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1. Introduction

Let N = G/K be a symmetrc space of compact type equipped with the
G-invariant metric induced from the Killing form of the Lie algebra of G.
Let H be a symmetric subgroup of G (i.e., (Fix7)g C H C Fix7 for some
involution 7 of G), where Fix 7 is the fixed point group of 7 and (Fix 7)o
is the identity component of Fix 7. The natural action of H on N is called
a Hermann action (see [HPTT], [Kol]). Let § be an involution of G with
(Fixf)p C K C Fix#. According to [Co], when G is simple, we may assume
that # o 7 = 7 0 0 by replacing H to a suitable conjugate group of H if
necessary except for the following three Hermann action:

(1) Sp(p+a) ~SU(2p+2¢)/S(U(2p = 1) xU(2¢+1)) (p=q+2),

(ii) U(p+q+1) ~ Spin(2p+2q+2)/Spin(2p+1) xz, Spin(2¢+1) (p >
q+1),

(iii) Spin(3) xz, Spin(5) ~ Spin(8)/u(Spin(3) xz, Spin(5)),

where p is the triality automorphism of Spin(8). Here we note that we

remove transitive Hermann actions.

Assumption In the sequel, we assume that §# o7 = 70 6. Then the
Hermann action H ~ G/K is said to be commutative.

Let g,t and b be the Lie algebras of G, K and H, respectively. Denote
the involutions of g induced form 6 and 7 by the same symbols 6 and T,
respectively. Set p := Ker(6 + id) and q := Ker(7 + id). The vector space p
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is identified with T,k (G/K), where e is the identity element of G. Denote
by By the Killing form of g. Give G/K the G-invariant metric arising from
Bglpxp. Take a maximal abelian subspace b of p N g. For each g € b*,
we set pg := {X € p | ad(h)*(X) = —B(b)?°X (Vb € b)} and A := {8 €
b* \ {0} | pg # {0}}. This set A’ is a root system. Let II' = {3;,...,05,}
be the simple root system of the positive root system A’ of A’ under a
lexicographic ordering of b*. Set A’K ={f € A, | pgnq # {0}} and
A/f ={f e, |psnh#{0}}. Define a subset C of b by

6::{beb|o<ﬁ(b)<w(vgeA’I), —g

™ H
<B0) < 3 (VB e A/+)}.
The closure 5 of Cis a simplicial complex. Set C := Exp(é), where Exp is
the exponential map of G/K at eK. Each principal H-orbit passes through
only one point of C' and each singular H-orbit passes through only one point
of Exp(aé). For each simplex o of C, only one minimal H-orbit through
Exp(o) exists. See proofs of Theorems A and B in [K2] (also [I]) about this
fact. For € A, weset B=>"_, nfﬂi, mg = dimpg, m‘ﬁ/ = dim(psgNq)
and mg :=dim(pgNh). Let Zy be a point of b. We consider the following
two conditions for Zg:

T wm W 27w 57 ,
ﬁ(ZO)E(L 67 §7 57 ?a ? (mOdﬂ—> (Vﬁ€A+)&
B8, V B8, VvV
Z 3n; mg + Z ;Mg
BEA’X s.t. 8(Zg) ,@EA’XS.LB(ZO)
=7/6 (mod ) =7/3 (mod )
H H
+ E 3nfmﬁ + E n?mﬁ
[3eA/fm“g(z0) 5eA'f s.t. 8(Zq)
(I) =27/3 (mod w) =5n/6 (mod )
_ B,V B8,V
= E n; mg + E 3n;mg
pen’Y s.t.8(20) pen’y st p(Zg)
=27/3 (mod ) =57/6 (mod )
+ E nfmg + E 3n'fm§[
ﬁeA/fs.t.ﬁ(zo) ﬁeA/fs.t.ﬁ(ZO)
z% (mod =) =n/3 (mod )
(1=1,...,7r).
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and
( T T 3T ,
/B(ZO) = 07 1 90 4 (mOdﬂ-) (VIB € A+) &
42" 4
v B, H
Z n;mg + § : n;mg
pen’Y s.t. B(Zg) pen'tl st p(zo)
(II) =n/4 (mod ) =37/4 (mod )
— B,V 2 :
- Z n; mﬁ + n; mﬁ
Ben'Y s.t. 8(Z0) pen'H st 8(2g)
=3nw/4 (mod ) =m/4 (modm)
(i=1,...,7).

Denote by L the isotropy group of H at Exp Zy. Denote by b (resp. [) the
Lie algebra of H (resp. L) and By the Killing form of g. Also, denote by
gr the induced metric on the submanifold M in G/K and V- the normal
connection of the submanifold M. In the case where (b, [) admits a reductive
decomposition fh = [+m, we denote the canonical connection of the principal
L-bundle 7 : H — H/L(= M) with respect to this reductive decomposition
by wm. Let F-(M) be the normal frame bundle of M. Define a map
n: H — FX(M) by n(h) = h.ug (h € H), where ug is an arbitrary fixed
element of FX(M)gxp z,, where F&(M)gyp z, is the fibre of F1 (M) over
Exp Zy. This map 7 is an embedding. By identifying H with n(H), we
regard 7 : H — H/L(= M) as a subbundle of F*(M). Denote by the same
symbol wy, the connection of F+(M) induced from wy, and V¥~ the linear
connection on T M associated with wy,.

In this paper, we prove the following results for the orbit M =
H(Exp Z) of the Hermann action H ~ G/K.

Theorem A If Zy satisfies the condition (1) or (II), then the orbit M is
a minimal submanifold satisfying the following conditions:

(i) (b,1) admits a reductive decomposition ) = [+m such that By([,m) =
0,
(ii) V= V¥ holds.

Also, M, eqr 2 Ker Ay is equal to
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9o« (3pnp (b)) + > gox(ps N a)
BEA’K s.t. 8(Zo)=m/2 (mod )

BeAH s.t. B(Z0)=0 (mod )

where 3pnn(b) is the centralizer of b in p N h.

Let M be a submanifold in a Riemannian manifold N. If, for any unit
normal vector v, the spectrum of the shape operator A, is invariant with
respect to the (—1)-multiple (with considering the multiplicities), then M
is called an austere submanifold. By using Theorem A, we can show the
following fact.

Theorem B Assume that Zy satisfies the condition (1) or (IT). If mg =
mgl for all B € Al and if Zy satisfies 3(Zy) = 0, /4, 7/2,37/4 (mod )
for all B € A/, then the orbit M is an austere submanifold satisfying the
conditions (i) and (ii) in Theorem A.

Remark 1.1 The austere orbits of the commutative Hermann actions
were classified in [I].

Also, we can show the following facts.

Theorem C  Assume that Zy satisfies the condition (1). In particular, if
NN =0, 4 B(Zo) = 0, ©/3, 21/3 (modx) for all B € A'Y and if
B(Zy) = 7/6, 7/2, 57/6 (mod ) for all 5 € N'Y, then M is a minimal
submanifold satisfying the conditions (i), (ii) in Theorem A. Furthermore,
if the cohomogeneity of the H-action is equal to the rank of G/K, then
(91)er = (3/4)Bglmxm and ﬂveTleKerAv = {0} hold.

Theorem D  Assume that Zy satisfies the condition (1). In particular, if
NN =0, i B(Zo) = 0, ©/6, 57/6 (mod ) for all B € A'Y and if
B(Zy) = 7/3, ©/2, 27/3 (mod ) for all B € NY, then M is a minimal
submanifold satisfying the conditions (i), (ii) in Theorem A. Furthermore,
if the cohomogeneity of the H-action is equal to the rank of G/K, then
(91)er = (1/4)Bg|mxm and (\,eps s Ker Ay = {0} hold.

Theorem E  Assume that Zy satisfies the condition (I1). In particular, if
NN =0, i B(Zo) = 0, w/4, 31/4 (mod ) for all B € A'Y and if
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B(Zy) = w/4, /2, 3r/4 (mod ) for all § € A’f, then M is a minimal
submanifold satisfying the conditions (i), (ii) in Theorem A. Furthermore,
if the cohomogeneity of the H-action is equal to the rank of G/K, then

(91)er, = (1/2)Bg|mxm and mvETjM Ker A, = {0} hold.

Theorem F IfA’KﬂA’f =0, if 8(Zy) =0, 7/2 (mod ) forall 3 € A,
then M s a totally geodesic submanifold satisfying the conditions (i), (i) in
Theorem A. Furthermore, if the cohomogeneity of the H-action is equal to
the rank of G/K, then (gr)er. = Bglmxm holds.

Remark 1.2
(i) If H = K then we have A’f = () and hence A’X ﬂA’f =
(ii) In Theorems C~F, when G is simple, there exists an inner automor-
phism p of G with p(K) = H by Proposition 4.39 of [I].

In the final section, we give examples of Hermann actions H ~ G/K
and Zy € b as in Theorems B, C and F.
2. Basic notions and facts

In this section, we recall some basic notions and facts.

Shape operators of orbits of Hermann actions

Let H ~ G/K be a Hermann action and 6 (resp. 7) an involution of
G with (Fix6)y € K C Fix6 (resp. (Fix7)g C H C Fix7). Assume that
for=7100. Let &, p, b, q, b, pg, &, A’_‘: and A’f be as in Introduction.
Fix Zy € b. Set M := H(ExpZp) and go := exp Zp, where Exp is the
exponential map of G/K at eK and exp is the exponential map of G. Set

A/ZO ={B¢e A’K | B(Zo) = 0 (mod )}
and
A/go = {B € A’f | B(Zp) = g (modﬂ)}.

Denote by A the shape tensor of M. The tangent space Tgxp z,M of M at
Exp Zj is given by
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TEpoOMng*<;,m<b>+ S et Y (PB”U)) (2.1)

pear\ay, Bearm\arl

and hence

TépoOM:go*<b+ S psnat Y <mmh>). (2.2)

BeN'y peny

Denote by L the isotropy group of the H-action at Exp Zy. The slice
representation p%o : L — GL(TELXp zoM) of the H-action at ExpZg
is given by p3 (h) = heexpzolre a (R € Hgz,). Then we have

Exp Zg

UheHZO Pgo (h)(go«b) = Té‘xp zoM and

Aﬂgo(h)(gow)‘pgo(h)(gm(apﬁh(b))) =0,
_ ﬁ(v) . % %
Apgo(h)(go*”)‘pio(h)(go*(laﬁﬂq)) - _m id (5 SRASAPA Zo)’ (2.3)
. H H
Apgo(h)(gow)\pgo(h)(go*(pﬁﬂh)) = B(v)tan B(Zo)id (B e AL\ A'Z),

where h € L and v € b.

The canonical connection

Let H/L be a reductive homogeneous space and ) = [+m be a reductive
decomposition (i.e., [[,m] C m), where b (resp. [) is the Lie algebra of H
(resp. L). Also, let 7 : P — H/L be a principal G-bundle, where G is a Lie
group. Assume that H acts on P as w(h-u) = h-7(u) for any u € P and any
h € H. Then there uniquely exists a connection w of P such that, for any
X € mand any u € P, t — (exptX)(u) is a horizontal curve with respect
to w, where exp is the exponential map of H. This connection w is called
the canonical connection of P associated with the reductive decomposition
h=I14+m.

3. Proof of Theorems A~F

In this section, we shall first prove Theorems A~F. We use the notations
in Introduction. Let H ~ G/K be a Hermann action and Z, be an element
of b. Set M := H(Exp Z).
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Proof of Theorem A. Denote by H the mean curvature vector of M. From
(2.1) and (2.3), we have

(Hexp 2o, P5, (1) (g0:v))

B
nmﬁ

= - Z Z Wﬁz + Z Z nﬁmg tan 3(Zo)Bi(v)

=1 ﬁGA/K\A’ =1 BGA/H\A/

for any v € b and any h € L. Hence, Hgxp z, vanishes if and only if the
following relations hold:

nimy B, H
Z m = Z n; mﬁ ta,n/B(ZO)

BGA/K\AIEO ,BEA’E\A/HO (’l/ = 17,,.”)"). (31)

Since Z satisfies the condition (I) or (II) in Theorem A, (3.1) holds, that
is, HExp z, vanishes. Therefore M is minimal.

Next we shall show that there exists a reductive decomposition h = [+m
with Bg(l[,m) = 0. Easily we have

(=3 (0)+ D> (EgNb)+ Y (pgNh). (3:2)

EAS BeEA'Z

Define a subspace m of § by

me=gp(b)+ Y. (Esnb)+ D> (pgNh). (3.3)

Ben\ATY peari\arg

Easily we can show that h = [+ m is a reductive decomposition and that
Bgy([,m) =0.

Next we shall show that V¥» = V1. Take v € b (C go*lTElXp zoM). Set
gs :=exp(l — s)Zy. Let Z :[0,1] — b be a C*°-curve such that Z(0) = Z
and that Z((0,1]) is contained in a fundamental domain of the Coxeter
group associated with the principal H-orbit at an intersection point of the
orbit and b. Set My := H(ExpZ(1 —s)) (0 < s < 1). Denote by A® the
shape tensor of M, and V the Levi-Civita connection of G /K. Let v° be
the H-equivariant normal vector field of My (0 < s < 1) arising from gs.v.
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Since M, (0 < s < 1) is a principal orbit of a Hermann (hence hyperpolar)
action, v° is well-defined and it is a parallel normal vector field with respect
to V4. Take X € t5Nh (Cm) (B € A’K \ A’go). Then, by using (2.3), we
have

- 5(2} *

~S S * )
Viipza-0? =~ Xbwz0-9 = g0 KBw 20-9)

and hence

~Ss

VXt 2 (XX ) Bp(20) (V) = A Vx;

Exp Z(1—s)
B(v)

_ P T 7 M.
tan 3(Z,) P70 & TExp Zo

Hence we obtain VLE ; (exptX),Bxp(z,)(v) = 0. Take Y € pgNh (C m)
xp Zg
(B e A’f \ A’gﬂ). Then, by using (2.3), we have

VYE*XPZ(I,S)F =—A; E*xp Z(1—s) — —B(v) tanﬁ(ZO)YE*xp Z(1—s)"

and hence

Vv, 2 (exptY )smxp 2z, (V) = SEIEO Vye, o

~S

= _ﬁ(v) tan 5(ZO)YETxp Zy € TEXP ZOM'

Hence we obtain V%,g ; (exptY ) mxp(zy)(v) = 0. Therefore, it follows from
xp Zo

the arbitrariness of X,Y and 8 that ¢ — (exptX ) gxp 2, (v) is V- -parallel
along t — (exptX)(Exp Zo) for any X € m. Take any h € L. Similarly
we can show that ¢ — (exptX). pxp 2, (P2, (h))(g0+v)) is V+-parallel along
t— (exptX)(Exp Zo) for any X € m. Note that this fact has been showed
in [IST] in different method. On the other hand, it follows from the def-
inition of w that t — (exptX)sExp 2 (pZ,(h)(goxv)) is V¥m-parallel along
t— (exptX)(Exp Zo) for any X € m. Therefore we obtain V- = V¥, The
statement for (), cp. 5, Ker Ay follows from (2.3) directly. O

Next we prove Theorem B.

Proof of Theorem B. This statement of this theorem follows from (2.3)
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directly. O

Next we prove Theorems C~F.
Proof of Theorems C~F. Define a diffeomorphism ¢ : H/L — M by
Y(hL) := h-Exp Zy (h € H). Next we shall show that (¢*gr)er = c¢Bglmxm,
where
(in case of Theorems C)

(in case of Theorem D)

(in case of Theorem E)

o
Il
N = R = W

(in case of Theorem F).

In the sequel, we omit the notation ¢*. For each X € m(= T..(H/L) =
Texp z, M), denote by X* the Killing field on M associated with X, that
is, X, := d/dt|i=o(exptX)(p) (p € M). From the definition of ¢, we have
Vier X = Xi 7, Take Sg, € €5, Nh (B € AT\ AL T) and Sp, €
pg, Nh (B2 € AQ_V \ A’ZOV). Let T, be the element of pg, N q such that
ad(b)(Sp,) = B1(b)Tp, for any b € b. Then we have

Vser(S8,) = (55, )Exp 2, = — sin B1(Zo) (exp Zo)«(T,) (3.4)
and
Yeer(S8,) = (S5, )msp 20 = €05 B2(Z0)(exp Zo)«(95,)- (3.5)

Hence, since H and Zj is as in Theorems C~F, we have (gr)er(58,,55,) =
cBy(Ss,,53,) and (g1)er(S5,,53,) = ¢By(Ss,,55,). If the cohomogene-
ity of the H-action is equal to the rank of G/K, then we have 3,ny(b) =
0. Therefore we obtain (gr)er = ¢Bglmxm. Also, in Theorems C~E,
Noers pr Ker Ay = {0} follows from the statement for (3,1 5, Ker A, in
Theorem A directly. O
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4. Examples

In this section, we give examples of a Hermann action H ~ G/K and
Zy € C as in Theorems B, C and F. We use the notations in Introduction.

Example 1 We consider the isotropy action of SU(3n + 3)/SO(3n + 3).
Then we have AL = A/, = A’K (which is of (asy+2)-type) and A’f = 0.
Let II = {f1,...,B3n4+2} be a simple root system of A/, , where we order
B1s- -, P3n+2 as the Dynkin diagram of A/, is as in Figure 1, A/, = {8; +
-+ 65| 1 <4,5 <3n+2}. Forany § € Al,, we have mg = 1. Let Z
be the point of b defined by 3,+1(Zo) = fant2(Zo) = 7/3 and F;(Zy) =0
(1 e{1,....,3n+ 2} \ {n +1,2n + 2}). Clearly we have my =1, m{ =0
and ((Zy) =0, m/3 or 2m/3 (modn) for any 3 € A/ . For simplicity, set
Bij :==0i+---+0; (1 <i<j<3n+2). Easily we can show

{ﬁ e Y | B(Z0) = (modw)}

={8i;|1<i<n+1<j<2n+2, orn+1<i<2n+2<j5<3n+2}

wl

and

2
{ﬂ € A/K | B(Zy) = % (modw)}
From these facts, it follows that the condition (I) holds. Thus Z; is as in
the statement of Theorem C. Also, it is easy to show that M is not austere.

Oove SETRENS -0
B B2 B3n42
Figure 1.

Example 2 We consider the isotropy action of SU(6n + 6)/Sp(3n + 3).
Then we have AL = A/, = A/K (which is of (as,42)-type) and A/f = 0.
Let IT = {f1,...,B3n+2} be a simple root system of A’ , where we order
B1,--.,P3ns2 as above. We have mg = 4 for any 3 € A, Let Zy be
the point of the closure of b defined by (,4+1(Zy) = Bant2(Zp) = 7/3 and
Bi(Zo) =0 (i € {1,...,3n+ 2} \ {n +1,2n +2}). Clearly we have my = 4,
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mg = 0and 3(Zy) =0, /3 or 2m/3 (mod 7) for any 3 € A/, . For simplicity,
set Bij =0 +---+0; (1 <i<j<3n+2). Easily we can show

% T
{ﬁEA’+ |/6(ZO)E§ (modrr)}
={0;|1<i<n+1<j<2n+2 orn+1<i<2n+2<j<3n+2}

and

{B e N | B(Zo) = %” <mod7r)}

={B;j|1<i<n+1,2n+2<j<3n+2}

From these facts, it follows that the condition (I) holds. Thus Zj is as in
the statement of Theorem C. Also, it is easy to show that M is not austere.

Example 3 We consider the isotropy action of SU(3)/S(U(1) xU(2)) (2-
dimensional complex projective space). Then we have A = A/, = A/ K =
{3,208} and A’f =0, mg = 2 and mag = 1. Let Zy be the point of b
defined by ((Zy) = /3. Clearly Z; satisfies the condition (I). Thus Zy is
as in the statement of Theorem C. Also, it is easy to show that M is not
austere.

Example 4 We consider the isotropy action of Sp(3n + 2)/U(3n + 2).
Then we have AL = A/, = A’K (which is of (¢3p,42)-type) and A’f = 0.
Let I = {f4,..., 03042} be a simple root system of A’ , where we we
order (31,..., B3n42 as the Dynkin diagram of A/, is as in Fig.2. We have
mg = 1 for any 8 € A/,. Let Zy be the point of b defined by £,41(Z) =
ﬁQn—i—Q(ZO) = ﬁ3n+2<ZO) = 71'/3 and ﬁZ(ZO) =0 (Z S {1, o3+ 2} \ {n +
1,2n + 2,3n + 2}). Clearly we have my =1, mf =0 and (%) = 0, /3
or 27/3 (mod ) for any 3 € A/ . For simplicity, set 3;; := 5 + - + f;
(1 <i<j<3n+2), 8 =28+ -+ Bans1) + Bant2 and Fi; =
Bi+ -+ Bim1+2(8; + -+ Bans1) + Banre (1 << j<3n+1). Easily
we can show
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{6 e &'Y | B(Zy) =  (mod w)}

={fi;|1<i<n+1<j<2n+2orn+1<i<2n+2<j<3n+2
or2n+3<i<j=3n+2}

w3

U{Bi|2n+3<i<3n+1}
U{Bjl2n+3<i<j<3n+lorl<i<n+1<j<2n+2}

and

3
={Bi | “1<i<n4+1&2n4+2<j<3n+1" or
“‘n+2<i<2n+2&j=3n+2"}

U{Bil1<i<n+1}

U{Bjl1<i<j<n+lorn+2<i<2n+2<j<3n+1}.

{ﬁ e A | B(Zo) = 2 (mod w)}

From these facts, it follows that the condition (I) holds. Thus Zj is as in
the statement of Theorem C. Also, it is easy to show that M is not austere.

OO Se=0)
B1 B2 ﬁBnJrl ﬁ3n+2

Figure 2.

By refering Tables 1 and 2 in [K2], we shall list up Hermann actions
of cohomogeneity two on irreducible symmetric spaces of compact type and
rank two satisfying

i) my =m (vBen,) or (i) A naT=0.

All of such Hermann actions satisfying (i) are as in Table 1. In Table 1,

[ means m‘ﬁf = mg = m. All of such Hermann actions satisfying (ii)

(m)
are the dual actions (see Table 3) of Hermann actions on symmetric spaces

of non-compact type as in Table 2. In Table 3, 3 means m/‘g/ or mg is

(m)
equal to m. Since the Hermann actions in Table 2 are commutative, so
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are also the Hermann actions in Table 3. Also, since A/ J‘i RVAN f =0 as
in Table 3 and G/K is irreducible, there exists an inner automorphism p
of G with p(K) = H by Proposition 4.39 in [I]. According to the proof of
the proposition, p is given explicitly by p = Adg(expb), where Adg is the
adjoint representation of G and b is the element of b satisfying

(0, ;r) (in case of (1),(2),(3),(4),(6),(9),(10),(11))

(0 20) = 4 (5.0) i case of (3,7

m™ T .
(2, 2) (in case of (8)).
Table 1.
Hn~ G/K A =
S0(6) ~ SU(6)/Sp(3) {B1, B2, 81 + B2}

2 2 @

SO(2)2 % 50(3)2 ~ :
(SO(5) x SO(5))/SO(5) {(611) ,(612),61 (Jlr)ﬁz, ﬁl(;; B}

SU(2)2-50(2)? ~
(Sp(2) x Sp(2))/Sp(2) {(511)7(512),& + B2, 2ﬁ1 + B2}
Sp(4) ~ Eg/Fy {51’52751 " 52}
OROENG

SU@2)* ~ (G2 x G2) /G {(511)7 /(312)751 (Jlr)5272ﬁ1 +ﬁ2,3ﬂ1 + B2,3061 T)2,82}

Table 2.
(1) S500(1,2) ~ SL(3,R)/SO(3)
(2) Sp(1,2) ~ SU*(6)/Sp(3)
(3) U(2,3) ~ SO*(10)/U(5)
(4) S00(2,3) ~ SO(5,C)/SO(5)
(5) U(1,1) ~ Sp(2,R)/U(2)
(6) Sp(2,R) ~ Sp(2,C)/Sp(2)
(M) Sp(1,1) ~ Sp(2,C)/Sp(2)
(8) | SO*(10) - U(1) ~ E4 **/Spin(10) - U(1)
(9) F2 ~E;?°/Fy
(10) SL(2,R) x SL(2,R) ~ G3/S0(4)
(11) G2~ G /G
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Table 3.
H~ G/K A7 N
(1) | SO0(1,2)" ~ SU(3)/SO(3) {/(511>} {2512)”31 (—;52}
(2) | Sp(1,2)" ~ SU(6)/Sp(3) {ﬁl)} {(542;”31 (1-)52}
(3) U(2,3)" ~ SO(10)/U(5) {B1,281,261 + 202} {B2, B1 + B2, 231 + B2}
(4) (1) (4) (4)
500(2,3)" ~
(4) (SO(5) x SO(5))/S0(5) {(52%} {(522) , B1 J2r Bz, 251 + B2}
(5) U(1,1)* ~ Sp(2)/U(2) {B2,2B1 + B2} {B1,B1 + 52}
(1) (1) (1) (1)
Sp(2,R)* ~
(6) (Sp(2) x Sp(2))/Sp(2) {(ﬂ;)} {(522)7 B1 é—)ﬁm 2ﬁ1<2-0)- B2}
Sp(1,1)* ~
D1 (sp) x sp@ssp | W08 15 £ 52
(SO™(10) - U(1)" ~
(8) B/ Spin(10) - U(1) {/(581), 2?)1, 201 + 262} {%’)7 B1 (—é—)ﬁm 251(?)‘ B2}
(9) (F7)" ~ Eo/Fy {,81} {B2,B1 + B2}
(8) (8) (8)
(SL(2,R) x SL(Z,R))" ~
(10) G2/SO(4) {(611)1361 (Jlr)252} {(ﬁlz) , B Jlr B2, 251 + B2, 3/31 + B2}
(1) | (G3)" ~ (G2 x G2)/G2 {(621),351 (45)262} {(@22) B 5 Ba, 261 + B, 3,81 + B2}

According to Theorem B, we obtain the following fact.

Proposition 4.1 Let H ~ G/K be a Hermann action in Table 1 and
Zy an element of b satisfying (81(Zo), 52(Zy)) = (0,7/4), (7/4,0) or
(r/4,7/4). Then M = H(Exp Zy) is a (non-totally geodesic) austere sub-
manifold.

Denote by Z(, ) the element Z of b satisfying (81(Z), 32(Z)) = (a,b). In
the case where A\’ is of type (a2), three points of b as in Proposition 4.1 are
as in Figure 3.

Proposition 4.2 Let H ~ G/K be a Hermann action in Table 3 and Z
an element of the closure of C(C b) such that H(Exp Zg) is minimal. Then,
as in Tables 4 ~ 13, Zy satisfies the condition in Theorem C or F, or it does
not satisfy the conditions in Theorems C~F.

Remark 4.1 There exist exactly seven elements Z; of the closure of C (C
b) such that H(Exp Z) is minimal.
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B+ B2) 1 (5)

Zx .
o (82)71(0)
--------- Zao
rg ¥
Z0.%) (61)71(0)
Figure 3.
Table 4.
(a, b) Z(a,b) M = 300(172)*(EXpZ(a7b)) dim M
(0, —g as in Theorem F one-point set 0
0,% as in Theorem F one-point set 0
(r,—%) | as in Theorem F one-point set 0
(0,0) |asin Theorem F totally geodesic 2
(5,0) |asin Theorem F totally geodesic 2
5, %) | as in Theorem F totally geodesic 2
%, —% as in Theorem C not austere 3

SOu(1,2)* ~ SU(3)/SO(3)
(dim SU(3)/SO(3) = 5)

The positions of Zy’s in Table 4 are as in Figure 4.

(61 + B2)"(5)

Z(0.0)

Figure 4.
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Table 5.

(a7b) Z(a,b) M= Sp(LQ)*(EXp Z(a,b)) dim M
(0,—%) | as in Theorem F one-point set 0
(0,%) |asin Theorem F one-point set 0
(m,—%) | as in Theorem F one-point set 0

(0,0) |asin Theorem F totally geodesic 8
(5,0) |asin Theorem F totally geodesic 8
5,—5) | as in Theorem F totally geodesic 8
55— %) |as in Theorem C not austere 12

Sp(1,2)* ~ SU(6)/Sp(3)
(dim SU(6)/Sp(3) = 14)

The positions of Z;’s in Table 5 are as in Figure 4.

Table 6.
(a,b) Z(aw) M = U(2,3)" (Exp Z(a,p)) | dim M
(0, 5 as in Theorem F one-point set 0
(0,0) as in Theorem F totally geodesic 12
55 as in Theorem F totally geodesic 8
(arctan \/g, 5 — arctan \/g) not as in Theorems C~F not austere 14
(0, arctan \/%) not as in Theorems C~F not austere 13
arctan X2, — arctan %2 not as in Theorems C~F not austere 17
3 3
(ao, bo) not as in Theorems C~F not austere 18

U(2,3)* ~ SO(10)/U(5)
(dim SO(10)/U (5) = 20)

The positions of Zy’s in Table 6 are as in Figure 5. Also, the numbers
ap and by in Table 6 are real numbers such that ag, by # 7/6, 7/3, n/4, 37/4
(mod 7).
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Figure 5.
Table 7.
(a, b) Z(a,b) M = 500(2,3)" (Exp Z(q,p)) | dim M
0,-%) as in Theorem F one-point set 0
0, % as in Theorem F one-point set 0
5.—5 as in Theorem F totally geodesic 4
(0,0) as in Theorem F totally geodesic 6
(arctan /3, -z not as in Theorems C~F not austere 6
(arctan v/3, T — 2arctan v/3) | not as in Theorems C~F not austere 6
not as in Theorems C~F not austere 8

(arctan %, — arctan %)

S00(2,3)* ~ (SO(5) x SO(5))/SO(5)
(dim(SO(5) x SO(5))/SO(5) = 10)

The positions of Zy’s in Table 7 are as in Figure 6.

Z(arctauﬁ, —3)

2

1 1
iy N —=, — ar N —=
arctan—, —arctan )

(2ﬁ1 + B2)”

(
(@) -5)

Figure 6.

1%)
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Table 8.

(a,b) Z(a,b) M =U(1,1)"(Exp Z(q,p)) | dim M
(3,0) as in Theorem F one-point set 0
(=5,m) as in Theorem F one-point set 0
(0,0) as in Theorem F totally geodesic 2
(5:0) as in Theorem C not austere 3
—5: 5 as in Theorem C not austere 3
0,% as in Theorem F totally geodesic 3
(0,arctan v/2) | not as in Theorems C~F not austere 4

U(1,1)* ~ Sp(2)/U(2)
(dim Sp(2)/U(2) = 6)

The positions of Z;’s in Table 8 are as in Figure 7.

7
1 (0,arctan/2)
O N R RSIES
Z(%o)
Z(o,O)---.A__; )
Z(-2.3)

(261 + B2)(0)

Figure 7.
Table 9.
(a,b) Z(a,b) M = Sp(2,R)" (Exp Z(4,)) | dim M
0,-%) as in Theorem F one-point set 0
0,% as in Theorem F one-point set 0
55 as in Theorem F totally geodesic 4
(0,0) as in Theorem F totally geodesic 6
(arctan v/3, -5 not as in Theorems C~F not austere 6
(arctan v/3, 5 — 2arctan V/3) | not as in Theorems C~F not austere 6
(arctan %, — arctan %) not as in Theorems C~F not austere 8

Sp(2,R)* ~ (Sp(2) x Sp(2))/Sp(2)
(dim(Sp(2) x Sp(2))/Sp(2) = 10)
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The positions of Zj’s in Table 9 are as in Figure 6.
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Table 10.
(a,b) Z(a,b) M = Sp(1,1)*(Exp Z(4,p)) | dim M
(5,0) as in Theorem F one-point set 0
(=5,m) as in Theorem F one-point set 0
(0,0) as in Theorem F totally geodesic 4
(5:0) as in Theorem C not austere 6
(-5 3 as in Theorem C not austere 6
(0, 5 as in Theorem F totally geodesic 6
(0, arctan v/2) | not as in Theorems C~F not austere 8
Sp(1,1)" ~ (Sp(2) x Sp(2))/5p(2)
(dim(Sp(2) x Sp(2))/Sp(2) = 10)
The positions of Zj’s in Table 10 are as in Figure 7.
Table 11.
(a,b) Z(a,b) M = (SO*(10) - U(1))* (Exp Z(q4,p)) | dim M
(0,0) as in Theorem F totally geodesic 20
0,5 as in Theorem F one-point set 0
(5,—% as in Theorem F totally geodesic 17
(0,a1) not as in Theorems C~F not austere 21
(a2,—a2) |not as in Theorems C~F not austere 29
(a3, 5 — 2a3) | not as in Theorems C~F not austere 25
(aq,b) not as in Theorems C~F not austere 30

(SO*(10) - U(1))* ~ Eg/Spin(10) - U(1)
(dim Eg/Spin(10) - U(1) = 32)

The positions of Zy’s in Table 11 are as in Figure 8. The numbers «;
(1=1,2,3,4) and b in Table 11 are real numbers such that a;,b # /6, 7/3,
/4, 3w /4 (mod ).
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(B2)71(0)
7 -
(5.-%)
2 ’ '4Z((L3,%*2d3)
) N (2!31+52)71(%)
B+ 80N\ R
& S
g
. 0,5
Z(”Z«*”Z)““" - Z i
' *4(0,a1)
Z(aél'b)'A' 'Z(UJ'))
T(B)7H0)
Figure 8.
Table 12.
—20 .
(a,b) Z(a,b) M = (F;=")*(Exp Z(q,py) | dim M
(0,—7%) | as in Theorem F one-point set 0
(0, % as in Theorem F one-point set 0
(r,—%) | as in Theorem F one-point set 0
s as in eorem totally geodesic
0,0 in Th F 11 desi 16
z, as in Theorem totally geodesic
5,0 in Th F 11 desi 16
(3,—7%) | as in Theorem F totally geodesic 16
%>~ ) | as in Theorem C not austere 24
—20
(F4 )* 5% EG/F4
(dim Eg/Fy = 26)
The positions of Zy’s in Table 12 are as in Figure 4.
Table 13.
(a.5) Zwn) M = (SL(2,R) x SL(2,R))* | 4+
(Exp Z(a,p))
0,-%) as in Theorem F one-point set 0
(0, 5 as in Theorem F one-point set 0
55 as in Theorem F totally geodesic 4
=5 as in Theorem C not austere 3
(arctan \f, g — 2arctan \/5) not as in Theorems C~F not austere 5
(as, b2) not as in Theorems C~F not austere 6

(SL(2,R) x SL(2,R))* ~ G2/SO(4)

(dim G/SO(4) = 8)
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The positions of Zy’s in Table 13 are as in Figure 9. The numbers a4
and by in Table 13 are real numbers such that a4, by # 7/6, 7/3, 7/4, 3n/4
(mod ).

BB

\ (B (-3)

j’_7>: Z(%,%)

Z(ag,bs)
Figure 9.
Table 14.
(a7 b) Z(a,b) M= (G%)*(Exp Z(a,b)) dim M
0,-%) as in Theorem F one-point set 0
0,% as in Theorem F one-point set 0
(5,—%) as in Theorem F totally geodesic 8
%, —g as in Theorem C not austere 6
(arctan v/5, 5 — 2arctan v/5) | not as in Theorems C~F not austere 10
(as, b3) not as in Theorems C~F not austere 12

(Gg)* mn (G2 X GQ)/GQ
(dlm(GQ X GQ)/GQ = 14)

The positions of Zy’s in Table 14 are as in Figure 9. The numbers a5
and b3 in Table 14 are real numbers such that a4, by # 7/6, 7/3, 7/4, 37/4
(mod ).
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